UNCLASSIFIED

AD NUMBER

AD238176

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; FEB 1960. O her
requests shall be referred to Air Force Wi ght
Ai r Devel opnent Division, Wight-Patterson AFB,
OH 45433.

AUTHORITY

ots per docunent narking

THISPAGE ISUNCLASSIFIED




ﬂmed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

N\

N WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR

DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION
‘WITH A DEFINITRLY RELATED GOVERNMENT PROCUREMENT OPERATION,
THE U. 8. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY
B TION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY
'\ JAVE TED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID
IRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
iMPLICATION OR OTHERWISE AS'IN ANY MANNER LICENSING THE HOLDER
OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR
PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION
‘THAT MAY IN ANY WAY BE RELATED THERETO,

UNCLASSIFIED

78

L




- AD No 238176

7

A

obY

FILE 'C

.

1
i

E3

i

ASTIA -piE cor

WADD TECHNICAL Rﬁ’éhi‘@ﬁ-@3’
- it . s ﬁ;f;f;
_CYLINDRICAL SANDWICH CQNSTRUCTION DESIGN
a’\ "4:;/'“ 7 : z, ;

/(1

,! | : \w\i 7 S

Sidney Allinikov ' . SR

e ———

Y aterials Laboratory

I
N

FEBRUARX’(60

ASTIA

Feturn te
Atra: TISSS

ASTIA
e D

ARLINGTON 12, VIRGINIA :

: S ],i JUN 20 1950
. o isesirsl
_ TIPDR A

o

S

-\}

\ ARLINGTON HALL STATION

WRIGHT AIR DEVELUPMENT DIVISION

.- )“\.*'\

v

Py




*‘%.

e
NOTICES

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in' any way supplied the said drawings
specifications, or other data, is not to be regarded by implication or otherwise as in any mannet"
licensing the holder or any other person or corporation, or conveying any rights or permission
to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been released to tht}ﬁé'e of Teé ical S‘\i-ftvices, L‘S S. Department of Com-
merce, Washington 25, D. C., for sale to the gencral‘p_ublig\ )
ddo \

M e—— e e e e - =

Copies of WADC Tecnuic? eports and Technical Notesthould not be returned 1o the Wright

—=-—Air Development Center unless returs: -~ —=aayjred by security considerations, contractual obliga-

== tions, or notice on a specific document.
o A "

L1\ -




CYLINDRICAL SANDWICH CONSTRUCTION DESIGN

Sidney Allinikov

Materials Laboratory

.

FEBRUARY 1960

Project No. 7381

WRIGHT AIR DEVELOPMENT DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

400 — April 1960 — 32-949




FOREWORD

This report wus prepared by the Design Criteria bBranch, Materials Laboratrry,
Directorate of Laboratories, Wright Air Development Division. Preparation
of the report was initiated under Project No.738l, "Materials Application,"
Task No. 73812, "Data Collection and Correlation," with Sidney aAllinikov act-
ing as project engineer, ’

The compilation of papers presented herein represent a significant effort
in the development of design data applicable to cylindrical sandwich constructionse

The purpose of this report is to provide wide distribution of these particular
papers, which has not been done previously.
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ABSTRACT

This report is a compilation of papers which present a comprehensive
treatment of the theories and parameters associated with the design of
cylindrical sandwich constructions. Many of the formulas develcped are
applicable to a wide variety of core and facing combinations. Experimental
data on flat and curved sandwich sections are furnished to support the
theoretical solutions related to the desiga of these siructures.

PUBLICATICN REVIEW
This report has been reviewed and is apprcved.

FOR THk COMLaWDER:

Ao SEINN .
Chief, Design Criteria Branch
Applications Division
Materials Laboratory
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7 ELASTIC STABILITY OF CYLINDRICAL SANDWICH

SHELLS UNDER AXIAL AND LATERAL I_.OADl

By
EVERETT EUGENE HAFT, Engineer

Forest Products Laboratory, 4 Forest Service
U. S. Department of Agriculture

Summary

A linear solution for the determination of the loads under which'
a cylindrical sandwich shell will buckle is presented. The facings of
the sandwich cylinder are treated as cylindrical shells and the core as
an orthotropic elastic body. The method of solution is of interest in that
it is of sufficient generality io be applied to many problems in sandwich
analysis. The characteristic determinant that represents the solution to
the problem is solved numerically. Curves that show how the buckling

load changes as the parameters of the problem change are given.

l'l'his report is one of a series prepared by the Forest Products Laboratory
under U. S. Navy, Bureau of Aercnautics Order No. 01593,

s

—Maintained at Madison, Wis., in cooperation with the University of
Y¥isconsin,

e

Manuscrint released 25 February 1500 for putlicaticn as & wall Techniceal *
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Introduction

Sandwich construction is a result of the search for a strong, stiff,
and yet light .weight material. It is usually made by gluing relatively
thin sheets of a strong material to the faces of relatively thick but
light weight, and often weak, material. The outer sheets are called
“facings' and the inner layer is called the '"core.'"
Such a layered system presents difficult design problems. What
is offered here is a straightforward method for dealing with some of .
these pr'oblems".'
The problem to which the method * 1pplied is that of the elastic
stability of a sandwich cylinder under uniform external lateral load

and uniform axial load.

o gy
L

-
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r, 0, z

ro rz

u, v, w

m
walll TR 60-133

Notation
radial, tangential, and longitudinal coordinates,
respectively
radius to middle surface of outer facing
radius to r;'xiddle surface of inner facing
thickness of each facing
length of cylinder
modulus of elasticity of facings
Poisson's ratio of facings
modulus of rigidity of facings

modulus of elasticity of core in direction normal to
- facings

modulus of rigidity of core in r8 plane
modulus of rigidity of core in rz plane
intensity of uniform external lateral loading

l -,

Et log b
1+ 2

G E a
c
normal stress in core in radial direction

transverse shear stresses in core

radial, tangential, and longitudinal displacements,
respectively

number of waves in circumference of buckled
cylinder

i
GG

e

number of half waves in length of buckled cylinder

J




x mmna
1
610 E. . _1:1_2_
ZGre 2
sz Ec -
G .
= e c . % ) . v -: b
Ny Nz. Nez normal forces anq.:;hg_gr force per unit length of
facing UL '
Qg Qy _ transverse shear forces per unit length of facing
Mg M bending moments per unit length of facing
M, o Mg, twisting moments per unit length of facing
R, 8, Z surface forces per unit area of facing
B Eca (1 - p?)
Et
2
¢ qa (1 - p°)
L. Et
2
¢, N (1-4%)
Et
a tZ
12a
a! tz
12b%
log : natural logarithm
A,B,C, DKL, A, B, A", B" arbitrary constants

note -- any of the above terms that appear with a prime (as N, 1)
refer to the inner facing. '

wabD TR 60-153 4

i




.

Mathematical Analysis

As previously stated, the core is relatively weak. Because of
the high strength of the facings the core need carry little tension or
compression except in a direction perpendicular to the facings. The
facings are able to resist shcaring deformation in their plane and it
is necessary only that the core be able to resist shear in the radial
direction in planes perpendicular to the facings.  In this analysis the
core is considered to be an orthotropic elastic body. It is unable to
resist deformations othcr than those just mentioned., This assumption
makes it possible to determine explicitly how the stresses vary through-
out ..t.he thickness of the core.

The facings are treated as shells.
'f}néc;dcpgmﬁz_ngu of the core and the facings is gained by equating

M LR
> = e wa oz

th%ir‘?dis.p;l‘;i:‘c:'earpem'l.s. at the interfaces. To simplify the analysis the
T n” e N :

o -

. % % w,
ot
core is assumecd to extend to the middle surface of each facing.
N .

Figure 1 ‘shows the cylinder and the coordinates that are used.

L

Prebuckling Stresses

Before buckling occurs the cylinder is in a state of uniform
compression. The axial load is carried by the facings since the core
material is assumed to be incapable of carrying load in this direction.

With facings of like material the stress is the same in both facings.

waDD TR 60-1_3 5
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- If, in addition, the facings have the same thickness, then the loading

per unit length of facing, N, or N,', will be the same. This means
that for a total load P,
2ra N, + 2vb N,' = P,
The calculation of stresses due to the lateral pressureis a
problem in rotational symmetry. Differential elements of the core and

of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

———ad'r + :!.‘. =0,
dr Ly
for the outer facing

aq - a (o) -N_, =0, ' ~
'rza

and for the inner facing

= ! = .
b(o,) _ -Ng =0
Since ¢ ='E_9% ,
r C ar
=) + 2
N6 Et ( a)r=a' and
; u
| = Et ey .
Ne (+ b)r . b’ these equations can be solved for ¢, Ne

and Ne'. The results are¥*

k"

oy Tack - b
Ny = qa (1 - k), and %:
*For a more detailed derivation of these terms see Reference 1. . 45
ZaLD TR 60-133 6
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N ' =qak where
0

1

k =

b Etlogl
) B -
a E a
c
As P and q increase, N, N ', N, N ', and ¢ also increase.
z z e 2] r

Eventually a condition may be reached where a slight increase in load

causes the cylinder to lose its state of uniform compression and buckle

as a result of elastic instability. This buckling is assumed to cause
only a small change in the stress distribution. These small changes

will now be considered.

Buckling Stresses

The Core

A free body diagram of an element of the core is shown in

figure 3.
Neglecting terms which are products of more than three differ-

entials, a summation of forces in the r, 6, and z direction gives

T T 3T
r+3 r8+r.o rz

+x =0
T Jr 30 dz (1)
T
r ar’a +27_.4=0 (2)
T +r3Trz =0 . (3)
rz
Jr
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e e Ty

Equation (2) m;.y be integrated to give

B
Tre -"-'—2 fl (6) fl (Z)
r

Equation (3) may be integrated to give

A
T =T L, (0) 1, (2) (5)
o, T and T as defined in terms of u, v, and w are
T r6 rz
- P
Ur - Ec Bl‘ (6)
- law  av v
Tre T GreEae +ar T Q)
au oW
Trz 1S GI‘Z 3z + 3r (8)

It is convenient to assume the displacements u, v and w in the form

u=f, (r) cos n? cos-‘,}z
v =f_ (r) sin no cos Lz
2 %37

= A N
w o= f, (r) cos nd sin 2 z

This form will permit a unique determination of f; (r), £, (r), and
f5 (r); assumes upon buckling n circumferential waves and m
longitudinal half waves; results in zero displacements in the radial

and circumferential directions at the ends; and immposes no moment

upon the facings at the ends.

