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ABSTRACT

A brief sui-vey of previous developments in the theory of partial coherence

is given in Chapter 1 and the ,'elations betwecn the complex degree of coherence

(see Woif 1955) and the measures of coherence introduced by earlie:- authors

are given. Because of the sundry formulations of the theory to be found in the

litera.ure a detailed review of the formalism used hsre is also given in this

chapter.

Coherence theory is formulated in terms of correlation functions and

analytic signals aid the developm-,nts of this thesis required several new theorems s

concerning the convolution Und cross-correlation of analytic signals. These

theorems are developed in Chapter 2. The form of the general i',imodular

analytic signal is also obtained in this chapter. It is shown that when considered

as a function of a complex variable this function is a meromorphic function of

order one with isotated poles in either the upper or the lower half p:ane only

and with ze'-os at (onjugate points.

In Cnapter 3 these theoremF are applied to the detailed analysis of the

limitih* forms of the mutual coherence function for toth polychroinatic and

quasi-monochromatic fields. In the rigorous analysis, applicable to fields of

&krbitrary spectral w•dth, it is shown that: 1.) at, o 'tical field is =oherent if

and only if it is monochromatic; 2.) the mutuai coherence ,inction for a co-

herent fielec may be expressed as the4 product of a simple ,&wIve fui'hction, 2valua-

ted at one point, with its complex conj,.'gate, evaluated at a second point, multi-
f IVr 3T

plying a simple periodic factor, e 0  ;3 an incoherent field cannot exist

in free space though 4in incoheren. source may be dcfinee in a manner 'consiritent

N.ith this result. The esser.cial differences between these theorems and the

correspoWning ones for qiasi-monochrom• tic fielJs are discussed.

t



In Chapter 4 the propagation of mutual coherence is studied. A new

derivation of the wave equations for this quantity is given and the equations

are solved for the field created by an arbitrar/ plane source, i.e., an extended

partially coherent polychromatic source. Using the results of the previous

chapter, the limIt.ng forms of the general solution are examined in detail for

both polychromatic and quasi-monochromatic illumination. In particular it

is shown that : 1.) a coherent source always gives rise to a coherent field; and

2.) an incoherent source always creates a partially coherent field. These re-

sults are shown to be valid regardless of the spectral width of the illumination.

By examining the general solution, the well-known van Clttert-Zernike theorem

is found to be an approximate form of the incoherent limit of the quasi-mono-

chromatic solution.

The results ot the previous chapters are applied in Chapter 5 to a fre-

quency domain analysis of the optical imaging problem. A general solution to

this problem for partially cohernt polychromatic light is obtained and genera-

lizcrd transfer functions are introduced. It is shown that, under the quasi-

monochromatic approximation, these generalized transfer functions reduce to

the familiar forms found in the literature. A transfer function is introduced

for obtaining the mutual spectral density of the image, a function of t•v points,

from the self spectral density of the object, a function of one point.

h.t
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CHAJI&TR I

NTRODUCTION

It is customary to describe interference and diffraction phenomena in

terms of the superpoiition of strlctty coherent or strictly incoherent vibret-

tions ignoring completely the liastbility ' intermediate states, partial co-

herence. That this practice is a considerably restrictive idealization is

attested to by the fact that experience Indicates that both of these extremes

are unrealizable.

An example of the inadequacy of the conce.pts of complete coherence and

complete incoherence for the description of physically interesting phenomena

was known as early an about 1869. At that tiUe Verdet (1869) demonstrated

that the light from two p&nholes In a screen iPluminated by the sun will Inter-

fere in Young's intoerference experiment if the separation of the pinh:3les is

less thalz about !1120mm. Slnce Interierence is cusumarily a property of

cohereat ocillations. this result i•Iggested the idea of an "area ol coherence"

surounding a poikn in an iWcoherent field.

Ano•th•a early examn'ie of th'ý inadequacy of these limiting concepts can

be found 1n the work of Mictielsn from about 1890 to 1920. The interferometric

method, introd-aced by Michtbeon (1890-1921), of measuring steller diameters

eessntially inwolves meavurirW the d0,gree of coherence of t"e UWumination

prtd.-,ed by tie stars. Although this *.ork was root interpreteM ill terms of

coherence theory until mo,-' &' later, the quantl'y, vIability, introduced by

Micielacti to describe the qual" of unteferenc"ý fringes U.as proved to v

lmpoz1tant ky to nrdcrsta.ndhng the ccn,,:1t if part~a, coherence. In fact, in

Zexrike's ,0038) fcfrmulatl•ox ,tf ce'i:.,rpnce theory, the degrce of coherence



2

between the vibraticns at two points in an optical field is defined as the visibility

of the fringes obtained by allowing them to interfere In a suitable exp-eriment.

From the middle of the nineteenth century until the last two decades the

theory of partial coherence received but little attention. The few papers that

did appear on the subject are more or less disconnected since erich 1i 'estiptar

introduced his own Smialentl different formulation od the theory. The lkck of

interest in the subject during that period way be attributed to the fact that

applications in which the theory is important were e.tdher unknowP or invovod

measurements which were not refined enough to take account of the degree of

coherence.

However, in more recent years the concept ot partial coherence has be-

come important in virtually every branch of physics which Impolvei elactro-

m&Vntic radiation regardless o the frequencies considered. In visible Optcs,

for example, coherence theory is tantasount to the unerstding of such tqpicS

as image formation an the effect of illu nbstlo. on the r tolution in a micro-

sccpic image. In spectroscopy the influone at the salt wid~h on the degree of

coherence of the illumination can produce measurable effects. In radio astrowmy

source dim ieters are measured by intterferoatric tehnlquas, which effectively

involves the me-urement of the degro* of coherence of 1he ra•tdam. Similar

prv')len arise in- thcae apgicationr of ra•- where querionw at resoluton

and tnapptzg are of central iwportanct.
Even at the much longer wave lerWths used In communication, coherencc

fl-r-ory plays an Important role. In scatter cc, nmtnicaoior, for examp.e, Boeran

(1958) has recently stwiod the propisgation of the ensembl- correlatiom in the

scatter fie&d and with the present author (190)7) has shown thAt •Ac reliability

of a spatially diversI.!ied scatter system can be computed froir a kmnwleie of
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the deree of coherence in the refltnted field.

Ln the last few years as these applications became important and am

-neasurine, tW1niq~es became trore refined, the theory of partial coherence

has receive-O increasing atten~on in the fields mentioned at•'ve. In spite of

this a' botion severll aspects of the tbeory have been misunderstood; and tht

strong emnphaslt on applicaton thas left many of the fun&"oental questLoms

unanzwered,

Thw aim of this thesis is the deduction of certsL* of 1he gemr'aC math,4w'at-

icda atd physical zrppUcattorns cn coherence theory. For th.Ui pur-ose the moi'w

convenigt and & igorcus forrialatlon oft ie subject 4 that introduce4 by Wolf

.. 5..; alnd Ws# formullaw will Lv_ used exclusively in 'is thesis. However,

befecre rtviexwing i detail the structure of the tbeory to b.e used here, it will

prove u•feul to givt a brhi; survey a the previou, re.arch on the cubJect,

paying particular atttntign to the defilnlcam ol dogree of coherence trfoduiced

by earier authors. In thi. way sowe of the advant.>es af- the formuiatlo sed

here will bev•ome apparen.L

"",rly res,^arch on p.rtiai cotwre.,.e a aa•ociated with the namnes of Verdet t

(1860), yop L.Aue f1§07). Bers (1936 b, rx, d) and van Clarrt (19N_ 1939), The

invet tionoas of this subject in tM last two decades are found primarily in the.

work, d Zernike (1938). Hopkins (161. 4-457), aB•.•r-L~aier,-e sn Dumortst

g!55), t-and Wolf (1t55). %ince sLl o! the earlier formulatioms Mf the theory are
~C~, case~~s of t~he oam uso here, It will prove cown'•ent • in.rodce the

panclpoe fv,,s r.J this ge.,wrtl tIkory before discussrg th! contrtbutions

sit the p•rvious W•-•rezs.
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Tho study of partial coie.rence in optics Is essentially the study cit the com-

plex cross-correlation of the disturbances 2t two typical points, P] and P3, il

the optical field. This function is defined as the mutual coherence functiOW.

i(e), .

r1(T) V (v.t + T) V2  wt

where VI (t) and V2 (t) are the "complez *dieturbaiices" at tite •tw PInt., t6eo

sharp brackets, <> denote time average, and '" is the ti." dellay. Toe

complex degree of coherence, Y,2 (T) , is defined a# the normallzs' mutual

coherence funetlcn,

Y1 2 () f "1 (T)

It shcld be noted that the degro* of cohetrace to a function not oriy oa the

coordinates e P1 awl P2 but also of the time delay or poet difference coordhi:Ute.

T. With these defiritions in mind we may now direct out attention. to the early

contributions to the subject of partiai coherence.

After the work of Verdet (1869), mentioned earlier, a quanUtiti'e measure

for partial coherence was given in a paper by von Laue (1907). I. th.s PkPer,

in whict, was discussed the thermodvnamica! aspects of diffruction, Vh" quantit-

YL ' proportional to square of the time avernaed proict of the W.Pt.rt*&.we

at two points in the field, proved t lbe of central inPporuin-e. While this quintity

we* stfflcient to characterize the cptical field for tne po blerwc ticusse& by

von Lau*, the formulattbn is to restrictive Afor general ullitcailo. ffov,-'e-, we

may mention that the rerst interesting exp'eriment of Ha&Wbary-.wn ad Twias

Precise dtfinltions td 'h&a and the other fur.-tiaoL reIrret to here aze
given in the next ectilon.

The precise mearnng of the termn cornpl-ax ,isturb-auce it givei inSbctIn 2,.



(1956 a, b) measured precisely the quantity )'L

It is shown in Appendix 1 of this thesis that

S = I '12 (1. 1.1)

The next theorztical, treatment of the subjct appeared some twenty
years later in the work of Berek (1926) in which was introduced the so-called

degree of consonance as a measure of coherence. Berek's formulatior, was

applied to some problems An the theory of image formation in the microscope.

Some of his results, however, were contradicted by the experiments of Lakeman

and Groosmuller (1928).

After another decade the subject was again reforniulated. van Clttert (1933)

showed that in a plane illuminated by an incoherent, r-early monochromatic

source the optical disturbance is normally distributed. Three theorems con-

cerning his "komplex korrelation" were also given ýn this paper The best

known of these theorems expresses the correlation in the illuminated plane in

terms of the intensity distribution across twe source plane The analysis of

thiF )aper is in 'Xrmns of ensemble averages, but by invoking the ergodic hypothesis, sRio

it can be shown that when the treatment is appiicable (iiicoherent, quasi-mono--

dLromattc sources) the cox relation function introdnced by van Citte-rt Is equal

to the zero ordinatp of the complex degree of coherence,

Yc 12'G) "(.1.2)

A sý-gnfficant augmentation of tht theory of partial cohc-'ence was given by

7 ernike (1933). In ~iis paper the treatment of the subject is tightly bound to

tle interpreiation of Young's interference cxperiment in terms of Mlchelson's

visibility. In fact the aegree of coLerence between the disturbances at tvwo potls
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is defined in that paper as the vluibi :it,. d, h,) frirjei ,rt±tined by ad owing the

light from these poiz~ts to interfere in i suicble e. aerkment (I. e. ehort path

differences and equal intensities). So valu l~c has -,.,ts experimental deflrdtlon

proved in understanding the physical aspects ot partial coherence, tnat many

later authors overl.ook the fact that Zernike formulated the subject amaiytlcally.

Zer;,ke's forrmulation is ap-licable to quasi-monochromatic fields pro-

duced by any sou-.,. (coherent, pmrtially c~herent, or incoherent) and in this Pense

is the most gene:-l tfV atment prior to the work of Blanc-Lapierre and Dumentet

(1955), and !. 1: '1055) to bi diacus'me below. The fundamental quantity in his

analye1t $s tle r'u •,.Pnt iLy furn "ion, defined as the time averaged product

of the dfsturbz.nce - t ooe point witth the complex conjugate of the disturbance at

the second -- int. The d~rr'v' X ioherence is the mutual intensity function

suitably ncaruized. Zernike's Jegree of coherence, y,, may be shown to be

equal to the zero ordinate 0, the complex degree of coherence used here,

Y1 2 (0) (1..3)

!n the same paper an approximate law for the propagation of the mutual

intensitty wi also presented; and as a consequence of this law a theorem re-

lating to the mutual inteutsity on a plane Illuminated by an incoherent plane

source wan determined. This theorem is by virtue of the orgodic hypothesis

the same as the theorem of van C.littert's mentioned earlier and is now termnd

the van Cittert-Zernike theorem (of. Born, M. ani Woif E. 1959, p. 507).

In 1951 H. K, Hopkins reiormulated the theory of partial coherence. In

this treatment the complex degree of coherence is deflted in tcrm6 of an integral

over the primary sourc,. of the radiation, assumed always to bc, incoherent. While

the arguments of this paper have been the subject of cor.siderable aiscussion,

tt
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(of. Wolf (1954, 1958), Hopkins (1956), Zucker (1957)), the techniques introduced

have proved very powerful for many practical optical problems. When the formu-

S lat•ok, Oi tohls paper is applicable (i.e. incoherent quasi-monochromatic sources)

It is equivalent to that of Zerrwke. Hence

"K = Y1 2 (0) ' (I.i.4)

where )'Y is the deg~ree oi coherence as defined by H. H. Hopkins.

In sf.ite ,v* Cie ubeiulness of tho results presented in the papers dscribed

abovw we most point out three unsatliafactory aspects of their formulations:

1.) the formilatiuni are applicable only to quasi-mornochromatic fields; 2.) apart t

from Zerake'a Aurk, the analyses are apphicabie o.iiy vwhen the source is inco-

h-ret; 3.) apart froin von Lane, each d• the auove formulations are in terms

of complex functions the significance of which is obscure.

Th'ý first of these conmiderations is perhaps the most significant; for the

restriction to incoherent sources is removed by Zernike's formulation; and the

ambiguity as to complex representation may be removed either by dealing ex-

clusively with zeal functions or by carefully defining the complex !unctions. The

restrIction to quasi-monochromatic light, however, Is not simply removable, in

fact !he theory a( partial coherence could be exte•ded to fields of arbitrary

spectral width only after *.e Introduction of the .-ross-correlation function and

P, more detailed concideration of the stit.ttical aapets of the subject.

'11hese f tconings w*ere eeii•nuated in the formulation of the subject by Wolf (19551 6)

Saýthat of PRaric- baperre and D=Gntet (19.5), Dothof these formulations are rig-

orously applicable to polychromat•lc fields created by Pry type of _ource (coherent,

gaa.-ial) o'oh. reti, or Lhc3ohereni); and both define the degree of coherence in terms of

the cer:as-corrsia non of " dis.,rbance at two pohdLit$ !' the field. Tut eseentiAl dJffereace ne

bttween 'Iisee tV. io-y•crnrt1 Alo is the fact that WolM treats the subject in terms of carefully ly
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d1fined complex functions, while Blanc-Lapierre and Dumontet deal in thi main

with real functions.

