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FOREW•ORD
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ALLT±LACT

Heat transfer in boundiriy layer flow at high velocities and high

temoera',ires is discussed, and engineering relations for its calcula'oin

are presented. A similar discussion is the subject of WADO Technical

Report 5h-7u, published in 1954. Aeronautical and space flight

applicdtions have, in the meantime, pushed the conditions undxr which

heat transfer knowledge is impcrtant to much higher velocities and

temperatures. This need for information created an intensive research

effort, whic-; is reflected in the large number of publications

contained in appendix ill of this report. IV this research, the

influence of very large temperature aifferences, of dissociation and

ionization, of low densities, and of chemical reactions on heat transfer

has been well established in its general features. In addition, new

cooling methods, like transpiration, ablation, ir film cocling have

been studied. The reference enthalpy method, introduced in O IR

54-70, and well established in the meantime, is extended and generalised

in this re-ort to include the ad"dItional effects mentioned above. This

leads to Aimple relations by which heat transfer can be calculated with

an accuracy which should be sý:'ficient for engineering purposes. These

relations additionally hare the advantage that most of them a"

applicable to arW gas or gas mixture; therefore, not only to the

reentry problem but also to heat trinsfer problems arising in rockets

or other propulsion systems and in other applications.
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1. INThfDUCTIU1I

k.ectronic computers have radically influenced the extent and kind

of ae s:-tical work which is today pei.!ormed in connection with

engineering developments. Analyses -which a few years ago were sTill

considered much too tedious and time-consuming can be done today in a

comparatively short time. Fowever., regardless of the tremendous help

which the computers offer to engineering desigve, there still exists a

definite nred for simple relatiow which can be used in hand calculations.

ouch relations aze needed for preliminarxy design work, or they are also

useful for more extended calculations on electrunic computers if the

heat transfer is onlý a small part of the total program.

Ihe purpose of the present report is to present a s-wvey of the

field of heat transfer from gases to surfaces at high velocities and

high temperatures, situations as they occur in aeronautic.3! engineerimg

in the development of high speed vehicles like missiles and satellites

or in space flight. Simp.e relationships are presented or developed

with which heat transfer can be calculated with an accuracy which

necessarily is limited, but which should be sufficient for nomal

engineering design purposes. The discussion of the field and the

relations which will be presented are kept general so that they can be

applied not only t. external beat transfer on vehicles moving through

the atmosphere o' omut earth, but also to other gases at other temperatture

and pressure conditions. Ln this way they can, for instance, be used to

make calculations on heat transfer in ataospheres as t ney exist on

other planets or to heat transfer in the nrozles of rockets through

which combustion gases of various comoosition rm exhausted.

'.ATr, -,R 59- 624s
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A similar wuxvey wajs zide it, 1954 and hus been publiis.oed wider

the title "zurvey on Heat Tranmfer at High Speeds" as WADC TR 5h-70.

The present report can be considered as an extension of this one

considering the changes in the c ndition& as they have occurred in now

engineerin. development and of advances in our knowledge reported in

the inxr-;ening years.

i3search hi the field of heat transfer as it is contained in this

report has been very intensive during recent years. 'Lb Appendix to

this report contains a collection of pertinent literature, and a special

attcwt %zs made to make thiý,: listiag complete and up-to-date.

2, SURGY). BAWiACES

apecial cooling methods like man transfer coolingp transpiration

coC:ling, or ablation cooling an frequently used in recent engineering

applications. Parameters which lescribe heat transfer to surfaces cooled

by zuch meLhoda, like recovery factors and heat transfer coefficients,

are defined in various ways in the literature. It is therefore neceseary

to introduce in this chapter the parameters which will be used In this

paper. The discussion will start with an energy balance on a solid

surface, and then proceed to surfaces cooled by transpiration, film,

or ablation cooling.

Figure la indicates a solid wall with a surface w. An energy

balance can be set up for this surface expressing the fact that the

amount of heat leaving the r4rface per unit time on the fluid side ,must

be equal to the amount of heat entering the surface on the solid side.

Heat will leaye on the fluid side by conduction and by radiation. Heat

WA1Yr TR ý9-A2h 3



".L'v'er .'n : li 5sije by coriducti,,n. •i: equaLi<,n which states

;r2-s r'aCt reds:

k r q " = kw k2-1)

>n this eu'±tLon, k inlicates the heat conductivity on the gas side,

k the heat coiductivity of the solic material. T is the gas temiDeraturs)

Tw the tempeeature of the solid wall material. qrad indieav'es heat

transferrod frtn the ".21 to the s.rrom,-ding by radiation, aml qw the

heat conducted from the intericr of the solid wall tc the surface.

y indicnte: the dircction normal t o the wall surface on the fluid side

and yi on the solid side. Beth are counted positive in the direction

away from the su rfaceo

The temperature which the wall surface assumes when the heat

conauction into the interior and the heat loss by radiation are both

zero, 1s called its recovery temperature, Tr:

-1:w 2 -Vr) &w a r) wen qW :0, qr O : 0 (2-2)

i indicates the enthalpy of the gas. V*e heat flux by conduction in

the gas to the wall surface is conventionally expressed through a heat

transfer coefficient hp unich is defined by the following equationt

k" (-h(? T -r) hi(iw -i) (2-3)'

In Reference 12.0 it has been demonstrated that it is advantageous to

re-definu the heat transfer coefficient by referring it to enthalpies i

instead of to temperatures. This heat transfer coefficient is denoted

by hi. In this way, simple relations whion nave bwn obtained for a

ccnatant property fluid can be Used to describe heat transfer with

good accuracy ifC the properties of the fluid, including its specitfi

WADC TR 55-624/ 4



heat, va_7. widely. xqua:,on (2-3) indicates the ý- finiti,,n of the heat

transfer coefficient referred to entnalpiea on tne right hand side. Te

eneMy balance as contained in equation (2-1) may be re-written in

enha :-.es in the following way:

h(i( - i,) + q r (2-4)

i -4ii1 now consider the tr-aguspiraticn coeling process. Fgure lb

indicates a porous wall through which a coolant gas is floving. A beat

balance will again be made stating the fret that the sam of all heat

fluxes leaving the surface w of the transpiration coolec wall -=st be

equal tc the sum of t: e heat fluxes travelling --n te .all towaid its

surface. ITe following equation describes this heat balance:

Two additional tets appear in this equation because a stroea A of

coolant gas continuously passes the wall surface w. Heat 's carreld

in the w:all by convection towari the surface, and on the other side

heat leaves the surface by convection. The two correspomding tezrv

are the last ones on both sides of equation (2-5). A Is the mwo

velocity of the coolant gas, cp is its specific beat, and T is the

temperature with which the coolant gas passes the surface w. It may

be observed tilat the convective terms cancel on both sides of the

equaLion, and that in this way the equatiou siplaifies to:
h (iw "r- Y qrad : °• (2-6)

In this equation, a heat transfer coefficient h, --as been introduced to

describe the heat flow in the gas to the wall by coadbee.tion. It is

important to stress that this deflnition of the heat transfer coefficient

WIA!r TIR 59-62I45



will be used in the present report. Ir. .he literature, the heat transfer

coeffici6nt is sometimes defined to describe not only the heat flow by

conduction, but also ths convective contribution -c.-ording to the

follou;.ng equation:
aT

h ~ = - k T ) (5)+ Ac~ T

It is fowd, how.ever, that the definition as used in equation (2-6) is

advantageous because the hear transfer coefficient defined in this way

depends on a smaller number of parameters. Ile heat flux by conduction

can again be referred to an enthalpy difference instead of a temperature

difference. The definition in equation (2-6) wi.ll, therefore, be used

in this report.

For steady state condi ions, it is often advantageous to make a heat

balance net for the surface of the wall but for a control volume as

indicated on the right hand side of Figure lb. Also indicated in this

sketch are the various heat fluxes which leave or enter the conirol

volume. One surface of this volume may coincide with the wall surface

w. Un the coolant entry side, the surface is arranged so that it

includes the boundary layer which also exists on this side of the wall

surface. In this way, no heat transport by conduction will occur through

this control surface, since it is located cutside the boundary layer.

The following equation states the heat balance:

h (i - •'r) + , + Ai + qtr (2-7)i w r ~rad cw tr c
icw in this equation indicates the enthalpy of the coolant gas as it

passes the wall surface w, and ic, indicates the enthalpy of the coolant

gas on the entry side of the wall and outside of the bouIdarv layer.

qtr indicates a heat flow which nay leave the control vollme in a

¶AIC fl 5,9-624 6
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direction parallel to the wal.l surface w. LquatioL (2-7) .hs the

advantage that the various terms appearing in it are relatively easily

accessible tý measuz.nent.

In the ablation cooling process, the heat flux from the hot gas to

the wall surface is such that the wall material sublimes and is gradually

carried 4way with the gas strew. 'e* surface of the wall j n this way

gradually recedes in Ato direction towards the wall interior. W

consider a heat balance for the interface between the solid wall and

the gas-this means for the surface which gradualiy recedes into the

solic• .m't.rial. Ac..-rdirgly- a :"ass flow occure through this s-rface

whose magnitude per unit time and area may be A. if the enthalpy of

the subli,%ing wall material in the gaseous state and at the temperature

of the interface is indicated by ig, and at the same tem-erature but

in the solid state by ia, then the heaL balance for the heat fluxes

through such a surface can be expressed by the equation:

hi i- irJ+ %ad+i : k(. ) + Aie (2-8)

Ihe euthalpies and ir used in the definition of the heat transfer

coefficient hi will be discussed in more detail later on in the paper.

'rne equation can be simplified to the following fern if the heat of

sublimation 1 = i - i is introduced:

, Tw

hi Uw -ir)± + qad+ #ig5 k (2-9)

In some cases, the solid wall material is not sublimed but first molts

and then evaporates into the gas strmai. iqeation (2-9) is still valid

for this situation if i is interpreted as the heat of evaporation,

WADC -,R 59-624 7



and when the equation is used to dercribe the heat bala &ce on the inter-

face between the liquid film which covers the solid wall and the gas.

"the ablation process may ala" be affected by some chemical reaction

between the gas and the solid material. In this case, the heat released

by the chemical reaction has to be introduced for 2. This term must

also include surface dissociation or surface recombination if it should

occur in the actual process.

A quasi-steady condition often occurs in an ablation process in

which the temperature of the interphase is constant and a teamerature

field whic) e,.ws nnt charge its thape noves with constant velocity into

the volid material. For such a condition, it is again advantageous to

write an energy balance for a control volum as indicated on the right

hand side of Figure ic. One surface of this control volume coincides

with the interface w of the ablating material; the other surface is

parallel to this interface but at a sufficient distance so th..t the

tenperature increase occurring in the wall by conduction has not yet

reached this point. £he individual heat fluxes leaving this control

volume are again indicated in the figure, and it is assumed that no

heat will leave the volume in a direction parallel to t1e wall surface.

