AD NUMBER

AD245560

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution: Further dissemination only as directed by Naval Ordnance Systems Command, Washington DC; 14 Jan 1960 or higher DoD authority.

AUTHORITY

USNOL 1tr, 29 Aug 1974
DYNAMIC AND STATIC STABILITY MEASUREMENTS OF THE
BASIC FINNER AT SUPersonic SPEEDS (U)

RETURN TO "A-250" LIBRARY

14 JANUARY 1960

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

ENGINEERING DEPT.
DOUGLAS AIRCRAFT CO., INC.
ABSTRACT: Dynamic stability data in the form of damping force and moment coefficients were obtained in the NOL Supersonic Tunnel No. 1. These measurements were made in the Mach number range 1.58 through 3.24. Static stability data in the form of normal force and pitching moment coefficients were determined in the Mach number range 1.58 through 3.86. Both dynamic and static stability coefficients are compared with free flight results obtained in the NOL and BRL ballistics firing ranges.
Dynamic and static stability data were obtained at supersonic speeds for the ten caliber basic finner. This investigation was performed for RRRE-7 of the Bureau of Naval Weapons under Task Number 803-717/73001/03073.

JOHN A. QUENSE', Acting
Captain, USN
Commander

R. KENNETH LOBB
By direction
NAVORD Report 4516

CONTENTS

INTRODUCTION .. 1
SYMBOLS ... 1
DESCRIPTION OF MODELS ... 3
TEST TECHNIQUES .. 3
DESCRIPTION OF THE FACILITY AND DISCUSSION............. 6
OF TEST RESULTS .. 8
CONCLUSIONS .. 10
REFERENCES .. 10

ILLUSTRATIONS

Figure 1 Basic Finner
Figures 2-15 Basic Finner Static Stability Coefficients
(C_N, C_Q, and C.F. vs. \(\alpha \))
Figures 16-22 Basic Finner \(C_{\text{Mq}} + C_{\text{Mh}} \) vs. Angular Amplitude\n\(\alpha \)
Figure 23 \((C_{\text{Mq}} + C_{\text{Mh}}) \) vs. Mach number
Figure 24 \((C_{\text{Mq}} + C_{\text{Mh}}) \) vs. Center of Gravity, \(M = 2.1 \)
Figure 25 \((C_{\text{Nq}} + C_{\text{Nh}}) \) vs. Mach number at Centroid of\nProjected Area, 6.39 Cal. from Nose
Figure 26 \(\text{C}_{\text{Ma}} \) vs. Mach number
Figure 27 \(\text{C}_{\text{Ma}} \) vs. Center of Gravity, \(M = 1.8 \)
Figure 28 \(\text{C}_{\text{Ma}} \) vs. Center of Gravity, \(M = 2.1 \)
Figure 29 \(\text{C}_{\text{Na}} \) vs. Mach number
Figure 30 Center of Pressure vs. Mach number
Appendices
DYNAMIC AND STATIC STABILITY MEASUREMENTS
OF THE BASIC FINNER AT SUPersonic SPEEDS

INTRODUCTION

1. Basic Finner is the name given to a standard configuration that has been selected for use in checking various test techniques and new instrumentation. An attempt has been made to obtain all the important aerodynamic coefficients for this shape. New test techniques can thus be evaluated by comparing the results obtained using the techniques or instrumentation with previously obtained data.

2. Results from two separate wind-tunnel investigations are presented in this report. These investigations are, static stability measurements up to large angles of attack and dynamic stability damping measurements up to large amplitudes of oscillation. The static stability investigation was conducted to provide supplementary large angle of attack data to the existing small angle values. The damping investigation was conducted to provide large amplitude damping values and to validate the freely oscillating model method used to make these measurements.

3. From the static stability tests normal force and pitching moment coefficients and center of pressure locations were obtained. The dynamic stability damping tests yielded damping moment and damping force coefficients. Measurements were made at each of two center of mass locations. Normal force and pitching moment coefficients were also obtained from the damping tests. Correlative comparisons are made with corresponding Ballistics Range values. Damping moment coefficients are also compared with similar wind-tunnel values obtained employing a small amplitude damping balance. These wind-tunnel investigations were performed at supersonic speeds; the Mach number ranges were 1.58 through 3.24 for the damping tests and 1.58 through 3.86 for the static tests.

