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DYNAMIC AND STATIC STABILITY MEASUREMENTS
OF THE BASIC FINNER AT SUPERSONIC SPEEDS

Prepared by:

Jrving Shantz
Robert T. Groves

ABSTRACT: UDynamic stability data in the iorm of damping
force and mement coefficients were obtained in the NOL
Supersonic Tunnel No. 1. These measurements were made in

the Mach number range 1.58 through 3.24. Static stability
data in the form of normal force and pitching moment co-
efficients were determined in the Mach number range 1.58 -
through 3.86. Both dynamic and static stsbility coefficients
are compared with free fiight results obtained in the NOL
"and BRL ballistics firing ranges.
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Dynamic and static stability data were obtained at supersonic
speeds for the ten caliber basic finner. This investigation was
performed for RRRE-7 of the Bureau of Naval Weapons under Task

Number 803-717/73001/03073.
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DYNAMIC AND STATIC STABILITY MEASUREMENTS
OF THE BASYC FINNER AT SUPERSONIC SPEEDS

INTRODUCTION

1. Basic Finner is the name gilven to a standard configuration
that has been sSelected for vse in checking various test tech-
niques and new instrumentation. An attempt has been made to
obtain all the ilmportant serodynamic coefficients for this shape.
New test techniques can thus be evalusted by comparing the
regults obtained using the techniques or instrumentation with
previously obtained data.

2, Results from two separate wind-tunnel investigations are
presented in this report. These investigations are, static
stability measurements up to large angles of sttack and dynamic
stabllity damping measurements up to large amplitudes of o5
cillation. The static stability investigation was conducted to
provide supplementary large angle of attack data to the existing
small angle values. The damping investigation was conducted to
provide large amplitude damping values and to validate the
freely oscillating model method used to make these measurements.

3. From the static stability tests normal force znd pitching
moment coefficients and center of pressure locations were obe-
tained. ‘The dynamic stability dawping tests yielded damping
moment aud dsmping force coefficients. Measuremenis were made
gt mach of two center of mass locations, Normal force aand
pitching moment coefficients were slso obtained from the damping
tests, Correlative comparisons are made with corresponding
Bailistics Range values, Damping moment coefficients are also
compared with similar wind-~tunnel values obtained employing u
small amplitude damping balance., ‘{hese wind-tunnel ionvestigations
were performed at supersonic speeds,; the Mach number ranges were
1.568 through 3.24 {for the dsmping tests and 1.58 through 3 .86
for the static tests,

SYMBOLS

Fres-stream parameters:
L3 Maclhi number
Y Iree~gtream velocity (It /sec)

S B
i fres-gstream density (slupgs/ 117
i , 4

iy

- . . ; . . e it
<3 freecstresnm dynmmic pressuve {(pslia) ~ 170 PV
Mewted attilode pacamesieos:
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angle of attuck (static tests) (deg)
sngular velocity (radians/sec)
sngular acceleration (radians/secz)
angle of roll (deg)

transverse angular velocity

Model reference dimensions:

[

»

pody diameter = 1 caliber

body cross-sectional arep = vD2/4 (ftz)
transverse moment of inertia (slugs ftz)
time (s=c)

axlal station location (calibers)(x = 0 at base
of cylinder)

Aerodynamic forces, moments and coefficients:

Fx

F. (@ +
Ny

FN&(&)

M

(q)+M&(&)

normal force {lbs) d

total damping force (1lbs)

pitching or restoring moment ({t-ibs)

pltching or restoring moment slope (£t-1bs/rad)
totsl damping monent (ft-1bs)

normal force coefficlient = FN/HS

normal force coefficient per radian
total damping foree coefficlent

pitching or restoring momeni coefficient = M/QSD

pltohing or resiorviong momeni coeificlent slope
total damping momept cosfiicient

center of pressare {callbers from nose)
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Subscripts or Sub-subscripts:

o initial conditions
p peak amplitucde conditions
! 1,2,3,-=-n events or measurements in sequence of time or
station location (positive for stations forward
of base)

DESCRIPTION OF MODELS

4. The aerodynamic configuration used in these tests is usually
referred to as the Basic Finner, Basically it is a cone-
cylinder with four rectangular fins and is ten calibers in
overall length. This configuration is diagrammatically shown

in Figure 1. Three different size models were employed. These
model sizes were dictated by the individual requirements of each
test technique. The small amplitude damping balance model
diameter (D) was 1.870 inches; the large amplitude damping model
diameter was 1.500 inches; the static force and moment model
diameter was 1,000 inch.