Theso two treatments are rigorous and general, but the several advantages

of the complex representation (discussed by Born and Wolf (1959) and Parrent

(1959) make it more suitable for an analysis in which the usual optical theorems

for natural light are to be regarded as limiting forms. The degree of coherence

as refined in the real function treatment, yBL + D (T) is siraply the real part of

the complex degree of coherence, i.e.,

""B,+ D(') R 1(, 21.0.5)

,2or the reasons stated above thefformulation oi coherence theory due to

Wolf will b÷- ujed cxclus~vely in ,his thesis. In the next section this formulation

Is described in detail.

1.2 Kiview of the Gengral FormulatJon of Coherence Theo~.

As originally introduce( by Wolf (1054) the ideory of partJal coherence is

formulated In terms of the efectronvagnotic flel,•. The basic entities in this foe-

rfmulation a;-e correlati)n matrices. the elermeati of which arc the cross-c-rreia-

tiona of the Cartesian cnmponsnts ol the electromagnetic field vectors in al

j %ppropriate complex :epresentation. While such a genern6 treatment may be

nJce swry for th2 descripticai of partil polarJaadon phenorm, in&, a great many

optical phenoomena are aaequately debri¢ bed by a scalar wave function.

There are aý ier.st tm.u approach a to the just- iication of the ube ol ; vraar

the.ory, alart from the exper'met. al fact that it Is in excellent agreement with

experience. The customary approach is to tal.2 as the basic physical quantity a

sinqle Cartesian cccnponent of the Aboctric vector, reservir3 the right to include

the additional components if necessa;-y to dcscril'- some particular phenom.enlon

(e.g. polarization e{fects).
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An alternative approach is that adopted by Green and Wolf (1953). In this

aid subsequent papers by Wolf (1959) and Roman (1955, 1959) a rather f ruitful

attempt to completely describe optical phenomena in terms of a complex scalar

function has been made. This theory is not as yet complete and h~nce will not

be used here. In this thesis we adopt the first approach and represent by Vr(t)

a single (real) Cartesian component of the electric vector.

Since the concept of Gabor's (1946) analytic signal is fund2mental to the

understanding of the definitions to be given here, it will prove useful tc review

briefly the method o;' associating an analytic signal with a given real function

in spite of the fact that- Chapter 2 is devoted largely to analytic signals and

their asoociated Hilbert transforms.

As will become clear in the following development, the analytic signal may

be obtained by a simple generalization of the method of associating a complex

exponential with a simple periodiic -,Aaction. Let Vr(t) be a real function pcs-

sessirg a Fousrier representation,

vr (t), a(v) cos I p(v) - 27T/ti di. (1.2.1)

We aksociate with Vr(t) another real fuaction, V (t), obtained by changing the

phase of each spocta] cowrionent cof Vr (t) by n/2. f'hus
oc

V i(t) = a(v) sini ,,(v) 27ivi ] dv (1.2.2)

The analytic signal, V(t), may then be defined as

V(t) vr(t) + iv(t) (1.2.3)

The fundamental quantity in this study is tie mutual c,•herence function,

2 ' which is defined :s the complicx co.1 j-correlation of the analytic

It
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signals VM(t) and V 2 (t) associatea with the real disturbance VIr(t) and V2r (t) at

two 1ypical points, P1 and P2T in the field, I. e.,

or (V,(t + T ) v 2 (t) ,(1.2.4)

where the sharp brackets denote time average. Three functions derivable

from P.2(T) are of sufficient importance to hmve received separate names.

The self coherence function, F (r) r Ii ( r), is the complex auto-correlation

of the analytic signal asoociated with the disturbance at a typical point, PI, in

the optical field,

Fj11~) *Ii(r) (v (t + r) Vi*(t) ). (1.2.5)

As will be proved Jn a later chapter, the intensity at a typical point in the

field is the zero ordinate of the self coherence function, 1. e.,

1 (o) (O) (V(t) V1 *(t)) • (1.2.6)

This result may be regarded as a generalization of the familiar theorem for

morcchromatic 116-111t.

The Fourier transforms of the mutual coherence function and the self
,A

coherence function are termed the mutual spectral density, r (i), and the

spectral density, ,l 1(V) F 11 (v), respectively; i.e.,

(T)2 eWiT dT >. 0
f 12(v) F'(r) 2eIvr

- cc (1.2.7)

-0 v <0

The precise form of 'his tim', average It discussod in Chapter 2.

It will be proved in Chapter 2 that the -rods-cor elation of two analytic
sigmals Is itself an analytic signal, and hence r12(P contains only
positive frequency.

If
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and
00

Mjl(v) = f!il(T) e dT v> 0

-0 (1.2.8)
-. 0 •<0

In terms of these functions the comple-x degree of coherence (function) is

defined as the normalized mutual coherence function, where the normalization

fictor is the square root of the product of the intensities at P1 and P2;

Y 12 (T) = 11•0) , •(1.2.9)

By appealing to the Schwarz inequality, it can be shom'n that the modulus

of v12 (T) is bounded Uy zero aix one,

0 . I v1 2 (rj l - 1T) (1.2.10)

and these extreme values characterize by definition complete coherence and

complete Incoherence, respectively. It may be shown (see Wolf, 1955) that

Y1 2 (r) may be identified with the visibility of the fringes obtained by causing

Vlr(t) and V2r(t) to interfere with a path difference of VT, where v is the

velocity of light in the medium, assumed to be homogeneous. It is, thercfore,

clear that the above definitions are in agre(ment with the conuideration thiat

coherent light interferes and incoherent light does not. In fact the definitions

used here may be regarded as a rigorous generalization of those introduced by

SZernike (1038).

The essential mathematical structure of coherence theory is contained in

equations (1.2.1) through (1.2.10) except that the form of the time average has

not been explicitly given. This omission will be remedied in Chapter 2 where

alternative definitions of the time average are discussed.
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CHAPTER 2

MATHEMATICAL DEVELOPMENTS

The definitions introduced in the previous chapter employ the concept

of Gabor's analytic signals (see Gabor (1e46)); and since the development

of subsequent chapters makes extensive use of the propel ties of analytic

signals, it will prove helpful to discuss in some detail their mathematical

properties at this point.

The method given in Chapter 1 for ass.3ciating an analytic signal with

a given real function is patterned after the introduction by Wolf (1955) and

is useful in understanding the significance of the analytic signals. However,

for the purpose of the analysis given herc it ic more convenient to introduce

an alternative definition in terms of Hilbert transforms. The equivalence of

U-ese two definitions wVill be demonstrated.

In Section 2.2 several convolution-type theorems for analytic signals

are given. Section 2.3 presents a number of theorems concerning the cross-

correlation of analytic signals. In the final section the form of the most

gnreral unimodular analytic signai is given.

2.1 Hilbert Transforms

The Hilbert transform, V1 (t) , of the real function Vr (t) ij defined

by the relation

S vr (t') dt' and Vrt) I -- V (t'V (t) I -- ' -t

+ t. . . .- . .t
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Here the integral is the Cauchy principal value integral which may be de-

fined as

vr(t')dt' + ('

t v - t t't ]
....... (2.1.2)

However, in almost every instance it wil! prove more convenient to evaluate

the principal value integral by contour integration. To rewrite (2.1.2) in

terms of contour integrals we replace t by z. (z = x + iy where x and y

are real), and assume that the function Vr (z') is continuous in some neigh-

bourhood of z' = z.

The principal value integral way 'lien be defined by

Jvr z 2 ifr iz' + fz4+~ z~

..............................213

where th, integrals on the right are line integrals along the open curves C4+

and C . The curves C+ and C extend along the real axis from left to

right curving in semi-circular arcs respectively above a.-d below the ,oint

z' = t as in Figure 1. The value of the line integrals in (2.1.3) are of course

independent of the actual path of the curved part of C + and C as long as they

do not include sirngularities. The line integrals, therefore, remain unchanged

in the limit of vanishing radius for the semi-circular arcs. The continuity

of Vr (Z') in the neighboi1rhood of z' = z assures that in the limit the

contributions from the 4)per arid lower arcs will cancel each other; thus the
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C- 'To In-Ani1'y

ly F*JGuqc I.

equivalence of the definitions of principie value is enemonoirated.

The integrals in (2 1.3) are line Integrals; the patho by which C+ and C

are closed will of course depend on the form of Vr (z') in any gSlvcn problem

Ln term3 of the llilbe't transfo.,'m the analytic sigial may be defined as

follows: let Vr(t) be a real function of t such that its Hilbert transform,

I
V (t), exists. The analytic bigoal -ay then be defined as

V (t) = r r(t) + iVI/,. (2.1. t)

Actua (2.1.3) is a more gpnerai de~ini1on includlrg (2.1.2) as a special

case; for (2. l.& will not exist IV V (z') haa a pole at z' = z while i2.1.3)
will always exist except foi the cases of an essentiai singularity or bWanch
point at z' = z.

4* A•..Ficient condition for the existence of U.. Hilbert transform is that

V (z) be oquare integrabl2. However, as with the Fourier transform the
necessary condltiona for the existence of the Hilbert transform are no.
known. Since raany of the functions oc,'urrlng in thin -hapter are not equai-e
lntegrable but do posess Hilbert trarnsform.s, we aasume the weakzer condi-
tions that the transform exiMts and that the inversion theorem is valid
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The equivalence 0f thhi and the pre -Aous definition, (1.2.i) -

may be demonstrated as folio~vs: e.prcss V (t) as the Fourier integral

00

0 ] a(v) cos [ P (:) -2,t I dv (2.1.5)

0

Tike the Hilbert transforrn of both sides of (1.1.5) after settli:g t - z and

exi-esai'ug the cosine in terms of comrplex exponentia.s. Thus

V() a (v) dz'du'

(2. 1.6),"~ ~ ~ ~~ ii { ' "2.vz'!

+ a v) dz'lIv

Th, order of litegration has oeer. interchar•c,,i and, the inner integrals are

interpr,.lvc• as the live integral• In Figure I 1%he conr.our la closed at in-

finity 'eiow the axis in tie first int-grai and at infln.t sbove the axis in the

second integral. Since there are no pokcs within the contour in either inte-

grund eycept at z' = z, we obtain by the residue theorem

.0
V (t) -: a(.) sin [ • 0') 2 irvt I dv , (2.1.7)

wfiere we nave replaced z by t after performing the integration. Comparison

of (2.1.7) adj (1.2.2) establishts the eqayvalence of the two definitions.

It will be conveneent for later deveiopm rnts to list here several theorems

concernhig Hilbert trarsforms (CLf. Satemi M.nuscript Project 19.4).

__!
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Table 1

j1(Cdttl7bIeorew. f(t)7

Vr(tý V (t

Ii I1 t 
- V(t)

I V(t Vr(t)a

ITI V r( at) - 1(t + at)

IVa) Vrt (t + a) Vl(t'ý ~-/ (t)dt

td

2.2 Cenvoluotjo Thjeorems fz)r Analytic RItgngisi

We sai. ý rsquire several theorems coklcernirig the crogs-correlutton of

an~alytic si~~ais. Since these tbeora~ri% do not seem to appear in the literature,

we WWiaI gi-n a detailed derivation of tthem at thIis jpo.trt Bes of thi- coal-

pllcaion Litmo~uced by the Urne avi~rage in the cros -correlatien NruCt1eii,, we

shall lrst deaorstratt tht~s-e theorezes in ýermv (:f convc,"ution int'gzsils alrsu

latcr deriv.? the cc-rrcdtt1U.ýnibLoxems from them.

TheCrim 'vI Tb. i'onylu~n 1w, t-o res1 ftuictions Y at) r fý(.) isz

Nqual kb .~ Ci coveMioti of theIr Hilbert tra tfozris, g1 j ,~d 2 t (in~ the enrne
orde;), 92(,t

_ _o__ __I



1?

j (t) q(t + T) dt g1(t). 2(t + r) dt. (2.2.1)

The proof of this theorem can be cbtained with the help of Theorems I knd U

of T•ble 1. Let

Vf(t) ( 2 (t + Tr) dt (2.2.2)

Apply ng the inversion theorem (Theoem I, rible 1) twice to both sides of

(2 2.2), we obtain

IT2r(~T") jf. -i 1(t) f2(t ' ijdt dT d~i

...... .( 2 2 .S)

UVsf Theorem 'a of Tible I aiftar invertlng tho order of integration, we find

that

12 f, T" 1)d ' 224IF(.r) .~ f ..••-.-j 7 ,T' (t) g2 (t + r) ct d'r . (2.2.4)

Jnfi3d&.tci* A. nev variabl* T - t + rT' we obtain

sor
F(ff 92- ( ) (2.2.5)

-f -T")

'I
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Uskh4 Teoxtya r ag ain we M-Ally hwve the result O~at

-( I gj ( I 'r) 2 (rýdT (2.2.-)

On S~tting -r -t (2.2.6) redu-es 1.0 fi?2.) a&id the thi.eAn i s
demons trated,

TwO special cases of thLvrem. (2.2. ') are 0' pa rticulr intore~lt. 'Ttp

first -agse, f8 tsr()( 1,2), leskds to

'TNP secortl c~asu, i (t) v i.(t) Ar'..- fl(t) . V1 (t). ICaoi% W'

j V, r(t I1 (t + r~t r V1
1(t) V r,+T dUL (2.8

Usin I ) 1 n (2.2.8', *'e irna&% Ua~teZo~ ~i)f theiruii Jok am.lytic

C. lgP&aL fron tttc *;)Me* O' Le ACK!Aft~geS Of thirs C01aplAX -!QrznuAW,, wUIl

be clves~. Consaider the iiniegral

wL eVOt (a 1,2) is of the- fberr, &3b:.) Sstu.itvtb frixt (2.;.4)

into (2.2.9) and usbr* (2.2.71' and (2I.ý., w,ý cbtain

VAF
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V1 (t) V2* (t + ) dt = 2 V I r(,) V2 r(t + T)dt (2.2.10)
g-o -OD

Go

+ 21 f Vlr (t) V2 i(t + T)dt

-00

Equation (2g. 10) exp•esses the useful result that the real part of the ronvolu-

tion of two analytic scigaals is, apart .'tom a factor of two, tMe convolution t.f

the real fur ".ni; -•h which they are associated. Another useful property of

the anal j 84,nalii is seen by putting V,(t) equal to V2 (t) in (2.2.10). Thus

2 /V(t' V1*(t ., ")dt jVIr(t) V1r(t + 7)dt

"-400 0

00 (2.2.11)

+ I v 1 r(t) VIi (t .- iTcdt.
-00

We may now evaluate the second integral on -he right as follows: using (2.2.8),

go go

fVIr(t) V1 i(t + r)dt= - fVi(t) V r(t + Tr~dt

(2.2.12)

or evaluating (2.2.iA) at T -- 0 we find

00

'Vlr(t) V ,'0d - (2.2.13)

.. , V 1i) and v1 i(t) are orthogonal. Evaluating (2-2.211) at T- = 0 and

using (2.2.13), wu obtain

7Vl(t) V ',,(t)dt 2 fVlr(t) Vl '(i)d!t (2.2.14)

1 1 1o "
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Equation (2 2.14) expr. ses a secono important property of the analytic signals;

namely, the integrhl over-all time of the squared modulus of an analyUirsignal

Is, apart from a factor of two, the integral over.all time of the square of the

real function with w6ich •. • associated.

