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NOTE 

Aa I was preparing the manuaorlpt of this Report for typing, I discovered, 

on April 22, 1960, that my method of approximation, at least when restricted to 

polynomials, is not esaentlally new.   A very similar method is described in [6]. 

For a comparison of the two methods, see fs. 

ill 
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AN ALGORITHM FOR FINDING RATIONAL APPROXIMATIONS (P) 

H. F. Mattson, Jr. 

§1.   ABSTRACT 

1 

Solentiflo work frequently requires numerical values of functions.   Although 

much general information is often known about these functions, values of them are 

nevertheless often difficult to compute; although in almost all cases some method for 

making this computation, however lengthy it may be, is known.   The purpose of a 

rational apprcxlmation to a function is to provide a rapid and convenient way to calculate 

numerical values of the function to within a predetermined error.   This paper considers 

the question of how to find rational approximations to given functions.   In   § 2 there 

appear definitions of terms, a precise statement of what our criterion of best fit is, 

and statements of some classical results.   In   § 3, two closely related iterative methods 

for finding best rational approximations are defined.   In   §4t a proof of convergence of 

these methods is given for a special case (in which both methods are the same).   In   § 5, 

these methods are compared with some others.   In   5 6» some results obtained by one 

of the methods of   § 3 are presented, together with a brief description of the computer 

program used to obtain them. 

12.   DEFINITIONS AND KNOWN RESULTS 

A few preliminary definitions are necessary to this discussion.   We shall restrict 

ourselves to the finite interval I B  f a, b]   on the real line.   If we consider the space 

of all continuous functions (with real values) defined on I, it is natural and commonplace 
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tCt define the distance between two such functions h and g as the maximum absolute 

vjilue of the difference h -   g: 

max     I h (x) - g (x) |   = || h - g j| . 
a< x ib 

In general, we define |( G || , for any continuous function G defined on I, as 

|| G || =        max     | G (x) | . 
a<x <b 

Throughout this paper   f will denote a fixed, continuous function over  I.   (We 

shall impose an additional restriction on  f  at one point later on.)   For given non- 

nogative integers   m  and   n,  we consider the family  F 

oi 

at 

Is 

the 

uti 

Ufl 

w 

m.n of all rational functions 

the form S(x) a P(x) /Q(x), where P(x) is a polynomial of degree at most m,   and 

Qbc) is a polynomial of degree at most n having no zeros in I.   Each S in F is m, n 
a certain distance dg =||S-f}|>0 from f.   The set of numbers dg, with S in 

pjjj has a greatest lower bound d,   a notation which will be fixed throughout this 

^per.   The questions on rational approximation which naturally arise are the following: 

there an R in Fm n such that dR = d?    If so, what more can we say about R?   In 

particular, how can we find it? 

The answer to the first question is yes:   There exists an R in Fm      such that 

R<d
s 

for every S in FJJ, n   fl, p.53j  1K    For this R,   then,   dR = d.   Furthermore, 

such R is u  ique; that is, if S is any rational iunctlon in Fm      different from R, then 

K < d     fl, p. 56] .    R will always denote this best approximation.   "Best", or 

lj)est-fItting", is here used in the sense previously defined; it is often called "best in 

sense of Techebyshev" in the literature. 

We now quote two important theorems on rational approximations which will give 

more information about   R   and  d.    (no pun intended)     The first theorem will allow 

to find lower bounds for  d;   the second characterizes R in terms of some properties 

liich will prove to be useful later on. 

1)   Numbers in square brackets refer to the bibliography at the end of this Report. 

 . 
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Let R   be any rational function in  F^ „ so R   (^ - P (x) /%<&, with 
O illi u " 

P0(x) = auxm"il + •. • + am , Q0 W = bv
xn"V + ... + bI1, bv ^ 0, 0< M < m,  and 

0 s v s a.   Define N «=m + n + 2-6  , where 6 ■ noin (M , v). 

Assume also that jao (x) ^ 0 and that P0 (x) andQ0p£) have no common divisor. 

THEOREM A.   Suppose that the error function E0 ■ R0 -f at some N points 
H Xj  <... <xN in I assumes respectively the values ~vv + v2, -v3, ..., (-1)   vN 

different from zero and of alternating signs (thus all v's have the same sign). 

If Rj^ is any member of Fm n with error function   Ej = Rj^ -f, then 

dp    = II Ej^ll >   min (l Vj^l , ...,   I vN l}   . 