The foilowing equation then holds for this heat balance:

hi(ki - ir; + qra ig+ j = iso (2-10)

i is the enthalpy of the solid wal material at temperature TO.

If the ablation process occurs as a melting and evaporation, and if

( indicates the fraction of the ablated material which leaves the

control volume in liquid form, then the eq.ation describIlig the heat

balance is:

"7AlE; m 9-6h8



h.r(i ) + q + 3  i 1 so + .- , I f so (2-U)

If i6 Lhe vnzho'oy of the liquild material ledving the control volume.

.he balance equations contai:.c: in this -ection have. to be used

in connecLion with other relaticns, for instance, one which Uescribos the

heat cormbiction process in the solid material for the various engineering

calculatitons. A prerequisite of their use is a knowledge of the heat

transfer coefficient ana of the recovery tempemrature or enthalpy.

Their discussion is -he subject of tne following chapters of this paper.

3. ;& Anx Ud AZ &O &iAL)D SJ.FAQC.

31. SINGLE COi OIL;T GkS

Heat transfer to a gas of high tem.perature is influenced by the

fact that the gas maV be par;ially or completely dissociated or ionized,

and that the degree of dissociation changes throughout ,i. Lo-,vU.rxy

layer when the temperature of the surface ezcosed to the flow is different

frtm the temperature of the gas. Such effects may also occur if a gas

with a relatively low temuerature flows with very high velocity over

the surface, because the gas is then heated within the boundary layer

by internal friction, and the increased temperature may again cause

dissociation. !he influence of much factors cn heat tratser will be

discussed in the next section of this report. An the present section,

such effects will be vsglected. It is therefore assumed that we deal

with a si:gle component gas, and that no dissociation or recombination

in the gas occurs as a consequence of locally varying teuperature.

WADC IR 59..624 9



311. ,at -lae

Heat transfer to the -urface of an object exposed to a high

velocity flow de-ends -.,i the shape of this object as well as on the flow

field to whi:,.' it is exposed. une geometry, which has been investigated

very extensively because it can be treated theoretically in a simple

manner, is a situation conventionally referred to as "flat plate." ib

define as a "flat plate' situation one under which a plan. surface is

exposed to a flow field with locally uniform velocity and flow direction.

It is assumed that the flow velocity and, as a consequence, the pressure

are also constant along the outer edge of the boundary layer which exists

along the plane suriace. It is further specified that the boundary

layer is so thin that the p essure is transsitted without change to

the surface of the plate. .his flow condition can be set up experlmea-

tally with good approximation in low velocity flow when the Heynolds

nuwmr is sufficiently high. In supersonic and hypersonic flow, the

boundary layers are usually thicker and, as a consequence, a siock

wave is generated by the boundary layer ahead of the plate. As a

consequence, the velocity and pressure vary along the outer edge of the

boundary layer and also along the plate surface. The teoperature,

which is also con-stant along the outer edge of the boundary layer for

"flat plate" flow, varies locally whore a shock is created by the

boundary layer. In the present discussion these effects will be

disregarded, and the condition which has been mantioned above of a

locally constant pressure and of a constant temperature or enthalpy

along the outer edge of the boundary layer will be specified. In this

way a standard case is created for which simple relationships describe

the heat transfer. These relations can also be used to approximate

iADC IT 59-624 10



Wi5

conci'ions n sl.en,.er cbjects -.n supersonic flow when the regi:,n near

tne leading edgei is excluaea, and when the actual velocity, pres-ure,

and tem-eriture at t•he -uter edge of the boundary layer are invroduced.

fhe;c ,may be considerably different fron the values in the free Atrv.am.

3111. Constant zurface Temperature. hven under the situation

which has Just been defi.ed, heat transfer is not uniquely - ibed.

it still depends on the way in which the tenperature on the plate

surface varies locally. In this uaragraoh it will be assumed that the

surface te.,rnvrature is l-caL-y ecvnstant. .the influene of a local

variation of this tempera.ure will be discussed in tle fl1lowing

paragraph.

if the fluid to which the plate surface is exposed has constant

properties (independent of temperature and pressure), then heat transfer

as well as friction are described by simple relations which uere derived

fur a laminar bounaary layer a long tie ago, and whick have been

experimentally verified to a high degree in the meantime. Similar

relations fron experimental results have been developel for a turbulent

boundary layer. ibe'e relations are customarily expressed in dimension-

less parameters defined in the following way. 'The recovery temperature

in equation (2-2) is expressed by a dimensionless parameter r called

temperature recovery factor and defined the following way:

Tr " ,,r a- _ (3-1)

oe
11Is the veloc-ity andY Y~ the static teztparatuare at Lhe outer bound~ixy

layer edge. The hieat transfer coefficient ix. equation (2-3) is expressed

by the dimensionless ,ussel nber

7ADC TR :9-621 ii



l• = •(3-e)

k

where x is the distance from tne leading edge measured alung th pi.-e

surface, or alternately, by another oue called .Aanto number

bt h (3-3)

Jcp ue -

where q is the density and c the specite heat at constant pressure

of the fluid. In scm situation the shear r which the flow exerts

at the plate surface is of interest as wel as the heat transfer. The

local shear is determined by a dimensionless parameter Cf called

friction factor:

"For laminar flow conditions, the following relations express the

temperature recovery factor, the izssclt npber, Stanton number, and

friction fQwtor2

Pr is the Prandtl nuaer of the fluid.

M 0.332 (F,) /3 F (3-6)

F a x is the Foynolds unmmber and J the dynamic viscosity of

the fluid.
2/3St 2 0.332/(er) Y1 (3-7)

e: 2 .66J4/fi (3-8)

It can be sees that the following rel-tion exists between the Stanton

aher and the friction factor:
- 2/3

St a ( u/2)(Pr) (3-9)

For twbulent flow, the following relation was found from experiments

to describe the temperature recovery factor:

--A!' nR 59- 6 2IA 22



r = 3 jr (3-1)

The loc.z frictiois factor has beeni desc:.ibed by various analytic

-x:,ressic .s. si3!ne enc is, for -,nstance. tI.e equation developed by

(log1 6" iieI

it has ailso been fouxnd that the relation between itanton minber and

friction factor ini turbalent flow is pra.ctical.y the jame as for laminar

flow coznditions, sc that equation ',3-9) holds for turbu'ent flow also.

F'ron this relation it follows that the Jtanton number for a turbulent

bouniary layer on a flat piaie Is deccribed by the following equation:

St . (3-1.2)

(logi° He) 2.54 (P) 2/3

F'or real Zser, it has beep. found that the properties are not

constrnt but vary wi.th ta,.;-.trature. ha:, cai., however, ýý coonsidered

as indepandent of pressure .s lung ai excessively hi.h pressures eand

dissctiation are Prclude4. Urtier thiz coaditinn, a-A as lrng as the

specific. he•t c cpca be consider~,d constwit, it hab been established

in refert:nncr 1 that the relations ziven in the preceeding paragraphs

foi v. cc-astant property fluid still describe the akctual heat transfer

arA f-icc on wutri. good aecur:.cy when :the properties h-,zpearinM in all of

these relatiemships are intr--ducel into vionle relatimns at . reference

tenperatur described by the following equation:

T = + .S T.) + . - TC) (3-33)

Th--- sec-nd term xA thii equti can be expressed by che kJach numbar

i- exI.stinr in the ft1* a. the outer edge of the boundary layer. The

•',ADC M. .'-V-624 13
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equaAi,.:i then i.he if~lowing forn which is sone'tirm.-s more conven-

icn., for an evaluation:

Se + o.50T - 're) + O.22r 2 I-- a)2 T (3-14)

7is the r2tio of specific heats at constant pressure and volume.

".1hen the temperature variation within the boundary layer is so

large that the specific heat of the gas varies considerably, then th'.

better procedure is to base heat transfer calculations on enthalpies

instead of on temperatures. Ln tais case tfe definitions, as given on

the right hamd side of equations (2-2) and (2-3), are used. The heat

tr-nsfer coefficient hi is exp'e'.ed is dimensionless form as a Uusse3t

nmber or a Stanton b•,er:
" _ X-S . hi

k " F 'Re

The relations (3-5) to (3-12) can again be used to describe these new

parameters. -the properties appearing in these equations are now

introduced at a reference enthalpy inztead of a reference t",prature.

The following eqaaticns describe the reference enthalpy"

S e+ o.5(w - 'e) + o. 2( Yie) (3-16)

i ie + o.5(iL - ie) + o.22r!e - (_)2 (3-17)

Zne abore procedure based on a reference enthalpy and on constant property

relations is tuday in widespread use and is usualdy referred to as reference

enthalpy method. Its accuracy has been checked by ocuparison with the

results obtained by boundary la5er solutions for a laminar boundary

layer and for air as the flowing nedium. Agreement within plus/minus

4% has been found for stream ten'eratures between W00 and 800°R, for

usll temperatures between 00 and 2000&R, and for Mach numbers up to

16 (Ref. 110). It will be seen in a later section that the method still
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5.s vawjd even if disso3Ci,,ton or chemrical reactions occur within the

boundary layer. F'or +'is zvas-n, the discussion in this report will

mairlDy be based on the re:Ner,.,nco, enthalpy method. xgreement is also

good with measurenents on turbulent heat transfer in the Mach number

range which have been covered up-to-date. It is also reasonable to

expect that the relations hold witl good accuracy for a gas diffe:.xnt

from air.

1112. 4ariah e eTemperature. ihe various methods which

have been uevlooped to calculate hoat tra.m fer tce a surface with

locally varying temperature have !lready been discussed in reference

110. A simplified procedure which al!-ws the calculation of heat

trend fer to a wall with prescribed varying tenmperature hau been developed

in the meantLrie (Ref. 113). TIe procedure approximates the actual

temperature varlation by a succession of straight lines end, in this

way, 3i:.plifics the calculation to a suwnation process. It will bo

disuussed In connection with Fig. 2. This figure inicates an

arbitrary variation of tne temperature potential 4 : T - T r, which

is deteraining the heat transfer according to equation (2-3). i~he

surrace of length x is subdivided into a number of partial lengths

A x of equal dimensions. The temperature pctential at the positions

Xo X10 X2, x,. .. Xn is denoted by 1%), 419, t_,.. DO The following

equation can be used to calculate the local heat flux qcw, 0 o per unit

time and area at the position x,, and a very similar equation allows
I

calculation of the total heat Q, co transferred along the platf surface

between location U and Y.
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o (3-18)

a 1 2 .-I

ý 1a0' -2 22 ý 1Ij2 (3-19)

h. is the local heat transfer coefficient and his° the awerage cue

for the saie flow condition but for a constant wall. temperature, b is

the width of the plate normal to flow direction. The following equation

can be used to calculate the isothernal heat transfer coefficient:

h s:i C(.k/x) Re," i'r/

The exponent n is equal ).5 for laminar flow and equal 0.3 for turbulent

flow. The constants, A, B3 C, Al, B', C' cobtainod in these equations

are listed in Table 1. The last e-',mticn represnts Vv' average

heat transfer coefficient when f is replaced by C'.