An additional theorem on the convolution of analytic siý,nals, which will

prow. -..rjortant in the next section is :

Theorem VII: The convolution of two analytic signals is itself an

analytic signal. To demonstrate this theorem we write

F( 2 r) 2V 2 (t + r)dt (2.2.15)

Using (2.2.7) and (Z.2,8), (2.2.15) can be rewritten as

F(T) = jVlr(t) V2 r(t -Tr)dt +JV~i(t) V2 (t + T)dt

4~~~ ifx~~
, r(t) 2 (t + T)dt - V (t) Vr(t + 7rdtj.

....... (2.2.16)

Denotir•g by R and I the real and imaginary parts :respectively and taking

the Hilbert I-ansform of the real part of F(T) we obtain

40•

-f R{:r) z - I (F(1), (2.2.17)

-00

and TncC:,9m VII is demonstrated.

"The results established L. thir section are, of course, applicable only

to convolutions and the definitions introduced in Chapter 1 are in terms of correla-
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tions. We shall show in the next section that these theorems are also valid

for the cross-correlation of amulytic signnIs if the time average is suitably

defired.

2.3 The Lýrrss-Correlation of Anal.t cipn_

The complex cross-correlatior function may be defined in several ways.

ThP cusomary definition is (c.f. Daverport and Rcot (1958), page 70)

T

'•1i2( =T.i T- ffl(t) f2*(t ,. r)dt. (2.3.1)

However, for our prevent purpose the mnutual coherence fknction, F1(T). is

defined as

r1,2 •1 ". VI(Tlt + T) V2 *(T, t)dt, (2.3.2)

where

V(TIt) Vr(T,t) - iTV (t) (2.3.3)

and

V vF, Iti < 'r t, (2.3.4)

t 0 otJ > T)

and

TVa I (t) -rj(Tt'dt (2.3.5)

The different notation, Vr(T,t) anr TV (t) , is used since, while er(T,t)

vanishes for It 1> T, its Hilbert trarnforvn. V (c wIJ no' in general

TI
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vanish in this range. Since Vr(t) Is assumed to be everywhere finite, the

function Vr (Tt) is square integrable: its Hilbert transform TVi(t), is

therefore also square integrable (c.f. Titchmarsh (1948)). Consequently,

all the required Hilbert transforms exist. The equivalence of the two defini-

tUons of an average, of the type (2.3.1) and (2.3.2) is discussed by Born and

Wolf (see Born and Wolf (1959), page 496). For olur purposes it is more

convenient to employ the definition (2.3.2) and accordingly the sharp brackets

are defined as

(V VIr(t+ T) V2 *(t)) = lin A fVl(vPt +T) N2 *(Tt)dt.

The presence of the parameter T, in V(Tt) in no way affects the argu-

ments of the previous section; and the operatiov Ti will commute with

the integrations involved, since T- and t are independent variables. The theorems

established in Section 2.2 may, therefore, be taken over mutatis muuYndis for

the cros' -correlation function F2(T) Thus .if we adopt the notation

rr(l) - (Vlr(t + T) V2 r(t) (2.8)

and

(T = vcr(t + T) V2 1(t) (2.,1.P)

We m2y summarize the principal theorems a3 follows

= [ r1 r (T) + i 7~r) (2.3.8;)

rri(0) 0 (2.3.9)

(



Setting VI(t) equal to V'2 (t) and r = 0 in (2.3.8) and using (2.3.9), we

obtain the result anticipated in Chapter 1, Section 2, viz.,

r1 l(0) = 2 [11 rr( 0) = 2 (P1) , (2.3.10)

where I(PI) Is the intensity at P1 . Further it follows from (2.2.19) and

the arguments of this section tnat
? M• rr(T)T

i() ir 1 1 12 T T' -.

-00

Thus the mutual coherence func,""on is an analytic signal.

For the sake of continuity in latei arguments we include at this point

two lemmas concermni complex cross-correlation functions. Both of

these lemmas re well-known and follow immediately from the definition

of 2 (T) and the stationarlty condition; they are, therefore, given here12

without proof:

Lemma I
-= " , (2.3.12)

and
Lemma 1 , A

'21 f= 2 (v)(2.3.13)

The hooked notation is used to denoue temporal Fourier transforms, i.e.,

"A 2TdIv r
""2V) _ I r-(2)e (2.3.14)

-0 vK.0

1
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The spectrum of r"2(7) is zero for half the frequency range, since the

mutual coherence function is an analytic signal.

2.4 The Most General Unimodular Anaytie Signal

We shall be concerned in Chapter 3 with the determin.tion of lmiting

forms of the mutual coherence function fcr coherent and incoherent fields,

The form of l72(T) for coherent fields will be shown to be

r IT)l i' 1260')

12, ~ (0)jF' (0) e (2.4.1)

where e 12 is a unimodular analytic signal. The deterwuination of

0 12(T involves the solution of a singular liitegrmi equation; and since this

solution is rather lengthy and purely mathematical in nature it will be included

in this chapter.
il( T)'012(r

Since e is an analytic signal, its real and imaginary parts are

Hilbert transforms, i.e.,
00

nI f l2cos )d0' ((.4.d)
sin 012 : T'

Using the Inversion theorem, Theorem I, Table 1, we may write

CO (1= 1 f sin *12( 4')dr (2.4 -,
coo 012(7 = ' - (

-00

Combining (2.4.2) and (2.4.3) we obtain

i0l2(T) i f e.ý12(T'dT' (2.4.4)

e _ _L I
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Here we have dropped the subscript 1, 2 since the development of this section

is not concerned with the space dependence of 012(T)

Equ,,tion (2.4.4) is an integral equation for 0 12 (r), and may be recog-

nized as a singular form of a Carleman-type equation, i.e.,

f(r) = xJ'f(r') dr' + x,) , (2.4.5)

where x is a generally complex constant. The general solution to (2.4.5)

is (c.f. Tricomi (1957), page 175)

fr( :t(T) + •X (T') d T' (2.48)1~r + 2 1 2 T

However, since in (2.4.4) X = i/v and x(T) 0, the solution, (2.4.6)

becomes in this case indeterminate. In fact it is clear that (2.4.5) can have

no k. ution for K(T) = 0, except possibly for the eigenvalues, X = + i1k

This singular form is solved here Vy utilizing the properties Gf analytic func-

tions. To this end we replace the real variable T by a complex variable,

. •x + iy; and write (2.4.4) as

f(z) = (z ) dz , (2.4.7)

where

f (z) e i z)(2.4,B)

Since 9 ,x) is a real function, we have

S-(z) O(z) (2.4.9)



26

here and throughout the rest of thle section we use the bar to dunote complex

conjugate. In the subsequent discussion we shali treat only the case X = -i/i

since the argument is ebsentirily the same for the positive eigenvalue.

It hae been pointed out in Chapter 1 that the term analytic signals derives

from the fact that these functions are, when considered as a function of a com-

plex variable, analytic in Wlf the compley plane. Since extensive use of this

property is made in this section we shall digress briefly and demonstrPte it.

Let U(t) be any function of the real variable t such that the integral

F (z) r T- J z (2.4.10)
t I f

exists. Then the function F(-) is analytic in the lower half of the complex

plane (c.f. Whittaker and Watson (1950) page 92). Equation (2.4.10) may be

rewritten as

F(z) = d + wi U(z) , (2.4.11)

where Cauf..y's theorem has been used.

In the limit as z-.*x from below the real axis
00

F(s) F(x) =-T + ii U(x)

Ustf t (2.4.12)

From (2.4.12) it is clear that the analytic signals may be regarded as the

limit 2A the real axis is approached of a function analytic in half the complex

plane. 01, conversely, if in an analytic signal the real variable is replaced
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by a complex one the resulting function is analytic in half the complex plane.

For our present problem, the solution of (2.4.7), the domain of analyticity

of f(s) may be extended to include the real axis since 1.) (2.4.9) excludes

the •ossibllty of poles or essential singularities on the real axiL and 2.)

physically we require f(t) to be unique which excludes branch points on the real

axis.

Apart from the trivial soiution of f(z) identically equal to zero, the

function f(x) can have at most isolated zeros in the lower half plane. This

conclusion foUows from the analyticity of f(z) in that domain (c.f. Titchmarsh

(1939) page 88).

Equation (2.4.9) expresses the value of f(z) at all points in the lower half

planm in terms of its valums at conjugate points in the upper half plane. Further,

(2.4.9) irAicates thai corresponding to every zero in the lower half plane there

Is a pole at the conjugate point in the upper half plane and conversely zeros in

the upper half plane correspond to poles in the lower half plane. Hence, there

are no zeros in the upper half plane and the singularities in Vite upper half plane

are .solated. Furthermore, the singularities in the upper half plane are poles

and not essential singularities; for by the Welerstras theorem (c.f. Tltchmarsh

(1939), page 931 In every neighbourhood of an isola~ed essential singularity the

function tends to any given limit an infinite number of times, and thi" behaviour

would by (2.4.9) be reflected into the lower half plane. That ia, an e.,•ntial

singulnrity in the upper half plane would necesarl!y correspond to an essential

singularity in the lower half plane. The preceding argument does not exclude the

possibility of essential singularities at infinity since infinity is not an isolated

point. In the same way a branch point in the upper half plane is excluded since

it would imply a branch point in the lower half plane contrhdicting the requirement t
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of analyticity. We may conclude, therefore, that f (z) is a meromorphic func-

tion, i. e., its only singularitied for finite z are poles.

By a modification of Hadamnard's .heorew, (c. f. Titchmarsh (19), page

284g where a full discussion of tfe concepts employed below is given) any

meromorphic function f (,&) may be expressed in the form

00

T7ic Pl JQ(Z)

f(z) n• - e (2.4.15)

E ? ,P2

where Q(z) is a polynomial of orderN; F- E(• ,p) iK s
tn

the canonical product of the primary factorti

2 up
E(u~p) - (I - u)• e (2,4.16)

an and b, are the zeros and poles respectively of f(z).

The genus of the canon.lcal product satisfies the inequality

P) (JP 1.,2) , (2.4.17)

where p Is the order of the mevomorphic function. The order, N, of the

polynomial, Q, also satisfies the i.equality, (2.4.17), I.e.,

N <p. (2.C.18)

From the previuus argument it is clear that che poles and zeros oc-!ur

at conjugate points, I. e.,

-b (2.4.19)
an n
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Therefore, using (2.4.16), (2.4.15) may be written as

go' -• bj= f + n.• (-ji ),

n=--1 .• L
an

...... (2.4.20)

where we hPve set

in

Q(z) = b zJ (2.4.21)
J=o

and m is the largest of Lite integers, pl, p2, N. After settirg

icj - _ _--L (2.4.22)j nI - j an j

where c is a real constant, (2.4.20) can be rewritten as

- ~ D (bj j)_
=� =o . (2.4.23)

n=1 x

n

However,
i(bm + mz

f(z) e (2.4.24)

when ZI -•w but (2.4.24) has rm poles and mn zeros eqt1&ly spaced on

the Mircie it infnity; and, therefore, if m > 1, f(s) has singularid1es in the

lower hall plane. We conc>.We. therefore, that the mcot gerM:al allow.Able bOiu

ticn is with m = I T"e expresion (2.4.22) becomes finallP.;

! " ,
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,a +f i t) '

a tneromorl'dc function of orier 1. Thus we have established "he following;

Theorem VIII : The most general uimixmxuha r a-miytic sigpal is a

meromorphic funztiorý of order one with zeros z t an -zty in_ the lower half

plawe And with polas at conjugate pointe in the upper hail plane a.:6 is given

by the formula (2.4.25) where 0 Lnd y are real canftaitJ ar-d the imagiriary

part of a. ! greatcr than zero.

I
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CHAPTER 3

SOME IMPLICATIONS OF COHERENCE AND INCOHERENCE

In Chapter 2 it was pointed out that the modulus of the degree of coherence

is bounded by one and zero and that these extremes are by definition charac-

teristic of coherence and incoherence i'espectively. For quasi-monochromatic

light these dednitions are in accord w~th the consicieration that coherent light

interfere" and incoherent light does not. (See Wolf, 1954.) However, in this

chapter we are concerned with the implications of coherence and incoherence

on the form of [12(T), for fields of arbitriry spectral width. In a detailed

ana!ysis of such fields in which the terms "coherent limit" and "incoherent

limit" are to have a clear and unambiguous meaniig the above defiritions must

be more precisely stated.

The ambiguity which arises in the study of polychiomatic fields stmz,

from the fact that the modulus of the degree of coherence between the dietltr-

bances at two points is a functi.n not only of the position of t--, two 9oirntx but

also of the time delay . Thus it is possible that c.r %'•ow'e valuer, oi r

SAY I and T T k lvl(Y 0 for

the same pair of disturbances in s'ach fLelds, and tr.n lhmtingt conce:)ts of

zoherence and incoherence become ambigucus.

"hiis difficulty does not ai ise in the study oi quasi- rmnochromatic lignt

for the approximation characterizing -;,_:ch feieds makes the rnodulu' o. Ethe de-

grez of coherence irdependent of - for a" valuet of for wN!h the theo.y it

appli"ble. T'his conclusion is evident fLorn the, foilowing conside-ations. For

qua,'I-monochromatIc light the mutual cokierence functkin ior sufficiently shnail

T is iven ay (a" Appendix 2)
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-2r7p2 (T

Hence

-gPT 1}

Y12 - 12 (O)e ( I Y <-

and

Y1i 2( ' •ý<

Here P is the mean frequency and Av Lb the spectral widC: of the tllu-mintIon.
The ambiguity which arises In discussing polychroinatic ilght will be

removed if for the lmit~ng cases of coherance an4 tnipooherence we demarA.

that the modulus of the degree of coherence be r-independent. Accoxdingly,

the foilowing definitions ure, irt-o~uced

1 The D1STURRANC% V (t) Pnd V2 (t) will

he described wi coherent if iO j I

for a!l r atnt tncd+erent if j 2(T) 0

for all r.

U. An OPTICAL FIELD will be said o be

caborent
jinco,•rent } if the disturbances at aHl

oamrs of points in the fle..J are {ncoterent

ui)n1e.hrentn

I for ,. cohe~nt field, and

-(TI , -0 'or an .ncch.rent field.

Since, n tr.e past,dibtalled arIyixhas Iae Leern limited tc quadi-monochromatic

light, it o. clear from the abovy discusaion that tiM modification of the defini-

tiorin can•ro lead to contradictiin witl, the werk of earlier writers.