(If P   =0, then the same inequality holds with N « n + 2.) 

A consequence of this theorem is that d = dR >  min   { I v11, ..., I V
JJ Ij • 

And if B.i is any member of Fm n the error function of which has sufficiently many 

extreme values of alternating signs, then d is not less than the minimum of these 

extreme values (in magnitude). 

THEOREM B.     R0 is the best-fitting rational function R if and only if there 

exists at least N points Xj^  < ... < xN in I at which  E0 - R0 -f assumes the values 

E0(xi) = (-l)i+,Cll E0 It, 1 ■ 1, ..., N, where « is either 0 for all i or 1 for all i. 

(R = 0 is the best-fitting rational function in Fm n if, and only if, there are at 

least N «= n + 2 points x1 <... < xN for which  f(xi) = (-1)       llfll.) 

For the proof of Theorem A, see   fl, pp. 52-53/.   A proof of Theorem B also 

occurs in   fl, pp. 55-57J . 

In proving the uniqueness of R    fl, pp. 56-57], mentioned earlier, one uses 

Theorem B. 

' 

1 
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We shall use the terms "extremum" and extreme value" as follows:   An extrenmm 

of the function g is a point in I at which g takes an extreme value.   If R„ * F„, _ we 0 o        m, n   

define an admissible set of extrema of E0 {E0 = R   -f) to be N points x^ < ... < xN 

in I such that 

1) each x. is an extremum of E ,   and 

2) E0(x4) ^ 0 and alternates in sign as i increases from 1 to M. 

The set   ■[E0(x j) ;  i = 1, . „., NJ    is then called an admissible set of extreme- values 

of E„. 

Finally, let me observe that the only extreme (of any function G) pertinent to 

the situation under discussion in this Report are the maxima of f G I.   Therefore 

"extrema" should be tacitly so understood here. 

§ 3.     DEFINITIONS OF ALGORITHMS 

We now define two iterative procedures which in some cases (see § 6) are known 

to converge to the best-fitting rational approximation to our given continuous function 

f  over I =   fa, b ] .   (There are no ca.-.f»8 known to me in which the procedures do not 

converge to f,   but a proof of convergence is known to me only for the restriction to 
/\       c r  r% n*    v u,    it v>      .) 

We shall call our first algorithm the "non-linear" algorithm and our second the 

"linear" algorithm.   Both have in common the following first step: 

1.°   For a given m, n select (say, by interpolation at the estimated zeros of £) 

R- £ F_      such that E    = R   -f has an admibsible set of extrema. o        m,n 00 

Nonlinear Method: 

2.°   Given R, , £. F        ,   such that E.     = R,  , -f has an admissible set of 

extreme x,, ,.<,, x  . determine R. £ F bv imposing the N conditions 
1 '    N j        m,n 

-4- 
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R (K ) -f ^K ) ■ (-1)   y. i " 1, ..., N,  where y. Is an unknowQ.   The other unknowns 
• X J J 

2) 
are, of course, the coefficients occurring In P. and Q« in R . 

Linear Method; 

2°.    Given R      = ^-i^j-i     Fr: u
j ^ 0' euoh that Ej-1 " R)-l 

admissible set of extrema x1<...< XJJ, determine Rj - P /Q^ £ F^^ by the N 

f has an 

conditions 

P (x^ -fCXj) Q^Xj) = i-^^j.! (x^ yj, I - li • • -, N. 

Choose the leading coefficient of each Q. to be 1.   Notice that these equations are 
2) 

linear in the unknowns y, and the coefficients occurring in P. and Q.. 

Comments on these methods; 

The motivation for the non-linear method clearly comes from the characterization 

of the best-fitting rational function in Theorem B.   The desired best-fitting rational 

function is obviously a fixed point of the transformation defined in Step 2°,    (modulo 

the complications mentioned in footnote 2).   The linear method is derived from the 

non-linear one In an obvious way, and it also has the desired best-fitting rational function 

as a fixed point (modulo the eomplicatlone mentioned in footnote 2). 