From a consideration of equations (4), (5), (7), (8), (9), (10)

and (11) it is clear that
WaDD TR 60-133 3
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f; (6) £, (z) = sinne cos%z and

f, (6) £, (z) = cos no sin %“- z, so that

-.._B . LY
; Y -:2.4. 8in n6 cos 7 z and (12)

vt A A
_ % _ T, = cosnbsiny z. (13)

¥§u:b_s"t_7ittitingl equation (9) into (6) and then equations (6), (12) and (13)

~ -into equation (1) gives

g 10

t— +— A=0 - (14)
€ yr = ar? ré a

3 () 3£, (r) nB
E .~ +Er

which upon;xnte%ration shows that

1 )
fy (r)=C+Dlogr+Ar+B T (15) - .I’};r'*

r

Equations (9), (10) and (12) are substituted into equation (7) to give
n B a2 (r) f2 (r)
-z-zGre[';_-(C+Dlogr + A'r +T)+a—f—(—) ——r—'] , (16)

from which

B
fz(r)=Fr+Cn+Dn(1+10gr)+A'nrlogr+’—r—n'. (17)

Equations (9), (11) and (13) are substituted into equation (8) to give

A _ ‘ 1, 3f3 (r)
- =G, [C+Dlogr+Ar+B':+T], (18)
from vhich

£ (r) = K + A" (r2+1og r)+ Cr+Dr (logr - 1)
+ 3 gr. .(19)
It i> convenient to have the constants of f, {r), £, (r) and £y (r) in non-
Jimensionai lorm. Redefining the constants th‘e following form is

obtained.
aa LU Tiv ol -133 9




2
(Aa+Br+CaT- +Dalog§)cosnecos-§z (20)

u=
é
r a r
v={[-Ana +Bnrlogg + Cpy 85 Liauflog z+1)+
Fr] sin n8 cos 2—);-2 (21)
r? 6 r r
w:[A)\r+Ba)\(2az -.{; log;)+Ckalog-a-+DXr
r A ;
(log S - 1)+ La] cos n® sin = z (22)

The Facings
Free body diagrams of a facing element showing the forces and
moments are shown in figures 4 and 5. Itis necessary, in this type
of problem, to include components of forces which result from elastic
» deformatioh of the element. The geoxﬁetry of the situation is such that
it is difficult to write equations of equilibrium. It is safest to use
results obtained from a mathematical tﬁeory of thin shells. Such

theory, as developed by Osgood and Joseph (ref. 2), when applied to

2 _cylindrical shells yieids, for the outer facing at r = a, the following

equations

it o
S
SRISE ST
R

.
A
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As is customary in such problems the stretching of the middie, surface
roET )

o

is inken into account by substituting in equations {23) to (28) ) e F e

N, (1 +eg) for N,

Ne (l + € Z) for Ne,
and multiplying the surface forces by
(l+ee)(l+ez).

In these expressions

G e T
ee—aae-fa an
L
EZ—BZ'

N_ and Ng of equations (23) to (28) are replaced by (-—P———- +
27 (a + b)

ANZ) and [gqa (1 - k) + ANg], and in the corresponding cuations for the

: P
inner facing Nz' and Ny are replaced by (m + ANZ') and
(qak + ANy'). This is necessary because the forces in the buckled shell
are the prebuckling forces plus the forces due to buckling. The AN,_,

AN

z'» ANg, and ANg' are the forces due to buckling which are later to

be eupressed in terms of displacements.

All forces, mome;'xts, and twists other than the prebuckling forces
are considered to be small quantities resulting from the buckling. The
displacements u, v and w, and their derivatives, are also small quantities

resulting from the buckling. In equations (24) to (28) products of any two

WADD TR 50-133 Ay




such small quantities are neglected. Equation (26) is solved for Qg
and equation (27) for Q,. The results are substituted into equations

(23), (24) and (25). This gives:

4ADD TR 60=133 14
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(These equations are for the outer facing. A similar set is obtained for
the inner facing.) Into equations (29), (30), and (31) expressions for
the forces, moments and twists in terms of the.displacements (ref. 3)

are substituted. The surface forces

a . a, .
R =qa - (qgk +A0,) y - 5 (for outer facing) where q < k is the
prebuckling stress and A ¢, the stress due to buckling,

6

- (Tre)r —a (for outer facing), and

Z (for outer facing),

rz°r = a

1]
|
—
|
S

are also expressed in terms of u, v and w and substituted into the three
equations.

This leads to three equations in terms of u, v, and w for the outér facing
and three similar equations for the inner facing. The eguations for the

outer facing are:

#ADD TR 60-133 16




Nm e Omd+~VAHmUM|VﬂleN¢v EIC e

(S + _+
(ve) A n AR T ~Nm- 1) 2
zQ R e e e
| ...c.|+.No |CA..C~AVM.-NINMN& m+.IN|Nm.WMwsW 207 -
T itneT il Te "z nee”?
rd Z 2 ¥
uv% wnm Numom % o 2@
— = — T cmrem—e— .1! ——— s —" = - -
ﬁvmd 9¢m ¢Md >mm .mda 2) + mod+ﬁ 20w e 0
x  aQ ok 1q 1% 4N o€ oz ©
(c€) (=7 —* ] ouulml.%-llem-m v -
a A0 W g P BNm :mm :%
-8R zR ZQ [4 aQ o0 zR r4
pe-__+% _e(-7n+l e + 2 _(o+1) + ® =0
(4 nQ >~m >m~ -7 >% BNm T+ 1
z@ 19 -
(2€) T.+l: ) ey 2
<
z@ Rz zQ o€z 7 N% Z Nnm

— - Tde- —
(ze+ Mmd:x ite- ey >Nm1+~m+3%i-~+3~m~m

WaDD TR 60-133




To achieve proper inter,agtidiig'.i"bgltxw_een the core and the facings, the

displacements of the midaléé‘gs.urfé,c:és of ;:h#e”'facings are set equal to the
displacements of the core at r. =z=aandr =b.

Thus displacements u, v and w in equations (32), (33), and (34)
are replaced by equations (20), (21), and (22) with r made equal to a.
In this mann’er three equations in six arbitrary constants (A, B, C, D,
L, and F') are written for the outer facing. In a like fashion three
equations are written for the inner facing. The coefficients of the six
arbitrary constants are shown in the form of a determinant on the

following page.
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It is possible to find simultaneous values of %, and 4)2 for which

these six equations will be satisfied for any values of the arbitrary
constants. Mathematically this means that for such a combination of
loads the deflections are indeterminate. The shell becomes elastically

unstable and the loads that bring about this condition are called

critical loads.

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues
is not feasible. A numerical solution, from which curves may be drawn,
is possible if a digital computer is used. A CPC Model 2 was available
to make computations. Even with the CPC the task seemed over-
whclming. If, however, Ec is made infinite, some of_ thc terms of
determinant vanish. The assumption that E_ is infinite is common in
work with sandwich construction and has been found to give satisfactory

results in most cases. The sixth order determinant with Ec made

infinite is represented below:
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1 1 1 1 1
|
A, B, c, 0 F, L, |
A 0 |
3 C, 0 F, L, 1
A4 B4 C4 0 F4 L4
A B C = F L
5 5 5 v 5 5
A B C + 2 F L
6 6 6 ER 6 6

This determinant is then reduced to a fourth order determinant shown

below:

AC,-C A B C L,-L C, F L -LF,
A,C, -G, A, B, C, Ly - L, C, F,L;-L,F,
A4C$-C4A3 B, CyL;-L,Cy F,L,-L,F,
(As2+Ag C3- By 2+ (Cs2+CgLy- (Fs2+Fg Ly -
(c5§+ Cy) Ay By '(L5.2.+ L¢) Cy (Lg :;+ Lg) Fy

The determinant is then programmed for the CPC. A trial and error
solution is made by substituting values of ¢1 or ¢2 until a value is
‘found that will make the determinant zero. This was done by finding

values on each side of zero and interpolating to find the eigenvalue.
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Discussion of Results

Since the problem is solved by numerical methods the results
are presented by the curves shown in figures 6, 7, 8 and 9. The
values of 2_ = 0,97 and -?- = 1,000 were used for all of the curves.

Figure 6 is a family of curves in which -¢ 5 is plotted against

£ for different values of n. In these curves the values E_ = 10, 000
ma Gre

and

= 1,000 were used. Such a set of curves is used in the ]
rz — i

following manner.

Knowingé of the cylinder one picks a value for mand n. A

value of -¢2 is determined by reading ab‘ove 1 5 on the corresponding
n curve. This procedure is repeated until the lowest possible value of
-d, is found. The axial load under which the cylinder will buckle can
then be determined.
The curves of figure 7 differ from those of figure 6 as a result of -
making a and a' zero. This is equivalent to neglecting the bending

stiffnesses of the facings. A comparison of the curves of figure 7 with

those of figure 6 shows that for values of A greater than 0. 15 there is
ma

little difference. It can be concluded that only for very short cylinders

need the bending stiffnesses of the facings be considered. For 2 P
i
less than 0. 15 the curves of figure 7 approach ia}‘
9
G
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=

2 b
Go.ga(l-u9)Q-2)°
b b
Etlog — (1 + 3)

-¢2=

This value is obtained by making n and £ zero and expanding the
determinant. Solving for N, and replacing log % by the first term

of its series expansion shows that

N =.{-b) ¢
z
142 7 ;
a
The curves of figure 8 are the result of increasing G,.,and G4
tenfold. The vaiue of -4, corresponding to
N .. fa-b)
z 1 +b rz
a
appears as a flattening of the curve in the region of L _ =-0.0l. For
ma
L . :
smaller values of e the curve rises due to the stiffness of the
facings. For values of 1. greater than 0. 1 the curves show a
ma

considerably lower buckling load.
From a comparison of figures 6 and 8 it appears that as G, is
decreased the buckling load for all cylinders, except those long enough

to fail as an Euler column, will approach

N, = - (@ - :) Grz g
1+
a }
iy
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This limit has been recognized (ref. 4) as the critical load for shells
with a low value of G,,. It should be noted that this load depends only

upon the thickness and the modulus of rigidity of the core.

2
ma

for different

Figure 9 shows curves of -¢ | plotted against

values of n1¢z for these curves was taken to be

|
¢, = 5
2(1+ ;)
This represents the case for an end load equal to quaz. The situation

is like that of a cylinder, with ends, under uniform pressure. The ends

v

of course stiffen the cylinder, but, if the cylinder is not too short,

2
ma

is

reasonable results can be expected. Since ¢, decreases as

increased it must be concluded that the cylinder will buckle with m = 1.
The critical pressure can be determined by reading 4:1 from the lowest

n curve,

Conclusions

Although only a few curves were drawn it is apparent that this
analysis is helpful in understanding the effect producad by a variation

of the parameters that enter the problem. Further study is required

before it will be known whether the actual buckling load may be predicted.