TABLE 1

m B C A' B' C'

Laminar 0 J.695 0.490 0.332 0.696 0.432 0.664
1/,4 0.837 o.635 0o.12
1/2 0.,0 0.S72 0.469
1 0.792 0.538 0.56O

Turbulent 0 0.991 0.117 0.0296 0.982 0.478 0.0370

The condition m a 0 applies to flat plate flow. The values for a

parzatarr different from 0 apt.ly to flow with pressure gradients and

will be diSuMssed later on in this report.

Ebcisting methods for the calculation of heat tr.nfer w-ith a
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Ratio of Nusselt nnuber cr surface with varying temperature
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locally varying surface tem:porature ossume a fluid with const:.nt

properties or a fluid for which the oroduct, density times viscosity,

is a ccnstant. •he presented ap.)roxilation, therefore, is based on the

same zs.-•rption. it checks the results of ca..culations --erformed with

the other methods within a few per cent.

For a fluid with variable properties, it is proposed to comtlne

the method presented here :ith the reference enthalpy :zethod of the

preceding section by introducing properties at the reference enthalpy

into all of the relations appearing in the equations. nxpte-iments

iander condita.is where the wall temperature výries widely, and where

the temperature differences in the boundary layer cre sufficiently

large are rno extenzite enough to check tne accuracy of a calculatim

made with *he pr•posal jtst .&ntioned.

7he influence of a wasl teriperature variation on heat transfer

beccmes significant only whien the temperature variation is large relative

to the tenperature ,vtential. a first estimate of the :idluence of a

wall tenrerature variation and a decision whether it has to be considered

in a deternination af the heat transfer can be nade ":ith the help of

Fig. 3. In :h;s figure, the actual .ýMsselt number d -ided by the jssnlt

rdfber ae c isothernLv surface wir i the same local tenperature

difference is plot.ed over a carameter I s he l noal emperature

variatio:i is assumed to fol-ou an exponential law z indicated in the

figure trith the value I as exponent. The curves with the parameters

n a 0 apply to flat plate conditions and eurfes with a finite m value

t- flows with pressure -radients which will be discuad later on. It

may be observed that the influence of a xem-erature variation is

considerably l.'ger f,,r laninar flow conditions than for turbulent flow.
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For turbulent flow it is only necessary in very rare cases to make a

correction for the tonperaturc v-.riaticn c, ",v•-al heat •i--nfet

coefficients.

312. Blunt Objects

Larly develo-nents in high speed flight were concerned with objects

of very slender -hape. IThis was done in orde) Wo decrease the drag and

the power required to move such objecter tnrough the atmosphere. In

new ý;evelcpcnts and in astronautics, on the other hand, interest

usually centers zround blunt objects, because drag is of minor imporKance.

iometines drag is even dezired for a reduction of aerodynamic heating.

Such an object flying with hypersonic velocities finds ,:onditions in its

surroundings as sketched Li Fig. . A bPV-,uay layer envelopes the

object as a thin sheet. Outside of the boundary layer, a shock is

created. In the bac,ý of the object the flow usua]ly separates, so that

the region behirA the i'earward surface is filled wiih a :low containing

strong irregular vortices. The density in this region is usually

quite low.

In moving through the shock wave, the air loses most of its

kinetic energy are- converts it into internal energy. As a consequence,

the 1zyer betven. the shock and the outer edge of the boindary layer

is very hot. Tbe cr.:.ditions at the outer edge of the boundary layer

which are required for a calculation of heat transfer to the 4-rface

can be obtaimed with good accuracy from the so-called Newtonian Fle

approximation for nach numbers irbater than approx~itely 5. It is

found that in this care the shock wave is quite close to the surface

of the object. Correspondingly, tMe velocity eiw.-ner.v. nomal to the
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S - ,. ,- - . _ b t. ,• .:c.Ten- ccnz.iera•tI.)n twen

t. tc :- ':: :.iati.':1 t'eeen t::e pressure Pe bhind the

sPr'ck ýequalto -:'. -r -sure at tne .al. surface ac-crding to

b.i•: layer t~rec.-i an= t'ne pressure p-, and velocity u•, in the

upstrea. area kanead of tne sn ck):

Pe - c02 u Cos 2 (3-2j)

E is the anzl" between t:,e s-rf.:e nor:nal and the upstrean flow

directicn. &he velocity and -.emperature alo:g -..e outer edge c" the

boe niar. aayer c;in then be founr --ith tk.e assumptiun that ,e flow

expands outsiae ane buunaarj layer izentrosically frt:-: the pressure

at stagLn-ion -nt to thL local prtssu.e Pe" ,-is intrvcuces an error

whdich becwes larrer witn inoreasi ng di.tanc.e frmm t:,c stagniation point,

becz use .:e air entering the boundary layer at so-ne dist.ance from the

stagnation point actual y crossed the shock -ave at a location where

the shock is inclined tc%-a.-ds the upstreuan flow direction. .t.,s error

is, however, lisually snall for blunt objects.

3121. -tarnation Flow. in a limited region close to the stagnation

point, it is founm that the flow velocity increases li.early with

distance fro., the stagnation point. Ihis region is referred to as

"stagjation point region", and heat transfer in this region can be

determ.ined by exact solutions of the boundary layer equations. The flow

in such a regi.n is almost exclusively laninar. The dimensionless para-

meters describing heat transfer in thib region are aviin described by

the equations U3-15). ihe term x now indicates the cistance from the

stagnation point measured along the surface of the object in flow

direction; ue is the local veloci tv of the fluid at location x and

just outside the boundary layer. The recovery enthaiTy . in the

A ,,-6 M



stagnation point region is prazticallyj p"al to the total gas .nthalry

in t.-e upstream. ,in stagnation point flow, one has to distinguish

betuwtLr.% two-dimensional flow 3s it occurs, for instane, around the

front part of a wing and between rotationally symnetric flow as it

usually exists around the nose of a misslle. The first situation will

be referred to as 'plare stagnation flow" and the second s "rotationa•ly

Mv atric stagnation flow". ior a constant property fluid and a

lami ar boundiary layer, the following r--Iations desctribe beast transfer

for these flow conAtions:
4 -2

plane stagnation flow MA o.57o(•P)°'* Y-2&

rot. njm. stagnation flow Ik = 0.763(Pr)°o BOA (3-22)

The first one of tin.a-e relation wais obtained by Squire. *A'= second

one follows from the first expression by M~angler's transformation. It

S=3 also directly calculated by X. -Sibulkin. For a fluid vith

variable properties, the reference enthalpy method was again found to

describe heat transfer conditions With sufficient engeineev4 acCUrq.

'Thi was pointed out by A. Anmig (ar. 296 and 297) by coariso of

results obtained t-th this method with exact bowzar7 layer solutions.

It will be once more demonstrated here by a compariaon of the refereane

en'thalpy method with a relation which has been obtained by Fay and

'-ddell (Ref. 124). Te following relation is contained in Reference

12.1 for a constant irazdtl lber:

.•- ).67 ( - ) (3-23)

The index w in this equation indicates that properties are to be

introduced at the conditions as they axist at the vfl. A'.;om1din to

A) ccording to R. bichhorn
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the reference enthalpy method, the properties have to be introduced into

the constant pronerty relatiots at a reference condition. For either

plane or rotationally sy tric stagnation flow the following relation

exists: NU*
717°

The constant C in this relation has different values for plane or

rotationally sym.etric flow. .Ihe referv h enthalfy at which the

propurties have to be introduced is given by equation (3-16). In the

mighborhood of the stagnation point the velocity is viry mall, and

the difference between the recovery entbalpy ir and the static enrthe.py

is is negligible. C-rrespondimly, equation (3-16) can Ie almplified

to the rolloving expression:

"e •ie

L1* ratio of Aisselt to saeare root of zaqolds nrer c:rL sec, at

reference condiTion can be written in the following way:

If both parameters are, on the other hand, determined at well condition,

then the following condition holds:

i cayarison between the equati•ons (3-23) Ud (3-24) Is Made in Fi. 5.
7he ratio of f,4 at strem and at wall eondi to"e, as used b, F*a and

Riddell, is shown in the lower curve of this figure. T expressions

presented by the two upper curves are the ones appearing i Lim e•uations
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(3-23) and (3-24). The fact that these two curves 2.1mo t coincide

indicates that the reference enthalpy method leads to practically the

same result as Fay - Riddell's equation.

3122. Swept leading Bdses. A considerable r.,duction of recovery

temp•rature and heat transfer on the stagnation line of a cylindrical

object nccuvs when the cylinder axis is inclined under an angle smaller

than 90 degrees toward the upstream direction. A shock surrounds the

front part of such a cylinder, wten the upstream velocity is supersonic.

At the stacnation line, the velocity component normal to the cylinder

surface is reduccd t: zero. 11e velocity component parallel to the

cyli~nsr axis, however, is maintaixwd outside the boundary layer. Its

value may be U. ihis velocity cnminent is rnaintai:ed in the

"stagnation flow region", whereas the velocity component parallel to

the surface but normal to the cylinder axis increases again linearly

with distance x (measured now in a plane normal to the axis). .jnut 4•-ns

for such a flow situation have been reported in the literature. For a

coauctant property fluid, heat .ransfer coefficient and recovery iaetor

can be again calculated from equations (3-21) and (3-5)-when the

recovery factor is defined in the following way:

r a TrTot
T -X

To is the total temperature in the gas outside the boundary layer,

and T indicatus the static temperature at the stagnation point outside
2

the boundary layer (T0o - LIa 2 ). The heat transfer coefficient
A 2c

is defined with the temperature difference Tr - 1j. For a sing2t

component gas with variable properties, it is demonstrated in Ref. 417

that equation (3-21) (converted to plane stagnation flow) represents
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the results of boundary layer solutions within 4A in the range of

pWaasters whtch is of practical interest, provided the heaL lzrjnsier

coeff3cient and recovery factor are tased on enthalpies instead of

temperatures. It is argued in Ref. 417 that this should apply also

when dissociation and recombination occur. Fma the comparison in

Fig. 5, it is evident that tht, reference enthalpy method ai,.d aqiat'ene

(3-5) and (3-21) describe heat transfer to the "tegnation region of a

yawed cylinder with the same accuracy.