SYMBOLS

Free-stream parameters:

\[
\begin{align*}
M & \quad \text{Mach number} \\
V & \quad \text{free-stream velocity (ft/sec)} \\
p & \quad \text{free-stream density (slugs/ft}^3) \\
q & \quad \text{free-stream dynamic pressure (psf \times 100)} = \frac{1}{2} \nu V^2
\end{align*}
\]

Model attitude parameters:

\[
\alpha \quad \text{angular amplitude (damping tests) (radians or deg)}
\]
\[\alpha \quad \text{angle of attack (static tests)} \quad (\text{deg}) \]
\[\dot{\alpha} \quad \text{angular velocity} \quad (\text{radians/sec}) \]
\[\ddot{\alpha} \quad \text{angular acceleration} \quad (\text{radians/sec}^2) \]
\[\varphi \quad \text{angle of roll} \quad (\text{deg}) \]
\[\omega \quad \text{transverse angular velocity} \]

Model reference dimensions:

\[D \quad \text{body diameter} = 1 \text{ caliber} \]
\[S \quad \text{body cross-sectional area} = \pi D^2/4 \quad (\text{ft}^2) \]
\[I \quad \text{transverse moment of inertia} \quad (\text{slugs ft}^2) \]
\[t \quad \text{time} \quad (\text{sec}) \]
\[x \quad \text{axial station location} \quad (\text{calibers}) \quad (x = 0 \text{ at base of cylinder}) \]

Aerodynamic forces, moments and coefficients:

\[F_N \quad \text{normal force} \quad (\text{lbs}) \]
\[F_{N\dot{\alpha}} \quad \text{total damping force} \quad (\text{lbs}) \]
\[F_{N\alpha} \quad \text{total damping moment} \quad (\text{ft-lbs}) \]
\[M \quad \text{pitching or restoring moment} \quad (\text{ft-lbs}) \]
\[M_{\alpha} \quad \text{pitching or restoring moment slope} \quad (\text{ft-lbs/rad}) \]
\[M_{\dot{\alpha}} \quad \text{total damping moment slope} \quad (\text{ft-lbs/rad}) \]
\[C_N \quad \text{normal force coefficient} = F_N/TS \]
\[C_{N\dot{\alpha}} \quad \text{normal force coefficient per radian} \]
\[\left(C_{N\dot{\alpha}} + C_{N\alpha} \right) \quad \text{total damping force coefficient} \]
\[C_{M\dot{\alpha}} \quad \text{pitching or restoring moment coefficient slope} \]
\[C_{M\alpha} \quad \text{pitching or restoring moment coefficient} \]
\[\left(C_{M\dot{\alpha}} + C_{M\alpha} \right) \quad \text{total damping moment coefficient} \]
\[\text{C.P.} \quad \text{center of pressure} \quad (\text{calibers from nose}) \]
Subscripts or Sub-subscripts:

\(\text{o} \)
initial conditions

\(\text{p} \)
peak amplitude conditions

\(1,2,3,---n \)
events or measurements in sequence of time or station location (positive for stations forward of base)

DESCRIPTION OF MODELS

4. The aerodynamic configuration used in these tests is usually referred to as the Basic Finner. Basically it is a cone-cylinder with four rectangular fins and is ten calibers in overall length. This configuration is diagrammatically shown in Figure 1. Three different size models were employed. These model sizes were dictated by the individual requirements of each test technique. The small amplitude damping balance model diameter \((D)\) was \(1.870\) inches; the large amplitude damping model diameter was \(1.500\) inches; the static force and moment model diameter was \(1.000\) inch.

TEST TECHNIQUES

5. Although damping measurements made with the small-amplitude sting mount balance have been reported in a previous publication, consistent reference is made to these results in this report. Therefore, a brief description of this balance method is included as background information for data comparisons made in discussing test results. The small amplitude damping balance consists of a stiff sting, a strain-gage flexure at the model end of the sting, and a tripping device to set the model in motion. A sketch of the balance is shown in Figure 1A and it is described in detail in reference (a). The balance method yields damping moment data in the pitch plane for oscillatory motions of approximately plus and minus two degrees about the trim attitude, which is \(\sigma = 0^\circ \) for these tests. This balance can measure the damping moment of statically unstable as well as statically stable configurations. The small amplitude damping balance method is a free decay technique in that no additional energy is fed into the system after the initial angular displacement has been accomplished and the model is released.

