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ABSTRACT

A brief suivey of previous developments in the theory of partial coherence
is given in Chapter 1 and the velations between the complex degree of coherence
(see Woif 1955) and the measures of coherence introduced by earlie:* authors
are given. Because of the sundry formulations of the theory to be found in the
litera.ure a detailed review of the formalism used here is also gaven in this
chapter.

Coherence theory is formulated in terms of correlation functions and
analytic signals and the developm~nts of this thesis required several new theorems
concerning the convonlution tnd cross-correlation of analytic signals. These
theorems are developed in Chapter 2. The form of the general viimodular
analytic signal is alsc obtained in this chapter. It is shown that when considered
as a function of a complex variable this function is a meromorphic function of
order one with isolsted poles in either the upper or the lower half piane only
snd with ze-0s 2t « onjugate points.

In Cnapter 3 these thaoreme are applied to the detailed analysis of the
limiting forms of the mutual coherence function for both pclychroinatic and
quasi-monochromatic {ields. In the rigorous anaiysis, applicable to fields of
arbitrary spectrsl width, it is shown that: 1.) an otical field is :oherent if
and only {f it is8 monochromatic; 2.) the mutua. coherence finction for a co-
herent fielC may be expressed as the product of a simple wave function, ovalua-
ted at one point, with its complex conjugate, evaluated at a second point, multi-
plying a simple periodic factor, eznon; 3.} an incoherent field cannot exist
in free space though an incoheren. source may be decfined in a manner consistent
with this result. The esser‘ial differences between these theorems and the

corresponding ones for gaasi-monochroms: tic fields are discussed.




In Chapter 4 the propagation of mutual coherence is studied. A new
derivation of the wave equations for this quantity is given and the equations
are solved for the field created by an arbitrary plane source, i.e., an extended
partially coherent polvchromatic source. Using the fesults of the previous
chapter, the limit'ng forms of the general solutiun are examined in detail for
both polychromatic and quasi-monochromatic illumination. In particular it
is shown that : 1.) a ccherent source always gives rise to a coherent field, and
2.) an incoherent source always creates a partially coherent field. These re-
gults are shown to be valid regardless of the spectral width of the illuminsation.
By examining the general solution, the weli-known van Cittert-Zernike theorem
is found to be an approximate form of the incoherent 1#mit of the quasi-mono-
chromatic solution.

The results of the previous chapters are applied in Chapter 5 to a fre-
quency domain analysis of the optical imaging problem. A general solution to
this problem for partially coherant polychromatic light is obtained and genera-
lizad transfer functions are i{ntroduced. It is shown that, under the quasi-
monochromatic approximation, these generalized transfer functions reduce to
the familiar forms found in the iiterature. A transfer fuaction ia introduced
for cbtaining the mutual spectral density of \he image, a function of two points,

from the self spectral density of the oblect, a functjon of one point.
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CHAPTER 1
INTRODUCTION

It is customary to describe interference and diffraction phenomerna {n
terms of the superposition of strictty coherent or strictly incoherent vibra-
tions ignoring completely the puassibility ~ intermediate states, partial co-
herence. That this practice is a considerably restrictive idealization is
attested (0 by the fact that experience indicates that both of these extrewnes
are unreslizable.

An example of the inadequacy of the concepts of complete coherence and
complete incoherence for the descrintion of physically interesting phonomenn
was known a8 early as about 1869, A! that time Verdet (1860) demonsiraied
that the light from {wo pinholes in a screen lumingied by the sun will inter-
fere in Young's interfessnce experiment if the separation of the pinholes is
less thau sbout 1/20mm. Since interierence is customarily a property of
coherent vacillations. this result suggested the idea of an “"area o1 coherence"
surrounding a point in an inecherent fleld.

Arxothay early examme of the inadequacy of these limiting concepts can
be found in the work of Miclelson from about 1890 to 1020, The interferometric
method, {ntroduced by Michelson (1680-1831), of meaauring stellar diameters
essantially involves mesguring the dogree of colierence of the fliumination
prodaced by the stars. Although this work was not interpreted {n terms of
coherence theery until muaye Jater, the quantl'y, viaibilfty, intreduced by
Michelaar to describe the cuality of intezferencs fringes has proved (o be av
important key te urderstanding the coaleapt of partial coherence. (n fact, in

Zeratke's 11338) fcrmulation »f cohiwrence theory, the degree of coherence




2
between the vibraticns at two points in an optical field is defined as the visibility
of the iringes obtained by allowing them to interfere in a suitable experiment,

From the middle of the nineteenth century unti} the iast two decades the
theory of partial coherence received but little attention. The fow papers that
did appear on the subject are more or less disconnected since each investigator
introduced his own apparently different formulation of the theory. The lack of
interest in the subject during that period may be attributed to the fact that
applications in which the theory is important were e‘ther unknown cr tavoivad
measurements which were not refined encugh tv take account of the degree of
coherence.

However, in more recent years tho concept ot partial coherence has be~
come importart in virtually every branch of physics whick involves slaciro-
magnetic radiation regardless ol the frequenciss considered. In visible optics,
for example, coherence theory is tantan:ousnt to the unuerstanding of such topics
as image formation ard the effect of illuinination on the resolution in a micro~
sccpic image. In spectroscopy the influencs of the slit widih on the degree of
coherence of the illumination can produce measursiig effects. In radio asironcmy
source dia 'eters are measursd by interferometric technigues, which effestively
involves he mecsurement of tiw degree of coherence of he radisuon. Similar
probiem~ arise in thcse applications of radm: whese ques*ions of resolution
and mapping arc of central fmiportance.

Even at the much longer wave lengths used in communication, cohierence
theory plays an importsant role. In scatier ccmminicalions, for exampie, Beran
{1958} has recently studiod the propusgation of the ensembie correlation in the
scatter {ield and with the present author (18t7) has shown that ‘i reliability

of a spatially diversified acatter system can be cumnputed from a knowledge of




the degiree of cohersnce in the reflected tield.

In the last few years as theae applications became mportant and as
magsuring tecnniques became more refined, the theorv of partial coherance
haa received increasing attention in the lields mentionsd abova. In spite of
thia altenion several aspects of the theory have been miswnderstcod; and the
strong emphasia on application has left many of the fundemental questions

ungrawered,

The aim of thin thesis lg the deduction of certais of the gemiral mathaingt~
lcal and physical Lxplications cf cohorence theory. ¥For this purposc the wost
convanlent and rigorcus formalstion of the subject 18 ihat introduced by Woll
{1855}, =ad this formulism will be used oxciusively in ihis thesis. However,
befcrs reviewing in detall the strueture of the theory to be used here, it will
prove useful to give a briaf survey of the previcus resasreh on the gublect,
mying garideolar attention to the definidons of degree of coberance tntroduced
by sariier authors. In this way some of the advantages of the formulatios used
here will become apparent.

1.1 Survey of Frevious Reseerches

Eariy research on partial coheresce @ aspaciaied with ihe names of Verdet
(1869}, von Laue {1607}, Berek (1936 2, b, ¢, &) and van Citiert (1834 '939). The
invesugations of this sublect in the last two decades are found primarily (n the
work of Zerntke (1938), Hopkinag (1881, i957), Bians-Lepierie and Dumontet
{1835}, naxi Wolf (1053}, Since 21l of the earlier formulations of the theory are
srecial cases of the ong used here, it will prove conven'ent & iniroduce the
principle fonciixe of this geasrsl Uwory before discussing the contributions

of the previous wriers.




Tho study of partial coterence in optica i8 essentiaily the study of the com-
piex cross-correlation of the disturbances 2t two typical points, Pl and Pg, in
the optical field. This function i8 defined as the mutual coherence functios®,

rlz(*r), Le..

nﬁ(r) = <V1t+’r V2 t)\ ,

where ¥V, (t) and Vz(t) are the "comple:"diaturbances" At e two points, tin
sharp brackets, (> , denote time average, and 7 is the tin.: dalay. The
complex degree of coherence, 712(7) , is delined as the normalised mutual

coherence functicn,

M1
M3

7‘ 2(7) =

It ahculd be noted that the degroe of coherance is & function not oriv of the
coordimates of Py and Py but also of the time delay o pa‘h difference coordinate,
7. With these defiritions in mind wc may new direct our atteation to the early
contributions to the subject of partiai coherence.

After the work of Verdet (1380), mentioned earlier, 2 quaniitative moasure
for partial coherence was given in a paper by von Laue (1307). Iu th.s papsr,
in which was discussed the thermodvnamical aspectz of diffruction, the quantity
"L propoitional to equare of the time averagsd product of the aisturbeunces
at two points in the field, proved © be of central importante. Whils this quintity
was sufficient to characierize the cptical fleld for lne probleris discusse! by
von Laue, the formulation is too restrictive {or gerersl applicaiics. Bowever, we

may mention that the recent interesiing experiment of Hanbury-Brown and Twiss

. Precise definitions «f *his and the other furctions refsrred to here ave
given in the next sectiicn.

*s The precise mearing of the terin complax disturbunce iz given inBection 3.




{1956 a, b) measured precisely the quantity Yy, -
it is shown in Appendix 1 of this thesis that

2

vy = | 730 | 1.1.1)

The next theoratical treatment of the subjecsi appeared some twenty
years later in the work of Berek (1926) in which was introduced the so-called

degre2 of consonanca as a meusure of coherence. Berek's formulation was

applied to some problems in the theorv of image formation in the microscope.
Some of his resuits, however, were contradicted by the experiments of Lakeman
and Groosmulley (1928).