33

Thr., inalysis oi the general, properties of partially coherent wave fields

!.s conveniently performed in terms of the mutual coherence function, j12(r),
rather than the uegree of coherence, V 12 (7) . We shall, therefore, examine

the irmplications of the 4bove defhintions concerning the form of tie mutual co-

herence function in coherent and incoherent fields. These limiting forms of

112(T) will prove useful in exantning the extremk:a of the propagation law

obýained in Chapter 4 and in recovering the familiar forms of element.: ry

optical wave theoiT from the generalbed transfer functions intrv:4'.ecd J,.,

Chapter 5. Apart from thesip immediate applicatc, ,s, the limiting .forms of

the mutuai coherenci function wili prove useful in the. 'own right since they

will provide insight into the structure and questions of e>ý iztence of cohc rent and

ýacoherent fields.

3.1 Wave Equations for the P."'pagatlcn of F'(T.)

The determination of the forri of r"2 (r) for coherent an, i incoherent

fields wili be seen to be intimately connected with the fact that In vacuum

12(r) la propa,"tr-i (rlgor-c•usly) accord:Lg Zo the wav:e equatiuns

I --- -2. . ... (s 1,2). (3. 1. 0
aT

Here V 2 is the Laplacian operator in the coordinates of Ps and c is

the velocity of light In vacuum. For Ihls reason !. will prove helpful to digress

brLefly and derive these equations.

As pointed out in Chapter 1 we consider tlih optical fiele to b.x characterized

by ai real scalar function, V/• t), which in vacuum satisfies the equation

!* these equations were originally derived l~y Wolf (1,55) by different
arguments.



34

7 r =v - M (3.1.2)

We recall that

Vi(t) = - V (t't. (3.1.3)I t-'t

Operating on both sides of (3.1.3) with the Laplacian, V2, we obtain

2 0 VI 182 Vr(t') w

V2 v(t) - fV rt')dtt - --l1f - t- dt'

f. f t' t
-- -

And using Theorem V of Table 1, we have

22 V1 (t) VL (t) (3.1.4)

Next we multiply both sides of (3.1.4) by I and then add (3.1.2) and (3.1.4)

we then obtain

v2 V(t) 1 L ti (3.1.5)

where V(t) = Vr (t) + I Vi (t) is the aRfaytic bignal a3sociated with Vr(t).

Thua, not only the real disturbance but also its associated analytic signal

satisfies the wave equation.

We recall that the mutual coherence functlo't is defned as

f12 < V I t + T) V2  (t)> . (3.1.6)>

Differentiating both sides of (3.1.6) with respect to P, and P2 separately,

formally interchanging the order of differentiation and iotegration on the right
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hand side, using (3.1.5) and tl~e stationarity of V(t), we obtain the twG wave

equations (3.1.1).

3.2 Polychromatic Fields

In this section we shall study the limiting forms of Ute mut-ýal coherence

function without mnaking any approximations P s to the spectriol width of the

illumination. It will be shown that an optical field is coherent if and only it it

is monochromatic. Further It will be shown that a coherent field is com-

pletely described, including its coherence properties, by a simple wave fuactlun

(depending on one point only).

It will also be shown in this section that an incoherent field cannot exist

in free space even if the illuwinxtion is polychromatic. It is possible, howevar,

to define an incoherent .ou• nnd the definition will be seen to be consistent

with the above consideration namely, that an isico.yrent Iure, as defiied here,

always gives rise to a partially coherent field.

3.2.1 The Form of ( or a Coboreat Fit.ld

Coherence is characterised by

YA 1 (3.2.1i)

which implies (c.f. Chapter 1 (1.2))

r72(T) ±A, A2 e 102y (3.2.2)

In much of the current literature the term monochromatic inerroneously used to describe light with a small but finite spectral
width. However, the term is used here in its strict sense.
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Here we have set

R = - fss(O) (s - 1,2) , (3.2.3)

and * 12(7 is a rea, function of the time delay T, and the coordinates of

P1 and P2. Since r 2 (T) is an analytic signal, the function e

is a unimodular analytic signal. Hence, according to Theorem VIII (Chapter

2) it must be of '•e form

662 + A1 *•2 e|- a a

n=l an •a

.................... (3.2.4)
*

Here the an are com~plex condtants witi1 complex conjugates an ; and the

fmn.ginary pt~rt of each an 's greater than zero. In (3.2.4) e

is, when considered as a fmnctiou of a complex variable, z, a meromorphic
*

function; and the product is taken c: "r ali the poles z = a The a
nn

are all finhe and non-zero. The constants 0 and L'0 are real. While

(3.2.4) reprebents the most general unimodular analytic signal, it can, as

w~li now be shown, be interpreted as a mutual coherence function only in the

degenerate case where

k( •3 + 2ty )

"12(T) = A, c (3.2.5)

By defintition [1',(TI represents the complex cross correlation of the

disturbances at two points, P1 and P2 , in the field. Hence, when P1 coin-

cides with P2, the corresponiding mutual coherence function, r71(•-), I, a

complex auto-correlation function. The real part cf Fj( r), is the

NL
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real auIto-correlation fumction

•1(7~) = 2 f7 1rr(0 ) = 2 <V~r (t + T) V r(t) >, (3.2.6)

(c.f. Chapter 2, section 2). Therefore, using also the fact that the field is

stationary,

1rr(T) = lrr(-7 , (3.2.7)

(cf. Chapter 2, section 2). Ibis condition, (3.2.7), may be expressed by the

statement that

rr(T) sin 2 •Vr dT O (3.2.8)

for all v. In Appendix 2 of this thesis it is shown that (3.2.8) can be satis-

fied if and only if (3.2.4) assumes the degenerate form given in (3.2.5), i.e. if

2 -2 i(v 0 r + jT+
I"i (T) = Al e (3.2.9)

'Th-e physical significance of (3.2.9) is that ai the energy in the field

st P1 is contained in the single spectral component Y0 . Since (3.2.9) is

valid for all PI it is clear that the field is everywhere monochromatic.

Further, since (3.2.9) is deduced solely from the time dependence, the

"constant" v0 could in principle depend on the coordinates of PI; but Lhe

cross-correlation of two monochromatic disturbances of diLferent frequencies

is ident.cally zero, and therefore v0 must, in fact, be a true constant charac-

teristic of the entire field. Since the field is everywhere monochromatic of

* j frequency vo, the T dependence of r12(T) must be of the form

r,2TiF02 e (3.2,10)I•3.) = ,z
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where F1 2 is a function of the coordinates of P1 and P2 only. From the re-

quirement that the field be coherent, (3.2.1), and the fact that the field is

monochromatic, (3.2.10), it follows that

r12 (T) = A, A2 e (012 + 2v 0 7), (3.2.11)

where l12 is a function of the coordinates of P1 and P2

The form of the function 0,2 can be deduced from the fact thatr12('0

satisfies the two wave equations, (3.1>. Substituting (3.2.11) into (3.4) we obtain
2 +kI 2  i il2

[V a 2 ] A1 A2 e = 0 (s= 1,2), (3.2.12)

where kI 21 a0/c. Performing the operations indicated in (3.2.12), we find that

-• •+ + k2 + i[V1 2 12 + A 0;Al (VI 12 Ivi012 + Alo

...... (3.2.13)

and a similar equation involving V2 and A2 holds. Equating the real and

imagint.y part# of (3.2.13) separately to zero, we obtain the two equations

V1
2  f12 0 - 2(V 11312 ) . (VIA,) (3.2.14)

and V 12 A l 2

(VI 12) Al + k2  (3.2.i~
SA1

The right-ha-id side of (3.2.15) is a function of the coordinates of Pl only

and we can therefore write (3.2.15) in the form

(V9.12)2' f2 (Xl, 1 ) Y (3.2.16)
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On the left side of (3.2.16) the coordinates ui F2 (contained in 012) may be

regarded as parameters. Equation (3.2.16) if. therefore, of the form of the

eikor.al equation of geometrical optics or the hamiltc.:-Jacobi equation of dy-

namics. The general solution of this equati, ,n is well known (c.f. Born and

Wolf (1959), page 721), Let 80 be the value of p,1 on a surface over which

it is constant (independent of Xl; Yl, pl. Then the solution is

012 = 0 (p,q, x2 ,y2 ,z2)+ f(x,y,z)ds; (3.2.17)

where the integral Is taken along the extremal of the variational problem

P J
6 f(x yv1,,) Is = 0 ; (3.2,18)

0 0
and P0 is a typical poiit on the sucface 312 . Further p and q are

two free paramt ters wLici may be regarded as characterizing the orientation

of the surfaceil1 2 -

It is clear frcr luation (3.2.17) that 0312 may bo, expressed as

1 1'p.) + 32(PZ . (3.2.19)

wher, 01 and '2 depend only e.n the coordinates of P1 and P2 , 1espectively.

Hen,:e (3.2,11) becomes

f 2(T) [ A1 e A e (3.2.20)

f
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Interchanging the roles of P1 and P2 in (3.2,20), and using Lemma I

(Chapter 2), we find

AI(P 1 ) = A2 (P 2 ) , (3.2.21)

and

p 1 (P1 ) =-2(Pl) + 2 n , (3.2.22)

where n is any integer. If we now introduce the function

U(P) = A(P)e ip(P) (3.2.23)

we may rewrite (3.2.20) in the form

, 2witT

r12 (T) = U(PJ) U (P 2 ) e 0 (3.2.24)

Thus in a coherent field r?2(T ts of the form given by (3.2.24). That

twa converse is true, namely that a mutual coherence function of the form given

by (3.2.A4) always characterizes a coherent field, may be seen by substituting

(3.2.24) into the deflnition of ["2 (T), (1.2.10).

Thus with no approximation on the spectral width of the illumination the

following theortms have been eatablished

Theorem IX An opticai Oit id is coherent if and oaly Jf it ts mcnc-

chromatic.

Theorem X: The mututal coherence function for a coherent optical

field can be expressed in the form given by (3.2.24), i.e., as a simple periodic
-2 Iriv YT

factor, e , multiplying the product of a wave function, U, evaluated

at P1 with its complex conjugate, U , evaluated at P2

t
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3.2.2 Form of [2(T) for an Incoherent Field

Incoherence is characterized by

Y,2(, I 0 , (3.2,25)

which implies (s•ince the intensity, f's(O), is assumed to be finite)

r2 (T) 0 (3.2.26)

However, by definition

rI(T) = I(P 1 ) < -1 -) V I(t) > . (3.2.27)

The auto-correlation function, [j1(•) , is called the self intensity; and it

is clear from (3.2.27) that, apart from the trivial case of an identically zero

field, the self intensity is not identically zero. From (3.2.26) and (3.2.27)

it follows that C e mutual coherence function in an incoherent ileid should be

of the form I P P2
() = .(3.2.28)

I(P, T) P1  = 1 12
i

By a simple generalization of the argument used by the present author for

quasi-mo.-ochromatic lllumination* (see Parrent (1959b)) It will be shown that

[12 ( 7) cannot be of the form given by (3.2.28) and at the same time satisfy

the wave equation (3.1.1). This theorem is most easily demonstrated in ttu

irequency domain. Accordingly, we introduce the mutual spectral densitb,
A
12 (,), which may be defined as th, Fourier transform of r12 (r), I. e.,

Actually the argument used in that paper is slightly different from the argu-

ment given here but the general structure of thf. ievelopment is the same.I'
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F72(v) = E.2(.e aT. (3.2.29)

It has bern shown (Chapter 2) diat, since C?2 (T) is an analytic signal,

r'u12(&) 0 for negtive v. By the Fourier inversion theorem it then

follows that
00

F12 (T) = JI12(v) e dy. (3.2.30)
0

Substituting from (3.2.30) into (3.1) we obtain

+ 1KI• f12 (v) 0 (s = 1,2). (3.2.31)

In terms of [12 (v) (3.2.2 ) can be expressed zs
S0 P1 P2)

A 2 f(P0, (3.2.32)
SI (P, V) Pl = P2

where .(P,v) is the Fourier transform of I(P,ii.

Let V be a finite volume of space th.oughout which the field lic

assumed to be incoherent (i.e. (3.2.32) satisfied throughout V ). Let ýr_

be any closed surface containe! in V . By repeated applicrtion of Green's

theorem (see Parrent (1959b), or Chapter 4) we obtain the formal solution to

the Helmholtz equations, (3.2.31), as

A GFar2()) , v) -- L -a d Žj d 2
(2~ 2 JJf iS 2ý

where G1  and G2  are Green's functioihs

tt
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satisfying (3.2.31) and vanishing o'ver S1 and S2 are point3 on

and P1 and P2 are pciits within --.

Since in (3.2.33) we allow S, aned S, to explore the surface S inde-

pendently, the integral is four-dimensional. The integrand is, however, only

two-dimer.siona7 ,s-ce it is non-zero :-ily when tne two points S1 and S2

coin.clde. 'Vif,)efcre, if (S.,S 2, A) is assuined to he everywhere finite the

integral is 'den,'a'.,' 0-1(0, I.Ce.,

["2 (v) 0 , (3.2.34)

for all P 1 and p2 (includln., P, "2). Ah's nonclusion, however, con-

tradicts the assumption that (3.2.32,) ii; ,•atistted throughoLt V We thus

find,

Theorem XIl An incoherent field cannot exist in free space.

However, following Blanc-Lapierre and Dumontet (1954), we may define

an incoherent source as one for which the uiutual coheicncc funt is of the

form

I72( '(P 2,T) (P2 - PI) (3.2.35)

for all pairs of points on the source, where 6 is the Dirac delta function.

3.3 Quasi- Monchromatic Fields

The theorems derived In the previous section are valid for illumination

of arbitrary spectral width. However, in most of the currcnt app•ic-,ons of

coherence theory one deals with quasi-mc nochromntic iliuxnination. Further,

as pointed out in Chapter 1, most of the results of coherence theory established

in the literature are applicable only to this special case. Thierefore, to re!ate

the results obtained in this thesis to application and to investigations reported

in the literature, it will prove useful to examine in some detail the limiting forms a

of &ome of our formulae for quasi-monochromatic light.
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An optical Pield is said to be quasi-monoc'iomatic if the spectral width,

A , of the light is small compared to the mean frequency, v i.e.,

A__•__ < i.(.3.3.1)

More precieiy, F and At may b• defined in terms o! tUle mutual spec-

tral density as*

r I A2

(3.3.2)

(''2(V dy

and

dv.

^ I2Y,) 2dv

It can be ahown that when (3. .1) Is satijfied the mutual cohererce !nc -

ton may be expressed in the form (c.f. A)pendix 2)

ý172  r I 2 ())T) -2 .iTrK (3.3,4)

provided we restrict our attention to sufficiently small t'.re difference j, 's ii,

dicated on the right In (3.3.4). Quasi-monochromatic fields may Iý. uv'•i-

lo be coherent if the condition

,Y12( T 3. .5)

is satisfied. Adoption of this considerably weaker condition is Cquie'alet to,

* Following Wolf (1958b).
b
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examining oriy thU central &rirnges in a Young';3 interference experiment used

to measure the d&,gree of colhrence. %ch a "modified dfMinition" is reason-

able for quasti-monochromatic fieids since monochromatic il',urmnation is an

•.nrealizable 1!AealizaLion.. a.1 light of sufficieatly narrow 3pectral width behaves

ab cohernt light under suitalle ,ond.ions.f* *

Substituting from (3.3., into the wave eqtiation" (3.i.i), we obtain

[. - 2 } f>'o') = 9, (s = 1,2) (3.3.6)

where k is the mean wave number. Combining (3.3.4) and (3.3.5) we find

the mu..!a' triensity for coherenit ouasi-monochroiatic fields to be of the form

A, A, 12 (,3,3. 7)ro = A1  A e , (" .1

wh:.,' :, oefore 1., Fs(O) - As. From (3.3.6) and (3.3.7) and the

argumenth of Section• ' of Ul!ýs chapteýr we obtain the form of Theorems EX and

X for the quasi- monochromatic approximation.