U212. Arbitrary &st~~.

laminar Flow. The flow over a trunt object is connected vith pressure

gradients along the surface which influence the develolment of the

boundary layer and of the friction and heat transfer at the 3urface.

An exact solution of the differential equations describing bouxdary

l97er flow is under such circastances very tedious, because, even fer

plane or rotationally symmetric f•lw, it means the solulAon oi partial

differential equations in two independent variables. As a conse.qence,

any approximate procedures have been proposed which circumvent this

difficulty. Twse amethods have to be evaluated according to the ease

with which they lead to results and according to their accuracy. One

which usually is especially siuole is based on the aacirption of

"local similarity". This method was proposed for the first time by

Falkner and Skan (V. F, Falkner and S. W. Skan: All. ag. R (1931),

865, Aeron. qss. C-oa. Aep. a. can. 1314 (3.931)) for the calculation

of skin friction and by zekert and Drevitz (z. kkcert and U. h•rewits:

LtaItfahrtforschung, 22(1942), 189) for the calculation of heat transfer.

kWa extetosions have meen described since that time. The discussion
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in this section will mainily follow a procedure sutested by L. Lees

(Ref. hLt , because it is relativeL- simple and can be a•pplied I.r plA134

as well as for rotaticnally sy•netric flow. The method will be

somewhat modified to incorporate the reference enthalpy procedure.

The differential equations which describe steady laminar boundary

layer flow of a medium vith variable properties are;

0 y r
(U aPe+ - (3--6)

The equations are written in a coordinate system as indicated in Fig. 6.

The syebol s indicates the distance measured in the flow direction along

the surface from the stagnation point, y the distance from the surface,

and r0 the distance of the surface point under coraidere Ion from

the axis of rotation. The index e indicates conditions at the outer

edge of the boundary layer. I is the symbol for the total enthalpy in

the flow (1e " ie + !!!). The equations in the above form are

applicable for planse as well as for rotationally symmetric flow. For

the first situation, n has to be set equal to zero; for rotationally

ayemetric flow, n is evual 1. It has been shown by Dorodnitsyn, L.

Howarth, C. R. Illingworth, and fi. Stewartson that the equations can be

brought by a transformr.tion of coordinates into a form which closely

resembles that for incompressible flow of a fluid with constant properties.

in addition, W. Mangler demonstrated that the equations for rotationally

symmetric Slow can be made to assume the fonr of those for a plane flow
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by another transformation. L. Lees combined both transiormations by

the choice of the following independent variables:

r!j d(3-28)

ge Uero (
7

j d 3-9

If, in addition the stream function which is introduced to eliminate

equation (3-25) is written in the following form

then the above system of bounaary layer equations transforms to:

(Cf'')'+ ff"' - • _ _ (f')1 _0 (3-30)

(S. g') I+ ....a. +E4I

Pr [2C(l - f '.o 3

The following notations have been used In thio equation:

9 I I e P C a p 2 d.

A prIin indica*Ad differentiation towards * The a.suned form of the

stream function y on which the derivation of the equations (3-30) and

(3-31) were based restricts the boundary conditions to which this

equation can be applied, A detailed discussion of this point is

contained in the original paper by Lees (Ref. 438). Specifically, the

soethod of local similarity postulates that the local flow conditions on

any point of the ourface of a body wi+h arbitrary shape correspond

with good approximation to those of a flow with P and -e being
2 1

e
constant and having values corresponding to the actual local condition.

Solutions of the boundary layer equations for this condition are avail-

able for certain cases. For a vanishing Mach number which causes tbe
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last term in equation (3-Ui) to disap ear, they have been worked out by

z. ickert and 6. drow-n .ji susociates. For a gas with rrandtl a 1

and Le = conotant, solutiona have been obtained by S. Levy (Journ.

Aeron. Sci., _4(195b), 459), as well as by Cohen and Reshntko (Ref. 66).

For er : 1 and ýIu a constant, the equations in reference 66 become

identical to equations (3-30) and (3-31) when the parameter P in
based on Mach number instead of stream velocity corresponding to the

relation:

.. k. A~L(3-32a)
Ma d-3

The last. term in zq. (3-31) vanishes again becau-e of the condition

er a 1. Fig. 7 has been taken from the solutions obtained by Cohen and

Reshotko and indicates the dimensionless e*thalpy gradi3nt at the wall

surface plotted over the pressure gradient parameter J . The wall

temperature is assumed constant in these solutions. It can be o' se-rved

to be a characteristic feature of the dimensionless enthalpy gradient

that it varies only moderately with the pressure gradient parameter

. Especially for small values of the parameter iI., the

variation becomes quite small. A small value of the parameter Vi/Ie
refers to a condition when the temperature of the surfi.ce is mall

as compared to the temperature in the stream outside the boundary layer.

Such a condition is usually found in hiigh velocity engineering

applications since high velocity flow is generally connected with high

temperatures, a:id since, on the other hand, the wall temperature

cannot exceed a limiting value determined by the strength characteristics

of the material. Consequently, Lees proposes to neglect The dependence

WIAfC ~ 96k32



,f the dimnsionless enth.ipy gradient on trn pressure kriaent for

such conditions and to use an averege value equal 0.5.

The local heat flux per unit area into the wall warface can then

be expressed in the following way"

=

(g e r0-5o)

The factor (Pr)/3 was added in the last term to account for rrandtl

numbers soeehat different from one. The enthalpy difference

Is .. i will be replaced by the difference between recovery and wall

enthalpies ir - ifor the same reason. For a highly cooled wall,

where the wall temperature is much lower than the recW€,-- tc::;.rature,

this is a suffieiently good approximation. With the definitions of a

heat transfer coefficient,•usselt numer wad a Reynolds tamer:

a,A L ouo.LM. k eo(

(L... reference length, o refers to condition at stagnation point outside

the boundary layer) the following oqnations are obtained from the above

relation for the wall beat flux:

Jkw~,L = 0.35 f F(s) Qr) 113(335
US (4-,-

F(s) a -o --"- (3-36)

r/L f0  r aftO~ 2/2

0 eo ,O L Li
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WiQi these e.,uati•ns the local heat flux along the surface of 3 blunt

,ibjecL can be calculated as soon as the variation of de-sity, viscosity,

and velocity outsile the boundary layer and along the surface is kre,.

How to o0tain these values has been aiscussed in a previous section.

Any arbitrar* length can be selected a.s reference lergth--for instance,

the largest dimension of the object.

The methc-d = outli-nd up to not h"z the short-coming that it is

based on Fig. 7 which hoids only for a gas with the product, density

times viscosity, equal to a constant. Fbr a gas with other density and

viscosity -tlations, errors may be introduced as will be demonstrated

by calculating the heat transfer :,cefficient for the stagnation point

region of a blunt object with equation (3-35). The following relations

hold for rotationally symmetric stagnation flow:

n1, ue -CX , r 0 : s

In addition, the density and visacsity variation in the close neighbor-

Imod of a stagnnticn point con bec neglected ( f e 2fo' eMe 3a ,J).

Squatiun (3-36) can tLhen easily be integrated, ana the. follmIng

result can be obtained:
1/2J /2

Introducing this relation into the above equation for the Nusselt

number results in:

cph L 1./02o (L)/( ue 1/2 2/3 Fif,
a j'o 0V?

The equation can be re-written:
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A O7O(Pz) ?V L-u-4!- 0,O70(Pr)IT

A compar.son of this lat expression with the equaticn obtained by Fay

and Riddell f cr stagnaticn point flcw and listed cm page 23 indicates

that equation (3-35) will not properly describe the heat transfer con-

dition for a gas in which the product dcuaty times viscosity foiloS

a relat: on 'wich is different from a constant. eto corrected this situ-

ation by multiplying equation (3-35) with -Lo uo which does not change

the relat!cm for a gas 'with Cjoast. in Ref. .37, it is propoeed

to modify the method t combining it with the referenoe euthelpy procebrr.

The ec*cation (3-35) Is replaced by the folloming eation

Me - .5'*s Pv* ROL (3-37)

in which Nusselt and Prandtl n sas well as F(s) are referred to a

reference oondition as described by eqatiors (3-M-6) eW (3-17) and

based an local conitians at the uwface point Mider c Msderation.

The f•umutcn F (s) is defined as

F(a) f &o

L 
II

It is shown in Ref. .3? that the proposed method awees very well with

bowaxwy lamer solutLcna and wparmnts reparted in Ref. 188.

A fUt Mer extension of the method is tentatively propeced f or altr-

vation far Shich the ratio I" is not wall as oompesPI to 1. In this Se

a value wMLch replaces the constant 0.3' in eWaation (3-37) can be read
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cff Fig. 7 fcr the appropriate value of the pressure grad ent parameter

P . This later parameter is obtained from equation (3-32a). z•elations

are developed in References 213, 125, and which are even eas.ier to

evaluate than uquatlorm (3-36) and (3-37). It is to be expected,

however, that the =ethcd presented in this secticn. can be extrapolated

with more confidence to situation- &Dart from the reentry, problem.

Lurbulent Boundur Laer.

Approximate methods similar to those used for laa-nar boundary

layer f-ow baht also been developed for the condition where the boundary

layer has becorf turbulent. There methods have been discussed and

recently compared in References 345, 419, and 435. Ageement amon/

the various methods is still rather poor. It has, however, been found

that the influence of the pressure gradient on beat transfer is less

in a turbulent boundary layer than in a laminar ose. Use of equation

(3-1) describing heat transfer on a fiat plate gives a fairly food

anproximat- n for • turbulent boundary layer on a blunt object when the

velocity ue appearing in the Stanton and Heynolds numbers is interpreted

as the local value outside the boundary layer, and when the distance

x in the deynolds number is interpreted as the distance s cf the

surface point under the conbideration from the stagnation point measured

in flow direction along the body "urface.

312 u. .eparated f'low. Heat transfer in separated flow regions

like the one !zketched in Fig. 4 is still very incompletely understood.