After another decade the subject was again reforraulated. van Cittert (1938)
showe? that in a plane illuminated by an incoherent, rearly monochromatie

source the optical disturbance is normally distributed. Three theorems con-

cerning his "komplex korrelation' were also given in this paper. The best

known of these theorems expresses the correlation in the illuminated plane in
terms of the intensity distribution across the source plane The analysis of

thif naper is 1n (crms of ensemble averages, bui by invoking the ergodic hypothesis,
it can ve shown that when the treatment is appiicable (fniccherent, quasi-mono-
¢l.romatic sources) the coxrelation function introduced by van Cittert is equal

to the zero ordinate of the complex degree of coherence,
Ye = Y120) - 1.1.2)

A siznificant augmentation of the theory of partial cohovence was given by
“ernike {19383). In ihis paper the treatment of the subject is tightly bound to

t~e interpreiation of Young's interference experiment in terms of Michelson's

visibility. In fact the aegree of coherence between the disturbances at {wo points
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is defined in that paper as the visibi'it. of *h» grir jes rteined by ailowing the

light from these poiats to interfere in 1 suiw.ble 2 reriment (. 2. ghort path
differences and equal intensities). So valusblc has :ais experimentsl definition
proved in understarding the physical aspects ot parﬂal roherence, that many
later authors overlook the fact that Zernike formulated the subject anaiytically.
Zer.ike's fuormulation is aprlicable to quasi-monochromatic fields pro-
duced by any sov e (coherent, partially coherent, or incoherent) and in this nense
is the most gene-zl trr aiment prior to the work of Blanc-Lapierre and Dumentet
(1955), and (17 1€55) to be scusied below. The fundamental quantity in his
ai\alyviu i8 the vaise u imensiiy fun-ion, defined as the time averaged product
of the disturbence : ¢ one point with the complex conjugate of the disturbance at
the second - »int. The degres ¥ .oherence is the mutual intensitv function
suitably nc . ainized. Zernike's Jegree of coherence, Yy TOBY be shown to be

equal to the zero ordinate o. the complex degree of coherence used here, .

vy = 7450 . (1.1.9)

In the same paper an approximate law for the propagation of the mutual
intensily wa. also presented; and as a conscquence of this law & theorem re-
lating to the mutual intensity on a plane illuminated by an incoherent plane
source was determinad. Thia theorem is by virtue of the argodic hypothesis
the same as the theorem of van Clittert's mentioned earlier and is now termoed
the van Cittert-Zernike theorem (of. Born, M. and Wolf, E. 1059, ».507).

In 1951 H. 4. Hopkins reformulated the theory of partial coherence. In
this treatment the complex degree of coherence is aefined in terms of an integral

over the primary sourcs. of the radiation, assumed always to be inccherent. While .

the arguments of this paper have been the suhbject of considerable aiscusaion,




)
(of. Wolf (1854, 1958), Hopkins (1956), Zucker (1857)), the techniques introduced
have proved very poweriui for many practical optical problems. When the formu-
lation ol this paper is applicable (i.e. incoherent quasi-monuchromatic sources)
it i3 equivaient to that of Zernike, Heace

’(VH = ')/12(0) , (1.1.4)

wnere Yo is the degree oi cohercnce as defined by H. H. Hopkins.

In sgite of the uselulness of the results presented in the papers described

above we must point out three unsatiafactory aspects of their formulations :

1) the formulations are applicabie only 10 quasi-monochromatic fields; 2.) apart
from Zernike's wurk, the analyses are apslicabie oily when the source i8 inco-
herert; 3.) apart fromw von Laue, each of the avove formulations are in terms

of complex functions the siynificance of which is ohscure,

The {irst of these considerations is perhans the most significant; for the
restriction to incoherant sources {18 removed by Zernike’'s formulation; and the
ambiguity as to complex representation may be removed either by dealing ex-
clusivel» with 1eal functions or by carefully defining the complex funcions. The
resiriciion to quasi-monochromatic light, however, is not gimply removable, In
fact *he theory of partial coherence could be extended to flelds of arbitrary
spectral width only after the introduction of the wross-correlation function and
? more detsiled coneideration of the statistical aspects of the subject.

These sho, icomings were siinunated in the formulation of the subject by Wolf (1956}
awnathatof Planc-Laplerre and Dumontet (1885). Dothof these fortnulations are rig-

orously applicable to polychromatic fields created by ery type of source {coherent,

partislly cohe reng, or tacoherent); and both define the degree of coherence in terms of

b the cri:a8-Corretion of she disturbance at two puinis in the field. The eseential difference

bitween ‘hesa £ro icralations 18 the fact that Wol{ treats the subject in tecms of carefully §
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defined complex functions, while Blanc-Lapierre and Dumontat deal ir th? main
with real functions.

Thes2 two treatments are rigorous and generai, but the several advantages
cf the complex representation {discussed by Born and Woli (1958) and Parrent
(1959) make it more suitable for an analysis in which the usual optical theorems
for natural light are to be regarded as limiting forms. The degree of coherence
as cdefined in the real function treatment, YBL + D(T) is siraply the real part of

the complex degree of ccherence, i.e.,
arep® = R{rpm | 1.1.5)

1'or the reasons stated above the formulatica of cohevence theory due to
Wolf will b+ used exclusively in (his thesis, In the next section this formulation
i8 described in detail.

1.2 ERsview of the Gereral Formulation of Coherence Theogpy

As originally introduced by Wolf (1054) the wheory of partial coherence is
formulated lu terms of the electromagnatic field. ‘The basic entities in thia for-
mulation are corrslatidon matrices. the elements of which ave the cross-curreia-
tions of the Cartesian cnmponsnts uf the electromagnetic fisld vectora in au
appropriate complex : apresentation. While such a genern’ treatment may be
nacessayy for the descriptic.a of partiul polarizadon phenomueng, ] great many
optical pher.omena are aaequately cescribed by a scalar wave function.

There are ai ;east {wo aporcach. 3 to the justfication of the use of » sralar
theory, apart from the experimer. -al fact that it 18 in excellent agreement “#ith
experience. The customary approach is to tal.> as the basic physical guantity a
single Cartesian camponent of the aluctric vector, reservirg the right to include
the additional componenta if necessrry to describ» sume particular phenomenon

{e.g. volarization effecta).

I i, D A .
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An alternative approach is that adopted by Green and Wolf (1953). In this
and subsequent papers by Wolf (1959) and Roman (1955, 1859) a rather fruitful

attempt tc completely describe opticai phenomena in terms of a complex scaiar
function has baen made, This theory i3 not as yet complete and hence will nox
be used here. Ia this thesis we adopt the first approach and represent by Vr(t)
a single (real) Cartesian component of the electric vector.

Since the concept of Gabor's (1946) analytic signal is fundamental to the
understanding of the definitions to be given here, it will prove useful tc review
briefly the method of associating an annlytic signal with a given real functiun
in spite of the fact that Chapter 2 i8 devoted largely to analytic signals and
their associated Hilbert transforms.

As will become clear in the follewing development, the analytic signal may
be obtained by a simple generalization of the method of associaiing a complex
exponential with a simple perfodic fusction. Let Vr(t) be a real function pcs-

sessirg a Fourier representation,

vr it = ,‘m a(v) oS | $(v) - 2mut} dr . {1.2.1)

We agsnciate with Vr{t) another real fuaction, Vi(t), obtained by changing the

phase of each spectral component of vh (t by n/2. Thus

vie = 7 aw) sin| o(v) - 2 ] dv . (1.2.2)

The analytic gignal, V{i), may then be defined as

v o= VR o+ Vi) . (1.2.3)
The fundamental quantity in this study is the mutual ccherence function,

r) .
' Which is defined =8 tlie compicx c.urs-correlation of the analytic
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signals V1 (t) and Vz(t) associated with the real disturbance Vlr(t) and Vzr ) at
two tvpical points, Py and Py, in the field, 1, e.,

Mam = (e + 1) V70 ), (1.2.4)

where the sharp brackets denote time average.* Three functions derivable

from Fw(r) are of sufficient importance to have received separate names,

The self conerence function, r‘u(*r) = Il( 7), 18 the complex auto-correlation
of the analytic signal agoociated with the disturbance at a typical point, Py, in

the optiral field,

[ = L0 = (Vl(t L)V ): (1.2.5)

As will be proved in a later chapter, the intensity at a typical point in the

field is the zero ordinate of the self coherence function, i. e.,
»
Mo = 4,0 = {v,0 v, ®) . (1.2.6)

This result may be regarded as a generaliration of the familiar theorem for
morechromatic iight.
The Fourier transforme of the mutual coherence function and the aelf

coherence function are termed the mutual spectral density, F“( v), and the
~ *
spectral density, r“(u) £ ll(u), respectively; * i.e.,

13

(;2(1/) : f F!Z(T) eIV 4r vo> 0

(1.2.7)
= O 1% < 0

RO p—

*  The precise form of ‘his time average is discussod in Chapter 2.

< e o - oo L1

** It will be proved in Chapter 2 that the cross-correlation of two analytic
signals is itself an analytic signal, and hence "12(” contains only
posative {requency.
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and
A [ o]
Fn(v) = f,ql(r) e2MVT s v> 0
N {1.2.8)
= 0 v <90

In terms of these functions the complex degree of coherence {function) is
defined as the normalized mutual coherance functioa, where the normalization

factor is the square root of the nroduct of the intensities at Pl and Pz;

Y 12(7-) a -—I‘n&i——_——:
V110 3@

(1.2.9)

By appealing to the S8chwargz inequality, it can be shown that the modulus
of 712(1) is bounded Ly zero and one,

0 < | ralri] s 1, (1.2.10)

and these extreme values characterize by definition complete coherence and
complete incoherence, respectively. It may be shown (see Wolf, 1955) that
712(1) may be identified with the visibility of the {ringes obtained by causing
\’1r(t) and Vzr(t) to interfere with a path difference of vr, whe e v is the
velocity of light in the medium, assumed to be homogeneous. [t is, thercfore,
clear that the above definitions are in agreement with the concideration that
coherent light interferes and incoherent light does now. In fact the definitions

used here may be regarded as a rigorous generalization of these introduced by

Zernike (1938).

The esseniial mathematical structure of ccherence theory is contained in
equations (i.2.1) through (1.2.10) except that the form of the time average has
not been axplicitly given. This omission will be remedied in Chapter 2 where

alternative definitions of the time average are discussed.
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CHAPTER 2

MATHEMATICAL DEVELOPMENTS

The definitions introduced in the previous chapter employ the concept

of Gabor'a analytic signals (see Gabor (1£46)); and since the development
{ of subsequent chapters makes extensive use of the prope:ties of analytic

signals, it will prove helpful to discuss in some detail their mathematical
properties at this point.

