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NOTE

As 1 was preparing the manuscript of this Report for typing, 1 discovered,
on April 22, 1960, that my method of spproximation, at least when restricted to
polynomials, is not essentially new. A very similar method is described in (se].

For a comparison of the two methods, see §5.
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AN ALGORITHM FOR FINDING RATIONAL APPROXIMATIONS (V)

H, F, Mattson, Jr,

§1. ABSTRACT

Scientific work frequently requires numerical values of functions, Although
much general information is often known about these functions, values of them are
nevertheless often difficult to compute; althcugh in almost all cases some method for

making this computation, however lengthy it may be, ie known. The purpose of a
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pproximation to a function is to provide 2 rapid and convenient way to calculate
numerical values of the function to within a predetermined arror. This paper considers
the question of how to find raticnal approximations to given functions, In § 2 there
appear definitions of terms, a precise statement of what our criterion of best fit is,

and statements of aox;ae classical resulis. In § 3, two closely related iterative methods
for finding best rational approximations are defined. In §4, a proof of convergence of
these methods is given for a special case (in which both methods are the sume), In § 5,
these methods are compared with some others. In § 6, sowe recults obtained by one
of the methods of §3 are presented, together with a brief description of the computer
program used to obtain them,

§z. DEFINITIONS AND KNOWN RESULTS

A few preliminary definiticns are necessary to this discussion, We shall restrict
ourselves to the finite interval 1= [a, b] on the real line. If we consider the space

of all continuous functions (with real values) defined on I, it is natural and commonplace
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to define the distance between two such functions h and g as the maximum absolute

value of the difference h - g:

max fh(x)-g(x}] =|lh-gfl.
agx<hb

In general, we define || G || , for any continuous function G defined on I, as

lall = max |Ggw].
a<x<b

Throughout this paper f will denote a fixed, continuous function over I. (We

1all impose an additional restriction on f at one poiut later on,) For given non-

>gative integers in and n, we consicer the family Frn . of all rational functions
b4

of the form S(x) = P(x) /Q(x), where P(x) is a polynomial of degree at most m, and
Q(x) is a polynomial of degree at most n having no zeros in 1. Each S in Fm = is

’
at a certain distance dg =||8 - fil 20 from f. The set of numbers dg, with S in

p has a greatest lower bound d, a notation which will be fixed throughout this
’
paper., The questiors on rational approximation which naturally arise are the following:

"Is there an R in Foon such that dg = d? If so, what more can we say about R? In
H

particular, how can we find it ?

The answer to the first question is yes: There exists an R in F i such that
)

dp < dg for every S in Fin,a [1, p.53] V. For this R, then, dp = d. Furthermore

o]
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such R is v .igue; that is, if S is any rational tunction in F, p different from R, then
’

< dS [1, P. 56] . R will always denote this best approximation, 'Best", or

]

"best-fitting', is here used in the sense previously defined; it is often called ''best in

the sense of Techebyshev' in the literature.

We now quote two important theorems on rational approximations which will give
more information about R and d. (no pun intended) The first theorem will allow
us to find lower bounds for d; the second characterizes R in terms of some properties

which will prove to be useful later on.

1) Numbers in square brackets refer to the bibliography at the end of this Report.




Let R  be any rational function in Fm, o 50 Bo (0 = P09 /Qy¥), with

-~

m - \
Po( =a,x +ooota, Q) () ==bvxn Vi4i.aby, b #0085 pgm, and

0< ven, Define N=m+n+2-8 , where &§ = min (u, v).

Assume also that R {x) # 0 and that P_ (x) and @, (x) have no commoa divicor.

THEOREM A. Suppose that the error function E, = R, -f at some N points
X; <. <2y in I assumes respectively the values -v,, + Vg, ~Vg, «c, (—l)NvN

different from zero and of alternating signs (thus all v's have the same sign),

If R, is any member of Fm,n with error function E; =R, -f, then
dnl =l E; Il 2 min {Ivll yeeey vy i} .

(If P, =0, then the same inequality holds with N = n + 2,)

A consequence of this theorem is that d =dp > min { Pvpdy oeey YN l} .