This region 1. either more or les5 stagnant or filled with a regular

circulating lamimar flow or with a turbulent flow containing irregular

vorticity and of an unsteady, fluctuating character. "4ich of these
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flow situations occurs devends on tne .eynolds numuer. In a constant

property fluid, heat transfer to the surface of an object border' W on

the separated region may be smaller or larger than the heat tran5'er

tc the iront portion which is covered by a boundary layer. ibe most

extensive information is available for heat transfer in flow normal to

a ly L _ i.- ci-cu2le uross-suction. it has been found rhat. f•r

.ieynolis numbers up to 10 the local heat transfer is a minimum at the

rearward stagnation point of the cylinder. At hW ,er seynolds numbers,

a max4sum appears at the rearward stagnation pcint which gradually

incre.ase, and for Reynolds nambers beyond approximately 50,000 the

heat transfer coefficient on the rearward portion of the cylinder it

as large as the one on the front portion. with further increase of

eynolds number the heat transfer becomes larger in the bLck portion

than in the frunt portion. ior high velocity flow of a compressible

fluid, heat transfer in the separated region is influenced by another

factor which tends to decrease it relative to the values in an

incompressible fluid, it is known that heat transfer in forced con-

vection depends mainly on the uroduct of density times velocit., and

in high velocity floi. the density in separated regions is usually

conbi,;erably smaller than the density alcng the forward portion of

the object. Core.spo:dingly, it was found that heat transfer coefficients

in separated regions of objects exposed to suuersonic flow are quite

small as compared to heat transfer in the front portion. They are

usually of the same order of magnituce as local heat t.ransfer

coefficienzs which exist on the object just upstream rZ the point of

separation.

For sufficiently small Heynolds numbers for which the flow in the
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zeoarated region exhibits a steady regular circulation of laminar

character, heat traa•s.. coefficients were recently obtained by

ana~lysis (References 51, 205). For higher Reynol&-s iimbers where

the flow exhibits the irregularly fluctuating turbulent character,

heat transfer coefficients are only obt.ainable up to now by experiments

and a pecdr to be very senAt~ive to the pcrticular sh~oe of the object

which iL exposed tc flow.

T1he discussion up to now was concerned with& si*•1,Wle cc.oonent"

gas; tlhis means with a gas i-n which no changes in chernic-, corn-osition

occur. in reality, the teierature increase occurring in high

velocity flow is often so large that the gas dissociates. This is especially

true in the regions behind snock waves on objects like the one shown
in Fig. I. i'be surface temteratures of the objects are general.Ly

much lower, and therefore & temerature drop in the direction towards

the surface occurs in the boundary layer. Accordingly, the dissociated

atoms recombine again within the boundary layer. Tc which degree they

can do this depends on tho tiLt which they have vailable. It is

convenient to study two limiting cases which must bracket the situations

as they artually occur. uns limit is a condition in which the recom-

bination rates are very fast compared wiLh the tUme which the molecules

or atoms need to change location in the boundary layer by diffusion and

convection. Accordingly, thermodynamic equilibriFlvwil be established

at sch point and the dissociation within the b'nundary layer is

determined completely by the local te,-eratures and pressures. The other

limiting situation is encountered when the dissociation rat-.. aem ver,. slow
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compared with the diffusion process, in such a jase t-bi molecules will

not find sufficient timc to recom.bine within the boundary layer its .

fnat concentration field of the atoms is established depends then on

the cvndition at the wall. &Ihen ti. wall is catalytic, then the

recej,,bination of atoms occurs at ths wall to such a degre that equil-

ibr ,iu is agin esta-'"c in tU, gas a& that point. The renibimed mole-

cules diffuse away from the wall. On the other hand, the atres have

to diffuse towards the wall, and this diffusion 7rocess determines the

concantration profile within the boundary lkyer. If, on the other

hand, 'he wall is not catalytic, then the recombination rate will be

slow even at the surface, and the atoms will maLuaiu the concentration

which they had outside the boundary layer through the whole region up

to the gPf- of the object.

It might be expected that the heat transfer to the wall of an

object in high speed flow is influenced strongly by thi- dissociation

and recombination process. A closer inspection, however, will show

that this is not the case. For this puroose, we will consider a gas

consisting of atoms and molecules of the same species and at first

determine the equatior i which govern the heat flow in such a

dissociating and recobining gas. in this situation, two processes

cause a heat flow: first, the usual thermal conduction process, and

secondly the diffusion process of the atoms and molecules, because in

this process the particles carry along their enthalpy. ihe equation

de: cribing the beat flux q in such a fluid with a gradient of temperature

and coucentration in y direction reads:

-y DA 'A dwiit 6



k in this equatiot, denotes the heat conductivity (exactly the parameter

dete.rmining the transport of energy according to the translational,

rotational, ond vibrational degrees of freedom). DA is the diffusion

coefficient for interdiffusion of the atoms and molecules, i is the

energy of dissociation per unit mass of atoms, and wA is the mass

fraction of the atoms in the gas. khe equation therefore is written

in mass fraction rather than in concentration. The enthalpy of t"

molecule-atom mixture is described by the following equation:

dizcP d+ A : A - (3-39)

in which c again denotes the specific heat at ccnstant press-r9

comprising the translational, rotational, and vibrational degrees of

freedom, however, excluding che.ical energy. Iatroducing this relation

for the enthalpy into equation (3-3a) gives for the heat flux the

following relation:

This equation can be simplified by introduction of a dimensionless

parameter called Lewis number and defined by:

k

With the Lewis number the equation for the heat flux reads:

qp 2

The Iewis number for gases has a value which is not too far from

one. Therefore., a good approximte information on heat flow under the

influence of dissociation can be obtained when the condition in a gas

with a lewis mnmber equal one is considered. For such a gis, the heat
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flow equation sfrplifies to:

q a - jL di (3-42)cp ýy

it c-k be seei'. that the OquAtion for the heat flow is just as siWpe

as for a single component gas. Ihe only differene, is cauced by the

fact thatlin thfj enthalpy gradient describing the heat flOw, the

chemical energy (ewrgy of dissociation) has to be included. On the

other hand, it should be kept in mind that the heat conductivity and

specific heat do not include the chemical energ but only the pure

gas energies. One has to distinguish those properties from 'the ones

includiag the chmical energ wohich often ane listed in reference workse

A more detailed discussion of this difference will be given in a

later section. Equation (3-42) indicates that the heat flux is

dependent on the enthalpy gradient in the p alowe, and that it does

not matter at all whether the t2ansport in detail ii caused by conduc-

tion or by difftsion. This already indicates that the heat flow does

not depend on the degree of dissociation in the gas. An example will

explain more clearly what is meant by this statement. Let us consider

for this purpose a gas layer with finite thickness b and let us

simplify the actual conditions by assuming that heat conductivity

and specific heats are constant. In this case the equation can

innediately be integrated over the thickness of the layer, and the

following equation results:

q Ii W s

b

iw and ie denote the enthalpies at the two borders of the layer, The

notation is used because the layer may be considered as a crude model

WAPO TR 59-624 41



I

of a boundary layer. i then corresponds to the enthalpy of the gasw

at the solid surface, and i. to the enthalpy at the outer edge of tht

boundary layez. This enthalpy i is prescribed through the concentra-

tion of atoms and thrcugh the temperature. The enthalpy il at the wall

surface, on the oTher hand, depends on the recombination conditions at

the surface. if the wall is cataly-tic, then the concentration of atoms

is equal to the equilibrium concentration which belongs Wo the

temperature and pressure of the wall surface. At a prescribed wall

temperature and pressure in the boundary layer, the enthalpy i is also

a fixed value, and this is s3 regardless of the fact whether the atoms

recombine within the lays- itself or not - in other words, whether

equilibrium or frozen state or any condition in betv:een exists within

the layer. This then indicates that te heat flux to the wall at

prescribed wall temperature and -rescribed conditions outside the

layer is a fixed value and independent of the ch, o- b gticn

process.

if, on tne other hand, the wall is non-catilytic, then the heat

flux depends on the condition for recombinatien within the layer.

For equilibrium state the concentration within the layer is everywhere

equal to tne equilibrium concentration belorffing to the local temperature.

Correspondingly, the equilibrium concentration is established at the

wall surface by the conditions in the gas itself, and the heat flow

will be again the same for a catalytic wall. If, on the other hand,

the recombination in the gas is negligible (frozen state), then the

concentrations will be uniform throughout the whole laer of the gas

and will also not be influenced by the presence of the wall. In this

case, no transport of energy by diflusion occurs, and only the first
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term in equation (3-38) is active for the transport of energy. For a

constant heat conductivity this term can again be integrated and givis:

q= k T"- To

b

It is clear that the hoat transport in this case will be less than when

diffusion is present. 'rho ratio of the heat flux q. in a froier state

gas and At a non-catalytic wall to the heat flux % at a catalytic wall

c-,- be expressed in the fulluwlng way:

Note that c only containe the trw..slationals rotational and vibrational
p

energy, whereas i contains additionally chemical energy.

In a boundary layer, the energy transport by conduction and

diffusion is z.till described by equation (3-345). To it, however, has

to be added the transport by convection. Numerous os" Tulati.ons have

been performed in which the laninar boundary layer equations have

been solved for the determination of heat transfer in a high velocity

air flow undur the presee of dissociation and recombination. The

corr*sponding reports are listed in the list of references. Fay and

Riddell (Ref. 12) investigated the heat transfer in a rotationally

symetric stagnation flow of air and arrived at the statement that heat

transfer at a catalytic surface J s obtained from the corresponding

equation in a single component gas by multiplication with the following

factor:

I (Ian 1 iD
io
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If our relation 3-37) is used then the follouing equatioie ib obtained

which describes heat transfer in rotationally symaetric stagnal.lon flow

of a dissociating air bour-.ary layer:

Nu* =0.70 (r*) b13

Sindicates the energy of dissociation per unit mass of the gas
consisting of molecules and ato=s, and iO is the enthalpy of the

mixture at the stagnation poInt and outside the boundary lTyer. The

exponent n was du*ernined to have the value C.52 for equilibrium state

and 0.63 for frozen state within the boundary layer. For Go'ette flow

a value 0.5 had been found. 't can therefore be assumed that the

exponent n depends only modera%61y on the specific flow situation and

that the above correction factor can generally be used to obtain heat

transfer in a dissociating or recombining gas. The Lewis number in air

for hypersonic flow conditions is expected to assutme w;1. s htween I

and 1.5, and a consideratiop of diffusion and recombination may give

an increase of the beat transfer up to approximately 20 per cent. On

the c# her hand, for frozen state in the boundary layer and a non-

catalytic wall, a possible reduction of the heat transfer parameter

to one-third of the value which it would have if the wall were

catalytic was calculated by Fay and R.iddell (ef. 12W. This

calculation was made fo." a flght condition as -it mW occur in the

re-entry of a missile. Frozen state in the boundarf layer has been

assumed, and this requires that the flight occurs at very high altitude.

Fig. 8 gives a schematic sketch of the variation of temperature and

concentration through a boundary layer; once for a catalytic and

second for a non-catalytic surface. The teU.erature profile in the
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boundary layer is essentially unchanged by the surface cundition. V.n

the other hand, the concentration is uniform for a non-catalytic

surface and decreases to its equilibrium value according to the lower

surface tempereture for the catalytic surface. 6nertry transport is

affected by the temperature gradient alone at the non-catalytic surface

and by tihe concentration gradient and temperature gradient at the

catalytic surface.