Theorem XI0 . A quasi-monochromatic field is coherent if and only If

the mutual intetilty can be expressed as the product ot a wave function, U,
*

evaluated at P, with its conmplex conjugate, U , evai•uated at P2, i.e., if

1 2 o U(P1)U (P 2) tJ.3.8)

U(P) is the function defined i• Section 2.

This result is i' -g-een•iett with the observation that, for the purpose of

cali.O'fiing the intensity in dtiffr:.ction phenomena involin-g snort path differcnces

We point out that quasi-moi .ocnromatic light may a.ss,: be incoih-rent or
partially coherent, c.L. Chapter 4 of this ti-esis; on the other hand,
monochromatic light is aiways coherent.

L
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one ,may treaý coherent quasi-monochromatic fields as monochromatic. That

a coherent quasi-mcnochromatic field .- completely specified by a single moo--

chrnmat.c wave function Ue~t

The theorem of the preceding section, which states that an incoherent

optical field cannot exist in free space, is valicý in general and hence is obviously

true for quasi-monochromatic fields. The theorem may, however, be demonstrated

directly for the case considered here (this re"ult was originally obtained for

quasi-monochromatic fields in this manner (see Parrent (1959b)). An incoherent

quasi-monochromatic source may be defired, by analogy with the general case,

as a source the mutual intensity of which is of the form

[2 = I( 2 ) (S2  - S1 ) (3.3.9)

'I
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CHAPTER 4

THE PROPAGATION OFr PARTIALLY COHERENT LIGHT

The laws governing the propagation of partially coherent optjfal fields

have been of central importance in the development of coherence theory. The

most important of the earlier contributions to this aspect of the theory is a

theorenm discovered separately by van Cittert (1934, 1939) and Zernike (1938).

Under suitable conditions on the spe 'trai width of the illumination (quasi-

morc),.hrotnatic light), this thecrem expresses the mutual intensity on a plane

illuminated by an incoherent plaae source in terms of the intensity distribution

across tn, source. In the same paper Zernike also derived an approximate

jaw for the pro magation of the mutual intensity€. Later Hopkins (1951) derived

thes. theovems in a different way.

Mn tie formulation of coherence theory uscd hene thece theorems will be

seen to be limiting or apuroximate forms of a Green's function solution io the

wave equtmions which were dex~ved in Chapter 3. In the preoent cnapter we

will o,,t, .n the general solutica for the propagation of mutual coher2r, ce from

a plane polychroniatic p•.rtiaily coherent source. The limiti:ig formns of this

general solution will be examined in some detail both for sources of wide and

small spectral ra.-ges, and the van Cittert-Zernike the)rem will be shown to

ropresent an approximate forrii of the incohc-Ont limit of the quasi-monchromatic

solution.

4.1 General Solution for �he Distribution o Mutual CQ.h ,rcr#ce frorml a Pll
Source

In thiks secticr we shall determin, the mutual cohex,,mc'e funrfion for a

field created by a piane polychromatih" source. li Figure 2, which serves to

define the co.rc'nates, a is th- plan, containing the extended polychromatic

1
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source with a known distribution of mutual coherence. P, and P2 are points
in the illumninated, field and S. and S. are points in the plane of the source.

Pl and are the mirror images of the points PI and P2 respectively in

the pl.ane 7

As shown in Chapter 3 the propagation of the mutual coherence function

in vacmm is governed by the two wave equations

SA 2 r - 1 a2 F•,(T)
sAc2 2 (s= 1,2). (4.1.1)

X.

II
A x

V i/ /[

Figure 2

W• assume hat j2(r) Is known for ail pairs of points 31 and S2 in the
A

plane o .,t be the Fourier time transform of j1'(r). Since

132 'T)is an analytic signal (see Chapter 2), i! contains only positive fre-

quesicies, i I
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00

f2 () = i2(v) e dvI (4,1.2)

0

anm by the inversion theorem
00

= JIj~(~e di V > 0, (4.1,3)
-00

S 0 P,<0.

Substituting from (4.1.2) into (4.1.1) and interchanging the order of lits-

gration and differentiation we obtain
00

f IV 2  + k2 (P)] f 2(v)e -2v dv = 0 (s= 1,2)

0 (4,1.4)

since (4.1.4) must hold for all T, we have

Vs +k2() r 2(v) = 0, (s= 1,2) (4.1.5)

where k(v) = 21 v/c. Thus, ea-h spectral component of 12(T) saUMfes

the two scalar Helmholtz equations, (4.1.5).

Equation (4.1.5) can be formally solved by employing Green's finctUous.

To• this end we integrate first over the coordinates of S and obtain*

r(PS1", v) - 1 - (S1,82'v) an dSI (4.1.6)

a

A
"13(7) ad [j'2(v) will be written as f"(P1 ,P 2 ,y ) and I(PI, Piti)

when necessary to stress the space dependence.
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Here G1 is a Green's function satisfying the equation

[Vs2 + k2(v) G, = 0 (4.1.7)

with the boundary condition

G(S 1 ) = 0. (4.1.8)

Equation (4.1.6) provides the boandary condition for the solution of the sec3nd

Helmholtz equation; and employing the same theorem again we obtain

~(pp2,v)= -41 [(P 1,S 2,v) --G dS2 (4.1.9)
(r

by integrating over the coordinates of "2, where G2 is a second Green's func-

tion satisfying the same conditions :is G1 . Substituttng from (4.1.6) into

(4.1.9) we obtain

(2r f ^rr(,•- 2-G 8G2  dS1  S2

........ (4.1.10)

In order to determine the exact form of G1 and G2 for cases of physi-
A

cal interest, we impose on fI2( v) the radiation condition of Sommerfeld.

In essence this condition Implies that the distant field is essentially that of a

diveign•i spherical wave. By applying the radiation condition to Vl(V) P.-.
, A

V2 (v) and appealing to thc. definition of [ 2 (v) in ternws of these functiona, it
A

is readily seen that ['12 (v) must behave asymptotically, ior kr » >> I and

kr_ > > 1 as

A ik(r 1 -r 2 )
r12(v) - f(0 1,C2 ,0 l, 2) --- , (4.1.11)

rlr2

t
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where 9 and ), are the spherical polar coordinates of Ps. To satisfy

this condition and those defining G1  and G2 the required Green's func-

tions Are

ikr 1  ikr 11 = e - ---e ,(4.1. 12)

and

-11r 2  -ikr 2

G. e - e (4.1.13)
tA r , r 2

I 9

where rl, r 2, r 1  and r 2  are defined in Figure 2. That these are

the required Green's functions can be seen by direct eubstitution. Before

substituting into (4. 1.10) we obtain the normal derivatives; we have

aGeikr I r1e ikrl18r',G1 = (ikr e (1-ikr1) e rI

On (n all

.................... (4.1.14)0 .1 1 .r 1

i = rll and that Dr =z - tn •
Noting that r1  a = r i a t

I ~ cran On

and setting cos Os z s/r. , we may rewrite (4.1.14) as

OGI ikr1

,a 2(ikri-1) cos 01 e-e-e-1 (4.i 15)

and similarly

0•G2 I e 4k (4.1.16)

-8-n - - 2(ikr + 1) eos8 2

1n

t



On substituting from (4.1.15) and (4.1.16) into (4.1.10), we obtain

eik(r 1-r2 )
(P 1 0P2 12 jj•iS,1 S2,P) (I- ikr,) (1,+ikr 2 ), cos 0 coB 02 ekdSl dS2

(2v)2 a rlr 2

. ...... (4.1.17)

Equation (4.1.17) is the contribution from a single spectral component,

v. The complete volution is obtained from (4.1.17) by taking the Fourier

transform of both sides of (4.1.17), i.e.

r',2 (T ) 2 f0f ItS2, P) (1-akr1 ) (l+ikr2 ) Pos 91 cos802 ek(r,-2,e_2viVT dSldS~dv
rlr2

.. ..... (4.1.18)
Since dSl, dS2 , and dv are independent, we may infert the order of integra-

tion and obtain

r12(T) 1 cooe9 1 coga 2  12()dId2

.............. ......(4.1.19o)

where

r1 -r 2Q 12(7) f r(B,,S2, P) e (" dv

0

0 A r, -r2

I) jiS(2 -1/

0
+r'_ r A -2vi; ( T 2

+ 4v 2P 2 (e C d'

c 0
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We recall the following well-known theorem from Fourier analysis. If

So -27ii'iut

f(t) ( r g(v)e dv (4.1.20)J,
0

then

,nf(t) J0 (-2wiv)n g(.)e dv (4.1.21)
,tn

0

Using (4.i.21) ý122(T) may be evaluated giving

1(r=rSIS 2 'T - rlcr 2 + rrr S I r r2 r r)r 2F Sl( S rl.r 2) '-r

1 .... ........... (4. I. 22)

and the final solution io

( f) cos 01 cos0 2  (I, 3 2 , - r, 2) dSl dS2'

.................. (4.1.23)

where j is the differential operator

I r21 +IL+ Ž -f--- _ (4.1.24)
L C BTr

Equation (4.1.23) is the general solution for the mutual coherence in a

field produced by a plane polychromatic source.

4.2 Coherent and Incoherent Polychromatic Sourcea

In this section we examine the limiting forms of (4.1.23) for colerent

and incohorer.t sources. No approxiniation on the spectral width of the illumina-

tion will be made here. We will show that 1.) a coherent source always gives
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rise to q coherent field and 2.) an incoherent source always creates a partially

cohere-it field. By eTxamining the incoherent limit we will obtain a rigorous

generalization of the van Cittert-Zernike theorem to polychromatic sources.

4.2.1 Coherent Source

It was shown in Chapter 3 that coherence is characterized by a mutual co-

herence function of the form

F(l, ( -21T ivo0r

21 T) = Ua(S 1) Ua (S2) e (4.2.1)

Taking the Fourier transform of both sides of (4.2. 1) we obtain

,sps * (S2) • (v- •0) (4.2.2)1' 2''1 Uc U(S 1) Ua2)6( Y

Substituting from (4.2.2) into (4.1.17) we obtain

A

1( P2, P) = U(P 1 ) U*(P 2 ) a (P - P0) (4.2.3)

whe.re

U(P 1 ) = (S1) cos 0 (1 - ikr 1 ) ekr dS1 . (4.2.4)
r1

Taking the inverse transform of both sides of (4.2.3), we obtain

-21Tip 0 T
[(Ply P2, T) U(P1) U*(P 2) e- (4.2.5)

From (4.2.5) and Theorem IX, p. 57, it is clear that the following theorem

holds

Theorem XIII : In vacuum a coherent source will always give rise to

a coherent field.

1k
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4.2.2 Incoherent Source

In Chapter 3 it was shown that an incoherent field cannot exist in free

space although an incoherent source may be defined. In the present section

we will show that the deLntiUon of such a source is consistent with the result

that an incoherent source will g've rise to a partially coherent field.

By definition, an incoherent souree is characterized by a mutual coherence

function of the form

r(S 1,S 2,1 ") = I(S2 ,T)8 (S2 - S. (4.2.6)
A

Hence r (S1,S2, v) is given by

A A
f"(S1 ,S 2,v) = I"(Slv) (S2 - S. (4.2.7)

We substitute (4.2.7) into (4.1.17); and, after integrating over S2, we

obtain

no/ PA ik(rl-rs)
•(l,2,) - (Sl, v) (l-ikrl) (I+,lkr2 o lco2L 1 d 1Q

1rr2

........ (4.2.8)
vhere rI and r, are now interpreted as the distance from S to P1 and P2

respoctively.

By substituting from (4.2.61 into (4.1..,8), and integrating over S2, we

obtain the mutual coherence function for the field of an extended, incoherent,

polychromatic, source,

t F2(r) - fcos 0 1 coo 2 [ l(SiT - c 2) dS

......................................... (4.2.9)

t tl
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Equation (42.9) is the generalization of the van Cittert-Zernike theorem

for polychromatic sources. It expresses the mutual coherence function under

the coziitions stated, in terms of the self coherence across the seurce.

Since an optical field Js coherent if and only if it is mrnochromatL,, it ib

clea, that, while an incoherent source gives rise, by (4.2.9), to a partially co-

herent field, an incoherent source cannot create a coherent field.

4.3 Cuasi-Monochromatic Sources

As mentioned earlier, most of the current applications of coharence thvory

involve quasi-monochromatic light. For this reason we shall treat the quasi-

monochromatic limits as separate problems deducing them directly from the

general solution, (4.1.23), rather than obtaining them as special caaes of the

results of the previous section.

4.3.1 Coherent Source

Since in the quasi-monochromatic approximation a field is described as

coherent if the condition I72(.) j " 1 it; satisfied oaly for sufficiently small

T , coherence is a considerably weaker condition for the class of problems eon-

sidered tha.. In the general case.

A coherent quasi-monochrom -tic source has the property that for

- <<Y its mutual coherence function is of the form

%,si-2 (4.3.1)

Su•'stituting from (4.3.1) into (4.1.23) yields

f(P 1 ,P2,•) = U(PJ) U (P,)e-2'i* (0n < ;) , (4.3.2)

where kkrl

U(P 1 ) Ua ($,)(I ikrl) Cos O 1 AL dB. (4.3.3)
j ri

U
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Equations (4.3.2) and (4.3.3) constitute the mathematical restatement of

Theorem XIII for quasi- monochromatic f4,•lds.

Th.'s result is not simply a s;cial ý:!ase of the previous result even though

in Section 4.2 we were able to estab' .zh the theorem with no apprc:imations. 7M

result is perhaps more interesting and certainly of more immediate practical

importance in the present case. In the general treatmei, where no approximations

on the spectral width of the light were made we concluded that an optical field

is coherent if and only if it is monochromatic. It is certainly to be expected

that such a field will remain coherent as it p.-:pagates in free space. It is also

to be expected that such a field can be completely specified (apart from polariza-

don effects) by a simple wave function, depending on the coordinates of one

point only.

The fact that these results hold under the narrow spectral width approxi-

mation, however, indicates something more. It is evident from (4.3.2) and

(4.3.3) (and in fact from the results of Chapter 3), Ltat if we restrict ourselves

to phenomena involving sufficiently small path differences, (fTi <«--- ) , a

quasi- tonochromatic field may behave in some respects like a monochromatic field. d.

But there is an essential difference between tnese two types of illumination

A monochromatic field is everywhore coherent for all T, while a quasi-

monochromatic field cannot be coherent in the strict sense, y) 2 (r) I' 1,

but only In terms of the weaker condition, 12(7) 1 1 (IT I<<A.V

Further a quasi-monochromatic field may, aE; will be discussed in Section 4.3,2,

be incoherent.