It is felt that the method by which this problem is scived can be
applied with advantage to many problems of sandwich construction.

Unfortunately in most cases a numerical solution wili be required.
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Figure 2. --Differential elements of core and facings before buckling.
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Figure 3. --Differential element of core.
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BUCKLING OF CYLINDERS OF SANDWICH CONSTRUCTION

IN AXIAL COMPRESS ION—l-

By p be

H. W. MARCH, Mathematician
) and
EDWARD W. KUENZI, Engineer

2
Forest Products Laboratory, — Forest Service
U. S. Department of Agriculture

Summary

This report presents a theoretical analysis for the behavior of long, circu-
lar, cylindrical shells of sandwich construction under axial compressive
loads. The analysis is designed to evaluate the effects of the relatively low
shearing moduli of sandwich cores on buckling stresses. Families of curves
are presented for use in designing sheclls of sandwich construction having iso-
tropic facings and orthotropic or isotropic cores.

The results of the theoretical analysis were compared with those obtained
from tests on a series of curved panels. It was found that the theory applied
reasonably well to curved plates of sizes sufficient to include at least one
ideal buckle. Application of the theory thus is not limited to long, complete
cylinders.

°1—This progress report is one of a series prepared and distributed by the
Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics
Order No. NAer 01237 and 01202, and U. S. Air Force No. USAF 18
(600) -70. Results here reported are preliminary and may be revised
as additional data become available. Original report published June 1952.

2 . . .
—Maintained at Madison, Wis., in cooperation with the University of Wis-
consin.
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Introduction

In the design of aircraft and guided missiles, it was found necessary to de-
vise a method of determining the stress at which curved sandwich panels
subjected to axial compression become elastically unstable. It is known
that, for thin, homogeneous materials, a curved form greatly increases the
critical load as compared to a flat sheet of the same approximate size. A
similar increase may be expected for curved sandwich panels. Although
this .report applies primarily to sandwich construction for aircraft, the re-
sults are general and apply to any structures of the type considered.

This report presents a theoretical analysis of the behavior of long, circular,
cylindrical shells of sandwich construction under axial compressive loads
and an experimental confirmation of this analysis by tests on curved panels
of sufficient size to include at least one ideal buckle. Thus, these panels
are assumed to simulate the action of complete cylinders.

The buckling of a homogeneous, isotropic, thin-walled cylinder was treated
by von Karman and Tsien (l_fi)l and by Tsien (13, 14) in related papers.

These authors assumed, in addition to the wave form of the classical theory,
inward buckles of diamond shape to represent the characteristic buckles that
are actually observed. They used an energy method to determine the criti-
cal compressive stress. This method, in which only diamond-shaped buckles
are used, was applied by March (7) to cylinders made of plywood, an ortho-
tropic material. Particular attention was paid to the effect of initial irregu-
larities that contribute to the observed scatter of experimentally determined
critical stresses of both isotropic and orthotropic cylinders.

In this report, the effect of shear deformation in the core of a sandwich
cylinder is taken into account by employing an approximate ''tilting"" method.
This method was used by Williams, Leggett, and Hopkins in their analysis

of flat sandwich panels {(18) and by Leggett and Hopkins in their analysis of
flat sandwich panels and cylinders (4). It amounts essentially to assuming
that the transverse components of shear stress are constant across the thick-
ness of the core. The form of buckles assumed by Leggett and Hopkins (4)

in the cylinder is different from that assumed in this report. -

The core and facings are taken to be orthotropic, with two of their natural
axes parallel, respectively, to the axial and circumferential directions of !}
the cylinder. The facings, which may be equal or unequal in thickness, are

¥

3 '
—Underlined numbers in parentheses refer to Literature Cited at end of f{%
report. ]
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assumed to be thin, but their flexural rigidities are not neglected, as these
may be of importance in certain cases. All stress components in the core
are neglected except the transverse shear componznts, It was pointed out

by Reissner (12) that the stress component in ihe core normal to the facings
may be of im;rtance in the analysis of sandwich shells, Preliminary calcu-
lations indicate that the effect of this component is small in the problem under
consideration.

As was done in work described by Forest Products Laboratory Report No.
1322-A (7), initial irregularities are assumed to be present and to grow un-
der incre_asing compressive load until buckling occurs. For a discussion of
this important matter, the reader is referred to that réport and, in particu-
lar, to the observations of the growth of artificially produced initial irregu-
larities. Also as described in report No. 1322-A, a large deflection theory
is used to take into account the nonlinear support associated with the curva-
ture of the shell, as discussed by von Karman, Dunn, and Tsien (17). The
derivations of the differential equation for a stress function and of the ex-
pression for the energy of deformation are extensions of the analysis used
by von Karman and Tsien (16) for the homogeneous, isotropic cylinder to the
sandwich cylinder composed of orthotropic materials. Suitable modification
is made for the effect of shear deformation in the core of the sandwich.

Theoretical Analysis

Choice of Axes Notation

The choice of axes is shown in figure 1, the coordinate y being measured

along the circumference. The notations for stress and strain are those of

Love's treatise (5). The components of displacement in the axial, circum- o
ferential, and radial directions, respectively, are u, v, and w, the latter

being positive inward. Since initial irregularities “of the cylindrical surface

are assumed, the symbol w, is used to denote the initial distance, measured

radially, of a point of the middle surface from a true cylindrical surface of

radius r, and the symbol w to denote the corresponding distance at any stage

of the deformation. The thickness of the core is denoted by c and that of each

facing by f; and {,, respectively. -

s

Extensional Strains and Stresses

i
Expressions can now be written for the extensional strains uniform across ;‘r}
the thickness of the cylindrical shell and for the corresponding mean mem- b
brane stresses. On these will be superposed a system of flexural strains, "", {
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and the energy of deformation associated with each system of strains will
be found.

The extensional strains are expressed by the equations:
2 2
I L0 l(?ﬁ) _ 1 fawg
XX~ 9x 2\ 3x 2 | 9x
2 —
., =L L (L) -L(E)Z_LE 1)
Yy 9y 2\ oy .2 \ 9y r r )

e 20u, dv dwaw W B¥
Xy 3y 3x 9x 8y 9x 9y

In each facing, the corresponding stress components are:

E
x
X, = S (egx t+ Cyx eyy)
EY
YY = -)\_ (eyy + O'XY exx) (Z)
Xy = Fxy ®xy

where E, and Ey are Young's moduli, is the modulus of rigidity for

p'xy
shearing strains referred to the x and y directions, oy and o « are Poisson's

ratios, and A =1 - Ty Tox: All of these quantities are elastic properties of
the facings. Because the stress components X, Yy' and ﬁ are neglected
in the core, the mean membrane stress comp-;r_x-ent—sfor the cylinder are:

E

= a
Xy, = oS (e, y 't e eyy)
— Ey .
Yy =5 (eyy + Ty €xx) ()
Xy = B Cxy 3
where:

a h ) b ~ h ’ “m - h
and:
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h =c + fl + fz
From the relation:

Ex o-yx = EY ny

that holds for orthotropic materials and equations (4), it follows that:

Ea o-yx = Eb ny

By using this relation, it is found from equation (3) that:

o 2 A
€ ‘E Xx - E, Yy
1  oxy — ) R —_
Yy _ Xy
=Y -—= X = = -— X
Yy Eb Yy ]EIa x Eb Yy E x
l —
e = X
Xy p_m y

°F — 3%F

i:——- ?:—-— Pl S o

X ayz' Y a2 ’ y axdy

2 2 2
9 eyx + 3 eyy ) 3 exy _ ({:)‘Zw)2 _ azw 82
8y2 ax? x99y x93y 8x2 Byz
aw_2 82w_2%w_ 1a3%w 1 alw
- o) - o o . o
oxdy 8x2 ayz T axz r ax2
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(9)
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(11)
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By introducing (10) in (8) and substituting the results in (11), the following
differential equation for F is obtained:

> :
2*F aF a'F  #%w o?w 02w 92w _ 2
+B +C (—) - - ( )
axt ay?d 9x23y2  axdy ax% ay2 axdy
9°w_8%w_ 1 9%w 1 a%w (12)
(o] (o] o)
t—3 e 2 -
ax dy r 9x r 9x ‘
where:
20 l
A=2 p=2L1 c=_1 X ‘ (13)
Ep E, Hm Ea

It is readily established that the following expression represents the energy
of extensional deformation of a rectangular portion of the shell with edges of

length a and b:

'

h a b — 2 -2 204, — — 1 =2
- BX. + AY. - YX Y +— X | dydx (14)
2 / -/ x y E, X 'y M y

Form of Buckles and Initial Irregularities

The stress components i-x’ Y , and X_ in (14) are derived from a stress
function F, satisfying the différential equation (12), which involves deriva-
tives of VTO and w representing the initial and deformed middle surface of the
shell. For w, the inward radial deflection, the following form will be chosen:

%v- =g+ 8 cos® (By - ax) cos® (By + ax) (15)
where

= & = U
B—b’ a= - (16)

The nodal lines of the trigonometric portion of equation (15) are shown in
figure 2. The displacement w is positive inward, In equation (16), a and b
represent the length and width, respectively, of a diamond. The initial ir-
regularities will be assumed to have the form (15). This is done for the pur-

pose of simplifying the calculations. Then wg is chosen in the {cliowing form:

pmeny
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w 2 2

=8y * 5, cos (By - ox) cos“ (By + ox) (17)
An initial flat spot on the surface of the cylinder could be described roughly
by equation (17). An initial irregularity was introduced here, as it was in
report No, 1322-A (7), to obtain a qualitative description of its influence in
causing an isolated buckle to develop in its vicinity. If the initial depth of
an irregularity of the form (17) is very small, the dimensions of the area
that it occupies are not very important., For this reason in order’to simplify
the calculations, the dimensions a and b in equation (17) are taken to be the
same as those in equation (15). From the qualitative description that is ob-
tained of the development of an isolated buckle, conclusions were drawn in
report No. 1322-A that led to the derivation of the final formulas from the
analysis for the case wg = 0.

The details of substituting (15) and (17) in (12),_of obtaining the stress func-
tion F and the stress components X, Y., and X, of substituting these stress
components in equation (14), and of related operations are identical with the
corresponding operations performed in report No. 1322-A (7). Reference

is therefore made to equations (21) and (31) of that report. The following
differences in notation should be noted: .