4~. ft"S 9LA"SMF~ COOLING

ihe general equations which describe the teoerature -ondition in

a solid vz1 and the heat 1lux to the ;urface of such a wall under the

influence of mass transfer cooling have been discusbed in chapter 2.

In the present chapter up are corcerred only with the process within

the boundary layer itself, which determines the heat transfer coefficient,

Correspondingly, the term m&a transfer cooling will be interpivied

here as ircompissing all cooling methods by which a mass flow away from

the surface and into the gas stream is generated, regardless of the

specific method by which such a mass flow is achieved. It includes

processes like transpiration cooling, sweat cooling, ablation cooling,

liquid film cooling, and so on.X) The coolant which in gaseous form

moves away fromstKe surface of tha solid object is usually of a

substance different from t~he fluid wuvirig in the outside flow over the

surface. Correspondingly, the Mass transfer cooling process will, in

x) The interphase between liquid and gas in fim cooling moves
along the su'7tee. The velocities of ths shear flow in thG l14Mid
film arem, hovever, so small that their effect on the gas boundary
layer Is negligible.
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addition to ',6 paramtters occurring on a solid Purface, depend on two

new Paraneters : on the amunt of mass released at the surface and on

the nature cf "-u coolant g". AccordIngly, it requires a much larger

number of ealculatiune or experiments to obtain the required knowledge

on the mass transfer coolivg process. This is the reason w our

p.esent day information on mass transfer cooAli 1:- still a.-e -s.

cowpared with that on hbat transfer on a solid surface. Gmnerally, it

is found that a mas flow ava fro the surface reduces hoat transfer.

The procedure which appears best in the light of the remarks mde above

and whi.ti today has been quite generally accepted ts to calculate het

transfer on a mae cooled wall in the followig mW: T heat transfer

on a solid surface under equivalent flow conditions is calculated and

this heat trans.for coefficient is then mtltiplied with a correction

factor which describes the reduction obtained hir the mass transfer

cooling process. This procedure wi be used In the following disceusson.

la. WITHOUT CH-iICAL RhMWTOItS

In aany apolications, the chemical species released at the mrfa'

will roact with the cononents In the outside Cas flow. Ths discussion

in thbis section winL assa that such reactions do not occur. In

addition, it will consider," o the one hand, the gas In the outside

flow and, on the other had, the mass released from the surface "

Aingle components. This is admissible as long a, each of the two

components consists of species whose properties differ coupartivelU

little. We are therefore concerned with the &ass maovment ty nomection

and diffusicn of two components In a gas mixture relative to each other.

It will be am that this process has often a prmourzed effect on
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heat transfer. The discussion v.ii again be carried out in the

following order. At first a mixture of two cuopoennts will be co,--;.zred

with pmperties which are constants (indepenent of preafutr,

temperature, and composit-on). As a vext rtep, the propeAies of the

mixture will be considered to depend on temperature but not, on

coposition. Such a situation is q.d.te often mpproxisated in actuai

mass transfer cooling processes. In a third steop, the properties -ill

be considered to depend on teamperat•re w.rd on cnuposizion, and in

addition ,o be widely different between the tvc cona•oats. !a

recent investigations, it has beon fomud that gases uith low molecular

weight appear to offer special advantaies as coolants for a pass

transfer cqoling proclss. Aince the properties denend ensentially on

the molecular weight, such a situation has created interest in the

inf±uence of large differences in pr,)perties between the coolant and

the outside gas on the mass transfer cooling process.

bll, Constant Properties

The boundary layer equations for flow over a surface with mass

release*gre the same as those describing the velocity and temperature

fields on r solid well. The only change occurs in the boundary

conditions where a finite velocity v normal to the surface is

now prescribed. Solutions of the"e equations for laminar and turbulent

boundary layers uith mass transfer cooling have shown that Stanton

number or Husselt number describing the local heat transfer coefficient

depend on the following parameter

n

"?ue

Wa'C -FR 59-624 49



when the mass A released per unit time acd surface area varies inversel

prcportianal to the expression X u e '-. The exponent n has the value

aituation, the boundary lqar profiles at different location•y•z ie

similar. goat transfer coefficients obtained from these saularity

solutions are often used as aoproximationz for a determination of beat

transfer even wb• the was flow d~tribution over the surface i~s

different fm t* one on id,-ich t h ca•-Ljla.,,on was based. 7U:

pocedure is analogous to the vithod of "local sintlarityO which has

been applied in Sectorn 3123. F'or turflent flow, it can be expeted

that, the infuene of a speciflc• sum relae ditribution on heat

transfer is comparatively call. For laminar bounday layers the

influence may be considerable. Howeer, little Information In avail-

aaa from which its mag•itude can be eeimiated.

The payameters say be brought to a foam which is Identical for

laminar and turbulent eow when the Asyaolds nmber is replacod by

Stantons number

3 -~'-(4~-2)

Tue santon nguher St. de•r1bing beat teansfer on a solid surfs"

under the same boundary conditions (ewtpt v : 0) is used f2r this

pesmeter in the preeent report. C. J. Soott demonstrated additionally

that the results of ealmlatlow on heat transfer in laminar boiniar

layers with pressure gradientm can be brought to near coincidende

when the parmster (4-2) Is changed to

- I(4-3)
fus Ste
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is the pressure gradient parameter as usea in Secuion 3123. It has

the value 0 for flat plate flow, 1 for plane stagnation flav.. ac. :.I

fo: rotationialy symmetric stagnation flow. For turbulent flow,

P-- 0 moould be a good approximation eve when pressure gradients &I,

present.

Pig~rq. 9 preq-nt* the Mst.40 kWha ot UM actual beat trantsfor

coefficient to the one on a solid surface under the saw outaide flow

conditions as a fuanetion of the mass releatkv paate (L-.3) for a
ga& with Pr = 0.7. It m be observed tha the va&sz for flat p•ate

flow and for plane stagnation flow agree quite closely in this present-
ation. The figure also contains the ratio r/r. of the actual temm•etre

recovery factor to the one on a solid surface for laminar flat plat*

flow. Knowledge of the recovery factor is of minor buvrtance in
mass transfer coolizW because the difference between total gas temeratur*

and wall temperature is usually large cmpared with t'- difference

between total gas temperature and recovery temperature, an ezoz- in

the recovery factor then has little influence on the calculation of

the heat flux.

I12. ropertieg Delendent on Tomwerature

It has been damoutrated in Reference 4i25 that the results of

nrous laminar boundary layer solutions for flow over a flat plate

agree with the constant property relation presented In 'g. 9, when

the blaoing parameter is changed to the following form suseted t~r

j. A. Baron:
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1his paramter can be transformed in the follovaig way:

O-- -

e ~e r-1 VYM.11 'W- e .

This indicates that tae rule proven so successful for beat transfer on

solid surifa s, nweiy, rhaz properties should be introduced at a

reference teaperature applie. to the mass release parmeter as well.

The naraneter can again be generalised by iotft c£ the StantuA

nruner and by addition of the pressure gradiant pareseter. It can be

expected that the paraxet'?r

(4~-5)
qUs St8

correlates heat transfer coefficients for laminar boundary layer

with pressure gradients and for turbalent boundary layers (sott"ng: 0).

Fig. 9 can than be used to calculate heat transfer in fluid with

temperature dependent nr, perties Wien the properties in the mass

release parmter are introduced at reference toenrature or reference

enthalpy. The referece state is calculated from equation (3-13) or

(3-16).

1L13. Properties hMendeat *A LeMa!tLu and gositIoM

Fig. 10, taken from Reference 426, presents the ratio of the

actual heat flux q at a mas transfer cooled wall to the beat flx

SWaich the solid wal would have under the same flow conditions, plotted

over t"e moo release parster. It has been found that the resulta

of various calculations correlate on these curve& with reasonable

accuracy. The notation on the varic-s cures indP ae the naturm of

the two co mpoent mixture. Tha first ter given ',a crolaz" gas, at
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it can be observed that the outside flow over the surface was air in

all cases. The various curves represent with good accuracy the rasults

of boundary layer calculations on a flat plate with a large range of

Mach numbers, wall temperatures and free streaa temperatures. It can

be obeerved that the curves arrange themselves according to the

nolecular weight of the coolant. in this way it is rAggested to

consider the molecular weight of the coolant as the main parameter

det•erminig the coulaaL effect in the &ass transfer process. In

Referenct. 426 , it has been found that the various curves in Fig. 10

can be epressed by the followUW equation:

ande denote the density and viscosity of air at reterawe

tarmerature. a in this equation indioates the molecular weight of

air ad Me the molecular weight of the coolant gas. The s3rw equeattn

describes the ratio of the actual wall shear on the transpiratiou

cooled wall to the shear which would exist on a solid surface under the

sma flow condition wham the constant is changed to a value of 2.08.

A similar relation was obtained In bference 368 for the ratio of heat

transfer coefficients in a lianiar and turbulent boundary layer on a flat

plate. The exponent on the molecular weight ratio in this reference

was found to be 0.4 for laminar flow and 0.6 for turbulent flow. Reference

425 gave 2/3 for the exponent 1/3 in turbulent flow. This result and the

generalised paramter (h4-5) can now be used to obtain the relation

M
W~b =1 3,-/4 ) (4_*7)

? U*s-t

C has the value 0.73 for laminar ad 0.37 for tu ulent flow.
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e exponent n 1/ for lainar and 2/3 for turbulent flew,

rroverties for air at reference temperature have to be introduced for

Sand in St.*. The ratio h 5 of heat transfer coefficients is not

quite identical to th.e ratio q/qs of heat fluxes because the recovery

temperaturc on a selid w ta! _s n,- hat difft-ent from t•e recovery

teiperatu, on a mass transfer cooled wall. In the boundary layer

solutions on which equation (h-6) is based, thi: diffei'ece is very

small. This has already been pointed out at the end of the preceedirw

section. Reference 426 contains information in Fig. 4 on the

recovery factors of transpiration cooled surfaces.

Equation (4-7) is a relation which represents results of

analyses and experiments available today with an accuracy which is

sufficient for engineering purposes. However, it should be rembered

that the range of information to date is still restricted, and that

correcULions to this relation may have to be made when more information

becofts available in the future. There are, for instance, some

indications from calculations presently performed at the Naval Ordnance

Laboratory that the molecular weight is actually not the only pprsmeter

to describe the behavior of a specific coolant. It may well be that

in the future either other properties have to be considered in the

relation (4-7) or that a procedure will have to be used which considers

all the properties of the coolant gas as well ap of the gas in the out-

side flow as, for instance, a reference concentration procedure. Shch

a reference concentration pic.edure hic bacn prooo~d in Reference 43 6 .