And if Ry is any member of F , the error function of which has sufficiently many
t4

extreme values of alternating signe, then d is not less than the minimum of these

extreme values (in magnitude).

THECREM B. R, is the best-Iitting rational function R if and only if there
exists. at least N points X; £ ... < Xy in I at which E, = Ro ~-f agsumes the values
Eqo(X)) = (-1)1'*‘”Eol {,i=1, ..., N, where « is either 0 for all i or 1 for all i

(R = 0 is the best-fitting rational function in Fm,n if, and only if, there are at
least N = n + 2 points x; ... £ Xy for which f(x;) = (—1)1+°{||f I.)

For the proof of Theorem A, see [1, PP. 52-53]. A proof of Theorem B also
occurs in [1, Pp. 55-57] . '

In proving the uniqueness of R [1, pp. 56—57] , mentioned earlier, one uses

Theorem B,




We shall use the terms "extremum'" and extreme value' as follows: An extremum

of the function g is & point in I at which g takes an extreme value. If R0 £ Een a Y&
b

define an admissible aet of extrema of E, (E;= Ro -f) to be N points Xjdeot <Xy

in 1 such that
1) each x, is an extremum of E;, and

2) E,(x;) # 0 and alternates in sign as i increases from 1 to N.

The set {Eo(xi) s 1l=1, ..., N} is then called an admissible set of extreme values

of En‘

Finally, let me obsarve that the only extreme (of any function G) pertinert to
the situation under discussion in this Report are the maxima of | G|. Therefore

"extrema' should be tacitly so understood here.

§3° DEFINITIONS OF ALGORITHMS

We now define two iterative procedures which in some cases (sse §6) are known
to converge to the best-fitting rational approximation to cur given continuous function
f over I= [a, b]. (There are no ca:~s known to me in which the procedures do not
converge to f, but a proof of convergence is kzown to me only for the restriction to
n=0 fEC™,)

We shall call our first algorithm the ""non-linear" algorithm and our second the

"linear'" algorithm, Both have in common the following first step:

1.° For a given m, n select (say, by interpolation at the eatimated zeros of E)

R, € Fm such that E0 = R0 -f has an admi=sible set of extrema,

H

Nonlinear Method:

2,° GivenR, . £ F such that E. _ =R, _ -f has an admissible set of
j-1 m,n’ j-1 j-1

extreme X determine R, € Fm o by imposing the N conditions

1 " xN’ i !




Bl ) -f&) = (1 iyj im1, .v., N, where Y ie an unkrown, The otber unknowns
2)

ars, of course, the coefficiests occurring in Pj and Qj in Rj .

Linear Maihod:

2°. = -
Given Rj—l = Pj—lle—l Fm,uj > 0, esuch that Ej—l R}_1 f has an

= th
admissible set of extrema x, <...< X, determine R, Pj/Qj €F  bythe N

1

conditions
P, 0x,) ~f0x;) Q) = (niQ_ ) vy, 151, ey N

Achoose the leading coefficient of each Q ! to be 1. Notice that these equations are
linear in the unknowns ¥4 and the coefficients occurring in Pj and Q 1.2)

Comments on these methods:

The motivation for the non-linear method clesrly comes from the characterization
of the best-fitting raticnal function in Theorem B. The desired best-fitting rational
function is ohviously a fixed point of the transformation defined in Step 2°. (modulo
the complications mentioned in footnote 2). The linear method is derived from the
pon-linear one in an obvious way, and it also has the desired best-fitting rational function.
as a fixed boint (’moduib the complications mentioned in {ootnote 2j.

It is not known whether either of thcse mothods actually stays inside Fm, = in
general, That is, for some j, R,‘i as defined in either method may, a priori, fail to
exist, Also, for some j, Rj may, a priori, have a pole in 1. If one satisfied these

pre-conditions, the central question would remain, namely, whether one or the other

method converges. These three questions appear to be difficult for the general case

2) 1t may happen that Rj -f has more than N extrema. In such a case I require the
choice of a particular admissible set of extrema. I have stated the method in its simplest

form here, for clarity; it appears in full gercerality as step 2'0 in §4.