The methed given in Chapter 1 for asscciating an analytic signal with
a given real function is patterned after the introduction by Wolf (1956) and
is useful in understanding the significance of the analytic signals. However,

for the purpose of the analysis given herc it if more convenient to introduce
, an alternative definition in terms of Hilbert transforms. The equivalence of
! tiiese two definitions will be demonstrated.
| In Section 2.2 several convolution-type theorems for analytic signals
i are given. Section 2.3 presents a number of theorems concerning the cross-
correiation of analytic signela. In the final section the form of the most
goreral unimodular analvtic signai i8 given.

2.1 Hilbert Transforms

The Hilbert transform, V' (t) . of the real function V¥ (t) i3 defined

by the relation

-

r ] ]
vig = ’1}_ I!{M{d‘ and VF )
Joo s
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Here the integral is the Cauchy principal value integral wiiich may be de-

fined as
=2 or r
f gt'z dr llm[[ Vit | v dt'J
t -t vt
€0 J e

.....

However, in almost every instance it wili prove more convenient to evaluate

the principal value integral by contour integration. To rewrite (2.1.2) in
terms of contour integrala we replace t by 2z, (z = x + iy wherexandy

are real), and assume thet the function VT (z') i8s continuous in some neigh-

bourhood of &' = z.

The principal value integral may ‘hen be defined by

2 AR 4

+ -

.....

where th~ integrals on the right are line integrals along the open curves C+
and C_ and
right curving in semi-circular arcs respectively above and below the point

The curves C C_ extend slong the real axis {rom left to

' = 7 as in Figure 1.  The value of the line integrals in (2.1.3) are of course

independent ¢! the actual path of the curved part of C

, 8nd C_ aslong as they

do not include singulmrities.

The line integrals, therefore, remain unchangsd

in the limit of vanishing radius for the semi-circular arcs.

The continuity

of V¥ (2') in the neighbourhood of ' = x assures that in the limit the

contributions from the upper and lower arcs will cancel each other; thus the




14

c Infinit 2z
+ T init: T
X ‘f piinly N ———
- S S —
C- To Infinity —

y FIGURE |.

equivalence of the definitions of principie value {8 demonawrated. 4
The integrals in (2 1.3) are iine lategrals; the paths by whichC_ and C_
are closed will of course depend on the form of vh (z') in any given problem.
In terms of the Hilbect transform the analytic signal may be defined as
follows: let VI(t) be u real funciion of t such that its Hiibert transform,

«
Vi(t), exists. ' The analytic sigoal mav then be defined as

vi) = vi) o« vl . 2.1.9)

* Actuzllv {2.1.3) is a more general deftnillon including (2.1.2) as a special
case; for (2.1.5) will pot exist if V' (z') has a pole at z' = z while {2.1.3)
will always exist except for the cases of an essential singularity or byanch
point at 2’ = z.

*+ A anfiicient condition for the existence of tl.. Hilbert trangform is that
v'(z) be square Integrable. Howeve:, as with tne Fourler transform the
necessary conditicna for the existence of the Hilbert transform are no.
known. Since raany of the functions ocrurring in thia chapter are not #qua.e
integrable but do posess Hilbert trarsforms, we adsume the weaker condi-
tions that the transform exiais and that the inversion theorem is valic
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The equivalence 4f thig and the previous definition, (1.2.1) - (1.2.3),
niay be demonstraed as foliows: express v (t) as the Fourter integral

0
rd

viit) = ja(_v) zos [ $ (v} - 2a:t ] dv . (2.1.5)
0

Tuke the Hilbert transform of both sides of {2.1.5) after seiting ¢ = z and

ex; res8sing the cosine in terms of complex exponentials.  Thus

7 ? i e - 2ne]
V’i<z) = ..,.l.v. 8<V) , S dz'de
I ; AN/
0 Z
;?2 ‘ P [ o0y - 2nve] (2.1.8)
+ .,..1‘. ) l e de'dy
2 J oz -z
0 -

The order of integration ha~ been interchancad and the inner integrals are
interpreica &6 the lpe irtegrals In Figare I The contour i8 closed at in-
finity Yeiow the axis in the firat inegrai and at infinity above the axis in the
secon] integral. Since there are no poles within the contour in efther inte-

grund except at ' = z, we obtain by the residue theorem

a0
V'(t) - [a(u) sin [ ¢ {yy - 2mut]dv , (2.1.7)
0

wiere we nave replaced z by t after performing the integration. Comparison
of (2.1.7) and (1.2.2) establishes the eqatvalence of the two definitions.
It will be convenient for later deveiopm :nts to list here several theorems

concernhig Hilbert trargforms (¢.f. Satemun Mrnuscript Project 1834).
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Table 1
+
Theorem 1(t) "_l - f(r)dt
T i -t
[ ]
V(L vi
I Vi) - V(Y
n Vit + a) vit + a)
m Vs at) £ Vs at)
o]
v L+ ) V(t) (t + a) VW -;- [ vi(tdt
o
v LV 4 i
at at

2.3 Convolutton Theorems for Analylic Signaia

We 8. 1 require several theorems coicerning the eross-corrsiktion of
aralytic signais. Since these theorarae do not seem to appear in the lterature,
we shall giva & detailed derivation of them a. this potst.  Becwuss of the com-
plicaiion Latrosucsed by the Ume zverage in the crosa-correlaticn fincticn, we
shall {irst demorsiraty thesn theoréans in *erms of convolution integeals gnu
later derive the correlaticn theorems from them.

Thecram VI:  The ronvaluifon v two resl Tusctions { }(17 ard i;(t) iz
equal & tae coaveluiion of their Hilberf transforms, gl-f&) and gzgt}. (in the 2zme

arder), l.e.,
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®

Jrf:,(t) ﬁz.(t + 1) dt a] 31(%).32“ + 1) dt (3.32.1)

The proof of thie theorem can be cbtained with the help of Theorems I &nd II
of Tuble 1. Let

}’.’
/

-

f,(t) fyit + ) dt . (3.3.2)

Applying the inversion theorem (Theorem I, Teble 1) twice to both zides of

(2 2.2), we chtain

LI e ~L £,() fy(t+ ndtdrdr .
T o T- T
[ -] k] [ 5

IRF(T"} - - f 1 /fll(t) gylt + 7 dt dr'. (3.2.4)

Infrodacing A new veriable 7= t + 7' we obtain

= L)
{.(t) gqo({m)dt dr
F(-) = 1 d : (2.3.5)
t - (r - 1)

- W
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Using Theorera I again we finally heve the result that

«

Fe = [agle - 1) gy(nar. @.3:0

- A

On satting 7 - 7 = t (2.2.8) reduces !0 {2.2.1) and the thecrem is

demonsirated.
Two special caseg of theorem (2.2.1) are of narticular interest. The

first cage, 1.0t = V' () (3 =~ 1,3), leads to
o

= >)
f \ R0 vorit « mdt = ] v.ie vz’(t + T)dt. 3.5.7)
-

el

The gecond case, i.(1) = Vf{t) an. fﬁit) = ‘e‘zi{t}. lesos to

=
i
}

J v, 5@ v;{x‘. + Ndt - -
Y

f Vi vt e ndt (328

Jeo
Using (2.7 7) snd (2.2.3), we may obain the comeolution thaorems fo; famlytic
vignals from which some 0! the advantages of this coingiax formulnticg will
be cieas. Consider the (niegral

&3

[ V0 Vs Sla (2.2.3)

«
-

wt.ore Vs{tj (8 = L3} imof the form of (3.1.4). Subaubiting {rom (2.5.4)
into (3.2.9) and using (2.2.7) and {2.2.5) we obtain
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« [

jvl(t) VZ' (t + Hdt = 2 j v.I®) VTt + mat (2.2.10)

- X -0

[ o]
+ 2 f V) vl + mer
- 00

Equation {2.%2.10) expresses the useful result that the real parc of the ronvolu-
ion of twe analytic eigaais is, apart Ivom u factor of two, the convolution of
the real fur ‘oni: w_h which they are associated. Ancther useful property of

the anal "¢ algnals i8 seen by putting V’.(t) equal to Vﬁ(t) in (2.2.10). Thus

1 7 . * o T
3 / Vit vl e T)dt = fvlr(t) v'lr(t + Tdt

% 00 - 00

w (2.2.11)
o f v.in v ma
- 0D

We may now ovaluate the second integral on the right 3s follows: using (2.2.8),

o0 O
h ler(t) Vli(t + Ddt o= - fvli(t) Vlr(t + Tdt
-0 - @0 7
. .(2.2.12)
or evaluating (2.2.:3)at 7 =0 we {ind
n .
f'vlf'(tg V3‘(é)dz = 0, (3.2.13)
~ a0

LA, Vlr(i) and Vli(t) are orthogonal. Evaluating (2.2.11} at v = 0 and
using (2.2.13), we obtain

,fvl(t) V'].(t)dﬁ = 2 fvl"(t) Vlr(i)dt , (3.2.14)

o T 0
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Fquation (2 2.14) exprasses a second important property of the analytic signals;
namely, the integval over-aill time of the squared modulus of an analytic signal
18, apart from a facicr of two, the integral over-all time of the square of the
real function with whic’ it i associated.

An additional theorem on the convolution of anslytic si;nais, which will
prove umportant in the next section is :

Theorera VII: The convelution of two aralytic signals is itself an

analytic signal. To demonstrate this theorem we write
©
F(r) = 2 jvl(t) Vo (t + 7dt . (2.2.15)
-

Using (2.2.7) and (2.3,8), (2.2.15) can be rewritten as

S0 . -©

. 1{‘/V1r(t) Vit + mat - fvl‘(t) VoTit+ T)dt].
" - L (2.2.18)

Denoting by R and I the real and imaginary parts reapectively and taking
the Hilbert ‘~ansform of the real part of F(1) we obtain

«0

.;_ [f__{_i(f_)} o 1 {F (0}, @.2.17)
J T -7

and Thecrem VI i8 demonstrated.
The resulte established in thie section are, of course, applicable only

to convoiutions and the definitions introduced in Chapter 1 are in terms of correla-
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tions. We shall show in the next se-tion that thesa theorems are also valid
for the cross-correlation of analvtic signals if the Hime average is suitably
defired.