Notation of Report No. 1322-A Notation of Present Report

H Ea Eb
FL 1L Tyx _Oxy
H Eb Ea
f, f 6, 6
o o]
x, Y, x' X Y X
? s y t] , y

From equation (14), the energy of extensional deformation W) is then found

to be: 1 1 2
2 2 ( T T22 )
W, =h§b artatpt (82 - 502) 1 _+ r°ge (5 160)
128B8 128Aa
+ 1 + 1 5
16 (Ac* + 81Bg% + 9Co?B%) 16(81Ac0* + BRY + 9Cc2B9)
4 ( _—1_)" -
2.2 8o
6+ 6
+ AL o) + 4Bp® + 4Ac12 +—=Lc, p (18)
4 4 22 E
64(Aa’ + BB* + Ca“B°)
#aDD TR 60-133 L3
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This equation is equation (31) of report No. 1322-A (7) with the proper values
inserted for the former abbreviations M and S. The quantities p and <

represent the mean compressive stress and the mean circumferential stress,
respectively.

If n is the number of buckles in a circumference, the width b of an individual
buckle and n are related by the equation:

b = 27 (19)
n
Then
T n
g o 20
b 2r ( )

(21)

In the expression obtained from (18) by using equations (20) and (21), let:

n=n® g=55, £, =51 (22)
K, = Az + 81B + 9Ccz° (23)
K, = 81az* + B + 9cz? (24)
K; = Azt 4+ B + 22 (25)
z4 1 z4 z4 17z4 (26) N

= + + +
€1 4096B 4096 A SIZKI SIZKZ 2048K3

e =.._l__+_.?i_ (27)
2 "51Z2A 32K,

e :-l.—.-}--z_‘l__ (28)
3 7 256A 32K,

Equation (18) then becomes:

i

e e
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W, = hab [elnz €2 -£,0% - en® -6 D6 - 6

2 2 Ac,2 o
21 h Bp 1 Xy
+ ey (E-E) — 4 + + c,p {29)
g ° ré 2 2 Eg 1

Flexu: .1 Energy of the Shell

To determine flexural energy of the shell, the following simplified expres-
sions for the changes in curvature and unit twist are used:

2 (w - w.) 9% (w - w.) a2 (w - w)

5 (30)

9x Byz 9x 9y

A discussion of the approximations involved will be found in a paper by

Donnell (1). These expressions were used by von Karman and Tsien (16) i
and by March (7). The expressions (30) are exactly those used in calculat-

ing the flexural_energy of a flat sandwich plate. The approximate flexural

energy of such a plate was found by March (9) and by Ericksen and March (2)

by using the ''tilting'' method of Williams, Leggett, and Hopkins (4, 18).

In this method it is assumed that any line in the core that is initially straight
and normal to the undeformed plate will remain straight after the deforma-
tion, but will deviate in the x and y directions from the normal to the de-
formed plate by amounts that are expressed by the parameters k and k'.
These parameters are determined by an energy method. These | "t11t1ng"
factors k and k' are introduced as well as two quantities q and q that deter-
mine the p051t10ns of the surfaces in which, respectively, the components u
and v of the displacement in the core vanish. The letters k' and q' replace
h and r, respectively, of report No. 1583-B, because h and r have already
been used in the present report. The following derivation of the expression
for the flexural energy follows closely that used for the flat sandwich panel
in Forest Products Laboratory Repc;rt No. 1583-B (2), to which reference

is made for further details. For the sake of simplicity in writing, the initial
irregularity w, will be for the present taken equal to zero. It will then be

introduced in the final steps by replacing w by w - w.

The components of displacement in the core (fig. 3) are taken to be:
. ow

Ye - (€ -9 3%

ve=- k' (;-q')%j— _ 6

W, =W (x, y)
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Thus ¢ = q denotes the surface in which the components of displacement in
the x direction vanish and k is the parameter describing the inclination in
the x direction of the respective plane sections to the normal to the deformed
surface. Similarly q' and k' are related to the displacements in the y direc-

tion. These four quantities are to be determined in such a way that the flexur-

al energy associated with a prescribed deflection w is a minimum.

To arrive at expressions for the components of displacement in the facings,
it is noted that the continuity of the displacement at the facing-to-core bonds
requires that the components (31), evaluated at { =0 and ¢ = c, shall be
those at the inner surfaces of the facings fl and fz, respectively. Within
cach facing, the components of displacement ar€ dssumed to be such that

a straight line initially nermal to the undeformed surface of the plate will
be straight and normal to the deformed surface. Accordingly, the compon-
ents of displacement in the facings fl and fZ’ respectively, are:

- ow
u; = (kq - ¢) F™
9

vy = (k'q' - 1) —5‘—;- (32)

wp = w (x, y)

uz = —[:k (C - q) + ; - C ':%
9
v2 == [k' (c -g")+t-c 'a_sl‘ (33)

w, = w (x, y)

The components of strain in the core ¢ and facings f| and f; will be denoted
by the superscripts ¢, 1, and 2, respectively. - -

From (31), the transverse shear strains in the core are:

(c) _ ow (c) ow

egx—(l'k)ax oy =(1-k')—a—; (34)

The effect of the remaining strains in the core is assumed to be negligible.

In finding the strain energy of the facings in the bending of the plate (or shell),
it is convenient to consider the components of strain in the facings to result
from the superposition of two states of strain. The first of these consists of
the membrane strains in the facings associated with flexure, that is the
strain in their middle surfaces. From (32) and (33), these strains are found
to be:
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(1) f) a?‘w

e . = (kq + 57)—"

XX (kq 2 )axz

2

&) o'q 4oy 2w

vy 2 ayz

(1) _ 92w

%y (kq +kq + 1)) xdy (35)
and

(2) f210°w

xx _k(C—Q)+Zax2

[ 2

e(z) = - |k (C -q ) + _2 a_ﬁ

Yy 2 ayZ

(2) _ ! ' BZW ' -
ey =" k(c-9q)+k (c-q)+f2-J o (36)

The second state of strain in the facings is that associated with their bending

about their own middle surfaces. This state, in either facing, has the com-

ponents:

(37)

I . . .
where { is measured from the middle surface of the facing under considera-
tion.

The strain energy in the core or facings is given by the expression (é, §_)

1 ‘ 2 2
U=-== E + +
Z)\M x e xx+E_e“yy+2E o e eyy

2 2 2
+ )‘”xy ey t )‘pyt; eyt + )\pgx e §>;] d¢ dy dx (38)

where for the material under consideration (core or facing), X =1 - T T o
Ey and Ey are Young's moduli; “xy’ “yﬁ.’ and He 5 are moduli of rigidity;
are Poisson's ratios. Primed letters will denote the elastic

and o and ¢

Xy yX
aall IR ol-173 7

o oAt

¢

BT

Pt

s




constants of the core material and unprimed letters will denote those of the
facing material. The integration indicated in formula (38) is to be carried
out over the area OABC of figure 2 and the thickness of the core or facings.

The energy in the core is obtained by substituting expressions (34) into (38),
the remaining strains in the latter forrula being neglected as previously
stated. After integrating with respect to { over the thickness of the core,
the expression for the energy, denoted by U, is

a b 2 |
' YA ' v 2 7 )
UC=%ff Wex (1K) (%) tpgp (1-K) (g—;y)z]dydx (39)
o (o]

The strain energy in the facings associated with the membrane strains is the
sum of the energies obtained from (35) and (36). With the substitution of
these expressions into (38) one obtains, after integration with respect to ¢,
the following expression which is denoted by U,,.

2

a b
f 2 2
U, == E.<f, {k +{—1}2+f e (c - q) + <= b
M~ 2\ o T W Tl 2 3 5
o . . ax

2

Lt , CEAN2Y a2 2
+Ey{fl (x q +—21—) +f2<k (c-q)+_§.)}<b.)

f f f f 2 2
1 v 1 2 t 1 2 9 9 w
' ZEx"yx{fl (ka + )k + ) + 1, <k (c-a)+ 7>(k (e-a)+ 7)}—2—7

x< 9y
2 .,
¥ I ¥ 2 5
4 .«px},{'] {i{qikr_|1 +!'1J21{z (Irt {c -ag)+k [c- q}+fz)}(g—1‘;?) dy dx (40)
The strain energy in the facings associated with the flexural strain, U_, is

obtained by substituting expressions (37) into (38) and integrating over the
volume of each facing. After integrating with respect to ¢,

f34£3y a b 2 2
SR o N £ [0%w 3w 22w 8
F\Tmm ) S S 1BE) () e
g s 9% ay ax“~ 9y
2 \2
9" w
+ )\}.ny (m;) ]dy dx (41)
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Now in all of the expressions (39), (40), and (41) replace w by w - w_. The
flexural energy W, of the region OABC of the shell is the sum of Uy, Up,
and U..

For equilibrium, the ''tilting' factors k and k' and_the ordinates q and q of
the neutral surfaces are to be chosen so that the total energy is a minimum.
But these factors appear only in the flexural energy W,. Hence, they must
be chosen to satisfy the conditions -— :

a‘VZ =0 _a_\_VZ__ =0 __g =0 ?& =
a(kq) " ak'q") T o9k Toak!

By proceeding exactly as in report No. 1583-B (E), the quadratic form (Al4)
‘of that report with k' and q' replacing h and r, respectively, is obtained for
W,. The coefficients B; in equation (Al4) are defined by equations (Al5) in

terms of the quantities_A which are defined by:

2

W_WO) + N aZ(W_WO)de (42
2 Hxy x99y y ox )

a b

2 2
lff L (e - wg) 9% (w - wo)
2 "% x
X Xy axz ayZ
o o ,

2

2
9" (w - wo)
+ )\ny W dy dx (43)

32 (w - wo)>2 a2 (w - wg) 2
3 [ y2, * Mgy 9x9y dy dx (44)
- , 3 (w - wy) 2
4 / [ B ¢ x <-—ax———— dy dx (45)

2

Ay

>
1

2>
u

>
"

- —

(w - Wo) ‘-
Ag = dy dx (46)
.9y
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On factoring out the common factor, it is found that:
2 [ 2 [ R ¥ y v, 2
2W, = rl (6 - 65) ab[ B, (kq)“+ 2B, (kq) (kq)+ B; (kq)

+ 2B, (kq) k +2B;' (kq) k' + 2B’ (k'q') k + 2B, (k'q') k'

v o2 ' [} [ ' ! (R
+B7 k +ZB8 kk +B9 k +2B10 (kq)+ZB“ (k'q)

] ' v t
+2B), k+2B;3 k + B, +B15] (47)

where the quantities Bi, are defined in terms of the quantities Ai' by equa-~

tions (Al5) of reportT\I—o. 1583-B, each Ai' replacing the corre:;)onding A

in those equations. The quantity in brackets in equation (47) correspond—s—to
2U' in report No. 1583-B. (Note that equation (A22) of that report should
read P = 2U").