(l.e., m and n arbitrary, f any continuous function on 1) of the non-iinear method
and more difficult for thai of the linear method. But in the case n = 0 both methods
coincide, and & considerable number of the necessary results can be proved for arbi~
trary f. Fioally, if one then restricts f to have m continuous derivatives, a full exis-

tence and convergence proof is possible, We present this proof ja the next section,

§4. PROOFS FOR THE CASE n =0

We now confine ourselves to polynomial approximations Pj to our given f,
Both methods are the same in this case. Our first step is to satisfy the pre~-coudi-

having the required properties. The

tions by proving the existence of P WU given a P

3 J

proof leads naturally to further results, all of which we include in the following theorem.
THEOREM 1, Let Po be a polynomial, either 0 or degres m - u, where
0 < u < m, such tnat there are N = m + 2 points
(8 2)x <o <X (LB
at which the error function E; = Po -f takes on respectively the non-zero values

E (x4) = (—1)1v1 i = 1, ..., N, where all v; have the same sige. Then there exists
a polynomial P, of degree at most m, and a nuinber y such that the error function

Ey = Pl -f takes the values
i
Ejx) =)'y ™,
and

a) y is uniquely determined by the condition (%),

b) If not all vy are equal, then

min  |viI<lyl<max | vy} (thereforey #0), (4. 1)
1<i<N 1<1<N

c) Sign y = sign {vi} .




PROOF, We are given N distinct points x; at which there held the equations

P xy) - [ +¢h'v,] =0, 1=1, ..., N

These eguations may be thought of as N homogeneous equations, already solved,

for the N~1 coefficients of an m-th degree polynomial, plus one more '"unknown',

That s, (0, ..., 0, 8,, 8;

the N x N coefficient-matrix is

The existence of P, with the given properiies. imply that the determinant of the matrix

M is zeroc.

What we first wish to prove is that there is a number y such that the matrix we
obtain by replacing each vy by y in M is also zero. (Such a y would imply the existence
of the desired F,.) To this end we expand det (M) by cofactors of the last column, ob-

taining

N

-
vos 1 - [f(xl) -v]‘]

ces 1 = [f(x2)+v2]

oo 1= [T wvy]

S nNtle [rex) + nlvl =0

i=1

ceey 8, 1) 18 the solution-vector (transposed), and

(4.2);



where the minor ey is the van der Monde determinant

m m-1
Xy Xy vee 1
;
o= | x™ xim—l s 1 (this row omitted) ;
m m-1
xN xN YN 1

thus we have, by the well known formula,

8 = Tij-xk)»
j< k
I, k#1

Since the x,;'s are all distinct, each ey # 0; since the x,'s are arranged in increasing
ordsr, all ey have the same sign, each one being the product of the same number of
negative factors, -Having noted these properties of the ey's, we now rewrite equation

(4.2) as

L i
1) e f () = g0 4. 3)
1

81V1‘+... +6NVN= = 4

n

This shows that | e =Z | e vil > 0 and that sign e = (sign e,) (sign v)). We can

now immediately satisfy our requirements for the existence of P1 by choosing y to
satisfy

e1y+.. +te y=g¢, (4.4

N

N
of y E o/ Z e . Furthermore, this is the only choice open to us for y,
i=1




A comparison of (4.2) and (4. 3) shows that min | vy j <}yl < max | vy | unless
all vy are equal (in which case y = v;); and, finally, sign y = sign e. sign é‘i =
sign v; . QED. ’

There are two points to notice about this theorem. One is that we do not re-

quirs the xi‘s to be extrema of E, but only to be points where E0 alternates in sign,

In the application of this theorem to our iterative process, however, we shall take

ihem as extrema.

The other point is that although P o may have degree less than m, the same is
not necessarily true of P,, as the following example shows:

Let f(x) = cos T x, overl= [a, b] = [0, 5/2] . Take m = 2, so that N = 4,

For P,, take P, (x) =a , with0< a,< 1, Then we have

0?