2.3 The Lross-Correlation of Analyiic Signale

The complex cross-correlation function may he defined in geveral ways.

The cusiomary definition is (c.f. Daverport and Reot (1958), page T0}

T
wlz('r) = ¥m \2-%.- [fl(t) tgt(t + Tt (2.3.1)

However, for our present purpose the mutual coherence function, r;z( T), 18

defined as
r;z(‘? = lm Tl!r jVI(T,t+T) Yz‘(’l‘,t)dt, (2.9.2)
Tow 1 )
where
V(Y = VITY - v (2.3.9)
and
{ vF) t < T
Vi, = 4] , (3.3.4)
0 [t] > ) .
and
r " At
AU v (Tt)dr (2.3.5)
t -t

The different notation, vO(T,t and Tvl(l) , s uscd since, while vi(T,Y)

vanishes for !t “) T, its Hilbert transform TVi (t} will no* in general
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vanish in this range. Since Vr(t) i{s assumed to be everywhere finite, the
function V'(T,t) is square integrable; its Hilbert transform V'(t), is
therefore also square integrable (c.f. Titchmarsh (1948)). Consequently,
all the required Hilberi transforms exist. The equivalence of the two defini~
ticns of an average, of the type (2.3.1) and (2.3.2) is discussed by Born and
V/olf (see Born and Wolf (1859) , page 406). For onr purposes it is more
conveanient to employ the definition (2.3.2) and accordingly the sharp brackets
are defined as

. * %
(Vlr(t+ 7 Vy (t)) = lim T&-[VI('}‘,& +7) Vo (T,t)dt.
T

The presence of the parameter T, in V(T,t) in no way affecte the argu-

ments of the previous section; and the opersation }li‘-x‘nw wiil commute with

the integrations involved, since T- and f are independent variables. The theorems
established in Section 2.2 may, therefore, be taken over mutatis mutundis for

the cros' -correlation function riz(f) . Thus if we adopt the notation

r;2rr(7) = (vvlr(t +7) Vzr(t) > . (2.3.8)
and
M = (vJfeen vl y (2.5.%)

We may summarize the principal theorems a3 follows :

20 = 2[ [0+ 1 [ ] (3.3.8;

m,"e = o . 3.3.9)
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Setting Vl(t) equal to Voft) and 7 = 0 in {2.3.8) and using(2.3.9), we
obtain the result anticipated in Chapter 1, Section 2, viz.,

Mo = 2 ;70 = 21p), (2.3.10)

where I(Pl) is the intensity at Pl. Further it follows from {2.2.19) and

the arguments of this section that

2 m orr
I (v")dr'
Mo = - Ty - 1 )l —— — . @31

Thua the mutual coherence funcion is an analytic signal.

For the sake of continuity in later arguments we include at this point
two lemmas concerning compliex cross-correlation functions. Both of
these lemmas ".re well-known and follow immediately from the definition

of Plz(f) and the astutionarity condition; they are, therefore, given here

without proof:
Lemma |
[en = My'm (2.3.12)
and
LemmalI .
PRON Mg 0 . (2.3.13)

The hooked notation is used to denvie temporal Fourler transforms, i.e.

A ‘ 2mivr
[0 - ) M2Me 4 » ~ o0 (2.3.14)

-

= 0 v <0
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The spectrum of Plz(ﬂ is zero for half the frequency range, since the
mutua! coherence function is an analytic signal.

2.4 The Most General Unimodular Analytic Signal

We shall be concerned in Chapter 3 with the determingiion of i 'miting
forms of the mutual coherence function fcr coherent and incoherent fields.

The form of  [[5(7) for roherent fields will be showr to be

TG
Mol = -V’ 010 5,0 e 37, (2.4.1)

9 19(0)
where e 12 is a unimodular analytic signa’. The deter.iination of

¢ 12(17 involves the solution of a singular {utegrai equation; and since this
solution is rather lengthy and purely mathematical in nature it will be included
in this chapter.

i9,9(7)

Since e 12 is an analytic signal, its real and imaginary parts are
Hilbert transforms, i.e.,
co8 ¢ (7' )d7’
1 12 .
8in ¢ (1) = - = ]( . (3.4.9)
12 " ' - 7
- o

Using the inversion theorem, Theorem I, Table 1, we niay write

sin ¢ ,(7)d7’
cos ¢5(7) = ;}.f -1 , 2.4 2
T - T

Combining (2.4.2) and (2.4.3) we obtain

o]

/ gy o(7’
Jolnh ](em( o (2.4.9)
T

T' -

- oC
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Here we have dropped the subscript 1, 2 since the development of this section
is not concerned with the space dependence of ¢12'(r) .

Equation (2.4.4) is an integral equation for ¢12(T), and may be recog-
nized as a singular form of a Carleman-type equation, i.e.,

o0
o= 2 f“w') art e X, (2.4.5)
7'
- 00
where ) is a generally complex constant. The general solution to (2.4.5)

is {c.f. Tricomi (1957), page 175)

() = ——i-!——z [!(‘r). oo X dr'] . (2.4.8)
1 + w T - T

However, since in (3.4.4) X = i/z and x(7) = 0, the solution, (2.4.6)
becomes in this case indoterminate. In fact it i8 clear that (2.4.5) can have
no 8¢ ation for x(1) = 0, except possibly for the eigenvalues, A = + {i/7.
This singular form {8 solved here by utilizing the properties c¢f analytic func-
tions. To this end we replace the real variable 7t by a complex variable,

2 - x + ly; and write (2.4.4) as

() = 4 .i_(.’.‘_?; @, (2.4.7)
where
f(z) = oi®@ (2.4.8)

Since ¢ x) is a real function, we have

o) = @ (3.4.9)
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here and throughout the rest of thiz section we use the bar to dunote complex
conjugate. In the subsequent digcussion we shali treat only the case A = -i/x
since the argument i8 essentirlly the same for the positive sigenvalue.

It has been pointed out in Chapter 1 that the term analytic signals derives
from the fact that these functions are, when considered as a function ot a com-
plex variable, analytic in hzlf the compler plane. Since extensive use of this
property is made in this section we shall digress briefly and demonstrete it.

Let U(t) be any function of the real variable t such that the integral

Fz) = o1 f gidt (2.4.10)

exists. Then the function F(z) is analytic in the lower half of the complex
plane (c.f. Whittaker and Watson (i9%0) page 92). Equation (2.4.10) may be
rewritten as

Fz) = % i 2.4.11)

v
©

where Cauc.iy's theorem has besn used.
In the limit as -~ x f{rom below the real axis

Fz) = F(x) = -t ][%)i‘ﬂ v oml UR
U(t)dt
bindt (2.4.13)

From (2.4.12) it is clear that the analytic signals may be regarded as the

- U - g

88

limit 2a the rea! axis is approached of a function analytic in half the complex

plane. Oi, conversely, if In an analytic signal the real variable is replaced
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by a complex one the resulting function is analytic in half the complex plane.
For our present problem, the solution of (2.4.7), the domain of analyticity
. of 1(z) may be extended tc include the real axis since 1.) (3.4.9) excludes

the possibility of poles or essential singularities on the real axis and 2.)
physically we require {(t) to be unique which excludes branch points on the reai

axis.

Apart from the trivial soiution of f(z) identically equal to zero, the

functior f(x) can have at most isolated zeros in the lower half plane. This
conclusion follows from the analyticity of f(z) in that domain (c.f. Titchmarsh
(1939) page 88).

Equation (2.4.9) expresses the value of f(z) at all points in the lower half
planc in terms of its valvas at conjugate pcints in the upper half plane. Further,
(2.4.9) irdicates thai corresponding to every sero in the lower half plane there
is a pole &t the conjugute point in the upper half plane and conversaly zeros in
the upper half plane correspond io poles in the lower half plane. Hence, there
are no 3eros in the upper half plane and the singularities in the upper half plane
are .solated. Furthermore, the singularities in the upper half plane are poles
and not essential singularities; for by the Weierstrass theorem (c.f. Titchmarsh
(1939), page 83! in every neighbourhood of an isola:ed essentia} singularity the
function tends to any given limit an infinite number of times, and this behaviour
would by (3.4.9) be reflected into the lower half plane. That {o, an esssntial
singularity in the upper half plane would necessarlily correspond to an essential
singularity in the lower half plane. The preceding argument does not exclude the
posaibility of essential singularities at infinity since infinity is not an isolated

. point. In the same way a branch po!nt in the upper half plane is excluded since

it would imply a branch point in the lower half plane contredicting the requirerent
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of analyticity. We may conclude, therefore, that f (2} i# a meromorphic func-
tion, i. e., its only singularities for finite £ are poles.
By a modification of Hadamard's iheorem (c. {. Titchmarsh (1838), page "
284g wher> a full discussion of tt.e concepts emvloyed below is given) any

meromorphic function f (3) may be expreased in the form

, (3.4.15)

o0
where Q{z! is a polynomial of order N ; W !.'(-:- P ) is
n

! the canoaickl product of the piimary factors,

2 .
U +-* + .B.p
E(up) = {1 - u) e P (2.4.16)

2, and br are the zeros and poies respectively of 1(x).