It is not known whether either of those methods actually stays inside Fm n in 

general.   That Is, for some j,  R. as defined in either method may, a priori, fall to 

exist.   Also, for some j,  Rj may, a priori, have a pole in I,   If one satisfied these 

pre-conditions, the central question would remain, namely, whether one or the other 

method converges.   These three questions appear to be difficult for the general case 

2)  It may happen that R. -f has more than N extrema.   In such a case I require the 

choice of a particular admissible set of extrema.   I have stated the method in its simplest 

form here, for clarity; it appears in full generality as step 2'° in   3 4« 

 . . , . , .__ _ . .. .^_ 



(i. e., m and n arbitrary,   f any continuous function on 1) of the non-ilnear method 

and more difficult for that of the linear method.   But in the case n « 0 both methods 

ooinoide, and a considerable number of the necessary results can be proved for arbi- 

trary f.   Finally, if one then restricts f to have m continuous derivatives, a full exis- 

tence and convergence proof is possible.   We present this proof In the next section. 

§ 4,    PROOFS FOR THE CASE n = 0 

We now confine ourselves to polynomial approximations P, to our given f. 

Both methods are the ^ame in thl» case.   Our first step is to satisfy the pre-condi- 

tiona by proving the existence of P     ,   given a P  having the required properties.   The 

proof leads naturally to further results, all of which we include in the following theorem. 

THEOREM 1.     Let P   be a polynomial, either 0 or degree m - M, where 

0 < jx < m, such that there are N «= m + 2 points 

(a < ) x1<... <xN(< b) 

at which the error function E0 ■ P   -f takes on respectively the non-zero values 

E   (Xj) = {-Vv, 1 = 1, ..., N, where all vi have the same sign.   Then there exists 

a polynomial P. of degree at most m, and a number y such that the error function 

E^ = Pj-f takes the values 

and 

EiCx^ = (-i)ly   {*), 

a) y is uniquely determined by the condition (*), 

b) If not all vi are equal, then 

min       1 vi I< I y I < max    | v^ I (therefore y ^ 0 ), 
l<i<N lli<N 

c) Sign y = sign   {v^   . 

A 

(4.1) 

-6- 

  



PROOF.   We are given N distinot points x^ at which there hold the equations 

^0i
xi) - Ef (x^ + i-Vvjl   »0, i»l? ..., N. 

These equations may be thought of as N homogeneous equations, already solved, 

for the N-l coefficients of an m-th degree polynomial, plus one more "unknown". 

That is, (0, ..., 0, a^, ai+M«"» am' ^ i8 the solution-vector (transposed), and 

the N x M coefficient-matrix is 

M 

m m~l 
XX        Xl 

m 

...   1    - ff^) -v^ 

x2
m~    ...   1    -ff(x2) + v2] 

m m-1 
XN N 

1   - [f(xN)*vN]J  . 

The existence of P0 with the given properties imply that the determinant of the matrix 

M is zero. 

What wa first wish to prove is that there is a number y such that the matrix we 

obtain by replacing each Vj by y in M is also zero.   (Such a y would imply the existence 

of the desired P..)   To this end we expand det (M) by cofactors of the last column, ob- 

taining 

N 

1= 1 
Y,     (-l)N + le1[f(xi)+(-l)ivi] =0 (4.2); 

i 

-7- 
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where the minor e^ Is the van der Monde determinant 

m 
x m-1 X2 • • « 1 

i • 
» 

m 
xl 

m-1 
Xi • o • 1 

• 
m 
m 

'N- ^ e e • I 

(this row omitted) 

thus we have, by the well known formula, 

«»!  =     TT (Xj - xk) . 

J<k 

J, Ml 

Since the x^s are all distinct, each ej ^ 0; since the x's are arranged in increasing 

order, all ei have the same sign, each one being the product of the same number of 

negative factors.   Having noted these properties of the e^s, we now rewrite equation 

(4.2) as 
N 

L 
i= 1 

.1vr+...+eNvN=   -  Yl     ("I)  V (Xi)=dfe• (4.3) 

This shows that | e j   =^ ! ejVj I > 0 and that sign e = (sign e^ (sign v^.   We can 

now immediately satisfy our requirements for the existence of P. by choosing y to 

satisfy 

e1y + .. +eNy = e, (4.4) 

N 
of y E e/ 2_,     ei •    Furthermore, this is the only choice open to us for y. 

i= 1 

-8- 
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1 

A comparlsoo of (4.2) and (4. 3) shows that mln j vi } <l y I < max   | Vj I  unless 

all Vj are equal (in which case y = Vj);  and, finally,  sign y ■ sign e.    sign «^ « 

sign Vj .   QED. 

There are two points to notice about this theorem.   One Is that we do not re- 

quire the x1
,8 to be extrema of E0 but only to be points where E0 alternates in sign. 