In spite of these considerations the similarity between these two types of

fields for a large class of diffraction phenomena has led to a loose usage of the

term monochromatic and hence to such meaningless statements frequently found

it
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in the literature "partially coherent (or incoherent) monochromatic light" and

the phrase "to extend the concepts of partial coherence to light with finite

spectral width".

4.3.2 at ourm •

Under the conditions justifying the quasi-monochromatic approximation

we may write (see Appendix 2)

12( ' - . 0 e 20'iiT (1TI «n< (4.3.4)

On substituting from (4.3.4) into (4.1.8) and integrating over v, we obtain

e-2 ef k (r1 -r 2)

r_ 217 f( kl (I + kr2 .,os , COB C 4F(S1,8,O eS ~ fd8

...... (4.3.5)

Equation (4.3.5) expresses the mutual coherence function for small I r I in

the field created by a piane partially coherent qtasi-monochromatic source.

We now consider the limiting form of (4.3.5) when the source is incoherent.

By definition tn incoherent quasi-monochromatic source may be specified by a

mutual coherence function of the form
1

p 2 (T) = 2(s2)8(s 2 "S1 )e-Ti* (1PT <T-•)

(4.3.6)

Subrtitutirn (4.3.6) into (4.3.5) and integrating over S2 yields

@-7 2zIT ik(rl-r)

F2,(T) =l(S) (1-ikrl) (l+ikrI) cosi coT 2
(2v) c.s 0j coo K2)r

...... (4.3.7)

Here r1 and r 2 are now interpreted as the distance from a typical point S on

the source to the field points P r and m respectively, and con o , 9 1s(7z ,
(a -1, 2). Equktion (4.3.7) exprebses the mutual coharence function, f,' 2 (T)
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for sufficiently small I T I in terms of the intensity distribution across the

source.

IH (4.3.7) is evaluated at 0 0, the obliquity factors are ignoredand

attei.ion is limited to field points on a plane parallel to a we obto) in t-e theorem

due to van Cittert (1934) arA Zernike (1.938) already refercnced. viz.,

12(0) I(S)eik(rl-r 2)r dS. (4.3.8)J r Ir 2

,This theorem expresses the mutual in.ensity on the illuminated plane in terms

of the Intensity distribution o! the incoherert source.

in most applications one is interested in the form of (4.3.8) in the Fraunhifer r

approximation. The right-hand side of (4.3.8) then reduces to a Fourier trans-

form of the intensity distribution. If the intensity distribution is suitably norma-

lized (4.3.8) beccmes

y 1 2 (0) = f I( , i7)e'k(p) + q?)dkd,77  (4.3.9)

x,, Y I Y 2
whcre o 0 qj. 2

and K +8 + Z These coordinates are

defined in Figure 2, p. 67. In the reglon wti,-re (4.3.9) is valid R and R2 mAy

be taketlas eqLal Equation (4.3.9) is the mo.t commonly used form of the van

Cittert-Zernike theoiem. We see that formula (4.3.5) is a generaliza-

tion of this theorem to partially coherent (but quSi -monochromatic) sources.

Actually, the validity of the Fourier tranusorr relation, (4.3.9), does not
depend on the Fraqnhofer a prcximt.it.rz.; -t.io' (.4,1.9) kfLlies wh-ýn-
evbr the obliquity factors ara the v11:i..tUwn IA. •4.3. can be ig-

conditions ^hat R -> (p2 . y v•,noro whle te Ftunoff~ ;; ~ r~ril ~**L ... Itionto hes
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C�{APTER 5

IMAGiNG OF EXTENDED POLYCHROMATIC SOURCE.�

AND GENERALIZED TRANSFER FUNCTIONS

In this chapter we snail apply the theorems and results of the earlier

chapters to the determination of the relation between object and image for

systems which image cxten�ed polychrom�tic objects. We shall treat the I
problem prtrnavily in the spatial frequency domain, an approach introduced

�v Duffieux (1946) in l�46. Since its introduction, the frequency domain analy-

sis ha� proved vety po�eriul !n the �tu�y of !magir� �y�tcms. L this x'na1;�cx!s

the imagIng system i� described by a transfer �cnction (also �ai1ed modula-

tion function, trans��iz�siun fac�o�') transmisiion function. contr�st rew tion

hi. �tion, frequency respon�e function). The �niaging problem s then solved as

follows the object and image are described in terms of the distr�outior� of a

.�uitable phytxi-al characteristic of the optical dist'.:rbance, which char�ct�rist!c

is det�rnined by the degree o� coherence of the object illumination. For ex.amp1�

an incoherently illuminated object is described in terms of the intensity distri-

but�on acroas it. The s�wtial spectrum of the image is then obtafr*i ne the

product of the tra�iskr function with the s�ntia1 spectruxa ot � object, ..e.,

the spatial Fourier transform of the above-mentioned di'�tr1bution. That is,

the optical system is treated as a spatial frequency fIlter. �fter its intxod�-

tion into the study of optical systems, the V .�fer function anniys.� was a�1xed

to the stl�v of the mapping problems ox radio astronomy (see Bracewe.l �ind

Roberts (1954) ) and radax.

This analysis i& particularly promising in the study of cascaded sysLt q

as exemplified by Schadets (l�8) treatment c: television systems. In cas�'a'1eii

syotems the final image in the frequency domain is obtained by mxitip4'ng th�

'4k
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:].ctrum of "he object with the product of the tranfer funcilohS describing

evch stage of the system.

The eseential stop in this approach is the recognition that many o•ptical

systems may to a good approximation be treated as linear stationavy systems

in terms of their spatial as well as their t.._•ral dependence. All the

advantages, familhar to electrunics engineers, of performing linear system

analysis in the frequency domain may their be realized in optical imaging

problems. In optics :h•e are, however, come difi'Cuities confronting this

approach.

For example, the functions, describing objects anr' images, met In the

analysis of optical systems, depend on spatial as well as tempoe'al coordinates;

some optical systems of practical Interest are not "stationary" in their spatial

variation. The most significant difficulty is the fact that the form of the trans-

fer function is determined by the degree of cchereice of the object illumination.

As we shall see Li the following dt'ielopment, some of these difficulties do not

appear in analogous problems3 in radio astronomy and radar, though these Ilelds

present other p. -blems.

The realizatio, that imaging s6ystems can,under suitable conditions, be

analyzed as linear stationary systems suggests strorglv the application of the

techniques of information and communication theory. Here ag.in, hor,!ver,

several basic difficulties arL encokintered.

Apart from the considerations already mentioned, an imaging device is

not in general a communication sy__tern (since no opporturity of encoatog the

input exists) but rather an observatioa• system. Ine difficulties •ýonronltig

the analysis of such a system in terms cf Inforhiation and communication theory

are discussed and illustrated by Woodward (195') and lie outside the domain of

RI[
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our present discussion.

In spite of these considerations some results have been obtained from

the application of information theory to imaging systems. The chief contri-

butions of this theory to the study of image formation are: L.) the dcmon-

stration that an optical image has a finite rumber of degrees of freedom (see

Fellgett and Linfoot (1955) and Gabor (1956)) ; and 2.) the demonstration that

the criteria for judging the quality of an imaging device m.ust take account of

the objects that the system is to image (see Fellgett and Linfoot (1955) and

Schade (1918) ). The ,. of these conclusions follows imrmediately from

Shannon's Sampling Theorem (c.f. Woodward, 1953) and the fact that an

imaging system behaves as a iow pass filter with a finite cut off frequency. The

second consideration will become evident from the subsequent discussion of this

chapter.

Some of tLe v,..rrouc quality criteria fox, imaging devices which were intro-

duced by Feilgett and Linfoot and Sehade have beer evaluated for aberrated

optical systems (see O'Neill (1956), Fukui (1957) and Parrent and Drane (1956))

and for .tenna •vstems employIng Dolph-Tchebbycbeff apodization (see Draane

(1957)). The results obtained In each case were in good qualitative agreement

with experience.

It can be shown (sefý Dolph (1946) that if the currents in the elements
of a Linear (antenna) array are propo rtional to the coefficients of the
Tchebbcheff polynomials the rcegulting Olfraction pattern has the mini-
mum possible aide-lobe level for a given beam width. These polynomials
prov!le a means of varying the apodlzation continuously f com edge illumi-
nation (which gives the cosine squared diffractioi, pattern of a simple
interferometer and hence the minimum beam vidih for a given aperture
size) to a binomial distribution of currents which gives a diffraction
pattern consisting oi a mai. lobe with no side lobes.
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In spite of the difficulties mentionea, the transfer function analysis has

cortributed to the understanding oi the problems of image formation. Among

the interesting consequences of the application of the transfer function analysis

to opticul systems are the spatial filtering techniques developed by O'Neill

(1956) and Marechal and Croce (1953) for sharpening blurred edges and recover-

ing wanted detail from an image containing noise (e.g. photographic grain).

The computation of the transfer function of any given system often leads

to numerical integration; and for this reason detailed analysis has been limited to

relatively simple sysBLms, utilizing strictly coherent or strictly incoherent

ilumination, with small aberrations (see Steel (1953) or wit], a single aberrat~on

'Parrent (1955), Hopkins (1955), De (1955), O'Neill (1956)).

1The limitation to coherent or incoherent illuminatlon is, howe-er, more

basic and stem3 from the foliowing considerations: 1.) A system imaging an

incoherently Illuminated object may be regardad as linear in intensity; 2.) A

system imaging a coberently illuminated object may t'e regarded as linear In

amplitudej 3.) Systems using partially coherent illumn'htlon are linear in neither

of Lese quantities. H. H. Hopkins (1956) end Dumontet (1954) extended the trans-

fer function analysis to systemn imaging partially coherent objects by showing,

that such systems may be regarded as linear IJ. mutual intensity. Th7; transfer

functions for systems with small aberrations and partially coherent objects

have been computed by Steele (1957) using the Hopkins formulation.

In evary case, coherent, pariially coherent or incoherent, the ana!ysis has,

however, been limited to quasi-monochromatic iight. It is our aim in this chapter

to provide the framework for the analysis in terms of the transfer function o0

systems employing polychromatic illumination; and further using the theorems

and results of the preceding chapters to verify that the familiar solutions to the
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quasi-monochromatic imaging problems follow from our general solutions as

appioximate forms. It is hoped that, in addition to providing the mathematical

framework for the solutions to these general problems, this approach will elim-

inate the !requently encountered confusion concerning the significAnce and in-

terpretation of the various transfer functions.

5. 1 General Formulation of the Imaging Problem

In this section it will be shown that the general scalar imaging probiem,

involving partially coherent polychromatic objects, can be completely solved

In terms of the observables, f12(T) , in object and image space with no

recourse to the random disturbance, Vr(t), itself. By dealing solely with

the mutual coherence function, and functions simply derivable from it, our entire

analysis, apart fU'om the limiting forms, will involve only square-Integrable

functions. The advantages of such an approach are immediately obvious since

we deal extensively with both Fourier and Hilbert transforms and their respec-

tive inversion theorems.

It will be showy here that usAng this general solution t it N• or e tc

define generalized transfer functions whose properties are formally similar

to those of the quasi-monochromatic transfer functions. Further it will be

shown that these new functions are sOmply derivable from the apertu.,e Ulumina-

tion function (pupil function) of the imaging system.

This confusion is discussed and illustrated by F. J. Zucker in his summary
comments published in the Electronics Research Directorate, Air Force
Cambridge Rsuearh Center, ARDC, January 1957.

iti
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5. 1.1 h. thematical Conventions and Notations

In t.,e devehcpment that follows extensive use is made of multi-dimensional

Fourier transforms. To pre:.-ent the equations from becoming too unwieldy the

following conventions and condensed notations will be used.

Ca:tesian coordim tea will be denoted by (7, i/) in object space, (x, y)

in image spac', and (co) in the exit pupil. The coor%.inates in image space

are normalized by the lateral magnification of the im-aging system. This is

done to make the coordinates of a given object point equal in magnittude to those

of the corresp!,nahig image point. The conventionu regarding functional

representation are

f(x) f( Oy), (5. 1.1)

ftl A) 0 f(Yxl- 2 ' Yl-y 2 ), (5.1.2)

"-I dxI dy, (5.1.3)

and

x • x1
0  •y] (5.1.4)

Here the subscripts I and 2 denote the point, P1 or P2 1 whose coordinates

aru used; and AO and yo are unit vectors in the direction of the x and y axis

respectively. The same conventions of course apply in the snerture and object

planes ksee Figure 3).

We shall be concernad with the transmission of distributions from object

space to image space and the subscripts 0 and I will denote that the distribution

is an object ox image re'lpectively, i.e.,

fc (4 ) distribution in object space (5.1.5)

f. (x) Correspodinlg distribution in
image space.
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F6UIrE 3

Since we shall require the Fourier transiorm of space functions, we

associate with each space coordinate a spatial frequency coordinate using the

following convention : Aix is the spatial frequency associated with the

Cartesian c-ordinate xI , and ly Is associated with yl. The functional

conventlons introduced for the space functions will of course a~so be used for

'he npatial frequency functions; i.e.,

W( ) f(Ajx' ily) ,(5 .)

0 Y0
L i = Mx° + y yO (5.1.7)

and

d = dglx dp y (5.I.8)
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The time coordinate is denoted by t and the time delay coordinate by r.

The associated temporal frequency is denoted by v.

Contrary to the convention of the preceding chapters, the mutual coherence

function will be written here with its full argument rather than with the sub-

script .12

Associated with every function of the space time coordinates, F(zI,Z2, Tr),

will be three other functions; namely, its "spatial" Fourier transform, F(,L•,T) ;

its "temporal" Fourier transform, F(4 1,x2 ,_ ) ; and its total Fourier transform

F(18 1 ' 8 21 v), i.e.,

2 711i( L1.,A + .x2 )
F(Ul, U2,1) = F(xl,X2, T)e "1 "

S. .. (5. 1. ,

r 2wl~'r

F(1132 v) = F(51 ,_x2 , r) e dT, (5.1.10)

C f ' F ( xl"2ii ( 1 T e.Xi + 2 .x2 + P r )F(e 1, 2, v) =~ J FX,2 )e•• r

-00

S. .. (5.1.11)

Tlroughout the rest of the chapter all integrals will be written with a single

integral .ign without limits. The order of the integration will be implied by the

differential&.

5.1.2 A Generalized Transfer Function

In this section will be discussed the problem of determining the image of

an uxtended polychromatic object and the inverse problem, viz., that of determining ngII
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the object from a knowledge of the image. We shall show that the solution .f

this later problem is fundamentally impossible with systems of finite aparture.

The object is considered to be planar and is specified by its mutual coherence

function, F I ,) The central problem is to fox-mulate the

relation between 0 (1, 2, T7 ) and r 41)l '32, T) in terms of the

aperture illumination function. No assumptions concerning the spectral width

or degree of coherence will be made in this section. We shall show that, while

the evaluation of the integrals might prove somewhat formidable in certain

practical applications, a solution in closed form can be obtained and a transfer

function defined which is simply related to the pupil function.