It is easy to see that the steps of imposing the conditions

awW, W, EXY aW,
=0, = 0, 2-90, ——2=0
a(kq) a(k'q") ak 3k’

and of determining kq, k'q', k, and k' and substituting their values in the ex-
pression (47} for ZW2 are identical with those taken in report No. 1583-B (2)

and that 2W, is equal to the right-hand member of equation (A25) of that re-

port multiplied by ré (6 - 60)2‘ ab. It is concluded from equations (A26), (A27),
and (A28) of report No. 1583-B that:

2

' ' [ ' ' 2 ¢’ ¢’
2 I[A1 +28; +A3 (a4 - A )(rr+;—v-)]
W, =1/2r° (6 - 6,) ab 4

5

' ) 2 ia !V ' 12
Ad Al'e 9%(a'A - A9
1_+_1 3 7, 1°3 2

1 ] 1 [ 1
Ay Ag G G5

L (A + 24
ol 8y

o Ay (48)

where I_, If, and b are defined by:

o

¢
[
(@)
v
"
<

¢

i

[}
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£,f5 £+ £\ 2
Iz lc + ——> (49)
2

£, + 1 2
3 3
I _fl +f2
f - 12 Sty
cf, f
1 2
¢ =f__+T (51)
1 2
and Ai' by:
! 1 4 2,2
Al =+ (3 Eyo + )\uxya B7) (52)
v 1 2982
A, =3 (Exoyx + Migy) @B (53)
vl 4 Bt
A = — +
3 =y G EB + e ) (54)
342 1 38% '
a1 Ag 2 —— Y (55)
a7 8 ’ 5 - 8
Note that B
4
' ) Y B
+ A =— K
Al * ZAZ 3 A 4
where

3 2
L =3 *
Ky vEXz + 3Eq + Z(Exo’yx + Z)\p.xy) z

T
and introduce the following abbreviations in the expressions for Ay, AZ"

t
and A3 g
4 4 4
LB v _ B v B
Ap XA Ay = X 4 Ay =T (56)
where:
avD R ou~153 Sdt

I
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e
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_ 4 2
d1 =3E_z + M.nyz

2
d, = (Ey Tyx + ).pxy)z (57)
d, = 3E, + A\, z°
3° y Hxy Z
Also,
2 2 2
3 3 z
A o Bpx OB By (58)
4 8 8
Substituting these expressions for A'i equation {48) becomes
8824’ 2 1 1
W, = 2_1)\ r2 (5 - 5,)° abp* 3N Bex2™ Hyr
Ll + 832d1¢ + 832d3¢ + 64B4¢2(d1d3 " dZZ) gl
I, 2% 3y 2y p' 22
Mg ? Myg IRk g
+ LK (59)

The following transformations are made by using equations (20) and (22):

2 2
88 ¢ = Zn ¢ =] 21’]¢ = ls i
2 - x

3\p gxl:'h Ex

t 1
I tx 3Np c’xr

where ;

2E_ ¢ (60)

Sy = 3)\p'gxrh

and

ﬁ@zmz

EINTH
”Y&

where

x (61)

A s
E, y

R

<
w

>
b=

2]

o
-

<
A
TR j.?f_‘,;“
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The coefficient of the expression in brackets in equation (59) is also trans-
formed by using equations (20) and (22). The expression for W, becomes:

S —
3 2y %

WZ 2 2
32) -d.2
r - qdlsx X nd3Sy . n (dld3 d2 ) sty
E_z%¢ E E_2 22
X X X
3
+ (/m) K, (62)
Or
2 2 h3
where S
(1/h3) [x +(dydy - 4,8 2 (5 +S )]
1 4 2 'E, V2 y 3
T - - + (1/8°) K, (64)
ndyS,  ndyS, ni(dydy - 4,%) S8
1+ >+ +
E z E E_2 z2
X X b. 4

Virtual Work of the Compressive Load

Exactly as in equation (35) of report No. 1322A (7), the virtual work, Wj,
of the compressive load, calculated for the region CABC, figure 2, is
found in the notation of the present report to be:

- 2, Ixy 3 2 2.2 (2
W3 = abh [Bp + E, pcy typ v @ (6 -8 %) p

Q

X 2 2 h
= abh [sz + EY pcy +egn (€ - & )p;] (65)
a

where
3 2
eg = a‘z (66)

It will be convenient to consider the mean energy per unit volume of the
cylindrical shell. Hence:

W = (W, + W, - W3)/abh : (67)
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In accordance with equations (29), (63), and (65):

2
W Elnz(ez 8, e e D (€ -t tey (& -8 )
2 2 A 2
+egn’ (& - go)"‘] B egmie®-g R BE O (68)

The Buckling Stress

For equilibrium, the derivatives of W with respect to the various parameters
g <. €, m, and z vanish. From the condition

AW
aCl

= 0, it follows that ¢| =0 (69)

Now ¢, denotes the mean circumferential stress. The parameter g appears
only in the expression for ¢, as given by equation (30) of report No. 1322-A

(1) The fact that ¢ vanishes implies that g, which describes a uniform

radial expansion of the cylinder, takes on such a value that the mean circum-
ferential stress vanishes. Further consideration of the parameter g is not
necessary.

From the condition % = 0, it follows that:

e> 3t +£) e e mn -
p=[2eln(§+§o)-—_——_2 o  23,54ME-En (70)
2§ n & e, T
where p, as previously noted, is the mean compressive stress.
Let:
e e e e
3 4
Y Tgh. Y, e v, E. Ve (71)
1 E; 2 E; 3 E; 4 E,
Then (70) can be written: .
v2 B8 +8,) v3 wvyn](E-§)h
p=Ey Zvln(€+§0)-_____°+_3+_4_ S D S (72)
2¢ % E | e T

The mean compressive strain e¢ is expressed by:
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As in report No. 1322-A (7), it is found that:

3n 2 ,.2 2y h )
r = T - -— 73
e =Bp+idelt-g Yt (73)

The further equilibrium conditions

are to be satisfied. The first of these is asscciated with the number of
buckles in a circumference or with the width of an individual buckle, and the
second with the ratio b/a of the width of a buckle to its length. It is not
analytically feasible to use these conditions in connection with equation (68).

The following method of arriving at the critical value of p is based upon an
extended discussion in report No. 1322-A (7). Briefly, it was considered
that an isolated initial irregularity would increase in size and depth with in-
creasing mean compressive stress p. It was therefore considered that the
load-mean compressive strain curve, with p as a furniction of e, for a given
small initial depth of irregularity would be the envelope of the_family of
curves for p as a function of ¢, drawn for a series of values of nby combin-
ing equations (71) and (72). On taking into consideration the possibility of
jumps from one energy level to another, it was concluded that the critical
values of p would scatter considerably, as they actually do in test, depend-
ing upon the depth of the initial irregularity and the characteristics of the
loading process. It was noted that the value of p at the relative minimum
point on the envelope of the curves for p as a function of ¢, drawn for £, =0,
was intermediate among the possible critical values of p. This minimum
was accordingly chosen as the ''theoretical'’ critical stress, because it could
be conveniently determined by finding a relative minimum of p as a function
of £ and n. It is necessary to employ numerical methods to determine the
relative minimum value of P

In report No. 1322-A (7), the aspect ratio z of the buckles was assumed on

the basis of experimen?al observations before the minimization of p was

undertaken. Here, because of the influence of shear deformation in the core, '

a suitable value to assiygn to z can not be estimated. :
!

Equation (71), with £, =0, can be written in the form:

2 (74)

4nDD TR £L-152




where
2
32 2 Y3
=—= [ 4 - 3y E +—
K=772 [ v, m6 Vbt 2y, n] (75)

The mean compressive stress, pg, in the facings is related to the mean com-
pressive stress in the shell by the equation

b < B (f1h+ £2) (76)

On recalling the definition of E,, it is seen that equation (74) can be written

h
ps = KE, ¢ (77)
For a relative minimum of Py the condition
8K . 0 must be satisfied.
og
From this condition, it follows that:
3y
2
= 78
s (78)
The substitution of this value of § in (75) yields
2
64 Y3 v
=z 5 SZyn T Y4 n) | (79)

In equation (79), E is a function of n and z, which occur in the definitions of
s Yl’ Yar V3o and Yy By using the definitions of the quantities Ea, Eb'
and p,, that appear through the symbols A, B, and C in the equations (28),

(27), and (28), the following expressions are obtained for Yy Yy and Y3
(see equations (71), (26), (27), and (28): — -

L4 E, 4
Y T 4096 * 2096 . " E 922E
¥ o512 (242X + 81 + 22X | 180 2%)
E j Y
y xy
+ z4 + i7z4
E E E ZE
512 (812 ==+ 1+ 92% = - 180,,2%) 2048 (2% =+ 1+ E—Xpp 2%)
y y y Fxy y
‘ (80)
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E 4 ’
Y, = Y __ 4 c (81)

E z°E
512E, 32 (z3=X+1+ X _ 20 2z2)
= Ey Pxy 28y
4
By . z (82)
Y3 B E ZZE 2
256K, 32(z* X+1+__X_20 29
E (T Xy
y y

In obtaining the expression for y, from equations (63) and (70), it is con-
venient to introduce the notatiom—

E, 2

4 y 2
T=32 +3 E—x+ .E_x (Exo'yx + Z)"*Xy) z (83) i
so that
Ky=E, T (84)
and
I 2y 0%
then I+K—(d1d3 -d, )E ( > +Sy)
T 4 X z
A P P P k] (86)
saan’ (1) +6p) | S ndgSy (d;d5 - 4,%)s, S,
+ + +
2 2,2
| E:x Z Ex Ex % A

Buckling Stress of Sandwich Constructions with Isotropic
Facings and Orthotropic or Isotropic Core

For isotropic facings, considerable simplifications can be made. In this
case

E, = Ey = (Excryx + Zpry) = E, My = B = E/2 (1 + o)
|
Ty = Tyx = O \
Then %g
i
i
H
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4 4 4 4
___l+z " z z + 17 z (87)