TEST TECHNIQUEQ

5. Although damping measurements made with the small-amplitude
sting mount balance have been reported in a previous publication,
consistent reference is made to these results in this report.
Therefore, a brief description of this balance method is in-
cluded as background information for data comparisons made in
discussing test results. The small amplitude damping balance
consists of a stiff sting, a strain-gage flexure at the model
end of the sting, and a tripping device to set the model in
motion., A sketch of the balance is shown in Figure 1A and it is
described in detail in reference (a). The balance method yields
damping moment data in the pitch plane for oscillatory motions
of approximately plus and minus two degrees about the trim
attitude, which is a = 00 for these tests. This balance can
measure the damping moment of statically unstable as well as
statically stable configurations. The small amplitude damping
balance method is a free decay technique in that no additional
energy 1s fed into the system after the initial angular dis-
placement has been accomplished and the model is released.

6. The freely oscillating model method yields damping data for
oscillatory motions of up to plus and minus ninety degrees
amplitude and like the small amplitude damping method is a free
decay technique. Only statically stable models can be tested
with this method. The free oscillation method consists of
allowing a model to seek its trim attitude after it has been
displaced from the trim attitude. Suspension of the model is
mechanically accomplished by passing a shaft through the center
of gravity of the model. This shaft is fastened to the model
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structure by means of two very low friction instrument-type
bearings which are contained within the model. Thus, the model
is constrained to execute angular motion, about its rigidly held
center of gravity, in one plane only. A photograph of this set-
up is shown in Figure 1B. After the model has been displaced
from its trim attitude and released, the motion of the model as
it sesks its trim attitude is photographically recorded with a
high-speed motion picture camera. A plot of the instantaneous
angular attitude as a function of time is thus obtained and the
resultant curve takes the form of damped periodic motion. This
method yields a record of the motion of the model over large
angular amplitudes. The equation of angular motion in one degree
of freedom can be expressed as:

I¥ + uk + Ma=0 (1)

where:

»

I = moment of inertia
L = damping constant
M, = restoring or pitching moment Slope
The damping moment coefficient is computed by the following

equation in which (a) has been replaced by the peak angular
amplitude (ap) of any half cycle,

“o/%
+C. =16 ( 214) 127(_ . o) (2)

T
q & pvD P P,

where subscripts: Po denotes initial peak amplitude conditions

p denotes peak amplitude conditions at some
later time.

The restoring or pitching moment coefficient slope can be
computed by the following equation:
2 - a /a
o - _.21 )@ _i11n (P Po
AL !!
“a oVeSD t, =t o

2

(3)

where: ( = circular frgquency in radians per second.

a a
In ( p/p
The term pr

0) is small in magnitude compared with

-t
Po

(nﬂ; usualiy in the order of 0.01 @)2 and can be neglected.
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7. The relationships expressed in equation (2) are valid
only if the asaumption of cousctancy of the coefficientz in
equation (1) is reasonably true. When the amplitude of the
oscillatory motion becomes large, greater than plus and minus
eight degrees, the assumption of constant coefficients in
equation (1) 1is usually no longer reasonable. Appliying the
linear solution over the entire range of angular amplitudes
no longer yields a univalue for the damping but yields re-
sults such as are shown below.

4
TN
f{
~N

-
S

=]

~ AN R N N

[
P ,
' t (sec)

This precludes the use of the linear equation with constart
coefficients to describe the motion over the entire range of
amplitudes. This also indicated \that the damping mement
varied with angular attitude to the flow. Until more exsact
measurements of &, &, and @ can be made and substituted into
a non-linear form of equation (1), approximate damping moment
values for the larger angular amplitudes can be obtained by
applying equation (2) in the following manner. The peak
amplitudes and their respective times are tabulated or plot-
ted as shown below,

e — actual data pcints

- linear equation with
constant coefficients

}
+

——

| S U -
=T

| B d

.