6. The freely oscillating model method yields damping data for oscillatory motions of up to plus and minus ninety degrees amplitude and like the small amplitude damping method is a free decay technique. Only statically stable models can be tested with this method. The free oscillation method consists of allowing a model to seek its trim attitude after it has been displaced from the trim attitude. Suspension of the model is mechanically accomplished by passing a shaft through the center of gravity of the model. This shaft is fastened to the model.
structure by means of two very low friction instrument-type bearings which are contained within the model. Thus, the model is constrained to execute angular motion, about its rigidly held center of gravity, in one plane only. A photograph of this set-up is shown in Figure 1B. After the model has been displaced from its trim attitude and released, the motion of the model as it seeks its trim attitude is photographically recorded with a high-speed motion picture camera. A plot of the instantaneous angular attitude as a function of time is thus obtained and the resultant curve takes the form of damped periodic motion. This method yields a record of the motion of the model over large angular amplitudes. The equation of angular motion in one degree of freedom can be expressed as:

\[I\ddot{\alpha} + \mu \dot{\alpha} + M_c \alpha = 0 \]

(1)

where:

- \(I \) = moment of inertia
- \(\mu \) = damping constant
- \(M_c \) = restoring or pitching moment slope

The damping moment coefficient is computed by the following equation in which \((\alpha) \) has been replaced by the peak angular amplitude \((\alpha_p) \) of any half cycle.

\[C_M + C_M^c = \frac{16}{\pi} \left(\frac{2I}{\rho V^4} \right) \left[\ln \left(\frac{\alpha_p}{\alpha_p^o} \right) \right] \]

(2)

where subscripts: \(p_o \) denotes initial peak amplitude conditions; \(p \) denotes peak amplitude conditions at some later time.

The restoring or pitching moment coefficient slope can be computed by the following equation:

\[C_M^s = - \frac{2I}{\rho V^2 SD} \left\{ \left(\omega^2 \right) + \left[\ln \left(\frac{\alpha_p}{\alpha_p^o} \right) \right]^2 \right\} \]

(3)

where: \(\omega \) = circular frequency in radians per second.

The term \(\left[\ln \left(\frac{\alpha_p}{\alpha_p^o} \right) \right]^2 \) is small in magnitude compared with \(\omega^2 \); usually in the order of 0.01 \(\omega^2 \) and can be neglected.
7. The relationships expressed in equation (2) are valid only if the assumption of constancy of the coefficients in equation (1) is reasonably true. When the amplitude of the oscillatory motion becomes large, greater than plus and minus eight degrees, the assumption of constant coefficients in equation (1) is usually no longer reasonable. Applying the linear solution over the entire range of angular amplitudes no longer yields a univalue for the damping but yields results such as are shown below.

This precludes the use of the linear equation with constant coefficients to describe the motion over the entire range of amplitudes. This also indicated that the damping moment varied with angular attitude to the flow. Until more exact measurements of \bar{u}, $\bar{\theta}$, and $\bar{\alpha}$ can be made and substituted into a non-linear form of equation (1), approximate damping moment values for the larger angular amplitudes can be obtained by applying equation (2) in the following manner. The peak amplitudes and their respective times are tabulated or plotted as shown below.

The damping moment coefficient is computed for discrete intervals of angular amplitudes: for example:

for the interval $\alpha_p^0 \rightarrow \alpha_p^1$ or, average $\bar{\alpha}_p = \frac{\alpha_p^0 + \alpha_p^1}{2}$

$$
\left(C_{M_q} + C_{M_{\bar{\alpha}}} \right) = \frac{16}{\pi} \left(\frac{21}{\rho V D^4} \right) \left[\ln \left(\frac{\alpha_p^1 / \alpha_p^0}{t_{p_1} - t_{p_0}} \right) \right]
$$
for the interval \(a_{p1} \rightarrow a_{p2} \) or, average \(a_p = \frac{a_{p1} + a_{p2}}{2} \)

\[
(C_{Mq} + C_{Ma}) = \frac{16}{\nu} \left(\frac{21}{\rho V D^4} \right) \left[\ln \left(\frac{a_{p2}}{a_{p1}} \right) \right] \left[\frac{t_{p2} - t_{p1}}{\ln \left(\frac{a_{p2}}{a_{p1}} \right)} \right]
\]

Utilizing equation (2) in this fashion yields average damping moment coefficients which are a function of the average peak angular amplitudes.

DESCRIPTION OF THE FACILITY AND DISCUSSION OF TEST RESULTS

8. Aeroballistic Supersonic Tunnel No. 1 was used for all of the wind-tunnel tests reported herein. This tunnel operates as a blow-down facility and uses fixed block steel nozzles. Physical dimensions and operational specifications are given in detail in reference (b).

9. Static stability data in the form of normal force coefficients, pitching moment coefficients and centers of pressure are presented in Figures 2 through 15. These data were obtained using a standard internal strain-gage balance. This type of balance and the data reduction equations are described in detail in reference (c).