Xy =0 Xg =1 Xg = 2 x4=5/2

vy = 1-—a0~ v2=1+ao v3==.1—a0 vy=4a

fs) H

as is obvious from the following sketch:

n
u=cos Mx

This same sketch makes it obvious that there is no straight line u = P,(x) =a") X + a.'1

having deviations of equal magnitude at the x;'s. Therefore P1 will be a parabela,

something like the one sketched with a dashed line.

pu
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What we have proved in Theorem 1 is that we can always construct cur sequence
{Pj} satisfying the coaditions of step 2°, provided there exists a first polynomial P,
satisfying the condition of step 1°. But we can always find P, by solving P,(x)
-f(x,) = (-1)j‘y0 for the unknown coefficients in P, and the unknown Y, for any
distinct Xyy eony th 1. 3 The existence of this P, and y, 1s given by the proof of
Theorem 1, in which y, is given by (4.4) with e defined by (4.3). It is only neces-

sary to choose the x; so that e # ¢, the possibility of which follows, in case f is not
a polynomial of degree at most m, from the existence of the best-fitting polynomial

and the consequent existence of vi‘s with alternating signs.

Having shown the existence of our sequence { Pj} , We now show that, under

suitable restrictions, it converges to P.
We first must modify our definition of step 2° to take account of the possibility
that there are more than one set of admissible extrema, We prove a simple lemma:

LEMMA 1, If Ej = Pj ~f has an admissible set of extrema, then there is an

admiseible set of extrema values containing + /| p; -f H= ad; .

PROOF. Llet *dj occur as a value of Ej at X, If x is already in the admissible
set of extrema, then we are done. If x lies between two of the extrema x' and x",
then Ej (x) must have the same sign as one of Ej ') and Ej (x''). Replace that one by
Ejx). If x lies entirely to the left of the admissible extrema, then either replace the
one nearest X by X, or delete the farthest one and include x, all depending on whether

or not the sign of Ej at the one nearest x is the same as that of Ej (x). QED,

3) Iam indebted to Novodvorskii and Pinsker, [4], via Shenitzer {6] , for this
point, It is slightly easier to prove the possibility of this than to show the possibility
of-avoiding a tangency of Py and f when interpolating to f at the estimated zeros of
E, which I had suggested earlier. In order to obtain linearity of the equations for R,

when n > 0, however, one needs to interpolate as first suggested.

-10~-
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It follows immediately from this lemma that if we choose a set of admissible
extreme values having the largest possible minimum (in magnitude), then we ma., re-
place it by a set containing % IIEj || without changing the magnitude of the minimum
extreme value in it. It is this procedure that we follow when there is more than one
choice of a set of admissible extreme values at any stage. Accordingly, we substitute

the following step 2'C for step 29;

20, Given PjE. Fm, & such that Pj -f has a set of (N) admissible extrome values,
choose a set S of admissible extreme values containing the largest possible minimum
(in magnitude) and containing & HPj -f1l. Letx;, ..., Xy be the extrema correspond-
ing to thie set S (l.e., S = {Ej(xi) i i=1, ..., N}). Determine P; , ; () =

a, M.+ a. by imposing the N coanditions

Py, 1 ) k) = (-1)1yj oy 5L e N,

where yj +1 is an unknown.

The possibility of carrying out step 2'C has been proved in Theorem 1 and

Lemma 1,
We now turn io the proof of convergence.

LEMMA 2. The sequence { ! Y I} determined by step 2'0 ig strictly increasing
and bounded above by d = |1 E -f}] ; (unless some P =P; then all | ykl =dfork?j).