In the application of this theorem to our iterative process, however, we shall take 

them as extrema. 

The other point is that although P    may have degree less than m,  the same is 

not necessarily true of P1, as the following example shows: 

Lot f(x) = cos tT x, over I =  [ a, b 1 =   [ 0, 5/2 j .   Take m = 2, so that N = 4, 

For P0,   take P0 (x) = a0, with 0 < a0 < 1.   Then we have 

x1  =  0 x2 = l X3 = 2 5/2 

r1  -   l-a0    v2 = 1^    V3 = l-ao    v4 « ao   , 

as is obvious from the following sketch: 

This same sketch makes it obvious that there is no straight line u = P^x) ^^ x + ^ 

having deviations of equal magnitude at the x^s.    Therefore Pj will be a parabola, 

something like the one sketched with a dashed line. 

-9- 

    



What we have proved In Theorem 1 is that we can always construct our sequence 

[Pjj satisfying the coüditions of step 2°, provided there exists a first polynomial P0 

satisfying the condition of step 1°.     But we can always find P0 by solving PQ^XJ) 

-f (x^y = (-l)iy0 for the unknown coefficients in P0 and the unknown y ,  for any 

distinct Xp ..., Xj^ £ I. ^      The existence of this P0 and y0 is given by the proof of 

Theorem 1, In which y0 is given by (4.4) with e defined by (4.3).   It is only neces- 

sary to choose the xj so that e ^ 0, the possibility of which follows, in case f is not 

a polynomial of degree at most m,  from the existence of the best-fitting polynomial 

and the consequent existence of v^'s with alternating signs. 

Having shown the existence of our sequence {Pj} , we now show that, under 

suitable restrictions, it converges to P. 

We first must modify our definition of step 2° to take account of the possibility 

that there are more than one set of admissible extrema.   We prove a simple lemma; 

LEMMA 1.   If Ej = P- -f has an admissible set of extrema, thea there is an 

admissible set of extrema values containing  + M P* -f 11 = id. . 

PROOF.    Let*dj occur as a value of Ej at x.   If x is already in the admissible 

set of extrema, then we are done.   If x  lies between two of the extrema x' and x", 

then Ej (x) must have the same sign as one of Ej (x1) and E, (x").   Replace that one by 

Ej(x).   If x lies entirely to the left of the admissible extrema, then either replace the 

one nearest x by x, or delete the farthest one and Include x, all depending on whether 

or not the sign of Ej at the one nearest x is the same as that of Ej (x),   QED. 

3)   I am Indebted to Novodvorskii and Pinsker,   [4 |, via Shenitzer  i 6j, for this 

point.   It is slightly easier to prove the possibility of this than to show the possibility 

of avoiding a tangency of P0 and f when interpolating to f at the estimated zeros of 

E, which I had suggested earlier„   In order to obtain linearity of the equations for R0 

when  n > 0, however, one needs to interpolate as first suggested. 

■10- 
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It follows immediately from this lemma that if we choose a set of admissible 

extreme values having the largest possible minimum (in magnitude), then we ma, re- 

place it by a set containing A 11E. 11 without changing the magnitude of the minimum 

extreme value in it.   It is this procedure that we follow when there is more than one 

choice of a set of admissible extreme values at any stage.   Accordingly, we substitute 

the following step 2'° for step 2° ; 

2,o.     Given P* £ F such that P, -f has a set of (N) admissible extreme values, 
J f * 

choose a set S of admissible extreme values containing the largest possible minimum 

(in magnitude) and containing * llPj -f II.    Let Xj^ ..., xN   be the extrema correspond- 

ing to this set S (i. e., S =  { E. (x^ ;.  i = 1,  ..,, N } ).   Determine Pj + i f) = 

a» xm + ... + a    by imposing the N conditions 

Pi + 1 <xi) -^xi) = t-1)1^ + 1'   i = !. • • •. N» 

where y is an unknown. 

The possibility of carrying out step 2'° has been proved in Theorem 1 and 

Lemma 1. 

We now turn to the proof of convergence. 

LEMMA 2.   The sequence {I yj 1}   determined by step 2'° is strictly increasing 

and bounded above by d = 11 E -f 11 ; (unless some Pj = P; then all   | yj = d for k > j ). 

PROOF.    We are given that |  y. I   =    E. (x^ | , where the XjL are the extrema 

belonging to the set S of extreme values of E      defined in step 2'°.    Let Vi = E.^(x.). 