The genus of the caronica] product satis{ies the inequality

4 = 1,3)

In
©

, (3.4.17)

¥

where p {is the order of the mervomorphic function. The order, N, of the

polynomial, Q, also satisfiee the inequality, (2.4.i7), te,

N <o (2.4.18)
From the previvus argument it is clear that the poles and zeros oc2ur

at conjugate points, 1. e,

a_ = b - (2.4.19)
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Therefore, using (2 4.18), (3.4.15) may be written as

Z} /.") 1 1\
. hl "a!'\ = n=1 la_ "X |+
n n |i
f{z) = ] ] 3 :
n=1 .z
8
..... (2.4.20)
where we heve set
m
Q) - D oo, 2 (2.4.21)
J=0
and m is the largest of lue integers, Py Pg N. After settirg
o .
ie = 2 (_1_ - _t..) (2.4.22)
n=1{a a
n
where c:j is a real constant, (2.4.20) can be rewritten as
m
"r"”ll z E (bjt ;‘) _‘.,j. .
{(2) = i( §=0 Yy (2.4.29)
i1 _.!.
*n
Bowever,
b, + ¢ )zm
f(g) ~ e O™ m (3.4.24)

when | £]—®w : but (2.4.54) has m poles and m zeros equelly spaced on
the circie at infinity;, and, therefore, f m > I, f(2) hus singuiariiies in the
lowsr half plane. We conclude, therefore, that the mcst gent -al allowable solu-

ticn 8 with m = 1. The expressjon (2.4.22) becomes [inaily

o et et e




IR
{ : Y,
fig) = ‘j( :9..\@ LE z], (2.4.25)
n=111 -r,
n

a8 meroriorphic function of orager 1. Thus we have eatablished ‘he following;

Theorem VIII : The most general unimuculur aualytic signal is a
meromorpiic functior of order one with zeros z = a, anly in the lowar half
plare and with poles at conjugate points in the upper haif plane aad is given
by the formula (2.4.25) where 3 &nd Y are reai congtants and the imaginary

part of R, 18 greater than zero.




CHAPTER 3

SOME IMPLICATIONS OF COHERENCE AND INCOHERENCE

In Chapter 2 it was pointed out that the modulus of the degree of coherence
is bounded by one and zero and that these extremes are by definition charac-
teristic of cokerence and incoherence cespectively. For quasi-monochromatic
light these delinitions are in accord w.th the consiaeration that cnherent light
interfere~ and incoherent light does not. (See Welf, 1854.) However, in this
chapter we are concerned with the implications of coherence and incoherence
on the form of !?2(1) , for fields of arbitrary spectrel width. In a detailed
analvsis of such fields in which the terms ""coherent limit'* and "inccherent
limit" are to have a clear and unambiguous meaning the above defiritions must
be more precisely stated.

The ambiguity which arises in the study of polych.,omatic fields s*«ms
from the fact that the modulus of the degree of coherence between the diztiur-
bances at two points is a functivn not only of the pesition of th2 two voinis bat
also of the time delay 7. Thus it is possible that ‘or sowne values of 1
Bay 1 = 7, and T = 7y, \712(71): = 1 and !'7_'{3('2)1 = 0 {or
the same pair of disturbances in 8uch f.elds, and trne limiting concepnts of
coherence and incoherence become ambigucus.

This difficulty does not aiise in the study of quasi- munochromatic tight
for the approximation characterizing such fieids makes the modulus of the de-
gre2 of coherence independent of + for all valuer of r for wiich the theory i
applicable. This conclusion ix eviaent {.oom the following conside-ations. For
quarci-monochromatic light the mutual cokerence functiua ior sulficiently smail

E 7 | is given by (see Appendix 2)
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-27iDT
r;z(ﬂ = r"'2(0)e (|T|<<'A‘1;)
Hence
-gﬂiv‘r | l/ 3 l
Yiatn T 700 Lirl<<a )
and
~ F ] [ ! l
|71200] ¥ |v1500)] LTl )

Here D is the mean frequency and Av iz the spectral widi®: of the illusnination.
The ambiguity which arises in discussing polychiromatic iight will be

removed if for the limiting cases of cohersace an? inschecence we demard
that the modulus of the degree of coherence be 7-independeat. Accordingly,

the following definitions are introduced :

L The DISTURBANCER V,(t} ond Vz(t) will
hs described as coherent if i?’lg(ﬁi = 1

for all 1 aund inccherent if §7‘ig(r)l = 0

'

fcr gll 7.

II.  An OPTICAL FIELD will be said 0 be

{coharent
{ncohe rent }

if the disturbances at ull

4 col.erent
nairs of points in the (ie:d ”"‘{mcoherem} :

“hus [y a(7)| ® 1 for 2 coherent fleld, and

5)',_,3(7‘}:: < 0  for an ‘ncoherent field.

l

Since,in tre past,detailed aralysis Lias Leen limited to guasi-monochromatic
light, 1t 13 clear from the abov?> discusasion that this modification of the defin{-

tions cannot lead to coniradiction with he werk of earlier writers.
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The 1nalysis of the general properties of partially coherent wave fields
ir conveniently performed in terms of the mutual coherence function, Plz(r),
rather than the uegree of coherence, )’12(7) . We shall, therefore, examine
the iriplications of the «zbove definiticns concerning the form of the mutual co-
herence function in coherent and incoherent fields. These limiting forms of
!';2<-r) will prove uscful in examining the extrem«3 of the propagation law
obiained in Chapter 4 and in recovering the familiar forms of element: v
optical wave theory from the generalized transgfer functions intremced i
Chapter 5. Apart from these immediate applicatic 's, the limiting {orms of
the mutuai coherenca function wili prove useful in the. - own right gince they
will provide insight into the structure and questions of exiotence of cohcren® and
tacoherent fields.

3.1 Wave Equations for the Propagaticn of _EZ(T)

The determination of the forrm of ,"1"2( 7) for coherent an incoherent

fields wili be seen to be intimately connected with the fact that in vacuum

ﬂz( ) ia propar-ted (rigorsusly) according io the wave equatiuns

=2 1 2{a(4)
Ve E‘z(v‘) 9 ¢ ;;2 (s - 1,2). (3.1.1)
c T

Here V g is the Laplacian operator in the coordinates of Ps arnd ¢ is

the velocity of light in vacuum. For this reason it will prove heipful to digress
brielly and derive these equations. :
As polnted out in Chapter 1 we consider the optical field to be characterized

by a real scilar function, Vr(t), which in vacuum satisfies the equation

* These equatlons were originally derived Ly Wolf (1255) by diiferent
arguments.
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2.1,
2 r 1 87V {t
vevi(y = -———Z-U— . (3.1.2)
:[ 8t
We recall that
w.
r
vi(g) = - J[.V__L_)_' th)dt' (3.1.3)
Jo, t'-t
Operating on both sides of (3.1.3) with the Laplacian, V2, we obtain
= * g_ipv“(m
2,,r ] v,
vz Vi(t) o -1 Nv (that' -1 _12 8¢”  dt' ;
T -t L BECA R A
-0 -0

and using Theurem V of Table 1, we have

.21
vivig - 4 &y (3.1.4)
f ol

ot

Next we multiply both sides of (3.1.4) by i and then add (3.1.2) and (3.1.4) ;

we then obtain

VZV(t) 3.—12— 94%,—(9- , (3.1.5)

where V(t) = VI(t) + 1 VI(t) 15 the anaiytic signal assoctated with V().
Thus, not only the real disturbance but also it8 sssociated analytic signal
satisfies the wave equat‘nn.

We recall that the mutual coherence function is defined ss

[aln = < Vit + 1) Vo (8>, (3.1.6)

Differentiating both sides of (3.1.8) with respect to P, and Py separately,

formally interchanging the order of differentiation and integration on the right
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hand side, using (3.1.5) and the stationartty of V{t), we obtain the twc wave
equstions (3.1.1).
3.2  Polychromatic Fields

In this sectior we shall study the limiting forms of the mutual coherence
function without making any approximations 88 to the spectrsl widtn of the

1lumination. It will be shown that an optical field ia coherent if and only if it
is monochromatic.* Furiher it wiil! be shown that a coherent fieid 18 com-

vletely describad, including its coherence properties, by a simple wave fuacticn
(depending on cne point only).

It will also be shown in this section that an incoherent field cannot exist
in free space even if the illwninstion is polychromatic. It is possible, howevar,
to define an incoherent sourse and the definition will be seen to be consistent
with the above consideration namely, that an tacoherent gource, as defined here,
always gives rise to 2 partially coherent field.

3.5.1 The Form of [';1(1‘) for a Cobereat Field

Coberence is characterised by

172 ) = 1, (8.3.2)
which implies {c.f. Chapter 1 (1.2))

1’12(")

[a(n = AL Ay e (9.2.2)

* In much of the current literature the term monochromatic is
erroneously used to describe light with a small but finite spectral
width. However, the term is used here in its sirict sense.
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Here we have set

A, = [o5©) (8 = L,2) , (3.2.3)

and ¢ 12(7) is a rea. function of the time delay 7, and the coordinates o(f

1¢,9(7
P1 and P‘Z' Since r,:z('r) 18 an analytic signal, the function e 12
ie a unimodular analytic signal. Hence, acrording toc Theorem VIII (Chapter

2) it must be of the form

2l = Ap 4 a L

n
n=1 ‘\an -7

i(,3+21ryr)w a_*[la -7
. o T n" | )

»®
Here the a, are complex constants witu complex conjugates a, and the
igy9(7)
fmeginary purt of each a ~ !s greater thanzero. In (3.2.4) e 12
is, when considered as a function of a complex variable, z, a meromorphic

function; and the product is taken ¢ver ali the poles z = a * . The a

n n
are all fin**e and non-zero.  The constants 8 and vg are real. While
(3.2.4) represents the most general unimodular analytic signal, it can, as
will now be shown, he interpreted as a mutval coherence function only in the

degenerxte case where

(g 2171/01)
E‘z(r) = A} Ay e . (3.2.5)
By definition [},(T) represents the complex cross correlation of the
disturbances at two points, Pl and P,, in the fleld. Fence, when P, coin-

cides with Pz, the corresponding mutual coherence function, rl'l(r), is a

complex auto-correlation function. The real part cf ﬁ‘l(r), is the




e s drtrepme .

real azato-cerrelation function

M(n = 2{;1”(7) =2 <V,"(t+ 7 Vlr(t) >,  (3.2.6)

(c.f. Chapter 2, section 2).  Therefore, using alsc the fact that the field is
stationary,

L@ = e, (3.2.7)

(c.i. Chapter 2, section 2).  This condition, (3.2.7), may be expressed by the

statement that

fr;lr’(r) 8in 25vr dr = O (3.2.8)

for all v. In Appendix 2 of this thesis it is shown that (3.2.8) can be satis-
fied if and only if (3.2.4) assumes the degenerate form given in (3.2.5), i.e. if

M = A2 LG (3.2.9)

'The physical significance of (3.2.9) is that ali the energy in the field
at Pl is contained in the single spectral component Vg - Since (3.2.9) is
valid for all P,, 1itis clear that the field is everywhere monochromatic.
Further, since (3.2.8) {8 deduced solely from the time dependence, the
"'constant"' Yo could in principle depend on the coordinates of P;; but the
cross-correlation of two monochromatic disturbances of different frequencies
is ident.cally zero, and therefore vp must, in fact, be a true constant charac-
teristic of the entire field. Since the field is everywhere monochromatic of

A\l

frequency v, the 7 dependence of rn(-r) must be of the form

2riv,T
’-1‘2(’7 = Fyp e 0, (3.2.10)
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where F12 is a function of the coordinates of Pl and P2 only. From the re-
quirement that the field be coherent, (3.2.1), and the fact that the field is

monochromatic, (3.2.10), it follows that

i 2
[a(n = A A, MPia + Brvon , (3.2.11)

where g, 182 function of the coordinates of P, and Py .