:Po f——"
P'!
1
P, .
P,
Zp
* 1
+«t (s
Tt tp T £ ~t (sec)
oP; Py 3 4

The damping moment coefficient is computed for discrete inter-
vals of angular amplitudes: for example:

for the interval a — a or, average a_ = Pq P
Yo Py p -2

/a 1

po)

a
_ 16 , 21 in ( P1
(Cy + Cy) & | ==
q & 4 pvD Py Po |
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p Pn
h t 1l —~a or, average a_ = 1 2
for the interva “pl Py o g p
(Cy + € ) 16 (21, |1n ( Pa p1)1
okl 1 —
q & 2 ¥ pVD tp2 Py J

Utilizing equation (2) in this fashion yields average damping
moment coefficients which are a function of the average peak
angular amplitudes.

DESCRIPTION OF THE FACILITY AND DISCUSSION
OF TEST RESULTS

8. Aeroballistic Supersonic Tunnel No. 1 was uscd for all
of the wind-tunnel tests reported herein. This tunnel
operates as a blowadown facility and uses fixed block steel
nozzles. Physical dimensions and operaticnal specifications
are given in detaill in refersnce (b).

9., Static stability data in the form &f normal force
coefficients, pitching moment coefficients and centers of
pressure are presented in Figures 2 through 15, These data
were obtained using a standard interngl strain-gage balance.
This type of balance and the dsiz reduction equations are
described in detail in reference (c).

10, The dynamic or damping moment data are presented in

Figures 1t through 22, 1In these figures the damping coeffi-

clients (CM + CM ) are plotted against peak angular amplitude
&

(ap) for each Mach number. These data were obtained for =«

model roll attitude of @ = 45° and for two center of gravity
positions.

11. 1In order to make comparisons of these damping moment
coefficients with those obtained from ballistics ranges only
the smali amplitude values could be used since the ballistics
range results reproduced herein, reference (d), were ob-
tained for small yaws only.

12. Comparisons of the damping moment coefficients with

ballistics range results are presented in Figures 23 through

25. The damping moment coefficients (CM + CM ) are plotted
q &

ageinst Mach number in Figure 23 with center of gravity as
rarameter., Free-flight range results from reference (d) are
also presented for comparison with the wind-tunnel data ob-
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tained with the two measuring techniques., Damping moment
coefficients obtained with the free-oscillation technique were
arbitrarily selected for peak angular amplitudes of approximately
7.5 degrees. For the aserodynamic shape tested the damping is
essentially constant with amplitude for oscillations from zero

to eight degrees. Comparisons made with similar data obtained
using the sting-mounted balance, for oscillatory amplitudes in
the order of plus and minus two degrees, tend to confirm this
assumption of constancy for this range of angular amplitudes,

13. Damping moment coefficients as a function of center of
gravity position at Mach number 2.1 are presented in Figure 24,
This type of plot better expresses the degree of agreement
between coefficients obtained in the wind-tunnel test and the
ballistics range. These wind-tunnel test data are compared with
results obtained in the BRL and NOL range facilities. Mach
number 2.1 was selected since it 1s in a region where most of
the data exist. Comparisons at other Mach numbers show approxi-
mately the same results.

&
centroid of projected area, 6.39 calibers from the nose, are
presented as a function of Mach number in Figure 25. These
values were calculated using center—©of mass transformation
equations., Considerable disagreement exists between these values
and the results presented in reference (d). Deduction of the

damping force coefficient (CN + CN ) from the swerving motion of

q a
a projectile in free-flight is relatively difficult in that its
contributicn to the total swerving motion is small when compared
with the static normal force (CN ) contribution. In most
a

ballistics range experiments, the total swerving motion is held
to a minimum to prevent drift of the projectile which could pull
it out of the range of vision of the downrange photographic
stations, At best, this direct method of determining damping
force from the swerving motion resolves into a problem of
measuring a small part of a small quantity. An alternate method
of determining (CN + CN ) utilizes the center of mass trans-

q &
formation relationships (see Appendix A). This involves a term
containing the difference of two damping moments measured at two
axial locations as well as the static components of the force
and moment system. Since the term containing the diffarance
between two damping moments is the major contributor, uncer-
tainties of the order of ten to fifteen percent in determination
of each damping moment value can lead to large errors in the
determination of the damping force. Wind-tunnel uncertainty in
the measurement of damping moments is of the order of plus or
minus five percent for the type of shape used in these tests.