From the linearity of Maxwell's equation it follows (see Appendix 4) that

if there are no non-linear devices in the imaging system the mutual spectral

density will be propagated through the system in accordance with two linear

differential equations, i.e.,

A

D [ r 0 (B = 1,2), (5 1.12)

where D. i a linear differential operator in the coordinates of Ps" Solving
IT. the first of these equations we obtain the mutual spectral density, [ij0(Z,1 3, P)

between the oscillations at a typical object point ý I and those at a typical

image point , . Here the aiubscript 10 denotes that the function depends

on a point in the object space and a point in the image space. This partial !"o-

lutron may be obtained by using only the linearity of (5.1.12) as follows : Let

the contribudon to the "complex disturbance" at &I due to the "disturbance"

from an element di, of the source around be q0 ( 1, 12 ,P)

K(l,ZXl, v) dtI' The function K( Li,'i, v) describes the optical imaging

system. Then, since (5.1.12) is a linear differential equation, the total "disturbance"

tV
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at xI is given by

Ai (1 v),v)•1 2 K x , vi v)dýl (5.1.13)

Next we repeat the argument used above solving this time the second of the

equations (5.1.12). For the sake of generality we assume the opticalsys-

tern to be characterized by a second function, J(32' 12'v). The relation

between J and K will be determined below. Using the linearity of the

remaining equation we obtain the image a,9

A

ý'0l,1,u ' O 2,v) J52,•_2,") ý. (5.1.14)

Substituting from (5.1.13) into (5.1.14) we obtain finally

ýi(&1,•12,1 v) ff ý• l,12o v) J(32,121 )I(1, Pl~ '••djj dt2

...... (5.1.15)

Before discussing the phybical significance of the functions J and K,

we shall show that there is a simif~a relation between them. To this end we

inte change the roles of &I and A2 of I-, and -2 in (5.1.15) olftaining

"r,.,, ff O2
Ho , . . I(5.1.16)

However, by Lem~n3a I (Chapter 1)
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A A

and
4 L

r0(12,&1  ) - 2=o

Using these tNo relations, comparison of (5.1.16) ana (5 1.15) shows that

*

. .. ..... (5.1.17)

From (5.1.17) it followe immediately that

J•,1•)= K*•l,•_1 y) . (5.1.18)

Using this result, (5.1.18), we may rewrite (5.1.15) as

ri(lX_,v) jjK(4,I Jv) K* e ) (11,_2.,v) dI d2

2 . . -12(5.1.19)

Equation (5.1 19) is the basic relation of this analysis. It expresses the

temporal mtutl spectral density of the image in terms of the temporal mu-

ftral spectral density of the object and a function K which characterizes tie

imaging system.

Belore continuing the development, it is useful to consider the physical

irti rpretation of the functicn K(Xl,,v). The demonstration of the iterpre-

tation of K(A1 , JI,r) is straightforward but requires some results from a later

section. Therefore, to preserve the continuity of the present discussion, this demon-

stratioi3 is given In Appendix 3 and we simply state here that the function K
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represents the complex amplitude at x1, due to a moiochromatic point source

at 41 of frequency, v.

Until ncw we have not specified the position of the image plane. Since there

are by definiiion no imaging elements between the exit pupil and the image plane

it is clear that equation (5.1.19) is valid throughout this entire region. However,

since the form of K in the e.-it pupil varies significantly from its form in

Gaussian image plane, and since its behaviour in each of these planes Is of

particular physical importance, it will prove convenient to designate by two

different symbols the form of K(•x, -lv) on these two surfaces. Accordingly,

we shall denote by A('., o, v) the form of K in tie plan2 of the exit pupil. Thus

A(L, i' v) is the complex disturbance at a point .ainexit pupil due to the mono-

chromatic point source of frequency v at a poiPt in the object plane. We reta' n

the symbol K(.•, v) to denote the function in the ianage plane. Using this (c)n-

vention, K(.1 ý, v) may be thought of as L' distribution in the image plane due

to a monochromatic distribution of complex amplitude in the plane of the exit

pupil rememberiig of course that the distribution in the exit pupil Js determined d

by the object. The relation between these two functions may then be expresPedas 6

v) I , OG (5.1.20)

Here g Is a point in the aperture of the system; G i: a Green's funiction oatis-

fying the Helmholtz equation aad vanishing over the plane of the exit pupil.

Under the conditions characterizing most imaging systems (5.1.20) takes

a particularly sImple -,,n; but before discussing tfis point, we shall continue

the development up to the introduction of the general transfer function, This is

done to avoid the erroneous impression that the transfer function analysis
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involves the Fraunhofer (or far field) approximations, as is sometimes be-

lieved to oe the cace.

Equatic:r. (5.1.19) assumes a cnnv-.nient and useful forin if the system

under consideration is "spatially statio.,ary", i.e., if the function K(& J, v,) is

a tw -tion of the difference of the 6patial coordinate.,,

K(x, ) K( - ) (5.1.2 1)

This condition is oatisfied by scanning systems, w~iih includes zrost an-

tenna systems and also by many Important (vilolc) optical systems. For

systems which do not scan but form the -2ntirc spatial image qlmultaneously, K

will not in general be a function of the difference ( j - /) only. dowe.er, for

most optical systems the form o1 the diffraction pattern varies slowly acro-,s the
image plane. Hence, the image space may be divided into "isoplanatic" ares

over which K may be assumed to be a function •A (- ) to any desired

accuracy. This possibility is discussed at length by Feilgett and Linfoot (1955)

and by Dumontet (1955).

Throughout the rest of this discussion wr shall u1ly be concerned wth systems

fu, which the condition (5.1.2!) is satisfied.

By this we meant a)otcmm in which the image formirtg device (e.g. antenna)
scans while the position of t~he detector (e.g. feed) relative to the aperture
remains fixed, i.e., the antenna and fees move together. The above con-
sideration Is not valid for a system in which the image forming device re-
mains fixed while the detector scans the aerial image. A camera with a foca!
plane *hutter is a simple example of such a system; the lens create3 the
en•tire imlge simultaneously and the shutter slit then scans the image.

1K
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I-Te--ng the stationarity e)ditili, (5. 1. 19) may be rewritten as

1i (xi X., p) j K(ý -x,,v)K (t 2 -, )dil dA2

.. .(5. 1.22)

T'raking i.• "space-type" Fourier transform of both sides of (5.1.22) and

using the convolutio, theorem yields

0 0

A! 'a P nii w introduce the transfer function, L Qi, 8 2 ,v), defined by

Sl 1211 K 2(ii v )-2 -(.2 (5.1.24)

Ir r~ini uo1, (5.1.2) becomes simply

0 0

Equatlon (5.1.2) may be re rde• as the basic equetion in the frequency

doiiualn analybis of imagirng ysters. It is clear from the foregoing diascussion

that the transfer fun.-tion arw.lybyi3 is rigorously applicable to any "spatially

stationary" s,.ctrn That is no approximation need be made concerning the re-

lation 1.twCeen ,the urt..- illumination function, A , and the diffraction pattern,

K.- Howvtver, in u:mt optical applications and in fact in mosk antenra applications,

the diffractica-: patiern is characterized by the Fraunhofer approximations (or

th,.t foi mally equivalent far field approximations); and since under these condi-

tions (5. 2.20) assumes a particularly simple form, we shall introduce these

approximations at this point and retain them throughout the subsequent sections.
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Under the usu.al approxinmations whid.c characterize I .aunhofer diffraction,

(5.1.20) reduces to

KIjvp.11) V) A(_.,v)e )-R do. (5.1.26)
-J

where A 's the wave length of tihe spectral component belongirng to frequency

v and R is the radius of the Gaussian reference sphere. However, K(x{,v)

may be expressed as

K(x, , v) f K(,. , ,) -oIij. . (5.1.27)

By comparing (5.1. 26) and (5.1 27'., we identify the spatial frequency, /, as the

reduced aperture coordinate, i.e.,

- e. ,, v A -

Further we note the m-pirtarnt relation

K~x, K(&, A(,&')

Our subae', ient analysis will deal solely with K and Its transform k From

(5.1.24), (5.1.26) and (5.1.27) it is clear that under the cond.tions stated the

traiinfer function, L(L'1,P2,v), lor a systen, utilizing partially coherent poly-

chromatic illumination is the product oi the frequency dependent aperture illumina-

tion function considered as a function of spatial frequency and evaluated at

1!'• • R with its complex conjugate evaluated at 1 =!2/ .

It is clear from the above considerations that the inverse problem, namely

that of determining the object from a kaowledg, of Lhe image, cannot be solved

if the imaging system has i finite aperture. ThlIB ( ltrcl..i( can el undre r-too!-Ci
StL

,I
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Iv formally inve-tlng (5.1.25). We then obtain

0L 1,,t2 LLv)0L 3
4 0-~ 'L( v) X o. (.,..lo23)

However, from (5.1.27) and (5.1.24) it follows that if th.? apprture is finite

. is identica)oy zoro beyond some maximum frequency I max, and hence,

(5.1.28) is indeterminate. Thus the inverse problem is soluole only up to an

arbitrary functii, f

0

0 (LI, L 2, 1Y )
r0(L, k2, ) - + f (5.1 29)

where f is any function of fre iuencies greater than I Jmax

Equatioti (5.1.25) gives the relation between the total spectral densities

of the oby,,ct and image and is thus the solution s)ught in this section. 'owever,

in many applicitions one is interested in a much less general solution, namely,

the intensity distribution in the image. Obtaining the intensity distribution in

gen ral, from (5.1.22), is somewhat involved and not very helpful. Hov~ever,

in the limiting cases of coherently and incoherently illuminated objects the

problem is tractable, and in the subsequent sections we shall disctss these

limits in detail for both polychromatic and quasi-monochromatic illumrnation.

5.2 The Limiting Forms oi the Transfer Function

Following the pattern established in the earlier chapters we first examine

the limiting forms for poiychromatic light and in a later section examine the ex-

tremes under the quasi- monochromatic approximation.

We shall show in this section tha, the transfer function for coherent objects

is the frequency dependent aperture illumination fl.uction A A , P)

• .. , r .. .. . . . ... . .. . . .
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evaluated at vo and considered as a function of spatial frequency. (Here v0

is the frequency of the illumination. See Clapter 3)

The analysis of the systems imagi, - incoherent obiec.s is complicated

by the fact that as explained in Chapter 4 the image is partially coherent.

Thus, if one seeks a complete solution (i.e. the mutual coherence of the image),

the tronsfer function must operate on the spectral density of the object, I(4P)

(a function of one point only) to produce the mutual spectral d -'nsity of the image,
0
[T(EVL,2,v), (a function of two pcints). This consideration, overlooked or

omitted in the literature on the imaging problem, is important in the treatment

of cascaded systems. The required transfer function will be shcwn to be the

function L introduced in the previous section.

if, on the other hand, one requires only the ivitenhity distribution ii the

image, I(&0), the entire analy'.s may be performed whh functions of one

pcint only, the spectral dennitles of the object and Image. For this problem,

the "tanvfer funct,.n, M , will be shown to be the convolution of the frequency

dependent aperture illumination with its complcx conjugate.

5.2.1 The oherent__-nilt

It was shown in Chapter I Ihat in a coherent field the mutual coherence

fun.otion is of tOx. form

ro0(11, A. ) = Uo(A 1) u4 (12) e (5.2.1)

with a mutual spectral density

A

-0Uo()Uo ( 8 - •o) (5.2.2)

"Q 1,t~lv = O( 1) UO42)8 ($ vO
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Subsittuting from (5.2.2) into the general solution, (5.1.19), and tking the

temporal Fourier transform on both sides we obtain

, -2irW 7v•

[I(a.-, ) = Ui(41) Ui (x2 ) e , (5.2.3)

where

U1C) =fUO(1) K ( _- •)dC (5.2.4)

FrQm (5.2.3) and the theorems of Chapter 3 it follows immediately that:

Theorem XIV : The image of a coherent object is coherent.

Taking the spatial Fourier transform of both sides of (5.2.4) and using

the convolution theorem we obtain

uKi 1) = Uo( ) K (L 1, 0) (5.,:.5)

The appropriate transfer function is the frequency dependent aperture illumina-

tion function evaluated at v0 and considered as a function of spatial frequency,

'K(II, v0) = A(ARI, v)' The coherent image is completely determined by
(5.2.5), and Cie intensity distribution it- obtained as a special case of (5.2.3) by

setting.&, = _x2, and Tr = 0.

5.2.2 The Incoherent Limit

An incoherent object is described by a mutual coherence function of the

form (see Chapti 3)

=0( 1 2,7) 0 ( 'T)) 2 " (5.2.6)



where 10(1 2 ,1) Is the self coherence function at 12 defined by the relation

I(q, r) = < V(q,t + 7) V1(jt) > (5.2,7)

The mutual spectral density is, therefore,

r041= 1(12,") 8 (12 - (1.2.0'

Substituting from (5.2.8) into the general ar, ut ion, (5.1.19), w, obtain the

Image, ýj(AjK2, , i.e.

A

PI& P) JffK(I1 -AZpv) K*(, -9,v 10(j 2,LO4 0 Q2 1) d~t ~2

...... (5.2.9)

We may now Integrate over dj-2 and obtain

Q•ijia,v) =JL~ 1 -. &,v) K* (1 - S2•,v) I(11, ') dj1  ; (5.I.10)

and taking Jwe spatial Fourier transform of both side, and using again the con-,v-

:utlon theorem yielks

0

F(, L' P, V) '(P- + 82, v)Q 1 It (.2.112)

where • (Ej1 ,9 2, v) As the gpera•ltd transfer fijction defined in Section 5.1

"• (•,'., v) - i(+•1 , + ) K (-j 2 ,-) .. W (5.2.12)

(0-1 82,Y) P K LL2
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It is convenient to rewrite (5.2.11) in the form

0
•(L 1, j•-• 1 ,v) = IjLI) ( 81, 1-Y ,v). (5.2.13)

Equation (b.2. 131 expresses the fact that the erergy contained in the object ,'

at g is distributeck among ad pairs of frequency, Lý, and - hi, i the image.

for While equation (5.2.13) is the complete solution (for an incoherent object)

for the total mutual spectral density 4.nvthe image and hence for the mutual

cohereace function, one is often interested in the more restrictive solution, the

intensity ij the image. This is obtained at once by setting 1 = .1 in (5.2.10),

which giviy

(5.2.14)
Taking the spatial Fourier transfurm of both sides of (5.2.14) we obtain

[•(••) =• (,•) o(•v) ,(5.2. 15)

where

)71 (~,v) I K(xtv) 12ehg6 M dE 5..

From thi interpretation of K given In Apendix 4 it is clear that K12 ,

the frequency dependent intensity diffraction pattern of the imaging system. The

transfer function for determiningthetotalspectral density of the image of an in-

coherent object is thus the transform of the "Intensity diflraction pattern" of the

system. IMw formula (5.2.16) in semplified further by again using the convoluton



go

tl.eorem and (5.1.2) which gives

4

)'f (LK -j,,v) k*C (gy) dui (5.2. 17)

The spatial spectral density may no!1, be obtained by taking the Fourier trans-

form of both sides of (5.1.15) and ovaluating at r = 0 ; thus

I1AS 0) j&0tLQv P~i~i) dy .