The form of the function 8,9 can be deduced from the fact that ()
satisfies the two wave equations, (3.1'. Substituting (3.2.11) intoc (3.4) we obtain

i
L 2 |y - 1,2), (3.2.12)

[V

where k = 2x iy/c. Performing the operations indicated in (3.2.13), we find that

2
v.° A .8 ..V, A
1 A 2 .2 2 LSV L U
Al - (Vlﬁm) + k% + 1[v1 312 + ) ] 0;
..... (3.3.19)

and a similar equation involving Vy and Ay holds. Equating the reai and
imagina_y parts of (3.2.13) separately to zero, we obtain the two equations

2 2V Bg) - A

L By = - A (3.2.14)

v

and
2
vi Al

(vl ﬁlg)z e L S

(3.2.13)
A Y

The right-haad side of (3.2.15) is a function of the coordinates of P, only
and we can therefore write (3.2.15) in the form

2

¥y B2 = e (

xly }1: zl) ' (3.2.18)
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On the left side of (3.2.16) the coordinates ot F, (contained in Bi9) may be
regarded as parameters. Equation (3.2.16) it therefore, of the form of the
eikoral equation of geometrical optics or the hamiltc~-Jacobi equation of dy-
-namics. The general solution of this equati-n i8 well known (c.f. Born and

0

Wolf (1959), page 721). Let 8  be the value of B2 on a surface over which

it is constant (independent of X, y,, »;.  Then the solution is

1
0 .
312 = 8 (p;Qy XZ;YZIZZI* f f(x)Y;z)ds; (32'17)
i) (
1
where the integral is taken along the extremal of the variational problem
1
5 j f{x,v,2,) d8 = 0 (3.2.18)
0 1
p1

and PIO is a typical powmt on the susface 812=ﬁ0 . Further p and q are
two free parameters whici may be regarded as characterizing the orientation
i\

of the surfaceﬁlz; e

It 18 clear frcm - ‘uation {(3.2.17) that ﬁ12 may be expressed as

By BIP)) + Bo(Pa) . (3.2.19)

~

whers ;31 and 3 depend only cn the coordinates of Pl and Pz, respectively.

Hence (3.2.11) becomes

r i ig -2%
[o(r) = [A] eﬁl} [Az e 2] e 0T (3.2.20)
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Interchanging the roles of P, and Py in (3.2.20), and using Lemma I
(Chapter 2), we find

A(P)) Ay(Py) | (3.2.21)

and

-Bg(Py) + 2n 7w, (3.2.22)

it

B,(P))

where n 18 any integer. If we now introduce the function

vE) = APeB® (3.2.23)

we may rewrite (3.2.20) in the form

» -2niv,. T
Ma() = u@) U (e Y . (3.2.24)

Thus in a coherent tield [[n(7 18 of the form given by (3.2.24). That
tia converse is true, namely that a mutual coherence function of the fcrm given
by (3.2.a4) always characterizes a coherent field, may be seen by substituting
(3.2.24) into the definition of  [[,(1), (1.2.10).

Thus with no approximation on the spectral width of the illumination the
following theorcms have been established :

Thecrem IX :  An opticai {icld {8 coherent if and oaly if it {8 mcnc-
chromatic.

Theorem X: The mutual coherence function for a coherent optical
field can be expressed in the form given by (3.2.24), i.e., as a simple periodi:
factor, e_Z'WOT , multiplying the product of a wave function, U, evaluated

at P1 with ita complex conjugate, U’, evaluated at P2 .
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3.2.2 Form of E‘Z(T) for an Incoherent Field

Incoherence is characterized by

’ylz(f){ = 0, (3.2.25)

which implies (since the intensity, [_ (0), is assumed to be finite)
[[a(n = 0. (3.2.26)

However, by definition
. *
[0 = P) = < V-7 vV (@O>. (3.2.27)

The auto-correlation function, [;l(';) , 18 called the self intensity; and it

is clear from (3.2.27) that, apart from the trivia! case of an identically zero
field, the self intensity is not identically zero. From (3.2.26) and (3.2.27)
it follows that t' e mutual coherence function in an incoherent iieid should be

of the form

LS

Py
[[a(n = . (3.2.28)
I(Pl,"r) P, Yy

By a simple generalization of the argument used by the present auther for

quasi-monochromatic illumination* (see Parrent (1858b)) it will be shown that

fi'z(r) cannot be of the forin given by (3.2.28) and at the same time satisfy

the wave equation (3.1.1). This theorem is most easily demonstrated in th:

irequency domain. Accordingly, we introduce the mutual spectral density,

S 4
| r1‘2(1/), which may be defined as the Fourier transform of Hz(f)» Ie,

d Actually the argument used in that paper 18 slightly different from the argu-
ment given herg but the general structure of the development is the same.
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o
A 3rivr
r;z(") = [a(7e dr. (3.2.29)
- o0

It has vern shown (Chapter 2) that, since f;z(f)- is an analytic signal,
A

Plz(v) = 0 for negative v. By the Fourier inversion theorem it then

follows that

-2ri
[;2(1-) = f[f‘z(y)e i de. (3.2.30)
)

Substituting from (3.2.30) irto (3.1) we obtain

2
[vﬁ2 N {30'& ]13'2(&:) = 0 (s =1,2) (3.2.31)

In terms of rl'z(v) (3.2.28) can be expressed 28
9 P 7P, ]

A
[[a) = (3.2.33)

s

1y P =P [
where T(P, ¥) is the Fourier transform of I(P, 1

Let Vv be a finite volume of space thioughout which the field ic

agsumed to be incoherent (i.e. (3.2.32) satisfied throughout v ). Let Y
be any closed surface contained in V . By repeated applicetion of Green's
theorem (see Parrent (1958b), or Chapter 4) we obtain the {ormal solution to
the Helmholtz equations, (3.2.31), as

A 3G . ‘
ﬂg(“) = [fn 1Se 5‘;}“" 3‘;1-3- d Ll d )_42

... (3.4.38)

where G1 and G2 are Green's functions
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gatisfying (3.2.31) arnd vanishing over 2 ; Sl and 82 are points on
2 ; and P, and Py are pcints within 2.

Since in (3.2.33) we allow 8, and §; to explore the surface 2J irde-
pendently, the integral is four-dimensional. The integrand is, huwever, only
two-dimersional mnce it is non-zero only when tie two poiats S, and §,
coincide. Therefore, if iA(Si,Sz, v) is assumed to he everywhare finite the

integral is idenc::alls sow, Lo,

e = 0, (3.2.34)

for all P, and P2 (includiny, Py o= :’2). This ~onclusion, however, con-
tradicts the assumption that (3.2.32) is zatistied throughout V. We thus

find,
Theorem XI : An incoherent field cannot exist in free space.

However, following Blanc-Lapierre and Dumontet (1854), we may define

an incoherent source &g one for which the miutual cohercnce functivn ig of the
form

[la(0 = UPyno®, - Py) (3.2.35)

for all pairs of points on the source, where 8 is the Dirac delta function.
3.3 Quasi-Monchromatic Fields

The theorems derived in the previous section are valid for illumination
of arbitrary spectral wigth. However, in most of the currcnt apglications of
coherence theory one deals with quasi-mcnochromatic ihumination. Further,
as pointed out in Chapter 1, most of the results of coherence theory establighed
in the literature are applicable only to this special case. Thercfore, to relate
the results obtained in this thesis to application and to investigatiens reported

in the literature, it will prove useful to examine in some detail the limiting forms B8

of some of our formulae for quasi-menochromatic light.
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An optical {leld is said to be quasi-monociaomatic if the spectral width,

Av , of the light is small compared to the mean frequency, v i.e., if

Ar ccu 3.3.1)
More preciseiy, v and A1 , may be defined in terms of the mutual spec-

tral density as*

o0 A | 2
_ ij l ['i‘aw) ’ dv
o e (3.3.3)
{ | ﬂz(v) i dv
and o
A
é(y,;,)z | 5w | %o
Ay = e : (2.8.3)
(o4 [ag ] :
lm{v) lz dv

It can be shown that when (3.3.1) 18 satisfied the mutual cohererce func-

tion may be expressed in the form (c.f. Aapendix 2)

N -2 ivr .
[[a(7) = [[a(0)e (rl< <y, (3.3.4)

av
provided we restrict our attention to sufficiently small time difiarence s, '8 in
dicated on the right in (3.3.4). Quasi-monochromatic fields may b en:

to be coherent if the condition
2 )
*7“12(’7] = 1 (ri<<gs) {(3.3.5)

I8 satisfied. Adoption of this constderably woaker condition i8 cquivalent to

* Following Wolf (1958b).