Y +
1 4096 512 (22 +9)% 512 (922 + 1)2 2048 (1 + 2z2)2

4

AP R (88)
2 512 32 (1+ 22)° .
4
Y3 = e (89)
256 32 (1 + z 2
(1+2%) I(did; - d3%) n S,
I+ (~—=+ S.)
4 2y 2 ,2 y
v = T (3z7 + 3+ 22°) E® 2z L (90)
4 320n2 (1, +£,) nd)Sx , nd3Sy 18,8, (djdz - d,2)
1+ 2 2L
Ez E E< z
where
T=3Z4+3+ZZZ (91)
24 E 2¢ E
s =20 E q o 2D (92)
bld 3)\pgxrh y 3)\pygrh

After some manipulation involving substitution of expressions for Yy YZ’

Y3 and y,, formula (79) for K for sandwich construction with isotropic

Hcings and orthotropic core can be written as:

2
M M,n + M,n“S I
Kz—nl + 221 2 3 7x — + 1 Mgn (93)
3x h (f1 +1,) 1+ MynS, + M;n“S_
where
64 9vz°
== (Y5 - 35 (94)
1 322 3 3Zy1
T
M2 == (95)
z
2
(dydg - d4,7) :
3r g 54 0) (96)
E“ z z '
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d

1 1
= (— = 97
M4—(z2+d3e)E (97)
2
" (d,d; - d,%) 8 08)
1
S B .
6 = S_Y or 0= '_L)i (99)
x p
yt
4 1 2
d, = 3Ez + 2 (1 - o) Ez ' (100)
1
d, = Eoz’ + = (1 - ¢) Ez? (101)
1 2
d3 =3E+ (1 - o) Ez (102)
. 1
If ¢ is taken to be Z, then:
1 .
d1 = 3]-E:z2 (z2 + ‘8") (103)
5 2 '
d, == Ez (104)
zZ
= — 105
dy =3E (5 + 1) (105)

If also Yo Yo Y3 and T are expressed in terms of z and 8 (Eq. 87, 88, 89,

and 90) then the following expressions can be used in formula 89:

3 2
) 3[ Lo O 5 2] (106)
M =1 4 2= _ 64z 4(1 + z°)"]
11222 3(1 + zz)?‘ 1+ 24 - 24 - 24 M 1724
128 1622 + 9)2  16(922 + 1)2  64(1 + 22)2

_ ol =

M, =3z"+ 2+ 2 (107)
1 4 2 1

== —3 108
M, =35 (92" + 702" +9) (Z‘2 +9) (108)
WADD TR 60-133 59




M, = -g- [822 + 1 + (=2 + 8) 0] (109) .

s

1 [ 4 2
5 [9z +70:%+ 9] o (110)

For constructions for which the shear deformation in the core is negligible,
as it is when P"gx is very large and 0 is finite, S _may be taken equal to zero.

Then expression (93) can be minimized with respect to N, resulting in:

MM, (I+ 1)

K,=2

o (111)

2
3 (f) +f,) h

Thus, K,

is a function of M, and M, and the stiffness of the sandwich. It
was found by computation that a relative minimum of MM, = 0.24 occurs at

z = 0.95. The minimum buckling stress is then proportional to:

4

Ko=-§a—1 (112)
where
2
A(fy +£f5)h
Q, = Syt et (113)

I+ '

By letting N = the following expression can be written from equation (89)

5
K’

for constructions having any value of S, :

2
5M,Q M,n + M.n°S
11 5 2n 3" Sy
N = + + Q,M,n (114)
4n 6Q, (1 + Q,) 2. 2 272
1 2l 1+ MynS, + Mgn“S_
where
L

S T

It was found in Forest Products Laboratory Report No. 1505 (1_0) that the
values of I + I and I can be expressed as follows:
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2
1 3 3 12cd
e - el 116
I+ 1 12 ‘h ¢ l-c/h' ( )

(b - c)3+ (h - c)a?

If = 18 3 (117)
where
fy - f
1 2
= 118
2 (118)

After substituting these expressions in the formulas for Q; and Q, and

simplifying Ql and Q, become:

2
12cd2
(1 - c3/n3) (1 -c/n) - =5
1 4 2 d¢
-Z(l -c/h) " +3 (1 -c/h)" 3
- 120
R 3, 3 1 2d%  12cd® Fe
(1 -c’/B7) (1 -c/h)-z(l -c/h) -3(1-c/h)” = - 3
h® h

In equation (114) M;, M,, M3, M4 and Mg depend upon z and 6§, and Q,
and QZ’ depend u;;n cﬁ'x— and d/h. Formula (114) can then be written with

appropriate values of 8, c/h, and d/h and then a relative minitaum value N
found by choosing a series s of values of z and n. The facing stress at which
buckling will occur is then given by:

P T3g. & (121)

4N Ll
SQ r

Buckling Stress of Sandwich Constructions
with Isotropic Facings of Equal Thickness
and Orthotropic or Isotropic Core

Factors in formula (114) can be simplified for sandwich constructions hav-
ing facings of equal thickness. Then d = 0 and after simplification

3
Q, =2 (122)
A chfhz+cfh+l
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2
1 f1-c/h
Q=3 (1 ¥ c/h) Ve

and finally formula (114) becomes

2
N 2 M1, e/m? | Man ¥ Mym'Sy + - c/h)? M,n) (124)
= 4 n 24\ 2. 2 72\ 2
1+ M4'r]Sx+ Msn Sx

The buckling load, which is proportioned to N is obtained by finding the lowest

relative minimum of expression (124) with respect to nand z. Expression

(124) can be minimized by taking a derivative with res;ect to m and setting

the derivative equal to zero. This leads to a sixth power equr:tion in n.

Minimum roots of n with respect to z and for various values of Sy, c/_h, and

0 were determined—by means of a dig—ital computer. Minimum values of N g
at various values of Sy and for c_/ﬁ equal to 0.9, 0.8, 0.7, and 8 equal to

0.4, 1.0, and 2.5 are—given in Table 1 and shown as functions of Sy in figures

4, 5, and 6. Also included in the table and figures are values of N for

c/h =1. These values represent sandwich constructions for which the stiff-
ness of the individual facings are assumed to be zero. Although no actual
constructions can be made of this type, the values can be considered as
representing the limit for constructions having extremely thin facings. These
values of N were obtained as follows. Substitution of ¢/h =1 in equation (124)
for N leads to

. 2

5 Mo Mot RAEm=S

N=Z % |5 e 702 e
K 1+ MynS, + Mgn"S,

which has one relative minimum value for n = o This minimum value is
given by
5M,

Nzlz.‘/'fsxm5

Substituting in this equation the values of M; and Mg given by equations (108)
and (110) yields

(126)

1 i
5> + 0) A
N = _L_ ‘ (127) >
12,/ 5,8 ;*%,
2l
&

oo
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which is minimum for z = @ This minimum value (for ¢ = 1/4; hence
X = 15/16) is given by

5 0.431
= : (128)

N =
3y15 s S«

Substitution of this value of N in equation (118) and using the value of S, for
; 223
1

f, and c/h = 1 leads to the following limiting expression for Pyt

3N rp'
4Eh 5 Hgx _ h
- a a == (129)
P = Todn ¢ 12[—)\ Ef 2f T Lx

For values of S, ranging from 0 to about 0.6 it was found that equation (128)
did not give loweést minimum values. In this range of S, the minimum values

were obtained from equation (124) by use of a digital caputer.

The value of N given by equation (128) and the value of the stress given by
equation (129) are independent of the radius of the cylinder and are the usual
critical values associated with shear instability of the core (E)

The value of 8 of 0.4 and its reciprocal 2.5 were used in the calculations be-
cause they ap-l_aly to honeycomb cores oriented with the weak direction and

the strong direction parallel to the length of the cylinder. It has been noted
from figures 4 and 6 that in the range of small values of S, where N is inde-

pendent of c/h, the orientation of the core makes little difference in the
value of N.

Application of Theoretical Results

The compressive facing stress at which buckling of cylinders of orthrotropic
sandwich construction occurs is given by equation (77).

h
pfz'I(E:x'zT

where E, is mecdulus of elésticity of facings in axial direction, h is sand-

wich thickness, r is mean radius of curvature, and K is given by formula

(79) as

.2
_ 64 1 Y3 IV
K=+ EREEAAY
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where values of Yy Y,

and (82) and y, is a function of nand z according to equation (86) and K is

, and Y, are functions of z accordingto equations (80),(81),

taken as the least relative minimum with respect to n and =z.

For sandwich constructions having isotropic facings of unequal thickness
and orthotropic core K is given by i

ko AN
= 3q;

where N is given by equation (114) as

2
- 5M;Q. " 5 Myn + Myn™S

1+ MynS_+ Msn S,

where Q, and Q, are given by equations (119) and (120) and M), M,, M,,
My, and Mg are functions of z according to equations (106), (107), (108),

(109), and (110) and N is taken as the least relative minimum with respect
to nand z. N

For sandwich constructions having isotropic facings (Poisson's ratio 1/4) of
equal thickness and orthotropic core such that 8 = 0.44 or #=2.52 or isotropic
core (6 = 1.0) equation (114) for N has been solved for ¢/h = 1.0, 0.9, 0.8,
and 0.7. Values of N for various—Sx values are given in Table 1 and in

graphs in figures 4, 5, and 6. Then the critical facing stress is given by

_AN_ _h
Pf =50, *r
wherz
3 5
Q=3

-vcz/h-2 +c/h+ 1

and N is given in terms of S where

4
—These ratios for 6 were chosen as representative of honeycomb cores such
as were evaluated in Forest Products Laboratory Report No. 1849.
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16cfE

X " 45rhy’ -

and c is core thickness, { is facing thickness, E is modulus of elasticity of
facings, h is sandwich thickness, (¢ + 2f), r is mean radius of curvature,
tx is modulus of rigidity of core associated with shear strains in the

axial-radial plane.

and p

The graphs can be used with little error for determining N for constructions
having facings of unequal thickness, provided ~Sx is calculated using formula

60) and Q; is calculated using equation (119).
1 g

The analysis may be extended to apply at stresses greater than the propor-
tional limit stress of the facings by use of an appropriate tangent or reduced
modulus of elasticity for the facings. This entails a 'trial-and-error'" solu-
tion involving use of the tangent or reduced modulus in the quantity S and
elsewhere until the resultant facing stress is compatible with the stress-
modulus curve.

Results of the theoretical analysis fall approximately into three zones, de-
pending upon whether there is no shear deformation in the core (S, = 0),
some shear deformation in the core (small values of S;), or considerable
shear deformation in the core (large values of Sy). ~

For no shear deformation, the buckling stress is determined essentially by
means of the isotropic or orthotropic theory (depending upon facing proper-
ties) with the stiffness determined by considering the spaced facings of the
sandwich.