10. The dynamic or damping moment data are presented in Figures 16 through 22. In these figures the damping coefficients \(C_{Mq} + C_{Ma} \) are plotted against peak angular amplitude \((a_p) \) for each Mach number. These data were obtained for a model roll attitude of \(\phi = 45^\circ \) and for two center of gravity positions.

11. In order to make comparisons of these damping moment coefficients with those obtained from ballistics ranges only the small amplitude values could be used since the ballistics range results reproduced herein, reference (d), were obtained for small yaws only.

12. Comparisons of the damping moment coefficients with ballistics range results are presented in Figures 23 through 25. The damping moment coefficients \(C_{Mq} + C_{Ma} \) are plotted against Mach number in Figure 23 with center of gravity as parameter. Free-flight range results from reference (d) are also presented for comparison with the wind-tunnel data ob-
obtained with the two measuring techniques. Damping moment coefficients obtained with the free-oscillation technique were arbitrarily selected for peak angular amplitudes of approximately 7.5 degrees. For the aerodynamic shape tested the damping is essentially constant with amplitude for oscillations from zero to eight degrees. Comparisons made with similar data obtained using the sting-mounted balance, for oscillatory amplitudes in the order of plus and minus two degrees, tend to confirm this assumption of constancy for this range of angular amplitudes.

13. Damping moment coefficients as a function of center of gravity position at Mach number 2.1 are presented in Figure 24. This type of plot better expresses the degree of agreement between coefficients obtained in the wind-tunnel test and the ballistics range. These wind-tunnel test data are compared with results obtained in the BRL and NOL range facilities. Mach number 2.1 was selected since it is in a region where most of the data exist. Comparisons at other Mach numbers show approximately the same results.

14. Damping force coefficients \(C_N + C_{N\alpha} \) calculated at the centroid of projected area, 6.39 calibers from the nose, are presented as a function of Mach number in Figure 25. These values were calculated using center-of mass transformation equations. Considerable disagreement exists between these values and the results presented in reference (d). Deduction of the damping force coefficient \(C_N + C_{N\alpha} \) from the swerving motion of a projectile in free-flight is relatively difficult in that its contribution to the total swerving motion is small when compared with the static normal force \(C_N\alpha \) contribution. In most ballistics range experiments, the total swerving motion is held to a minimum to prevent drift of the projectile which could pull it out of the range of vision of the downrange photographic stations. At best, this direct method of determining damping force from the swerving motion resolves into a problem of measuring a small part of a small quantity. An alternate method of determining \(C_N + C_{N\alpha} \) utilizes the center of mass transformation relationships (see Appendix A). This involves a term containing the difference of two damping moments measured at two axial locations as well as the static components of the force and moment system. Since the term containing the difference between two damping moments is the major contributor, uncertainties of the order of ten to fifteen percent in determination of each damping moment value can lead to large errors in the determination of the damping force. Wind-tunnel uncertainty in the measurement of damping moments is of the order of plus or minus five percent for the type of shape used in these tests.
15. Pitching moment coefficients obtained from the free oscillation wind-tunnel test are compared with ballistics range results and with values obtained from a wind-tunnel static test; these comparisons are presented in Figures 26 through 28. Pitching moment coefficient slopes ($C_M\alpha$) presented in these comparisons were obtained for small angular amplitudes, of the order of plus and minus six degrees. These data are plotted against Mach number in Figure 25 with center of gravity position as the parameter. Figures 27 and 28 contain $C_M\alpha$ plotted against center of gravity position at Mach numbers 1.8 and 2.1 respectively. Wind-tunnel dynamic and static stability coefficients presented for Mach numbers 1.8 and 2.1 were obtained by cross-plots of the particular coefficient with Mach number.

16. Normal force coefficient slopes ($C_N\alpha$) are plotted against Mach number in Figure 29. The free oscillation wind-tunnel data are compared with ballistics range results and static wind-tunnel values.

17. Center of pressure location is plotted against Mach number in Figure 30. Maximum spread of the data are of the order of three percent of total length.

18. Wind-tunnel free-stream parameters are presented in Appendix B. Reynolds numbers were computed using model axial length as the reference dimension.

CONCLUSIONS

19. From the various comparisons made of similar data obtained from two or more different sources employing dissimilar test techniques, close agreement of the various test results is in evidence with but one exception.