45
examiniug on'y the ceniral iringes in a Young':? interference experiment used
to measure the degree of col:srence. “uch a "modified definitivn' i8 reason-
able {or quasi-monochromatic fieids since monockromatic il'umination i8 an
cnreal‘zable ldealization, and light of sufficiently narrow spectra! width behaves
as coherent light under suitatle rond.lions. *

Substituting from (3.2.<, into the wave eguation~ (3.1.1), we obtain
o 2] .
L ! (=0 =9, (8=12) . (3.3.6)

where k 18 the mean wave number. Combining (3.3.4) and (3.5.5) we find

the mu.ai imensity for cohereit ¢uasi-monociirciatic fields to be of the form

io
e 12 (5.3.7)

’

US(O) = A Ay

whara i, defore ‘\;/ réS(S) = Ay From (3.3.6) and (3.3.7) and the
]

arguments of Section 2 of tiis chapter we obtain the form of Theorems IX and
X for the quasi-moenochromstic approximation.

Tneorem XII . A quasi-maonochromatic {ield is coherent if and only if
the mutuai intensity can be expressed as the product of & wave function, U,
evaluated at Px with its complex conjugate, U', evaivated at P, ie., if

(.00 = uPpU (P, . (3.3.8)

U(P! is the function defined in Section 2.

This result is i» greement with the observation that, for the purpose of

cal:aiing the intensity in diffraction phenoniena involving short path differences

* We point out that quasi-moncchromatic light may also be incaherent cr
partally coherent, c.i. Chapter 4 of this tresis; on the other hand,
monochromatic light is aiways coherent.
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one may trea: coherent quasi-monochromatic fields as monochromatic. Thatis
a coherent quasi-mcnochromatic field .. completely specified by a gingle mono-

3
chromatic wave function Ue‘z‘_’t .

The tneorem of the preceding section, which states that an incohzrent
opiical field cannot exist in free space, is valic in general and hence is obviously
true for quasi-monochromatic fields. 'The theorem may, however, be demonstrated
directly for the case considered here (this result was originally obtained for
quasi-monochromatic fields in this manner (see Parrent (1958b)). An incoherent
quasi-monochromatic source may be defirad, by analogy with the general case,

as a source the mutual intensity of which is of the form

[[20) = USpos, - s, . (3.3.9)
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CHAPTER 4

THE PROPAGATON OF PARTIALLY COHERENT LIGHT

The laws governing the propagation of partially coherent optical fields
bave been of cantral importance in the development of ccherence theery. The
mest important of the earlier contributions to this aspect of the theory is a
theorem discovered separately by van Cittert (1934, 1939) and Zernike (1938).
Under suitable conditions on the spe “tral width of the illumination (quasi-
morochromatic light), this thecrem expresses the mutual intensity on a plane
iliuminateqd by an inccherent plane source in terms of the intensity distribution
across th - source. In the same paper Zernike also derived an approximate
raw for the provagation of the mutual intensity. Later Hopkins (1951} derived
thes= theovems in a different way.

In the formulation of coherence theory uscd here thege thecorems will be
scen to be limiting or aporoximate forms of a Green's function solution io the
wave equations which were derived in Chapter 3. In the present chapter we
will eut: .y the general solutica for the propagation of mutual coherornce from
a plane polychromatic partiaily coherent source.  The limiting forms of this
general solution will be examined in some detail both for sources of wide and
small spectral ranges, and the van Citteri-Zernike theorem will be shown to
represent an approximate {orrm of the incoherent limit of the quasi-nienochromatic
solution.

4.1 General Solution for the Distribution of Mutual Coherence from a Plape

In this secticr we shall determine the mutual coherence function for a
field created by a piane polychromati~ source. In Figure 2, which serves to

define the courdinates, 0 is the plane containing che extended polychromatic
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source with a known distribution of mutval coherence. P, and P, are points
in the illuminated field and S.& and Sf?f are points in the plane of the source,
Pl’ and sz are the mirror images of the points P1 and P2 respect%vely in
the plane 7 .

As shown in Chapter 3 the propagation of the mutuval coherence function

In vacnum 18 governed by the two wave equations

2 [[a(7)
2 _ 1 ¢ 1p12\7) _
By [‘1’2(7) = .2 ——; 5 (s = 1,2). (4.1.1)
xl
[0 I
;‘\\‘\\ ~ /Ii h' : X

SIS

Figure 2
We assume that nz(:) is known for ail pairs of pointe 5, and S, in the
pline ¢ . Let [Ja(¥} be the Fourier time transform of f'l'z(-r). Since
j‘;z{r) la an analytic signal (sec Chapter 2), it contains only positive fre-

quencies, f.s,
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0
-2rivT
rfz(f) = fﬁz(v)e dv, (4.1.3)
0
an by the inversion theorem
[ -]
A 2mivr
12 = [[o(7e ar v >0, (4.1.9)
-0
= 0 v < 0.

Substituting from (4.1.2) into (4.1.1) and interchanging the order of lits-
gration and differentiation we obtain

-2mi
[ [vsz + kz( v) ] r?z(v)e i dv = 0 (s=13)
0 .. (40.4)

sinice (4.1.4) must hold for all 7, we have

A
(9" + W) ] [0 = 0, =12 (4.1.8)

where k(v) = 2sv/c. ‘Thus, ea-h spectral component of [;'2(1) satisfies
the two ecalar Helmholtz equations, (4.1.5).

Equition (4.1.5) can be formally solved by employing Green's functions.
To this end we integrate firat over the coordinates of 9;l and obtain*

X L[ G
(P8 1) = - gy B,8p¥) Fp- 45, (L)
g

————————— A

i [1a(7 and [;z(v) will be written as I—'(PI,Pz,'r) and rA'(Pl, Py, V)
when necessary to siress the apace dependence.
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Here Gl is a Green's function satisfying the equaticn

v + 0] 6 = o 4.1.7)
with the botundary condition

G(Sl) = 0. (4.1.8)

Equation (4.1.8) provides the boundary condition for the solution of the second

Helmholtz equation; and employing the same theorem again we obtain

A L] - 26
(Pl,Pz,V) = - 2’1?_/ '—‘(Pl,sz,l’) ' n d82 y (4.1.9)
(0]

by integrating over the coordinates of Sz, where 02 is a second Green's func-
tion satisfying the same conditions as G, . Substituting from (4.1.6) into
(4.1.9) we obtain

1.y 1 A 8G, 3G

| (pl,Pz,V) = ’Z;'—)*z- J P(Sl,sz,v) "5';‘"‘ “"a‘" ciSl dsa.

w
o0
..... (4.1.10)

In order to determine the exact form of Gl and G2 for cases of physi-
cal interest, we impose on f’i‘z(v) the radiation condition of Sommerfeld.
In essence this condition implies that the distant field is essentially that of a
diverging spherical wave. Dy applying the :adiation cond:ition to Vl(u) and
VZ‘ (v) and appealing to the definition of f;z(v) in terms of these functiona, it
is readily seen that [f'z(v) must behave asymptotically, forks; >3 1 and
krz >> 1 as

ik(r1 ~T9)

A
Ma0) ~ 106,008 ,82) —= , (4.1.11)
l‘ll‘2




where 9g and &,

are the spherical polar coordinates of Ps'
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To satisfy

this condition and those defining G, and Gy the required Green's func-

tions are
T
eikrl e1kr1
G, = = .- —_— (4.1.12)
ry °
and
t
-ikr -ikr
2 2
G. = & - ef , (4.1.13)
“ r r
2 2
) 1
where r;, Ty, ry andrg are defined in Figure z.  That these are
the required Green's functicns can be seen by direct eubstitution. Before
substituting into (4.1.10) we obtain the normal derivatives; we have
BGI ikr 1 or, eikrwrl
o (‘kf'l)‘; s+ (Ldkry) Sl
(q 1.14)

Noting that

and setting cos 8, = zs/rs,

8G

n = 2(1](:'1—1)

a

and similarly

8G2
Tl - 2(ikr + 1)

we may rewrite (4.1.14)

ikr
cosl, =
1 rl

1

cos b 21-5

R 1 8[‘1[
r, ' = 1 1 and that =
g [¢) an

as

(4.1.15)

(4.1.16)
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On substituting from {(4.1.15) and (4.1.18) into (4.1.10), we obtain

fé' ik(r -Tg)
(Pl,Pz,v) = — Sl,sz, V) (1-tkr,) (1+1kry), cos § cos 92 — ds, ds,
1T |

..... (4.1.17)
Equation (4.1.17) is the contribution frem a single spectral component,
v. The complete golution is obtained from (4.1.17) by taking the Fourier
transform of ooth sides of {4.1.17), i.e

lk(r rﬂ) -21;1117

dsldszdv

rl‘z(‘r) = 2[j[ﬁsl9szrv) (1 ikrl)(l“‘ikrz) cos 91 cosaz

rr
oo 2

..... (4.1.18)
8ince dsp d82, and dv are independent, we may invert the order of integra-
tion and obtain

sz - ~—Lg-[['cosol cosf g 0 ,o(n) d8, dS, |,
@n 4}

..... (4.1.19)
where ro-r
o 2T - i —
Y 13(7) » _[P(ﬂl,sg, V)e ¢ ) dr
0
) o 2 i r -rz
1(._2;_) [ 2yy r‘(ﬁl,sz v)e vl - dv

0

'y - T

®©
rr A Ay (71 - ————5)
52 furs f “a
0
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We recall the following well-known theorem from Fourier analysis. If

' _ f -2mivt
f(t) = ) g(v)e dv (4.1.20)
0
then
n L -2nivt
8 1I(t) _ j (~2min)" g(v)e a . (4.1.21)
at" .

Using 4.1.21) 912( T) may be evaluated giving

- . -Tyor Ty-r
c |* T a7 ) ¢

A, = M ‘sl,sz,r -

and the final solution is

e
ry-r

go
..... (4.1.23)
where $ is the differential operator
_[1 F]“F2 5 _ T1fg el (4.1.24)
Aol e, 8

Equation (4.1.23) is the general solution for the mutual coherence in a

field produced by a plane polychromatic source.

4.2 Coherent and Incoherent Polychromatic Bources

In this section we examine the limiting formes of (4.1.23) for coherent
&nd incohorenrt sources. No approximation on the spectral width of the {llumina-

tion will be made here. We will show that 1.) & coherent source alwavs gives
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rige to a coherent field and 2.) an incoherent source always creates a partially
cohereat field. By eramining the incoherent limit we will obt«in a rigorous
generalization of the van Cittert-Zernike theorem to polychromatic sources.