PROOF. We are given that | Yy | = Ej *q) | , where the x; are the extrema
belonging to the set S of extreme values of Ej-l defined in step 2'°. Let Vi = Ej_l(xi).
Let 8' = {(-1)¢+ ! v'i} be a set of extreme values cf Ej as prescribed by step 2'0,
Since there is an admissible set of extreme valuos of Ej such that | yjl is smailer (in

magnitude) than all of them, it follows that

ijlg min | v, |. (4.5)

-11-
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Now (4.5) plus Theorem 1 yields | yji <4 min Ivi‘ | < | yj 1 And finally, =
Theorem A gives | vy < min Jvi)<sHEIN = d. QED.
We now prove a convergence theorem,
THEOREM 2. Every convergent subsequence of { p,} has limit P.
PROOF. Every subsequence ink} , convergent or not, has the property that
the sequsnce of attached | iy i convergeé to some limit d' € d. Let P* be the limit

iim Pj of our convergent subsequence. Then P* is a polynomial of degree at most
k-»>oo

m, (because the sequences of coefficients of the ij are bounded; therefore there is a

subsequence of the subsequence ij which has a polynomial p{x) as limit. But since

the subsequence ij is already convergent, the limit P* must be the polynomial p(x)

just mentioned. Finally, the coefficients of the ij are bounded because the polynomials

are bounded at m + 1, in fact at all, points of L.) ‘Thus P* is the uniform limit of {le}.

We shall prove that d* = 1 P* —f I, First, EI = P* -f has an admissible set 8 of :
extreme values, since P* is the uniform limit of { ij\ ; and, for the same reason,

the set S has d''as minimum magnitude, in view of the inequalities (4. 1) of Theorem 1.

Therefore we may, and do, apply step 2' to P*, obtaining P**. If I1E* 1] > d, then

the value of the y* found in step 2'0 (satisfying E** (extrema of E¥ =4y*) would

satisfy (y*¥) >d'. We choose k large enough so that corresponding admissible extrema

of Ejk and E* are closé enough to each other to yield | yjkl so close to | y*| that

ly; | > d&'. This is possible since y, determined by formula (4. 4), depends continu-
‘k

cusly on the extrema. But this result contradicts the definition of d*. Therefore

|1 E*ll=d'< d. But since we always have || E*11>d, we bave proved that d = d'.

Bv the uniqueness of P, we conclude that P* = P. QED.

-12-




Now we are almost finished, for if we knew that{pj}were a bounded sequence,
we could conclude from the previous theorem that {Pj} converged to P, 4)  We now
introduce a hypothesis, probably stronger than necessary, which implies the bounded-
ness of {Pﬁ .

THEOREM 3. If f bas m continuous derivatives, then the sequence {Pj}

constructed according tc either step 2° or step 2'° is bounded over I.

PROOF, Each error function Ej = Pj-f has at least N -2 = m distinct
extrema interior to I. The existence of a continuous first derivative implies that

E) has at least m distinct zeros luside 1. Therefore E'j has at least r -1 distinct

3

extrema and E'g an equal number of zeros inside 1. Continuing in this way, we find

(m)
J

that E‘(m)‘ has at least one zero inside 1. Therefore we have P (z') = mla =
J

o}

f(m) (z') for some z' in I, where aoj is the leading coefficient of P .. Since £™ 45
assumed continuous on i, it is founded there, from which it follows that in(m)} i
bounded.

From the relations

X
Pj(““"l)(x) = f Pj(«) (t) s+ M@, o=m m-1, ..., 1
z

’ o -1
where z is a zeroc of £l ), we conclude inductively that {Pj} is bounded, since

all derivatives of f are bounded, for order not greater than m.

Incidentally, we could conclude easily from the above proof that the coefficlents

(m) = m a is bounded; one

J J

which are therefore bounded, and so on. But we already

of the Pj are all bounded; {aoj} is bounded since P

integration introduces the a 1y

know the boundedness of the coefficients follows from that of the polynomials, in general.

4) We would have: In a complete matric space (here the Euclidean (m + 1)-space of

coefficients) a bounded sequence with at most one limit point converges.

-13-




We summarize the import of this section in the following theorem.

THEOREM 6. let f€ =™ on I, and let the sequeance {Pj} of polynomials
be defined by the rules: P, -f has an admissible set of extrema; each Pj, b} > 0, is

obtained from P] -1 by the rule of step 2'°, Then {Pj} converges uniformly on

I to P, the polynomial of degree at most m which lies nearest to f in the matric

defined 1n§ 2 .