The formula (3.2.18) expresses the fact that each tempord spectral component

contributes separately and independently to the energy in the spktial frequency

component z. The; intensity distribution in the image is then given by the spatial

transform of (5.2.18).

5.3 Imagmng with Quasi- Mnochromatic Light

While many imaging systems of practical and theoretical interest deal

with polychromatlc light, only the problem of imaging with quasi-monochromatic

o0: morchromatic illumination has been extensively discusaoid in the literature.

This omission of the more generar problem is easily understood since without

a rigorous and general formulation of coherence theory the mathematical analysl4

is prohibitive; and the earlier formulations of this theory dlacuaiwd in Chapter 1,

are not well suited for extension to this general case. Therefore, the transfer

function analysis as found in the available literature is applicable only to quar!-

monochromatic light, and in order to compare the results given hera with those

of earlier writers, we examine in this section the form of tie transier functions

under the quasi, monochromatic approximation.

A4 partially coherent quasi-monochromatic object will be described by a

mutual oohonere function of the form (see Chapter 3)
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-2 7t iPT

its temporal transform is

A

["1, IPA) 2 (ýi -0) I6<<-kv). (5.3.2)

Substituting from (5,3.2) into the general solution (5.1.19) and taking the

inverse Fourier transform, we obtain

= e K(1-x,') K d 1 dý 2(-1 _.j 0

... ...... (5.3.3)

Equation (5.3.3) provides the starting point for the analysis of partially co-

herelt images. Beginning from (5.3,3) the entire anmlysis of the two pre-

ceding sections may be, taken over mutatIR mutandis for the quasi-mfochroxmatic

imaging problems considered here. Deno-.-ig by the suffix q that the -functions

are applicable to quasi-monochromatic light, the various transfer functions

and frequency domain image equations are

Coherent Object

transfer function )q =

imaging equation UI(k, P) =)q(Y,P) UO(Si)

Partally Coherent Object

transfer function oe q = K(-Mp,-i_ K

imaging equation ri(hAp',--
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Incoherent Object

transfer function =K(.•I,1) (,{ ,)

imaging equation (•1,,) -- I0 (L!,JY)

transfer function ');q = J X(-Y) , Pi.9-
imaging equation 14, V)) P)

The transfer functions for quasi-moiochromatic light are thus seen to

be sim•ply the generalized transfer functions evaluated at the mean frequency.

This result is to hav,. been expected since mathematically the quasi-monoc'hro-

matic approximation hi characterized by an approximately monchromatic mutual

coherence function. However, it should be empha•zed t14t while the transfer

functif'ns obtained in this section may be formally obtained by taking a single

spectral component of the general solutions the inverse procedure (integrating

the quasi-monochromatic solution over frequency to obtain the general solutions)

is not justifiable. This conclusion is evident from the fact that the solutions

obtained in this section are only approximate ( I T < < -- ) and accordingly

the transfer functions depend on the mean frequency, F , rnot on an isolated

frequency, v It is this logically impossible to obtin the general so-l0

lutions from the quasi-monochromatic solutions.

The transfer iunctions defined in this chapter are summarized in Table 2.

N.B. Two imaging equations are required for &ystems inv'olving in-
coherent objects. ")n (8,P) is used to determine spatial spectral density
in the image, while th# more general problem of determining the mutual
spectral density involves the transfer function ) However,
both of these functions operate on the spatial spectral density of the object.



83

0 �

0L0  �5.I
�1.I �'

J

C -�
0

�I4
Ii U

N
ii -� 9

�1J .- o.-t

II

j �1 @1

S I

0�� �
t�I 8.4

- 4

o - P
I,

* - Ii

H 11 U
7 IiV '4

8.a V

-4 0 0

* �-
0



84

AP1)ENDLD 1

RELATION BETWEEN VON LAUE'S MEASURE OF

COHERENCE AND THE COMPLEX DEGREE OF COHERENCE

The measure of coherence, Y L I introduced by von Laue (1907) is

defined bi

<fI(t)(t )t)> I+ <fl(t)g2 (t)> 2 (A.

Here fl(t) and f2 (t) are real funcifcni of time which descr.be the (scalar)

optical distitrbance at the two points P1 and P2 t respectively. The function

fi(t) (1 1,2) hare, therefore, the Fourier representation
4"

fi(t) = (• (') cos[(i.)- 2r& ]dv ,, (A.1.2)

Und tLe functions g1(t) are defined R8

g1(t) = F (4)sn [ *(v) - 2w•'" ]dw (A.1.3)

Jo 1

This formulation strongly suggests the introduction of the aualytic signal;

and accoruagly, we may rewrite (A. 1. ý.) as

<V I (t) V rt) 2 +<,t)V1)>2Y 2 2ii)' vI t)~~t• K vlr(t)r vpi~t)> (A, 1.4)

<Vr r (t)< r (tf>

where the fucions V n V ~ 2 r are identflid as f and g respectively.
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In order te obtain the relation between L and Y1 2 (r) we have but

to rocall the definition of (T) Equation (1.2.10) of Chapter I may

be formally expanded to give

(A + iB)

where

A Vl( r + <Vio3~ )
\ýV 1 2 (t)+

B = [Vlr (t)V 2r(t + • V Kv 1i't)v 2i(t +">]

. .. ..... (.l5)

but by the theorems established in Chapter 2

4"lr (t) v rtr)> Vi(t) v 2i(t÷+} T

and
<V Ir (t) V 2 1(t+')> < -V2 r (t) V i (t+",

whence Equation (A. 1. 5) becomes

2 [vlr(t) V2r(t+-y' i~ I (t) Vr(t+lj]

Y12%_ ________ (A.1. 6)Yl2(r) < I •V(t) V 1* (t.-" <V2(t) V, (t+1 AI'_--•

MdlUplyiN both scs oui (A- if) by Y12 (T) and :otng from (2.2.14) that

VI(t) VI kt+T)> 2 <V r (t) V2 r (t+ r)>
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we obtain ,•,:' ,(o V , r + ,v • ,r +t
• ylI(T)i

2 K-~ ~r (t+r T) rV1 (t) V rtT2

(A. 1.7)

or at T 0

I 12t ) <V11 (t) V2' (t )>2  + <V I' (t) V2 r (tjý 2

. ...... (A. 1.8N

Comparison of (A.1.8) and (A.I1 ), yields the -ela ion between von Laue's

measure of coherence Mnd Wols complex degree of coherence function as

YL 12(O) 2 
(I~
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APPENDIX 2

THE QUASI-MONOCHROMA.TIC APPROXIMATION

We may define quas'-monochromatic illuminintion by the following
A

property the mutual spectral density, F>,(v) , is appreciably differtnt

from zero only for those spect-al components, v, which satisfy the inequality

Iv- P[ I<< V ,

where F is the mean frequency and A ,, is the spectral width of the lignt.

Physically this condition implies that most 3f the energy in the fieli is con-

tained in the spectralregon T - A v < v<P + AV

Tcr obtain the form of the mutual coheren:e Junction for quasi-mono-

chromatic fields we first recall that ["I2 (T) may always be expressed in

the form

A , - 21TiV'

i j- 2 T f' 2 (v).e 2 rV w(A- 2. 1)

0

We may now factor :)ut the mean frequency teim of the Litegrand in (A.2. 1)

and obtain

" e 2(,) e dv . A2.2)

0

If we limit our attention to sufficiently small , more precisely if

T << the !requency dependent factor of the exponent of the integraiid

satisfies the inequality

T <<
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for all values of v for whi!ch r!2(v) is significant. Thus, the

variations in e-2~i,1(y) T may to ,- approximation be ignored, and

(A '.2) may be rcwritten as

-21

2 e (2(v) dv ()<< (A.2.3)

0

The integral In (A.2.3) may be formally evaluated to give00
rj2 (t')dv

112(, F• 12(0) ,

3

and we have finally

[12 (T) 2I (0) e •"<@) A24
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APPENDIX 3

THE GENERAL UNIMODULAR ANALYTIC SIGNAL

AS AN AUTOCORRELATION FUNCTION

We will show in this appendix that the general unimodular analytic signal

can be interpreted as an autocorrelation function only in the degenerate case

that it can be written as

ei~il") e27r i(vo 1 +0)
e =e

The constants an determine the position of the poles of the meromorphic c

function

Aleae 012(z)2v 
0z)

n=l1 an an *z e

S. .. (A. 3. 1)

In (A. 3. 1) the imaginary part of an has the same sign as v0, i.e.,1

I [an} < 0 , (A.3.2)

and P and v0 are real constants.

The most general unimodular analytic signal i3 obtained by setting

z = T in (A.3.1) (see Chapter 2). The requirement that (A.3.1) repre-

Pei,' an autocorrelation function is equivalent (see Chapter 3) to

V~1*
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R I rf7(T) sln2vFTir T 0 , (A.3.3)

where

I'l(T) = A1 2 e (A.3.4)

We shall show here that (A.3.3) can be satisfied if and only ii the

meromorphic function, (A.3.1), has ro poles.

The integral in (A. 3.3) is conveniently evaluated in the complex plare.

Equation (A.3.1) can e written as

R {F+ + Fr 0-, (A.3.5)

where
00

I o~ z +_2r ivoz

F f (Z)•e dz (A. 3.6)
-jO

In (A. 3.3) and (A.3.6) the identity,

2ir iVoZ -2,•ijvoZ

s' 2r z n .e - e (A.3.7)
2i

was used. The function F in (A.3.6) is given by an integral aloni t"be

•:-al axis, i.e.,

00

+ n= an at* - 7

Itr
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The integral in (A.3.8) can be Evaluated by contour integra~ion closing

the contour at infinity above or below the real axis accordingly as Vo + v

is less than ur greater than zero. Thus by Cauchy's residue theorem
0 V<- V0

00
I 0 00 *~ I*

A2  r f an Ia - a i* 27'i(v0 +V)amF A T=,._n e e 0> v0
m=l n=l a }n#4m i a n am 0

S(A.3.9)

since by (A.3.2) the poles are all :n tUe lower half plane Similarly,

0

fA " •- " a- •r - a 1t 2Tit(Vv )am f >vF_ JA-•r Mxn,•- •T-- e e V
F )"Ur ni=1 n=I- . 1 n m 1 -infI

Oym.

..... (a.3.10)

1Ihe prduct

a *.(a .3.1a)

converges foi aii z (ci. Chapter 2). It tlerefore converges for z am

and we may -write

2iilT= an* ail &in B iCm (A.3.12)
2Ort n=.I an a a

n n rmw/
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Using (A.3.12) we may write

F F(o 2(v +v O)Cm
F++ F_- (Bm + )[cos2w(v+v0)bm + I sin 22T(v'-v 0)bmj e

m=l

+ fj (Bn+ i C)M) cos27T(P 0-v)bm+ i sin 27r(v0 +v) bm e 2>VO

M=1

. ....... (4.3.1Z)

In (A.3.13) bm arid Cm are the rnal and imaginary parts respectively of am;

and cm Is greater than, zero (see Chapter 2) The physical requI,'nent,

(A.3.1), is that F + F vanish identically for all ,. Equation (A. 3.13)

can be written in a more conirenlent form as

Iv., * i
R F+ + F_ f R jRm e mcosdt n2x(v0 +i)bir +

,•2•r'0-•)cnj co[ m +2r (v0-v) b]0v .

. ...... (A.3.14)

where
-1 Cm

2 2 2 -l (AC.5Rm Bm + Cm and tntan [ - . (A.3.15)

That this equation cannot be satisfied for Rm # 0 is clear from the asymptotic

behaviour of the sums. The second sum vanishes for large v while the first

sum diverges term by term as e . Thus we must have

Rm . 0 (A.3. 16)

PFm



93

However, since in the solution of the integral equation (3.7) poles at the

origin were excluded and the product was taken only over the poles occurring

for finite z, the Rm cannot vanish jf there are poles or zeros in the

meronmorphic function. Consequently there can be no poles for finite z if

(A. 3. 1) is satisfied. Thus

(T) A1 A1, e A, e 2 iT) (A.3.17)

i0

i
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APPENDIX 4

EXISTENCE OF A LINEAR DIFFERENTIAL EQUATION

FOR TIE MUTUAL SPECTRAL DENSITY

From Maxwell's equations it follows that each spectral component of

the optical disturbance, Vr (t) , satisfies a linear differential equation, in

particular the Helmholtz equation in each medium comprising the imaging

system. Hence we may write

D[V"(v)] D[ lim Vr(T,)] = 0, (A.4.1)

where V (T, v) is the spectrum of the truncated function introduced in

Chapter 2 and D is a livear differential operator. Using (A.4. 1) and the con-

volution theorem of Fourier analysis we may write

so

lir D [ •r(T, = lir Fsin D (v[ Ty 0T-*,oo T-#do 2 /

"jr sAmply

D[Vr (T,v) ] = 0. (A.4.2)

Thus each spectral component of the truncated function satisfies th2 sa,,ie

differential equation. That the function TV (v), likewise introduced in

Chapter 2, also satisfies the same equation can be seen as follows. By

defir!tion

"di'
T ~p e2 rivt dv f r vr J, ) e 2 irit' di'dt'

coK) -0

k •
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Operating on both sides with D and using (A.4.2) we find

DrTV'(,) I = 0. (A.4.3)

From the linearity of D and equations (A.4.2) and (A.4.3) it follows that

D( V(TIj') ] = 0, (A.4.4)

where V(TI v) =r (T,v) + I TV•'v) is the spectrum of the analytic

signal associated with the truncated function V U(Tv). Equation (A.4.4)

expresses a particularly convenient property of the analytic signals, viz.,

that an analytic s~gnal satisfies the same linear differential equation as the

real function with which it is associated.

We recall from Chapter 2 that

A' ,l (TI P)V2* (T v
r , '2 ( v ) = l i ra. .

T-- l- 2T

and operating on both sides with Ds, (s = 1,2), where the subscripts denote

that the operation is in the coordinateo of P. we obtain finally

A
Da f 2(v) r 1 0 (s= 1,2) (A.4.5)

Thus the mutual spectral density will be propagated through the system by the

same equations which govern the optical disturbance itself.

• 3a 'l I l I i I
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APPENDIX 5

INTERPRETATION OF THE RESPONSE FUNCTION K(&, v, i)

It was shown in Chapter 4 that a coherent (scalar) field may be com-

pletely described by a single complex wave function U. In Chapter 5 it is

shown that this complex function is of central importance in treating the image

of coherent objects. To determine the physical significance of K(L, , v) we

consider a coherent point object as the input to the imaging system. For this

object the function U is of the form

UO( ,) 0 f ) 8 (V Vo)) (A, 5. 1)

Suibstituting from (A.5.1) into' (5.2.4) and integrating over d we obtain

Ui(J ,I') "K 0o",v) 8 (V-V0) , (A.5.2)

or

Ui(J,T) -- K(Jo-, ()1 ((A.5. j

The physical interpretation of K(._,sv) i- cueri from (A 1,.3); that is

K(IXP,) is the complex amplitude In, a diffraction pattern due to a point source

of frequency P located at
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