Let S' = ((-1)Ä+ i v'i]   be a set of extreme values of E. as prescribed by step Z'o. 

Since there is an admissible set of extreme values of Ej  such that I  yj I is smaller (in 

magnitude) than all of them,  it follows that 

| y^S min |   v. | . (4-5) 

■ 11- 



Now (4,5) plus Theorem 1 yields I Yj I < tnln | v^ |< I ^ + 1    •   And flnally» 

Theorem A gives   I Yj I < min  I Vj | < I IS I {    = d.   QED. 

We now prove a convergence theorem. 

THEOREM 2.   Every convergent subsequence of  {Pj J   has limit P. 

PROOF.   Every subsequence |Pj ^ , convergent or not, has the property that 

the sequence of attached I yJk !   converges to some limit d' < d.   Let P» be the limit 

lim    P,      of our convergent subsequence.   Then P* is a polynomial of degree at most 

k->o*     R- 
m, (because the sequences of coefficients of the Pjk are bounded; therefore there is a 

subsequence of the subsequence Pj    which has a polynomial p(x) as limit.   But since 

the subsequence P*    is already convergent, the limit P* must be the polynomial p(x) 
^k 

just mentioned.   Finally, the coefficients of the Pjk are bounded because the polynomials 

are bounded at m + 1, in fact at all, points of 1.)   Thus P* is the uniform limit of {Pj V 

We shall prove that d' = H P* -f 11.   First, El = P* -f has an admissible set S of 

extreme values, since P* is the uniform limit of { PjJ ; and, for the same reason, 

the set S has d» as minimum magnitude, in view of the inequalities (4.1) of Theorem 1. 

Therefore we may, and do, apply step 2'0 to P*, obtaining P**.   If I|E*II >d«, then 

the value of the y* found in step 2'° (satisfying E** (extrema of E*) ==*y*) would 

satisfy (y*) >d'.   We choose k large enough so that corresponding admissible extrema 

of E     and E* are close enough to each other to yield I y,   I  so close to I y* I that 
3k k 

|y.   | > d'.     This is possible since y, determined by formula (4.4), depends conUnu- 

ously on the extrema.    But this result contradicts the definition of d«.   Therefore 

H E*l I = d' ^ d.   But since we always have 11 E* I I > d, we have proved that d = d'. 

By the uniqueness of P, we conclude that P* = P.   QED. 

■12- 



Now we are almost finished, for If we knew thatta | were a bounded sequence, 

we oould conolude from the previous theorem that |pJ   converged to P. '    We now 

Introduce a hypothesis, probably stronger than necessary, which implies the bounded- 

ness of {p. j . 

THEOREM 3.     If f has m continuous derivatives, then the sequence ^Pj J 

constructed according to either stet) 2° or step 2,0 Is bounded over 1. 

PROOF.     Each error function Ej ■ Pj-f has at least N -2 = m distinct 

extrema Interior to I.   The existence of a continuous first derivative implies that 

E1      has at least m distinct zeros inside I.   Therefore E'j has at least r-1 distinct 

extrema and E'l   an equal number of zeros Inside I.   Continuing in this way, we find 

that E/"1* has at least one zero inside I.   Therefore we have   P (z«> = m! a^ = 

f^ (z') for some z' in I, where a     is the leading coefficient of P .   Since r   , is 
c     (m> ? 

assumed continuous on 1, it is founded there, from which it follows that   ^      j is 

bounded. 

From the relations • 

P^'^ix) = J  Pj
(*) (t)dt + f(0t"1)(z)>  of = m, m-1, ..., 1, 

z 

where z is a zero of E^    " ', we conclude inductively that   {p } is bounded,  since 

all derivatives of  f  are bounded, for order not greater than   m. 

Incidentally, we could conclude easily from the above proof that the coefficients 

of the Pi are all bounded:    /a ,1 is bounded since p/m) = m 1 a     is bounded; one 
J *•  oj' ) oj 

integration introduces the a   . which are therefore bounded, and so on.   But we already 

know the boundedness of the coefficients follows from that of the polynomials, in general. 

4)   We would have:  In a complete matrlc space (here the Euclidean (m + 1)-space of 

coefficients)   a bounded sequence with at most one limit point converges. 

•13- 
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We summarize the Import of this section in the following theorem. 