§ 5. COMPARISONS WITH OTHER METHODS

The methods of Remez [5] , represented in some fashion in [4] , 18 described
in Engilish in 6 for approximations of the form s(x) P(x), where s is a fixed con~
tinuous function with no zeros in I, and P is a polynomial. Proofs, said to be given
in [4] , are omitted from {6] . The latter reference is the only one I have been

able to read to date,

We now describe Remez's method in our terminology:

The method begins by the choice of the initial 'approximation Po as described
in §4: For x; <... <xN€ I, we determine P, by the N equations Po(xi) (x4} =
(—1)1y0. Step 2. Let x' be a point of I at which Eo = P0 ~f takes the value % | IEOI I.

. .
Replace one of the x; by x', calling the resulting points x11< x21<. 0o (le, in
such a way that they are an admissible set of extrema of E, (Cf. Lemma 1,) Now
|
determine P; by solving the N equations P, (xu) —f(xu) =Dy, i=1, ..., N,

Find P, by replacing one of the X by x' such that El(x") =x | lElll , and so on,

It is obvious that the conclusions i Theorem 1 hold here also, and that the yj‘s
of Remez increase monotcnically (in magnitude) to d. The rest of our proof of con-
vergence clearly carries over to this process without essential change, The presence

of the function s would complicate the proofs in no essential way; s was omitted

from the present report chiefly for reasons of clarity.

-14-
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As a practical matter, the prasent method should converge faster than that of
Remez, since the | yj! are larger than the corresponding quantities in Remez's method.
This quicker convergence is paid for by w more complicated choice of the admissible
extrema x; at each stage, however, except for the case when there are always
exactly N admissible extrema, In this important special case, there is nc more
difficulty in carrying out the present method than there is in doing that for Remez's;

For in order to find llEjH one must find ail extreme values of E j°

If the computation of f(x) were difficult, then the method of the present report

might well be preferable to that of Remez,

1 was led to the method of this report partly by ruminating on Hastings's method,
[2] , as defined by P, W. Ketchum in Mathematical Reviews [3] (Hastings's bock [2]

suffers from a certain lack of definition). For me, the central point of both Hastings's
method and my own is the "iterative assumption" of stability of the extrema of E s

This point plus Theorem B led me to my method, I then noticed the following com-
parison: Hastings linearizes the N non-linear equations in step 20 by assigning a
numerical value to yj, thus redicing the number of unknowns to N-1; he solves N-1
equations and hopes for a correct value at the N-th extrema. I linearize these equations
by replacing the unknown coefficient of ¥j by a known number, thus preserving the

number of unknowns.

Q6. EXPERIMENTAL DATA

The so-called ''linear algorithm" of §3 for finding rational approximations has
been programmed, with m = n = 2, for the Cambridge Computer. The following are the
functions f approximated, the interval I, the value of || Ek“ obtained, the smallest
raaximum value of | Ekl , and the number k of times Step 29 was performed in order

to obtain the final approximation:s)

5) I wish to acknowledge most gratefuily the kind assistance of Miss Helen Willett in

obtaining these results from the Cambridge Computer,

=15~



f 1 HEkll min max |} Ekl I

exp [-1, 1] 8,71 x 107° 3.66 x 10~5 1
log [, 2 1.75x 1078 1.68 x 1076 5
sine (0.6, 7.0] 0.266 0.263 13

In each of the above three "experiments", there were exactly 6 = N extrema of
Ej for each j; the extreme yalues always alternated properly in sign. These extrema

were maxima of | Ej| . Two extrema were always at the end-points of L

The minimum magnitude of the extreme values is shown in order to provide an
idea of' the closeness of the last approximation Ry to the best approximation R. In the
cases exp and log, these numbers and those under the heading |1 E |} are probably not
accurate to the three significant figures presented, since they are the last three signifi-

cant figures of the eight available on the Cambridge Computer,

There follow the values of the coefficients of the approximatioﬁs R discussed

above. In each case Rk has the form

R (®) = (alzx2 +a;x+agy) / o2 +by +b ).

a, a; a, by b,
exp 1.1045366 6. 5455741 12, 869739 -6.3197327 12,868806
log 3.3615004 1, ﬁ7’50524 -5.3365379 5,6992101 1, 9999023
sine . 88630520 -8.4079627 18, 363517 -9,0106829 21,528251