20. Damping moment coefficients obtained employing the freely oscillating model method are in agreement with small amplitude results obtained from the sting-mount balance wind-tunnel tests and ballistics range free-flight measurements. Lack of agreement with ballistics range values for the damping force coefficients cannot be explained as yet.

21. Static stability coefficients, obtained as a by-product of the free oscillation damping tests, are in reasonable agreement with static test wind-tunnel values and ballistics range free-flight measurements.
22. The freely oscillating model damping test technique is a valuable wind-tunnel research tool in that it is capable of measuring damping moments at large amplitudes of oscillatory motion. Close agreement of small amplitude values with other proven techniques strongly supports the validity of the large amplitude values. Refinements to the mechanics of this test technique are being developed at the present time. The highly non-linear character of the damping moment coefficient at large amplitudes of oscillation indicates the need for development of a more sophisticated equation of motion.
REFERENCES

(b) Meek, P. P., "Aeroballistic Research at the U. S. Naval Ordnance Laboratory," NOLR 1201, Unclass., (1956)

(g) Nicolaides, J. D., "Variation of the Aerodynamic Force and Moment Coefficients with Reference System," Ballistic Research Laboratories Technical Note No. 746, (1952)
APPENDIX A

Center of Mass Transformation

Aerodynamic moment coefficients measured at two different axial locations can be related by moment transfer formulae (references (d), (e), (f), and (g)), according to the following relationships:

\[
(C_N)_{a2} = (C_N)_{a1} \tag{1}
\]

\[
(C_M)_{a2} = (C_M)_{a1} + (X_2 - X_1) C_N \tag{2}
\]

\[
(C_{Nq} + C_N) = (C_{Nq} + C_N) + 2(X_2 - X_1) C_{N2} \tag{3}
\]

\[
(C_{Mq} + C_M) = (C_{Mq} + C_M) - 2(X_2 - X_1)^2 C_N \tag{4}
\]

\[
(C_{Nq} + C_N) + 2(C_M) - (C_M + C_M) - (C_M + C_M) \tag{5a}
\]

\[
\frac{(C_{Nq} + C_N)}{(X_2 - X_1)} = \frac{2(C_M) - (C_M)}{(X_2 - X_1)} \tag{5b}
\]

or

\[
(C_{Nq} + C_N) + 2(C_M) - (C_M + C_M) + 2(C_M) \tag{5a}
\]

\[
\frac{(C_{Mq} + C_M)}{(X_2 - X_1)} = \frac{2(C_M) - 2(C_M)}{(X_2 - X_1)} \tag{5b}
\]
APPENDIX B

Free-Stream Conditions

Static Tests:

<table>
<thead>
<tr>
<th>M</th>
<th>\bar{q}</th>
<th>$Reynolds\ No. \times 10^{-6}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.58</td>
<td>6.03</td>
<td>3.79</td>
</tr>
<tr>
<td>1.76</td>
<td>5.75</td>
<td>3.54</td>
</tr>
<tr>
<td>2.17</td>
<td>4.68</td>
<td>3.00</td>
</tr>
<tr>
<td>2.48</td>
<td>3.78</td>
<td>2.65</td>
</tr>
<tr>
<td>2.88</td>
<td>2.76</td>
<td>2.21</td>
</tr>
<tr>
<td>3.22</td>
<td>2.08</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Dynamic Tests:

<table>
<thead>
<tr>
<th>M</th>
<th>\bar{q}</th>
<th>ρV</th>
<th>$Reynolds\ No. \times 10^{-6}$ (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.58</td>
<td>6.19</td>
<td>1.236</td>
<td>5.69</td>
</tr>
<tr>
<td>1.76</td>
<td>5.83</td>
<td>1.089</td>
<td>5.31</td>
</tr>
<tr>
<td>1.89</td>
<td>5.52</td>
<td>0.987</td>
<td>5.09</td>
</tr>
<tr>
<td>2.16</td>
<td>4.74</td>
<td>0.787</td>
<td>4.50</td>
</tr>
<tr>
<td>2.48</td>
<td>3.79</td>
<td>0.589</td>
<td>3.98</td>
</tr>
<tr>
<td>2.88</td>
<td>2.75</td>
<td>0.403</td>
<td>3.31</td>
</tr>
<tr>
<td>3.24</td>
<td>2.04</td>
<td>0.286</td>
<td>2.80</td>
</tr>
</tbody>
</table>