THEOREM 5.     Let f £ C™ on I, and let the sequence {p } of polynomials 

be defined by the rules:  P0 -f has an admissible set of extrema; each P„   j > 0,   is 

obtained from P by the rule of step 2'°.     Then   {P ] converges uniformly on 
J •" l i 

I to P, the polynomial of degree at most m which lies nearest to f in the matric 

defined in £ 2   . 

§ 5.     COMPARISONS WITH OTHER METHODS 

The methods of Remez 15 j , represented in some fashion in 14j, is described 

in English in   8    for approximations of the foz-m 8(x) P(x)) where s is a fixed con- 

tinuous function with no zeros in I, and P is a polynomial.   Proofs, said to be given 

in   ! 41   , are omitted from i 6] .    The latter reference is the only one I have been 

able to read to date. 

We now describe Remez*s method in our terminology: 

The method begins by the choice of the initial approximation P    as described 

in §4:   For Xj^ <...<xN£I, we determine P0 by the N equations P^Xj) -f^) = 

(-l)iyo.   Step 2.   Let x' be a point of I at which E   = P   -f takes the value ä 11E   11. 

Replace one^of the xi by x', calling the resulting points x11< X2i <" •• ^^i»   in 

such a way that they are an admissible set of extrema of E0 (Cf.  Lemma 1.)   Now 

determine Pj^ by solving the N equations P-^ (x   ) -^(x.,) = (-1) y,, 1 = 1, •••, N. 

Find Pg by replacing one of the x     by x' such that E^x") =* I lE^l I , and so on. 

It is obvious that the conclusioos of Theorem 1 hold here also, and that the y 'a 

of Remez increase monotonically (in magnitude) to d.   The rest of our proof of con- 

vergence clearly carries over to this process without essential change.   The presence 

of the function   s  would complicate the proofs in no essential way; s was omitted 

from the present report chiefly for reasons of clarity. 

* 
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As a practical matter, the present method should converge faster than that of 

Remez, since the I yA are larger than the corresponding quantities in Remez's method. 

This quicker convergence is paid for by a more complicated choice of the admissible 

extrema x.   at each stage, however, except for the case when there are always 

exactly N admissible extrema.   In this important special case, there is no more 

difficulty in carrying out the present method than there is in doing that for Remez's; 

For in order to find |lE II one must find ail extreme values of E.. 

If the computation of f(x) were difficult, then the method of the present report 

might well be preferable to that of Remez. 

I was led to the method of this report partly by ruminating on Hastings's method, 

[2] , as defined by P. W. Ketchum in Mathematical Reviews [sj (Hastings's book [2J 

suffers from a certain lack of definition).    For me, the central point of both Hastlugs's 

method and my own is the "iterative assumption" of stability of the extrema of E . 

This point plus Theorem B led me to my method.   I then noticed the following com- 

parison:   Hastings linearizes the  N  non-linear equations in step 2° by assigning a 

numerical value to y«, thus reducing the number of unknowns to N-l; he solves N-l 

equations and hopes for a correct value at the N-th extrema,   I linearize these equations 

by replacing the unknown coefficient of yj by a known number, thus preserving the 

number of unknowns. 

§6.     EXPERIMENTAL DATA 

The so-called "linear algorithm" of §3 for finding rational approximations has 

been programmed, with m = n = 2, for the Cambridge Computer.   The following are the 

functions  f  approximated, the interval I, the value of llEJI  obtained, the smallest 

maximum value of j Ek I , and the number k of times Step 2° was performed in order 

to obtain the final approximation: ' 

5)  I wish to acknowledge most gratefully the kind assistance of Miss Helen Willett in 

obtaining these results from the Cambridge Computer, 
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f I nEkii min max   \ E, | k 

exp [-^1 8.71 xlO-0 3.66 x IO-5 4 

log UM 1.75 x 10"6 1.68 x 10"6 5 

slue [0.6,  7.0 0.266 0.263 1J 

w 

In each of the above three "experiments", there were exactly 6 = N extrema of 

E, for each ]; the extreme values always aitarnated properly in sign.   These extrema 

ere maxima of I E. I .   Two extrema were always at the end-points of I. 

The minimum magnitude of the extreme values is shown in order to provide an 

idea of the closeness of the last approximation Rk to the best approximation R,    In the 

cases exp and log, these numbers and those under the heading 11E11 are probably not 

accurate to the three significant figures presented, since they are the last three signifi- 

cant figures of the eight available on the Cambridge Computer. 