It should also be pointed out that equation (4-7) is based on analyses

and cxperiment~s in all or which the surface was impermeable to the

one component of the gas mixture, namely, to h6 t t in the ,utaide
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flow. A different situation 'Is sometimes exAcountered, for instance,

wthen' a ch-ei'~l e.c1 i..4ý taa -l- at ~ ti-1 hc a

the oxygen receesary for the reaction has to be transported thrcugh

the boundary layer toward the interface on which the reaction occurs,

and the relation between the mass flow pLa•ieter and the local

concentrations of the two compcnents will be different from the one

considered in the previous analyses. This may also have an effect on

the reduc.•ion of the beat tran•.fer coefficient.

42. W ITh CH&IIC4. RUCTIONS

A mass transfer cooling process is often connected with chemical

reactions when it oecurs at high temperatures. These reactions change

the temperature field and the properties, and influence the heat

transfer coefficient and the heat flux to the surface. Thi-. n-..:nce

of chemical reactions on beat transfer will at first be discussed on a

simplified model which was considered in Reference 115 and 160. In

this reference, heat flow to a surface in flat plate and in plane

stagnation flow was considered when a steady, two-dimensional, laminar

boundary layer ewists, and when the flow velocities arm sufficiert:y

low to make dissipation negligible. It was assumed that the surface

releases a mass ; and that this mass (for instance, carbon or bwdrogen)

reacts with the o3ygn of the air stream moving over the surface. The

fluid properties are all postulated constant and having practically the

same value for all components of which the air and the combustible

material exists. Scbmidt mber and Prandtl number have the value O.'g

whic, means a lewis number equal to one. The chemical reactlzn 'stes

are assumed to occur very fast so thet the reaction prccess is

completely diffusion controlled. Chemical equilibrium may be close
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Enthalpy profiles in a boundary layer
with cc.bustion
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to complete comustion. Fig. 11 shows as an example of the results

of this calculation the enthalpy profiles plotted over the wall

diazance y. lhe wall temperature is assumed prescribed. The full

lines irdicate the enthalpy profiles for various Mass release rates.

The peak in the enthalpy curves coincides with the location of the

flame front within which the ccmbustion occurs. For very small mass

release rates, the combustion occurs right at the surface, and the

enthalpy profile is the lowest one iadicated in the figure. Beyond

a fairly small release rate, the combustion front lifts off the

surface and moves with iwcreasing release rate more and more into the

interior of the boundary layer. The enthalpies presented by the full

lines constitute the sum of the sensible heats of all the cormonents

of which the gas is composed. if the chemical anergy which can be

released by combustion of the local oxygen is added, then the dashed

curves are obtained which indicate the total enthalpy profilef witnm...

the boundary layer. These total enthalpy profiles have exactly the

same shape as the en'thalpy profiles for - constant property fluid

without combustion and with the proper mass release rate provided the

enthalpy at the wall is equal Iw and the enthalpy at the outer edge

of tne boundary iayer is equal to the total enthalpy at that location.

Sensible heat and chemical energy of possible reactions have to be

included in the latter value. From this statement it becoMes obvious

that the combustion process occurring in laminar boundary layer flow

of a fluid uith constant oroperties and Le = 1 is included in Tts

effect on heat transfer when the heat flux is calculated with

equation (2-3) in which the enthalpy at the outer edge of the boundary

layer comnrises chemical energy as vell as sensible heat. 7he ne;,P
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tranof(r coe.fficient cun bo Iet.tsrnned from equ"'tion (3Q6) and (4-7).

This procedure apr,,i.3 to a situation in which the oxygon content at

the su-face is zero. When the oxygen content at the surface is

diffe:.erit from zero, then the chemical energy corresponding to this

oxygen content must be included in the enthalpy of the gas at the

wall 2'irface.

1he explanation for thi5 behavior can be obtained by a reconsider-

ation ef Section 32 and specifically of the development which led to

equftion (3-42). The discussion in that section was concerned with

dissociation. It may, however, be applied in the same way to any

chemical reaction within the boundary layer. 4quation (3-42) then

indicates that the heat flux normal to the stream lines at Arq Moint

within the boundary layer is determined by the gradient of the total

enthalpy comprising zennible heat, kinetic energy, and chemical

energy, and that it is immaterial for this transport whether it occurs

aP conduction of sensible heat or as diffusion of chemical enthalpy.

In Fig. 11, the transport of total enthalpy is purely by conduction

along the enthalpy oumrs in the region between the flame front and

the wall; it is by diffusion as well as by conduction alcng the dashed

part of the enthalpy curves in the outer region of the boundary layer

outside the flame front.

L. Laees developed in Reference 432 the laminar boundary layer

equations for plane and rotationally syimetric flow of a two component

gas mixture with chemical reactions and with mass transfer at the wall.

The c)ntinuity and momntum equations are the same as eq,,ations (3-25)

and (3-26). The energy equation is:
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71Y. total enthalpy I now contains chemical energy in addition to sensible

beat and kinetic enery. D is the diffusion coefficient, wi the mus

fraction of the ith cmponent (i running f I to 2), 1 is the

enthalpy of the ith component. The last term in the equation disanoeare

when the Lewis umber is equal one. The fact that equations (3-29),

(3-26), and (4-8) are not different there from those for a gas mixture

without chemical reactions, indicates that the velocity field and the

total enthalpy field are not influenced by any occurring reactions.

This holds for a mixture with constant properties and also for a gas

with constant and constant •r•wben the pres•ure along the surface

is constant. The last statement is easily verified by inspection of

the equations (3-30) and (3-31) which are the transformed equations

(3-25), (3-26), and (3-27). f)r f z constant, C has the valae 1,

ond for constant pressure P is equal to 0. "he equations are then

the equations for a constant property fluid. The enthalpy gradient at

the wal surface determines the beat flux into the vall accordii to

equation (3-42).

The following rule for a calculation of heat zransfer In ma."

transfer coolizg and with chemical reaotions follows from these

considerations: Ove calculates the heat transfer coeffizient frow

the relations in the preceding section, for instance, with equation

(4j-7). The heat fluX to the eurface is then calculated using the

right hand expression in equation (2-3) and interpreting 4-it enthalp..s
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as total enthmies con.aining seusible haat. kinetic eeam , and

chemical enertr corresponding to poasble reactions within the

bouyjazy ler,• l Tis procedure holds strictly for gases with const•at

properties or with ft = constAt Pr: 1, and constant pressure wd

in a= casm for Le = 1. It should be a gQod approx±iation when Pr

sa Le are wt too different frm oz* and for moderat predur.

gradients, especially when properties are again introdwc. at

reference entnalpy.

The mass release rat ia thich la required for this "alailation

has to be obtained from overall balancos. in an evaporation or

sublimation proces, for instance, it is fixed bt the enru balance

in Chapter 2 together with the thermodaami relation betmeen ovaporation

or sublimation temperature and the pressure or partial pmasnre of the

released substance at the surface.

In the discussion up to nca, the fluid involved was considered to

be a contijmu. in reality, gases consist of individal molecules

and this structurs makes itself felt at low densities which, for

instance, are obtainsd in the flight of an aircraft at very bigh

altitude. The p;.rameter which determines whether the molecular

structure influences beat transfer and friction is the Xmadsen nmberz

K: (5-1)

. indicates the man molecular path length and L denotes a character-

istic diaension of tim object involved. The flow in a boundary layers
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for instance, can be considered with good accuracy to be continuum

flow when the ratio of mean molecular path length to boundary layer

thickness has a value Which is small a- compared to one. With

increasing Knudson number, the moleculer structure makes itself felt

at first in the imediate neighborhood of the surface of the object

by the fact that the flow slips over the surface and that the

temperature prcfile in the boundary layer has a very sudden change near

the wall. This regime is referred to as jJk mc le. Simultan-

.aOsly, an interaction betwen shock and boundary layer usually berin

to influence the flow and heat transfer. Un the other end of the

scale of Knudsen zvbers (large values) one encounters c-rditiona

where the mean molecular path leogth is large compared to an body

dimension. 3is means that, after Wing reflected from the surface,

an approaching molecule has practically no chance to be reflected

back and to hit the surface a second time. This reg!..r. is ..- ettrred

to as free molecular flw reimei. In between this regime and the

slip flcw regime is the transition reae in whdich the mean molecular

path length ana the characteristic body dimension are of the same

order of magnitude. The Ia~dsen a=)- r is uniquely related to the

Reynolds aud Mach numbers. As a c -,quence, the various flow regimes

can be indicated in a diagram in which the Reynolds wmber is used

as abscissa and the ach maber as ordinate. Sach a diagra. is

p.-sented in Fig. 12 taken from Reference 422. The transition lines

between the regimes are to a certain degree arbitrary. Compared with

a similar diagram in Referene 110, the limits between continumn flow

and transition flow have been shifted to the left, because recent
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experiments in low density wind tunsals indicated that the contiwmm

regime extends to smarler iynolds numbers than originally eipected.

It has also been pointed out in Reference 168 that the proper

conditions existing within the boundary layer have to be introduced

into teynolds and &Ih mnmber In a dete-•aination whether the flow is

in the continuum or alip flow regime. The best values to use in such

a case are probably velocity outside the boudary layer and the pmoperties

at the preswure, teoperature, and concentration as they exist within

the boundars layer at the surface of the object. It has been fount

in Reference I68 that, in this vq, practical4 all conditions under

which cooling of missiles aLl satellites becomes critical are located

in the continuum regime. This is very advantageous because heat transfer

relations are much better established for this regime than for the

slip or transition regim.