(A) Based on 10.00 inches overall length

(B) Based on 15.00 inches overall length
Fig. I: A schematic of the small-amplitude damping balance.
FIG. 2. BASIC FINNED STATIC STABILITY
M = 1.58 \theta = 0°
C.G. = 6 CALIBERS FROM NOSE
FIG. 3. BASIC FINNER STATIC STABILITY
M = 1.58 \theta = 45°
C.G. = 6 CALIBERS FROM NOSE
FIG. 4. BASIC FINNER STATIC STABILITY
M=1.76, $\phi = 0^\circ$
CG = 6 CALIBERS FROM NOSE
FIG: 5 BASIC FINNER
STATIC STABILITY
M = 1.76 ø = 45°
CG = 6 CALIBERS FROM NOSE
FIG 6 BASIC FINNED STATIC STABILITY
M = 2.17
\(\phi = 0^\circ \)
C.G. = 6 CALIBERS FROM NOSE
FIG. 7 BASIC FINNER
STATIC STABILITY
M = 2.17 $\phi = 45^\circ$
CG = 6 CALIBERS FROM NOSE
FIG. 8 BASIC FINNER
STATIC STABILITY
M = 2.48 ϕ = 0°
C.G. = 6 CALIBERS FROM NOSE
FIG. 9 BASIC FINNER
STATIC STABILITY
M = 2.48, \(\phi = 45^\circ \)
CG = 6 CALIBERS FROM NOSE
FIG. 10 BASIC FINNERS
STATIC STABILITY
M = 2.88, $\phi = 0^\circ$
CG = 6 CALIBERS FROM NOSE
FIG. II BASIC FINNER STATIC STABILITY
M = 2.88 \theta = 45^\circ
CG = 6 CALIBERS FROM NOSE
FIG. 12 BASIC FINNER
STATIC STABILITY
M=3.22, 0=0°
C.G. = 6 CALIBERS FROM NOSE

NAVORD REPORT 4516
FIG. 13 BASIC FINNERS
STATIC STABILITY
M = 3.22 \theta = 45^\circ
CG = 6 CALIBERS FROM NOSE
FIG 14 BASIC FINNER STATIC STABILITY
M=3.86 θ=0°
CG=6 CALIBERS FROM NOSE
FIG. 15 BASIC FINNER
STATIC STABILITY
M = 3.86 \(\phi = 45^\circ \)
C.G. = 6 CALIBERS FROM NOSE
FIG. 16 BASIC FINNERT

$C_{Mq} + C_{M\dot{\alpha}}$ VS ANGULAR AMPLITUDE

MACH NO. = 1.58
FIG. 17 BASIC FINNER

$C_{Mq} + C_{MQ}$ VS ANGULAR AMPLITUDE

MACH NO. = 1.76
FIG. 18 BASIC FINNER

$C_{Mq} + C_{Ma}$ VS ANGULAR AMPLITUDE

MACH NO. = 1.89
FIG. 19 BASIC FINNER

\[C_{Mq} + C_{Ma} \] VS ANGULAR AMPLITUDE

MACH NO. = 2.16
FIG. 20 BASIC FINNER

$C_{Mq} + C_{M\alpha}$ VS ANGULAR AMPLITUDE

MACH NO. = 2.48
FIG. 21 BASIC FINNER
$C_{Mq} + C_{Ma}$ VS ANGULAR AMPLITUDE
MACH NO. = 2.88
FIG. 22 BASIC FINNER
$C_{Mq} + C_{M\dot{q}}$ VS ANGULAR AMPLITUDE
MACH NO. = 3.24
FIG. 23 $C_{Mq} + C_{Ma}$ VS MACH NUMBER
FIG. 24 $C_{M_{q}} + C_{M_{d}}$ VS CENTER OF GRAVITY
$M \approx 2.1$

$\rho_{w}c + \delta_{w}^c$
FIG. 25 $C_{Nq} + C_{Na}$ VS MACH NUMBER

AT CENTROID OF PROJECTED AREA, 6.39 CAL. FROM NOSE
FIG. 30 CENTER OF PRESSURE VS MACH NUMBER
External Distribution List