For large shear deformations, the critical stress is associated with insta-
bility of the core in shear. This has been observed for sandwich construc-
tions in general (15), and it has been found that the mean critical stress
thus determined is the same, regardless of the original assumption of the
buckled shape. The smallest value of S; at which the critical stress is

determined by shear instability of the ccre, however, is greatly affected by
the assumed form of the buckled shape. The inclusion of the stiffnesses of
the facings If gives rise to the family of curves for different values of c/h,

as shown in figures 4, 5, and 6, instead of a single curve. If the stiffnesses
of the individual facings had been neglected, one curve only, that for c/h = 1,
would have resulted. The percentage increase in buckling stress due to the
stiffnesses of the individual facings increases as the shear deformation in-
creases. For small shear deformations, the increase is negligible.

WnDD TR 00-137

(o]
n

=




From the reasoning involved in the theory leading to equation (77), consider-
able scatter in the experimental values of the critical stress is to be expected
because of the effect of initial irregularities. Similar scatter is exhibited

by homogeneous cylindrical shells, for the same reason.

The possibility of failure by wrinkling of the facings at a stress lower than
that predicted by equation (77) should be considered.

The analysis in this report involves a number of approximations and assump-
tions. Such procedures are necessary until a more rigorous treatment of the
problem is developed. A completely rigorous treatment of the buckling of a
homogeneous cylindrical shell is still lacking, in spite of the noteworthy
contributions of von Karman and Tsien.

Tests of Curved Panels

The large size of complete circular, cylindrical shells having realistic fac-
ing and core thicknesses and curvatures could not be adapted to the available
testing apparatus. Therefore, axial compressive tests were conducted on

rectangular panels curved to various radii. The dimensions of these panels
were chosen so that their widths and lengths were large enough to include at

2wr
zn

least one buckle of a size predicted by theory (b>£r1':—r and a> ) as shown

in table 2.
It was then assumed that the curved panel would behave approximately as a

complete cylinder. The type of edge support (described later) was such as
to produce no clamping.

Test Specimens

The test specimens were essentially of isotropic construction having facings
of clad 24ST aluminum alloy on cores of either balsa wood, oriented so that
the grain direction was normal to the facings, or of corkboard of three dif-
ferent densities. Corkboard cores were chosen, because their low moduli
of rigidity afforded means of exploring shells in which sizeable reductions
of buckling stresses, caused by large core shear deformations, could easily
be obtained. These corkboard cores had shearing moduli of 1,500, 950, and
320 pounds per square inch, as compared to 15,000 pounds per square inch
for the end-grain, balsa-wood core.

N

v

- “mﬁ“iﬁ’ﬁ

—~
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Dimensions of the specimens are given in table 2. The panel sizes ranged
from approximately 70 inches square to panels 12 inches wide and 30 inches
long. Mean radii of curvature ranged from approximately 90 inches to 10
inches. The sandwich constructions had facings of 0.012 inch, 0.020 inch,
or 0.032 inch thickness on cores of approximately 1/8 inch, 1/4 inch, or 1/2
inch thickness. All constructions tested had facings of equal thickness.

The specimens were manufactured by the bag-molding process. Detailed

description of techniques and bonding adhesives used in this process are

given in Forest Products Laboratory Report No. 1574(3). The curvature

was attained at the time of molding by using a steel mold curved to the de-

sired radius. A strip of aluminum 1 inch wide and 0.032 inch thick was

bonded to the facings at each end of the specimen. This was done to facili-

tate machining of the specimen ends and also to prevent local end failure

during the test. The ends of the specimens were machined square and true

in a milling machine. |

Testing

The vertical edges of the specimens were held straight by loose-fitting wood
guides. These guides were approximately 2 inches by 2 inches in cross sec-
tion and of lengths 1/4 inch shorter than the test specimen. They were
grooved in the lengthwise direction with grooves approximately 1/4 inch deep
and wide enough to allow the guides to be slipped onto the edges of the test
specimen. No attempt was made to clamp the vertical edges by fitting the
guides tightly.

The lower ends of specimens not wider than 30 inches were placed on a

heavy flat plate, which was supported by a spherical bearing placed on the
lower head of a hydraulic testing machine. The heads of the testing machine
were then brought together until the specimen just touched the upper platen
with no load indicated. Adjustments were made on the spherical base until

no light could be seen between the ends of the specimen and the loading heads.’
Screw jacks were then placed under the lower loading plate to prevent tilting
of the plate while the load was being applied to the specimen. A single thick-
ness of blotting paper was inserted at the ends of the specimen to help pre-
vent local end failures. The load was then applied slowly until failure oc-

curred.

Specimens wider than 30 inches were tested between the heads of a four- E

screw, mechanically operated, testing machine. No spherical bearing was :

used. The specimens were cut as true as possible. If light could be seen i

between the ends of the specimen and the heads of the testing machine, shims E”‘h
.,"‘
L
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of paper or brass were inserted until the gap was closed. These wide speci-
mens were also very long; therefore, small irregularities in the end bearing
were absorbed early in the test without causing large variations from uni-
formity in the stresses in the facings.

Results of Tests

The facing stresses at the failing loads of the curved panels ar€ given in
table 2. For later compari‘son with theoretical values, the parameter N
was calculated for each test\specimen by using the formula

5Q,p¢r ,
" T4Eh '

where
E = 10,000,000 pounds per square inch (modulus of elasticity of facings)

The visible failures of the specimens were of a type caused by buckling.
Large, thin specimens actually showed large buckles, which disappeared
after release of load. The appearance of these buckles always caused a
sudden drop in the load. ESmall, thick specimens showed buckling, followed
immediately by a crimping appearance at the edges of the buckle. This
crimping was undoubtedly due to shear failure of the core caused by high
stresses induced in the sandwich by the buckle. Many of the thick speci-
mens exhibited no visible signs of buckling but showed similar crimping.
The rapidity of failure occurring immediately upon buckling undoubtedly
prevented visual observation of the buckle itself. Similar behavior was ob-
served for cylindrical shells of plywood (11).

Comparison of Theoretical and Experimental Results

The theoretical and experimental values of N are given in table 2. A com-
parison between them may be obtained by ré?erring to figure 7 which shows
the experimental values plotted against the theoretical values. The scatter

of points about a line representing equality between experimental and theoreti-
cal values shows that theory and experiment agree within approximately + 30

percent,
In view of the inevitable scatter of experimentally determined buckling

stresses that is associated with initial irregularities of shape and variations
of material properties, it is concluded that the agreement between results of
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tests and of theory is satisfactory. The scatter is not as great for shells of
sandwich construction as that observed for thin, homogeneous shells (fig. 44,
report No. 1322-A (7)) or for plywood shells (fig. 3, Forest Products Labora-
tory Report No. 1322 (18)). This reduction in scatter may be attributed to a
greater total thickness of shell, Thus, irregularities that depart from the
true cylindrical surface of the order of the thickness of the shell are less
likely to occur in sandwich shells than in thin, homogeneous shells,

Conclusions

The buckling stress of long, thin-walled, circular cylinders of sandwich con-
struction in axial compression can be found with satisfactory accuracy by the
formulas and curves of the approximate theoretical analysis of this report.

Curved panels of sizes large enough to include at least one ideal buckle

2wr
(b =

2nr
‘and a 7%“) buckle at stresses approximately equal to those of a

long, complete cylinder.
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Notation

length of buckle,

1/Ey.

defined by equations (42) to (46).
defined by equations (52) to (55).
width of buckle.

l/Ea.
thickness of the core.

mean circumferential stress.

1 20

2O

"Lm Ea

fl -fz
2

defined by equation (57).

components of strain.

defined by equations (26), (27), and (28).
defined by equation (64).

defined by equation (66).

Young's moduli of the facings

Ey (f; +1f,)

h

E, (f) +13)

h

thicknesses of the facings.

quantity proportional to mean radial expansion.
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h c+fy +1,.

I defined by equation (49).

I defined by equation (50).

k, k' parameters introduced in‘equations (31). li

K see equations (74), (75), and (79). ‘

K, K, K, defined by equations (23), (24), and (25). |

Ky defined by equation (84).

n 2w r/b.

P mean compressive stress.

P¢ compressive stress in the facings.

q q' introduced in equations (31).

r radius of middle surface of the cylindrical shell.

Sy Sy defined by equations (92).

T defined by equation (83).

u axial component of displacement.

v circumferential component of displacement.

U, strain energy of the core in the bending of the

sandwich shell.
Up: Uy strain energy of the facings in the bending of the
sandwich shell.
w radial component of displacement. ?
1 extensional strain energy. i

oy

w, flexural strain energy. E;
¥
|
]
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virtual work of the compressive load.
(W1 + W, - W3)/abh.

components of stress.

b/a.

w/a.
w/b.
defined by equations (80), (81), (82), and (86).

a parameter that is proportional to depth of a
buckle.

initial value of &.

mean compressive strain,
coordinate shown in fig. 3.

n? h/r.

(1 - Ty O'Yx)

modulus of rigidity of the facings.

moduli of rigidity of the core.

p'xy (fl + fZ)

‘ h
6 r/h..
§ r/h,

(¢}

Poisson's ratios of the facings.
defined by equation (51).

Sy/Sx.
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Figure 1. --Choice of coordinates on the surface of a
cylinder.
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Figure 2. --Nodal lines of assumed diamond-shaped
buckling pattern.
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Figure 3. --Section of a cylindrical shell,
radius of the middle surface of the shell
ness of the core,

where r is the
» C is the thick-
fl and fz are the thicknesses of the

facings, q is the distance indicated in the figure,

L is the coordinate indicated in t
Note: The cur

and
he figure,

ved lines are arcs of concentric circles,
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SECTIWN III

FLEXURE aND TORSICGN OF CQPCSITE CYLINDERS

By
W. S. FRICKSEN

Alr Force Institute of Technology
For Materials Laboratory

Suwmary

A solution to the problem of determining the components of stress
and displacement in composite cylinders supported as cantilever
beams and subjected to flexural and torsionel loads is given in
this report., The type of cylinder consicered is that composed
of three circular, co-axial, layers of different muteriazls that
are bonded at their junctures. Two main cases are considered;
one in which the material in the center lsyer is cylindrically
aeclotropic, the other in which it is isotropic. The material

in the inner and outer layers is assumed to be isctropic. PEy
taking the thickness of one of thbe layers equal to zero, the z
results are applicable to a two-leyer cylinder and, by making

the inner radius zero, they are applicatle to a solid cylinder.
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LIST OF ABBREVIATIONS

The following is a partial list of the symbols used in this report:

Em: Young's modulus of an isotropic material.