A very simple relation for the beat transfer is obtained La the

free molecular flow regime for an object flying with a hypersonic

velocity. For such a condition, the man molecular velocity is mall

compared to the vehicle speed V, and the molecules can be considered

ai practically at rest. This allows calculation in a siMle way of

the mmber of molecules which strike the vehicle as it moves through ¶

the gas. If I., idicates the undisturbed density of the gas, and

1 its molecular weight, then the number of molecules per unit volume

is 1/M. The nuaber of molecules hitting the object per unit time

is then given by the following relation:

?4F VA

in which ^ indicates the area obtained when the vehicle is projected
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Onto 0 Plane nrofl to 'cbO flght directiOu. liah molecule striking

the sUrfacge t.-nsfers the following energy to th3 object:

2
V

aM-2

The term a in this expression iwicates uhat fraction of the Initial

kinetic energy the molecule transfers. This term is called sccoýio

coefficient. The nrical values for the accomodation coefficient

hae to be determined by nwasuremnts. ihey depend on the nature of

thu gas, on the nature and condition of the -urface, and probably elo,

on the velocity V. Only limited information is available. fteriawg

carried out up to "OW redulted in values tetwem 0.3 and I for air

and for various 'surfac materials. prom the two equations statmd above

the beat flow per unit area of projected surface and per ui+t time is:

It is quite interesting to transform this equation into a Stanton

number. The total enthalpy of the gas is Prattcally Only kiMetc
energy. Threfore, I: 22/2. The enthaly of the surface can be

considered as VezY mall compared to this Value, so that the enthalp

difference is also V2/2 and the heat transfer coefficient based on

enthalpiee is:

The Stanton number is therefore simply:

hi: (5-3)
,Sti,£ =

The Stanton number Is therefore simply equal to thu accowodation

coefficient if it is based on conditions in the undisturbed fluid and

on projec(td area. Stanton ambers for contimua fl"ow are usually
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by two or three orders of magnitude tealler than this value. This

indicates the fact thaz a boundary layer serves as a kind of insulation

and decreaseft the energy transfer between the molecules in the free

streia and the object when it builds up around an object.

6. MUNSITIO& TO TURWLELDCE

A prediction of the location on a bod where the flow within the

boundary layer changes from laninar to turbulent state still has to

be based ,rimarily on emoirical information obtained In wind t- l

experimnts and in free flight tests. An extensive literature exists

according to the importance of the knowledge of the transition point.

Mw reader has to be referred to the literature, and only a few remarks

can be made in this report.

Stability theory predicted that the transition point woula be

dolayed by a decrease of the surface temperature so that vary large

transition Reynolds numbers are expected on objects with cooled surfaces.

A figure indicating the results of such calculations is contained in

Reference 110. These predictions have generally been confirmed on

slander objects. Transition Reynolds ubers up to 108 have been

observed in wind tunmel experiments and free flight tests. On the

other hand, conclusions drawn from stability theory were completely

contrary to observation on blunt objects. A consderable favorable

pressure gradient usually exists on such objects over the zegion

which is covered by boundary layer flow, and from this fact one expects

the transition to be delayed. Experiments, however, showed that the
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transition deynclde number based on distance x in of the saw order

of magnitude az on a flat plate under isothermal flow cooditions.

Cool !g of the surface was found to baye very little effect on the

transition ibynolds number. Reference 367, for instane, reports the

results of experiments on sphere-cylinders and on elliptie. cyl~udere

at a ratio of total enthalpy to wal enthalpy between 9 and 30 and

at a Xach number around 3. T experiments ware performed in a shock

tube, and it va3 found that the trawition occurred at a leynolds

nmber based on mommium thickness between 225 and 325 (the last

figure for an enthalpy ratio eqwa 30). The transition ilynolds

number based on length x was between 500,300 and 106 . From te above

figures it can be seen that cooling had no pronounced effect. no

shape influencaA the transition Reynolds nmber sonhat.

another observation for which a definite exlanat.ýon is still

missing is the fact that on slender objects turbulent flow has ben

obsersed at extremely strong cooling of the surface and under

conditions where the stability theory predicts completely laminar flow.

The momentum thickness as a function of the distance x has to be

known if Reynolds numbers based on momentu. thic:msss are to be used

for a prediction of the location where the laminar boundary layer

changes into a turbulent one. Calculation of the mamntux thickness

is considerably more tedious than that of heat trasfer. Inaefersnce

43R, Lees proposes an iteration procedure by which the ncwntum

thickness can be calculated for objects of arbitrary shapo.
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A knowledge of the thermdYnamic a&W transport properties is

required for the gasezk participating in the flow when one wants to

evaluate any of the relations contained in this report. Pbr air, these

properties have been calculated in a large pressure range and up to

very high temperatures using the methods of statistical mechanics.

Such information Is, for instance, contained in References 48 and 427.

Only indirect verification is available by the fact that beat tronfcr

coefficients masured in shock tubes at very high temperatures ore*

quite well (within 10-20 %) with predictions based on the relaticne

discussed in the previous sections and on the calculated air Droperties.

Viscosity, heat conductivity, and specific heat of air under conditione

close to thermodynamic equilibrium ar presented in Fig. 13 for one

atmosphere pressure. The value* have been taken fromg L-Z 427.

Fig. 14 contains the Yrandtl number and the Lewis rmber describing

difftuion of dissociated atoms again for air at one atosphere

presmsre. It has been pointed out before that two"definitions are

in use for the s-AcifiC heat and for the beat conductivit. According

to one deftnAtion, the specific heat (O p) is based on the enthslw

which contains not only sensible heat but also the chemic energy.

The second definitiaon bases specific heat (c,) on the sensible beat

only. In a ,isilar way, the beat conductivity can be defined by

considering the transport t7 heat conduction alone (k), or by

including the snere transport caused by diffusion (k'). The second

pert is uniquly related to the temperature and pressure since it is

postulated that conditions near equilibrium exst In the gab. Fig. 13
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shows that the difference between the values of specific heaL and of

heat cenductivity according to the two definitions is very large.

The values according to the definition which considers sensible heat

only have to be used in the relations presented in this reporL. ihe

xrandtl and Lewis numbers in ?ig. l4 are based on the heat conductivity

k and on the specific heat cp.

In addition, thd connection between enthalpy and temperature has

to be known for calculations of heat transfer. For a gas in thermal

equilibrxum, this connecticn is best obtained from enthalpy entropy

diagrams. (Mollier Diagram for Equilibrium Air, Avec Research Lab.,

Avco hanufacturing Corp., Brerett, Hass., Jan 1957, Xollier Chart for

Air in Oissociated Equilibrium, NAVORD itep. 446, Naval Ordnance

Laboratory, Silver Springs, Ad., 1957, see also Ref. 439).

The situation is considerably more involved in c.-* !L.t ons on

mass transfer cooling processes. The determination of the properties

involvec in this procesb is usually the nost time-consuming prerequisite

for suCn calculations, especially when chemical reactions occu.r

within the boundary layer as they have been discussed in Section 42.

Information on the properties of the various constituents involved in

mass transfer cooling is usually quite restricted, and the calculation

of the properties of the various mixturos which is possible by the

methods ofstatistical mechanics is very involved. The reader has to

be referred to the literature for the determination of such properties.

Wa ' TR 59-624 71



AkLPnbIDIL I

Use of temeracures or enthalpies in beat transfer calculations

has an inOMence on the energy balance describing heat exchange

between a wall and a more component mixture. This will be demonstratied

in the following example, which considers flow over a mass transfer

cooled wall. The coolant may be denoted by 1: and it will be assumed

that the wall surface is impezrmable to the gas 2 in the main flow.

Let us now fix attention to the mass flow of both comveont. 1 and 2

through a plam a-a arranged in the gas Just outside and parallel to

the sirface. 'T1e mass release generates a convective velocity v

through this plane and a mass flux of component 1 equal 1p ', where,

SI is the partial density of 1. There is al90 a mass transport by

diffusion of amount - ?D( i f) iIndicates the mass fraction

S= "The total transport of component 1 Is:

S- D( •y- )W an*"•

For component 2, the mass flow through the surface and therefore also

through the control plans a-a is zero:

ow
fwev- fu( Y;~l ) W o0 (1-2)

Mow we consider the energy transport Through the control plane. Mhe

energy flux per unit z1me and area may be denoted by q'. According

to equation (3-38), the energy flux is:

q' -" " + q " Jv + fv 2v 2  •'½( D - " 2  ) (1-)
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This energy flux must be equal to the flux through - control

plane b-b arranged in the solid wall just beyond the interphase. The

int,'-hase moves continuously towards the intfirior of the valn becaume

of the mass release. A mass flow of solid material with the mass

velccity it exists, therefore, threugh the plane b-b, which is considered

fixed relative to the interphase. A corresponding energy flux by

convection is iis, where i indicates the enthalpy of the soliA material.

Another energy tr.Ansport by conduction may be indicated by qW.

Conservation of energy requires:

q' :. % -S kXs( - )

Introduction of equation (1-1) into U1-3) results in:
DT

k( _3 )w+ ik~i., - id, (1-5)

te have here obtained the result which was expressed in c' apter 2 by

equations (2-3) and (2-9) with the exception that no ra.iatioD was

considered in the present derivation.

The heat flux qs may now be expressed by the enthalpy gradient in

the gas mixture. With "- and equatinso (1-3) cnd (1-4) one obtains:

The first term in this equation is idrintical to equation (3-36), since /
,,)wz (Ow2

in a two-ccmponent-mix'.ure = - ( Vid since iA i1 - i 2 .

For a .as mixture with le = I, the first term takes the shape of

ecuation (3-42), and the heat flux 04 is:

_ p + (i -as ) (1-6)

i is the total Prnt.alpy of the gas mixture, i. indicates it value at

the interphase, and is is the entheipy of the abiating =t.-.ial at. w*el
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surface temperature and in solid -tate.

in equation (1-5), on the other band, the en+talp' il of the

ablating material in the gaseous state and at wall surface tperature

takes the place of iV in eq-uation (1-6). The enthalpy i1 can be more

easily determined in most applications than W, and the form (1-5) of

the beat flow equation is thereforo preferable. In the use of beat

transfer coefficients for mass transfer cooling, one has To watch

carefully whether the coefficient was defined by equation (2-3) or

by a defaiition .:.hich replaces the temperature gredicnt in this equation

by Em enthalpy gradient as -ugfested by equation (1-6). For a gas with

properties depending on temperature only there is no difference

betwen iW and i,, and both equations (1-5) and (1-6) become identical.
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The mass iraction wi of any of ths components in a tuo-coponant

,ixtxur, Ls determiud by a diffusion equation:

( U -j 34 r - -5 Y ( 3 D i2  3 7y ) +Ulei

461 denotes the production of the species i by the chemical raact.ion

per unit time and volume.

The diffuzion equations can also be written in 'pseudo-mass-tractions"

A pseudo-mass-fraction gives the mass frartion of an element in

the mixuae regardless in ihat compound it is contained. The pseudo-

ass-fraction of oxygen, for instancwa, is the rttio of the o3xyen mass

to the total mass of the mixture regardless whether oxygen occurs as

0, 02, CO2 or in any other compound. 6o element is destroyed or

created in a chemical reacton. Therefore, the diffusion equation in

paeudo-mass-f-actionE reads:

z ) (11-2)

For a gas with Pr =1 and Le = 1, equation (I1-2) has the sam

form as the energy equation (4-8). This fact can be utilised to

calculate the composition of the gas thriughout the boundary layvr and

a' the wall surface. L. Lees carried this ide& through in various

examales (Fif. 432).
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