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.</td>
<td>NASA
Langley Aeronautical Laboratory
Langley Field, Virginia</td>
</tr>
<tr>
<td>1 Attn: RT-1</td>
<td>3 Attn: Librarian</td>
</tr>
<tr>
<td>2 Attn: RMMG-42</td>
<td>1 Attn: C. H. McLellan</td>
</tr>
<tr>
<td>3 Attn: RRRE-7</td>
<td>1 Attn: J. J. Stack</td>
</tr>
<tr>
<td>1 Attn: RMMS-53</td>
<td>1 Attn: Adolf Busemann</td>
</tr>
<tr>
<td>1 Attn: DLI-30</td>
<td>1 Attn: Comp. Res. Div.</td>
</tr>
<tr>
<td>1 Attn: R-14</td>
<td>1 Attn: Theoretical Aerodynamics Div.</td>
</tr>
<tr>
<td>1 Attn: Document Library</td>
<td>Office of Naval Research
Room 2709, T-3
Washington 25, D. C.</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Attn: Head, Mechanics Br.</td>
</tr>
<tr>
<td>1 Attn: Library</td>
<td>1 Attn: Librarian</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>1 Attn: Chief, Propulsion Aerodynamics Div.</td>
</tr>
<tr>
<td>Naval Weapons Laboratory</td>
<td>NASA
1520 H Street, N. W.
Washington 25, D. C.</td>
</tr>
<tr>
<td>Dahlgren, Virginia</td>
<td>1 Attn: Chief, Division of Research Information</td>
</tr>
<tr>
<td>1 Attn: Library</td>
<td>Office of the Assistant Secretary of Defense (R & D)
Room 3E1065, The Pentagon
Washington 25, D. C.</td>
</tr>
<tr>
<td>Commander, U. S. NOTS</td>
<td>1 Attn: Technical Library</td>
</tr>
<tr>
<td>China Lake, California</td>
<td>Research and Development Board
Room 3D1041, The Pentagon
Washington 25, D. C.</td>
</tr>
<tr>
<td>1 Attn: Technical Library</td>
<td>2 Attn: Library</td>
</tr>
<tr>
<td>1 Attn: Code 503</td>
<td>10 ASTIA
Arlington Hall Station
Arlington 12, Virginia</td>
</tr>
<tr>
<td>1 Attn: Code 406</td>
<td>Attn: TIPDR</td>
</tr>
<tr>
<td>Director, NRL</td>
<td>Commander, NAMTC
Point Mugu, California</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>1 Attn: Technical Library</td>
</tr>
<tr>
<td>1 Attn: Code 2027</td>
<td>Commanding General
Aberdeen Proving Ground, Md.</td>
</tr>
<tr>
<td>Director, NRL</td>
<td>1 Attn: Technical Info. Br.</td>
</tr>
<tr>
<td>12 Commanding Officer</td>
<td>Office of Naval Research
Branch Office
Box 39, Navy 100
Fleet Post Office
New York, N. Y.</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>NASA
High Speed Flight Station
Box 273
Edwards Air Force Base, California</td>
</tr>
<tr>
<td>1 Attn: W. C. Williams</td>
<td>1 Attn: Technical Library</td>
</tr>
<tr>
<td>NASA
Ames Aeronautical Laboratory
Moffett Field, California</td>
<td>Commander, NAMTC
Point Mugu, California</td>
</tr>
<tr>
<td>1 Attn: Librarian</td>
<td>1 Attn: Technical Info. Br.</td>
</tr>
<tr>
<td>NASA</td>
<td>Commanding General
Aberdeen Proving Ground, Md.</td>
</tr>
<tr>
<td>NASA</td>
<td>1 Attn: Ballistics Res. Lab.</td>
</tr>
</tbody>
</table>
NAVORD Report 4516

1 BuWeps Representative
 Aerojet-General Corporation
 6352 N. Irwindale Avenue
 Azusa, California
 Attn: Lib., USAF Project RAND

1 Boeing Airplane Company
 Seattle, Washington
 Attn: Librarian

1 RAND Corporation
 1700 Main Street
 Santa Monica, California
 Attn: Chief, Propulsion
 Wind Tunnel
 Attn: Dr. J. L. Potter

1 Arnold Research Organization, Inc.
 Tullahoma, Tennessee
 Attn: Tech. Library

1 General Electric Company
 Missile and Space Vehicles Dept.
 3198 Chestnut Street
 Philadelphia, Pennsylvania
 Attn: Larry Chasen
 Mgr. Library
 Attn: Mr. R. Kirby
 Attn: Dr. J. Farber
 Attn: Dr. G. Sutton
 Attn: Dr. S. M. Scala
 Attn: Dr. R. Lew

1 Eastman Kodak Company
 Navy Ordnance Division
 50 West Main Street
 Rochester 14, New York
 Attn: W. B. Forman

1 Reports Distribution Office
 Avco-Emerett Res. Laboratory
 2385 Revere Beach Parkway
 Everett 49, Massachusetts
 Attn: Dr. J. Ekerman