14. Damping force coefficients (CN +.Cx ) calculated 2t the
g >
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15. Pitching moment coefficients obtained from the free
oscillation wind-tunnel test are compared with ballistics range
results and with values obtained from a wind-~tunnel static test;
these comparisons are presented in Figures 26 through 28,
Pitching moment coefficient slopes (CM ) presented in these

a

comparisons were obtained for small angular amplitudes, of the
order of plus and minus six degrees. These data are plotted
against Mach number in Figure 25 with center of gravity position
as the parameter. Figures 27 and 28 contain CM plotted against

center of gravity position at Mach numbers 1.8 and 2.1 re-
spectively. Wind-tunnel dynamic and static stability coefficients
presented for Mach numbers 1.8 and 2.1 were obtained by cross-
plots of the particular coefficient with Mach number,

16, Normal force coefficient slopes (CN ) are plotted against

a
Mach number in Figure 29, The free oscillation wind-tunnel
data are compared with ballistics range results and static wind-
tunnel values,

17. Center of pressure location is plotted against Mach number
in Figure 30. Maximum spread of the-data are of the order of
three percent of total length,.

18, VWind-tunnel free-stream parameters are presented in
Appendix B. Reynolds numbers were computed using model axial
length as the reference dimension.

CONCLUSIONS

19, From the various comparisons made of similar data obtained
from two or more different sources employing dissimilar test
techniques, close agreement of the various test results is in
evidence with but one exceptien.

20. Damping moment coefficients obtained employing the freely
oscillating model method are in agreement with small amplitude
results obtained from the sting-mount balance wind-tunnel tests
and ballistics range free-flight measurements. Lack of agree-
ment with ballistics range values for the damping force
coefficients cannot be explained as yet.

21. Static stability coefficients, obtained as a by-product of
the free oscillation damping tests, are in reasonable agreement
with static test wind-tunnel values and ballistics range free-
flight measurements,



chabl Uit G Laith it RISV LT T LN S YR R T T 2 37 1 v = - . B

MAVORD Report 45106

g 22, The freely woscillating model damping test technique is a

: valuable wind-tuonel research tool in that it is capable of
mossuring damping moments at large ampliltudes of oscillatory
motion, Close agreement of small amplitude values with other
proven technicrwes strongly supports the validity of the large
amplitude walusrs., Refinements to the mechanics of this test

technique are being developed at the present time., The highly
non-linear charscter of the damping moment coefficlent at large
amplitudes of oscillation indicates the need for development of
a more sophisticated equation of motion,
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APPENDIX A

Center of Mass Transformation

Aerodynamic moment coefficlients measured at tvo different axial
locations can be related by moment transfer formulae (references
(d), (e), (£f), and (g), according to the following relatior :hips:

(Cg ) = (Cy) (1
& e 1
(C,, }» = (C,,) + (X, ~ X.} C (2)
K, M, 2 17N,
(Cy + Cy ) = (Cy + Cy ) + 20K, ~ Xy) Cy (3)
q & q & 1 2
‘ 2
(c C,) = (C, +C,) -2, -X,)°¢C
M," (’Hq M, 2 IR
+ (X, =~ X (Cy + Oy ) +2(Cy, ) (4)
1 Nq Ny 4 M, 4
(Cy + Cp ) 4+ 2(Cy, ) = (C,, + C ) - (C, + C, 3}
NN TR T R R
2, ) - (C, )
{ Ma 2 Ma 1
(o 4+ Cu ) = (Co 4+ O ) = (Co + Co Y o+ 20(c ) = 2(c ) (58)
Nq N& 1 “‘ﬁgw_ ﬁ&‘g‘ .%%mum?&_} JMa P CMa 1
ey “®
(5 X4
( ) - ) - 3 ¥ y - 3o (5b)
Co 4 C 0 O ) e (O e O ) s Al ey, ) 5h
Q N& 2 hu M& 2 &q M& 1 ! Ma 2 - Ma 1
e XY
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APPENDIX B
Free-Stream Conditions

Static Tests:

M q Reynolds No. x 10”6(A)
1.58 6.03 3.79
1.76 5.75 3.54
2.17 5.68 3.00
2.48 3.78 2.65
2.88 2.76 2.21
3.22 2.08 1.90

Dynamic Tests:
M q pV Reyncids No. x 167°(B)
1.58 6.19 1.236 5.69
1.76 5.83 1,089 5,31
1.89 5,52 0,087 5,09
2.16 4.74 0,787 4,50
2.48 3.79 0.58Y 3.98
2.8R 2,75 0.403 3,31
3.24 2,04 0,286 2,80

(A) Based on 10.00 inches overall length

{BB) Based on 15,00 inches overall length
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