There follow the values of the coefficients of the approximations Rk discussed 

above.   In each case  R.    has the form 

Rk^ = ^2x2 + alx + ao) / (x2 + bi + V- 

exp 1.1045366 6.5455741 12.869739 -6.3197327 12.868806 

log 3.3615004 1. r)750524 -5,3365379 5.6992101 1.9999023 

si:ie .88630520 -8.4079627 18.363517 -9.0106829 21.528251 

Some tests of significance of digits in the coefficients of the approximation to 

exp were made.   It was found that rounding the coefficients to seven significant figures 

produced a spread of 0.25 x 10~5 between minimum and maximum extreme values, 
-5 

whereas rounding to six decimal places produced a spread of n.03 x 10    , the maxi 
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mum being 8.701 x 10~5, the minimum 8. 67 x 10~6.   These numbers of course are 

potentially in error because of round-off in the machine, but they indicate that the 

last-mentioned rcumilng produces a result just as good as the original. 

A brief description of the program follows.    Letting h denote (b - a)/20, the 

computer finds R0 by interpolating to f at the five equally spaced points x1<.. .< x5, 

where x. = a + h and x   = b - h.   The extrema of E0 are then fouod;  At every stage 

the program assumes that a and b are extrema of E,; the interior extrema are found 

by solving E,' (a) = 0 by the method of regula falsi.   The equations of step 2° are then 

solved; and the process is repeated.   The criterion for stopping at j = k is that the 

extrema of Ek be not too different from the corresponding extrema of E^, which are 

stored at each stage.    The coefficients a^ and bj of each R. are printed, and at the end 

the values of the extrema of Ek and the corresponding extreme values are printed. 

The arbitrariness of the above procedure for finding R0 can lead to difficulty.  In 

particular, for f = sine, it gave an R0 having poles in I for I =    [ 0.1, 6.8] and 

I = [0.5, 6. 9 ].   Up to now, the method has "converged", however, so long as R0 

had no poles in 1.     As now programmed, however, it would probably fail if some E. 

had more than N = 6 extrema, or if a (or b) were a minimum of I EJI rather than a 

maximum. 

At no point, except in the non-essential final print-out, is it necessary in this 

method to compute values of Ei. 
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APPENDIX 

(Added "in Proof) 

Now that I hava seen the paper [4]   in translation, let me describe it a little 

more fully.    Thto paper proves the convergence of a process similar to but more 

general than my own polynomial algorithm.   Specifically, the liussian authors consi- 

der a class Q of functions A which can be thought of as a generalization of   [p -f} for 

a given continuous   f  an all polynomials   P  of degree at most m.   The sequence 

A0 , Aj, ... is constructed by equaiiag the values of Ak to (-1)  yk at an^ n + 2 

points st-tisfying certain properties which are more general than those which I required. 

The proofs in I 4] are quite different in execution than mine, but the general 

similarity of direction is readily apparent. 

It appears that the method of [4    does not apply to the class of rational approxi- 

rrtations which I discussed. 

v 
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Erratz. 

Page       Line 
A minus  sign prefixed to a line number indicates the count from the 
bottom of the page. 

delete    (U) 
for Septemb   r 1 ,    ; 960 read 25 April 1 960 

for Techebyghev read Tschebyscheff 

for all v read   v (three places) 

for both v read   v 

for X1   read ^ 

for exists _££ id exist 

for extreme  read extrema 

for extreme   read extrema 

before F             insert e     f m,n j- 
for  (- 1 )    read I- 1) 

for or degree   r-.-p  read or of degree m-^i 

delete q 

for x2 read x. 

for x.   read x 

for of y E read or y E 

for all ,u  read u;  for 90 read a   .    Also,   for the higher plane 

curve  sketched   vith the dashed line,   please imagine a parabola 

with vertex at ..bout (1,   -I/3) and passing through (0,   1/3) 

and (5/2,   2/3) 

I 1 7 for (N)  read N 

II -6     for E.jx.) | read ' E (x.) | 

11    - 5    for V read v 

11 - 1     for v. read v! 

12 1 for   |y.+ 1 .read   \y'. + } | 

1 2             2 for v.   read vl 

12           13 for El read E* 
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for (y*) read  [ y* 

for four».d*id reo.«.! *»;! ;.' 

read a, for a, . IJ' 
for matric read rne 1 

for matric   read mr-.r 

for in 6 for  read  1 -i [ 
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