Some tests of significance of digits in the coefficients of the approximation to
exp were made, It was found that rounding the coefficients to seven significant figures
produced a spread of 0.25 x 107° between minimum and maximum extreme values,

whereas rounding to six decimal places produced a spread of 7,03 x 10-5, the maxi-
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mum being 8,701 x 10'5, the minimum 8. 67 x 10_5. These numberas of course are
potentially in error because of round-off in the machine, but they indicate that the

last-mentioned roun.ing produces a result just as good as the original,

A brief description of the program follows. Letting h denote (b - a)/20, the
computer finds R, Ly interpolating to f at the five equally spaced points x;<...< X
where X, =a+ h and Xg
the program assumes that a and b are extrema of Ej; the interior extrema are found

=b -h, The extrema of E  are then found; At every stage

by solving Ej' (X) = 0 by the method of regula falsi. The equations of step 20 are then
solved; and the process is repeated, The criterion for stopping at j =k is that the
extrema of Ey be not too different from the corresponding extrema of Ek— 1 which are
stored at eaoh stage. The coefficients a; and b; of each Rj are printed, and at the end

the values of the extrema of Ep and the corresponding extreme values are printed.

The arbitrariness of the above procedure for finding R, can lead to difficulty. In
particular, for f = sine, it gave an R, having poles in I for I = fo.1, 6.8] and
I=[0.5 6.9]. Up to now, the method has "cor_xverged", however, so long a8 R
had no poles in I. As now programmed, however, it would probably fail if some E ]
had more than N = 6 extrema, or if a (or b) were a minimum of | Ej | rather than a

maximum,

At no point, except in the non-essential final print-out, is it necessary in this

method to compute values of Ej.
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APPENDIX
(Added "in Proof')

Now that I hava seen the paper[4] in translation, let me describe it a little
more fully, This paper proves the convergence of a process similar to but more
general than my owi. polynomial algorithm, Specifically, the Iiussian authors consi-
der a class Q of functions A which can be thought of as a generalization of { P —f} for
a given continuous f an all polynomials P of deg:ee at most m. The sequence
AO ’ Al’ .+ 18 constructed by equaiiag the values of Ak to (—l)iyk at any n + 2

points sctisfying certain properties which are more general than thuse which I required,

The proofs in [4] are quite different in execution than mine, but the general

similarity of direction is readily apparent.

It appears that the method of [4] does not apply to the class of rational approxi- .
mations which I discussed,
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AN ALGORITHM FOR FI" DING RATIONAL APPROXIMATIONS

H.F,

Page

A minus sign prefixed to a line number indicates the count from the
bottom of the page.

1

—

Mattson,

Line

(Title)
-1
-6

2
3
6

-1
sketch

-6
-5

Jr.

Erratz

delete (U)
for Septemb.. r 1, 1960 read 25 April 1960
for Techebyshev read Tschebyscheff

for all v reard v (three places)
for both v read v
for X, read %y

for exists reid exist

for extreme read extrema

for extreme read exirema

before F ~insert €
— .m ——

for (-1)' reac 1-1)"
for or degree m:~u read or of degree m-u
delete q

for Xy read X,

for X, read x

for of y E realor vy E

for all u read u; for 90 read a_ Also, for the higher plane

curve sketched with the dashed line, please imagine a parabola
with vertex at «tout (1, -1/3) and passing through (0, 1/3)

and (5/2, 2/3)

for (N) read N

for Ej(xi)l read ‘EJ(xi)|

for V_ read v.

—_— 1 —— 1

for v. read v!

1
for |y, read ||
for v, read v;

for EI read E*




E&gv

14
14
18
19
19
19

fo

t

for
for
for
for

for

ror
.Oor
&

or

for

(y*) read [y*|
founded __z;r-m(;i ¥

matric read ime.g
matric reau vy
in b for read i (. 1
For read for

f an all read 1 &2d

Review of | 3] f’z:
PUISKER read §

Process ar ey