E, E, E.:

2 A S Young's modulil of & cylindrically aeolotropic

material.

EI

]

ElIl + E212 + E3I3 if intermediate layer is isotropic

ElIl + Ez12 + E3I3 if intermediate layer is cylindriceally

aeolotropic.
ezz, RIS Y components of strain.
2(1 - Jg, T28)E,(3 - AL)
Fy = i 2 +2( 07, +3 6 ,)
(o - & )E
28 zr ©
F‘nz(n+l){0’zr+(n+2)o’ze n=1, j

Gm Shear modulus of an isotropic material.

G G, _.: Shear modulii of a cylindrically aeolotropic

re’ Gez’ Zr

material.

GI = G-lIl + G212 + G3I3 if intermediate layer is isotropic
= GlIl + GezI2 + G313 if intermediate layer is cylindrically
seolotropic.
g, o 200 Ty el N T - 27p0) (- Sy o)
BT 26" 0 2p) %
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List of. Abbreviations (Cont' d)

— -éu/;r _&—6r+£92 fzr+L
; Ee Gre
1- (0,0 l1- 6.0
Hn=(n+l)2(n+2){ Eﬁz zlg}—(n**l){ Erz-zr
: 6. r
_6-61‘ +O—ez0_ze+ 1
Eg %o
S 5L
L 4
Im=—71i.£(rm_rm-l)
1
1=(1+4)2 -1
1
1
J=-(1 +a)2 -1
o, \z
oz
()
ar
0, O
1 . o
K, =g (71 Eff”-(zn‘l)(nw)—E,e—z
T zrfn (n +1) O or
=28, 822 (n+1)an +2)
Kon E, ' E n+1)(n Ey
_ O 28 (n +1)9r0 . (n +1)(n + 2) |
R ]

: length of cylinder
: index denoting 1, 2 or 3

M applied torsional moment
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List of Abbreviations (Cont'd)

n : index that ranges over the values 1, 1, J.

P : applied radial force.

Iy outer radius of layer m.

+ components of displacement associated with derived stress

uz', u', u
components.

r (]

u:, u:, u; : components of rigid body displacement.

W, = w. + wy, u, = \5', +uy, ug = ug + u;, components of displacement.

z, r, ® : cylindrical coordinates.
- +
i« = 1 J‘rzoﬂzr__a(fer Jm O’zr)_}l Eg
<3 Eq Gro | 1- %oz Tz0
_ Tm-1
Pa = T
n Poisson's ratio of an isotropic material.
S : The value of Poisson s ratio when this ratio is assumed the
same for each layer.
6zr’ ore’ " o"ez : Poisson's ratios of a cylindrically

aeolotropic material.

: A symbol denoting summation over the indices n.
Zn .

LR

-

Al.zz, . e ey, ’I'ez g Co'mponents of stress.

mres

¥
e

bk
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INTRODUCTION

This report deals with the problem of determining the camponents of
stress and displacement in composite circular cylinders under flexure and
torsion., Tre composite cylinders under considerution are composed of three
co~axial layers of different materials. These layers are bonded together at
their junctures so that at the junctures the components of stress and displace-
ment are continuous. The materials of which the inner and outer layers of
the c¢ylinders are cosposed are assumed to be isotropic while the material of
the intermediate layer is treated in one case as isotropic and in the second
as cylindrically aeolotropic.}

The results developed here are applicable to cylinders that are long in
comparison with their diameters. This restriction is usual for solutions of
the present type. There are no further restrictions on the dimensions of the
cylinder or on the relative thicknesses of the various layers. Thus the
results cover the range from a ceble-like cylinder with a solid core to a
hollow c¢ylinder with walls that are thin. A4lso, by teking the thickness of
one of the extreme layers as zero, the results apply to a cylinder composed
of two layers.

The solutions of the differential equaticns of eguilibrium and compati=
bility that are used as a basis for the analysis heve bteen previously derived.
For the case of three isotropic layers results could have been obtained by
metbods developed by Muskhelishvili and others.S The explicit results given
by Muskhelishvili, those for a cylinder of two isotropic layers with equal
Poissen's ratios, bave been compared witb the present results for this case
as a means of checking the formules developed here.

By way of arrangement, this report is divided into four parts, the first
of which contains an enumeration of the equations of equilibrium end compati=-
bility, the boundary conditions and the conditions imposed upon the stress
resultants and resultent moments over sections of the cylinder perpendicular
to tbe axis, The soluticn of the problem for the case of an isotropic inter-
mediate layer is given in Part 2 and Part 3 contains the solution for the
case of a cylindrically aeolotropic intermediste layer. In Part 4 the results
obtained under the assumption of equal Poisson's ratios for the materisls
of the three layers are given fcr the cases considered in Parts 2 and 3.
These results are consider«bly simpler than those for the general cases and
may serve for approximate use.

1 Bending and Torsion of Circular Cylinder Cantilever Beams of Cylindrically
meolotropic Material by W. S. Ericksen, Jouranzl of Applied Mechanics, June 1956.

2 Some Basic Froblems of the Theory of Elasticity by N. J. Muskhelishvili,
P, Noordhoff Ltd Groningen Holland 1953.
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The writing of this report is motivated mainly by the applicability |
of the results to sandwich c¢ylinders. In this application it is possible
that simplified formulas mey be obtained if the intermediate, or core
layer, is thick and of low density in comparison with the outer layerse.
Simplificetions should also result if the thickness of each layer is small
canpared with some standard radius, say the radius of the mic-surface of
the cylinder. These simplifications are left to be made, where possible,
in individual applications.

e

g

sl S NC T
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1. FORMULATION OF THE PROBLEM.

Let the axes of reference for a cylindricai coordinate system
(z, r, 8) be fixed in the cylinder with the longitudinal axis in coinei-
dence with the axis of symmetry of the cylinder as shown in Figure 1.
As indicated in the figure the symbols T, and r3 designate the inner and
outer radil of the cylinder, respectively, while r; and Ty denote the
radii at the junctures of the layers. The layers are numbered 1, 2, and

3, according to the convention that the one for which

r .&~réi&r
m-1 m

is layer m. These layer numbers are used as subscripts with various
symbols to associate the quantity designated by the symbol with a given

layer.

In the preceding notation the equations of equilibrium are given

as follows:

2t 12w, 2 Tome Yo, [ ]

7T trT 7o W FE3
10 1 60m led ) rom 2 qZ &zm 2
'I'_' ge + 91. + gz +;(\iran:0 2
2 AL j/Y a Y
zrm , 1 Ozm - ( zzm 1 _
w2, Slam oy oo, ]
m=1, 2, 3 i
i
By,
ylf.
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The compatibility conditions are

2 2 2

9 °rm 2 ®zzm _ 2 erzm=o o [h]
9 22 > r° 2rdz
2
1 2 ®22m 2 ®e6m _2 2 eezm_',l2 Szzm _ 2 al'5'rzm:o [5]
2 5 e? 222 Toedz r r T 22
2 [PCrem_ P _1 (Z%m_,
oz oz Ir r 26 Bzm
2 . o
+l~.i Czzm _ 1 i&&m=o [6]
r 9r 96 re e e
3 2 een) 2 *iem
or or 99 rrm
9 |12 m_ 2°em_2, =) [7]
rP8 |t Je T r rém
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Let the cylinder be fixedé at the base z = 0, and be subjected to
& force P directed along the radius 6 = 0 and a torsional moment M
at z = ,[ . The conditions imposed upon the stress resultants and

couples are then

3 Im 271
y 5 ("Lzm cos & - "L oNzin O)r dr 48 = P [10]
ESI N

3 r 2
Z .fm (zm_rz cos © dr 46 = -P (Z- z) [:11]
m=1 r . O :

m-2 _

3 r 2’“ -
Z fh fl St 2 dr a8 = M '_12]
m=] 5 -1 0
3 r 2’/7

Z J’m f (“omstn @ + L cos e)rarae =0 [13]
m=] r 0
m-1

ifm fz r2 sin © dr d6 = 0 [-11;]
zZZm - |

=1 Tp-1 O

i Jr@ f:gz'zmrdrd9=0 [15]

m=] Tl 0

3With limitations discussed in Section L.
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The boundary conditions to be imposed are that the outer and
inner curved surfaces of the cylinder are free of stress and that the
components of stress and displacement are continuous at the junctures
of the layers. Thus if the symbol rlm(z, r, ©) designates any of the
stress components hlrm, h(_m, or A{'zm and 1f um(z, r, 8) designates T

any one of the components of displacement u,n "rml or Ug, the conditions

imposed are
Fl.l (Z, I‘o, e) =0
le (z, Ty, 8) = ’12 (z, ry, 9) —
| <]
/12 (Z, To, e) = 7—3 (Z, 1‘2, 9)
7’3 (z, I'3, 8) =0 )
and
ul (Z, rl’ 9) = 112 (Z, rl, 9)
]

i

w, (z, rp, e) ug (z, rp, e)
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2. RESULTS

FOR THREE ISOTROPIC LAYERS.

=

The stress-strain relations for the case of three isotropic layers

are written

1 4
zzngll~L mnlrm-rmLeem
1
Crrm F; { 1',j'rrm' fmAL
1 -
e99m=f:;{ qurm*ﬂleem}
a+ o)
erezn: Em ,Zrexn
_ 1
eezm 2—(};(\1‘92111
_ 1
ezm_Q—G;Az‘zrm
m=1, 2, 3.

The components of stress given by the following expressions satisfy

the equation

2
B

;\1
4

WALD TR 60-133

[2¢]

s of equilibrium E] [2—] and L3_—‘ and by the use of

relations [18 they also satisfy the compatibility equations I—h—' to

[:9] inclusive.

(8o a +C)r(/(- z) cos 8 .
n m m

-(2Ar-2B—I§) (/(-z)cose-
2B
=(6Amr+—3—) (X_ - 2) cos 6 .

. 2By
(eA r —;_;)—) (£ - z) sin 6 -

96

[29]
EI
EY }
R




2

2
Em+-1§+A {3fm+—GE(l-é_z)}r2

zZrm 2 m B,
c .
- _ 206 ) | cos & - - 23

+ BE; (3Em 20,6n co '
= -J — — 3A e — (1 -f r
(Zezm [m"' 2 3m 3+Em( m)
o By 2] 8 +D
_8?)11 -3--26'me)1' sin ® + DG T . . . | [gu]

These particular components of stress prove to be satisfactory <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>