1 AER, Incorporated
 871 East Washington Street
 Pasadena, California
 Attn: Dept. M

2 Armour Research Foundation
 10 West 35th Street
 Chicago 16, Illinois
 Attn: Librarian

2 Chance-Vought Aircraft, Inc.
 Dallas, Texas
 Attn: Librarian

2 Ramo-Woolridge Corporation
 Guided Missiles Research Div.
 Los Angeles 45, California
 Attn: Dr. G. Solomon

2 Cornell Aeronautical Lab., Inc.
 4455 Genessee Street
 Buffalo 21, New York
 Attn: Librarian
 Attn: J. Logan, Jr.

2 Defense Research Laboratory
 The University of Texas
 Austin 12, Texas
 Attn: Assistant Director

2 Ohio State University
 Columbus 10, Ohio
 Attn: Security Officer
 Attn: Aerodynamics Lab.
 Attn: Mr. J. Lee
 Attn: Chairman, Dept. of Aeronautical Engineering

2 CIT
 Pasadena, California
 Attn: Guggenheim Aeronautical Lab., Aeronautics
 Library
 Attn: Jet Propulsion Lab.
 Attn: Dr. H. Liepmann
 Attn: Dr. L. Lees
 Attn: Dr. D. Coles
 Attn: Mr. A. Roeshko
Cast Institute of Technology
Cleveland 6, Ohio
1 Attn: G. Kuerti

Massachusetts Institute of Technology, Cambridge, Mass.
1 Attn: Prof. J. Kaye
1 Attn: Prof. W. Finston
1 Attn: Mr. J. Baron
1 Attn: Mr. M. Sweeney, Jr.

New York University
45 Fourth Avenue
New York 3, New York
1 Attn: Prof. R. Courant
1 Attn: Prof. H. Ludloff

Polytechnic Institute of Brooklyn
527 Atlantic Avenue
Brooklyn, New York
1 Attn: Dr. A. Ferri
1 Attn: Dr. M. Bloom
1 Attn: Dr. P. Libby

Brown University
Division of Engineering
Providence, Rhode Island
1 Attn: Prof. R. Probstein
1 Attn: Prof. C. Lin

University of Minnesota
Minneapolis 14, Minnesota
1 Attn: Dr. E. R. G. Eckert
1 Attn: Dr. J. Hartnett
1 Attn: Heat Transfer Lab.
1 Attn: Tech. Library

Rensselaer Polytechnic Institute
Troy, New York
1 Attn: Dept. of Aeronautical Engineering

Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
1 Attn: Prof. S. Bogdonoff

Institute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland
2 Attn: Director
1 Attn: Dr. J. Burgers

University of Michigan
Ann Arbor, Michigan
1 Attn: Dr. A. Kuethe

Applied Mathematics and Statistics Laboratory
Stanford University
Stanford, California
1 Attn: Prof. W. R. Sears

Cornell University
Graduate School of Aero. Engr.
Ithaca, New York
1 Attn: Prof. W. R. Sears

The Johns Hopkins University
Charles and 34th Streets
Baltimore, Maryland
1 Attn: Dr. F. H. Clauser

University of California
Berkeley 4, California
1 Attn: C. Maslach
1 Attn: Dr. S. Schaaf

Mr. J. Lukasiewicz
Chief, Gas Dynamics Facility
ARO, Incorporated
Tullahoma, Tennessee
1 Mr. J. Lukasiewicz

Mr. Rex Monaghan
RAE, Farnsborough, England
C/O British Joint Services Mission
Atttn: Aircraft Branch
P. O. Box 680
Benjamin Franklin Station
Washington, D. C.

DYNAMIC AND STATIC STABILITY MEASUREMENTS
OF THE BASIC FINNER AT SUPersonic SPEEDS, by
1960. 10p. illus., charts, tables, diagrs.
(Aerodynamics research report 390). Project
303-717/70301/03073.

Dynamic stability data in the form of
damping force and moment coefficients were
obtained in the NOL supersonic tunnel no. 1.
These measurements were made in the Mach
number range 1.58 through 3.24. Static
stability data in the form of normal force
and pitching moment coefficients were de-
determined in the Mach number range 1.58
through 3.86. Both dynamic and static
stability coefficients are compared with
free flight results obtained in the NOL and
BRL ballistics firing ranges.

Naval Ordnance Laboratory, White Oak, Md.
(NAVORD report 4516)

1. Bodies -
 Aerodynamics
2. Bodies -
 Supersonic
 speeds
3. Bodies -
 Stability
 Title
II. Shantz,
 Irving
III. Groves,
 Robert T.,
 jt. author
IV. Series
V. Project