4.2.1 Coherent Source .

It was shown in Chapter 3 that coherence is characterized by a mutual ce-

herence function of the form

P . —Zﬂiuo‘r
(Sl,Sz, T = Uo(sl) U, (8ye (4.2.1)
Taking the Fourier transform of both sides of (4.2.1) we obtain
*
lA(sl,sz,u) = Uy(8)) U (Sy) 6(v- vy . (4.2.2)
Substituting from (4.2.2) into (4.1.17) we obtain
*
rp \Pg,¥) = U(P) U'(Py) 8(v-vy , (4.2.3)
whera
. Ur(r1 )
UP)) = [ Uy (8)cosd (1-ikry) e~ ds,. (4.2.4)
r
o 1
Taking the inverse transform of both sides of (4.2.3), we obtain
. -21:11/07
@, pyn - u(P,) U (e . (4.2.5)

From (4.2.5) and Theorem IX, p. 57, itis clear that the following theorem

holds :

Theorem XIII: In vacuum a coherent source will always give rise to

a coherent field.




4.2.2 Incohereni Source

In Chapter 3 it was shown that an inccherent field cannot exist in free
space although an inccherent source may be defined. | In the present section
we will show that the def.nition of such a source is consistent with the result
that an inccherent source will g.ve rise to a partially coherent field.

By definition, an incoherent source is characterized by a mutual coherence

function of the form

(5,857 = 1sym0 (55 - ). (4.2.6)
A

Hence [-'(Sl,Sz,u) is given by
[M(Sp8pn = 18,10 6y - 8p). 4.3.7)

We substitute (4.2.7) into (4.1.17); &nd, after integrating over Sy, we

obtain
A A tk(ry-rq)
!"(pl,pz,v) = [1(8,,%) (1-kr ) (1+ikry) cos 8, cos by g ds,
r,r
172

g

vhere r, and r, are now interpreted as the distance from § to P, and P,
respactively.

By substituting from (4.2.6; into (4.1..8), and intagrating over 8q, We
obtain the mutual cohe rence function for the field of an extended, incoherent,

polychromatic, source ,

riz(r) =/00891 COBGz’F[ 1(slf-il~;"2)] das .
0 Cee (4.2.9)
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Equation (4.2.9) is the generalization of the van Cittert-Zernike theorem
for polychromatic sources. It expresses the mutual coherence function uncer
the conditions stated, in termse of the self coherence.across the scurce.

Since an optical field is coherent if and only if it is monochromat.c, it is
cles. that, while an incoherent source gives rise, by (4.2.9), to a partially co-
herent ield, an incoherent source cannot create a coherent field.

4.3 Quasi-Monochromatic Sources

As mentioned earlier, most of the current applications of coharence theory
involve quasi-morochromatic light. For this reason we shail ireat the quasi-
monochromatic 1imits as separate problems deducing them directly from the
general solution, (4.1.23), rather than obtaining them as special cases of the
results of the previous section.

4.3.1 Coherent Source

Since in the quasi-monochromatic approximation a field 18 described as
coherent if the condition | rl'z(‘.ﬁ ! n 1 is aatisfied only for sufficientiy small
7, 2oherence i3 & considerably weaker condition for the ciass of problems con-
sidered tha.. in the general csse.
A coherent quasi-monochromatic source has the pmpeﬂy that for

| 1] <<*K!; its mutual coherence function is of the form

(6,80 = U,(8) U e ™7 (4.5.1)
Su-stituting from (4.3.1) into (4.1.23) yields
C®,Pyn = U@, U (R)e ™7 (11 L) | (4.33)

wheare
kr

u(P,) = f U, (8))(1 - ikr)cos6, o
r

J :

o

1 gs. (4.3.9)
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Equations (4.3.2) and (4.3.3) constitute the mathematical restatement of
Theorem XIII for quasi-moncchromatic fi2lds.

1ig result is not simply a sgocial case of the previous result even though

in Section 4.2 we were able to estabiish the theorem with no apprcrimations. Me
result is perhaps more interesting and certainly of more immediate practical
importance in the present case. In the general treatmei. where no approximations
on the spectral width of the light were made we concluded that an optical field

is coherent if and only if it is monochromatic. It is certainly to be expected

that such a field will remain coherent as it p.cpagates in free space. It is also
to be expected that such a field can be completely specified (apart from polariza-
iion effects) by a simple wave function, depcnding on the coordinates of one
point only.
The fact that these results hold under the narrow spectral width approxi-
mation, however, indicates something more. It is evident from (4.3.2) and
(4.3.3) (and in fact from the results of Chapter 3), that if we restrict ourselves
1

Av

quasi- onochromatic fleld may behave in some respects like a monochiromatic field.

to phenomena involving sufficiently smal! path differences, (Irl <<-=) , a

But there I8 an essential difference between these two types of iliumination :
A monochromatic fieid is everywhere coherent for all 7, while a quasi-

monochromatic field cannot be coherent in the strict sense, | ym(r) ' v 1,

1 Y
av’ -

but only in terms of the weaker condition, lylz(r) l a 1 (Ir1<<
Further a quasi-monochromatic field may, as will be discussed in Section 4.3.3,
be incoherent.

In spite of these considerations the similarity between these two types of
fields for a large class of diffraction phenomena has led to a loose usage of the

term monochromatic and hence to such meaningless statements {requently found
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in the literature "partially coherent {or incoherent) monochromatic light" and

the phrase "to extend the concepts of partial coherence to light with finite

spectral widih".

4.3.2 [ncoherent Source ' .
Under the conditions justifying the quasi-monochromatic approximation

we may write (see Appendix 2)

riz(r) =G2(0>e‘2"“77 (7] < Kl-;) . (4.3.4)

On substituting from (4.3.4) into (4.1.8) and integrating over v, we ubtain

-:mrfr t(ry-rg)
r‘z('r) = (211) (1- lkrl) (1+ikr wos 8, cos 0. r'(sl,sz,O) T dsldsz.

Equation (4.3.5) expresses the mutual coherence function for small T , in
the field created by a piane partially coherent quasi-monochromatic source.

We now consider the Hmiting form of (4.3.5) when the source is incoherent.
By definition .«n incoherent quasi-monochromatic source may be apecified by s

mutual coherance function of the form

[1a(n) = 18, 8(85-8,)e 27T (71 <<y
..... (4.3.8)
Subrtituting (4.3.6) into {4.3.5) and integrating over 82 yields
ik(r ~Ty)
-3mioT 2
. 1
2(7 L—2~[I(8 Yy (1- u(rl) (1+1kr1, cos 91 cosc?2 r Ty a8 (IT"’\'\ Kl—j) .
..... (4.3.7)

Here ry and rq are now interpreted as the distance from a typical point 8 on

the source to the field points P; and F respectively, and cos 85 = r‘/rs ,
(8 = 1,2). Equution (4.3.7) expresses the mutual coherence function, | ;9(7) ,




59
for sufficiently small l T l in ierms of the intensity distribution across the
source.

. If (4.3.7) is evaluated at + = 0, the obliquity factors are ignoredand
attentio'n is limited to field points onaplane parallelto ¢ we obt~inthetheorem

due to van Cittert (1934) ard Zernike (1938) already refercnced. viz.,

ik(rl-rz)
[0 = ]i(s)ﬁlrz ds. (4.3.8)

g

Thistheorem expresses the mutual intensity on the {lluminated plane in terms
of the intensity distribution of the incoherert source.

in most applications one is interested in the form of (4.3.8) in the Fraunhofer
approximation. The right-hiand side of (4.3.8) then reduces to a Fourier trans-
form of the intensity distribuuon.. If the intensity distribution is sultably norma-

lized (4.3.5) beccmes

71200 fjt(é n)eXPE + A geqy 4.3.9)
b Xa y y
1 . LS & 1 2
winere D = - —_— =g = 5 ,
g
and K, = b 2 ¥, + o2 z These coordinates are

8 ] s

defined in Figure 2, p. 87. 1In the region whsre (4.3.9) is valid R, and R, may
be takenas equal. Equation (4.3.9) is the most commonly used form of the ven
Cittert-Zernike theoiem. We see that formula (4.3.5) s a gencraliza-
tion of this theorem to partially coherent (but quas!i-monochromatic)sources.

: Actual‘y, the validity of the Fourier transiorr relation, (4.3.8), do2a not

nd on t{w Fraynhofer appreximaticrs “tinn {4 3 9) ies whan-
t’w obliquity factors and rhe vam@auons LBy R can be ig-
norod while the Fraunhofer ¢ R imation regne i admtxon to these

conditions “hat R ™>> (pj - (*i;\ HER




CHAPTER 5

IMAGING OF EXTENDED POLYCHROMATIC SOURCES
AND GENERALIZED TRANSFER FUNCTIONS

In this chapter we shail apply the theorems and results of the eariier
chapters to the determination of the relation between object and image for
systems which image extenced polychromatic objects. We shall treat the
problem primarily in the spatial frequency domain, an approach introdvced
Hy Duffieux (1948) in 1546. Since its introduction, the freguency doinain analy-
818 har proved very poweriul in the studv of ‘maging systems. I3 this epalyals
the imuaging system ia described by a transfer {unction (also <alled modula-
tion function, transiafssion factor, transmission function, vont-ust ren. ‘tion
fu, ~tion, frequency responue function). The imaging problem is then solved as
follows : the object and image are described in terms of the distriputicn of a
suitable phyei-al characteristic of the optical disturbance, which characteristic
is deterinined by the degree nf coherence cf the object {llumination. For exa:npla‘
an incoherently {lluminaied object i8 described in terms of the intensity distri-
bution across it.  The sputial spectruin of the image 18 then obtatned ae the
procduct of the transfer function with the spatial spectruia 0! e object, ..e,
the spatial Feurier transform of the above-mentioned distribution. That is,
the optical system is treated 2s a spatial frequency filter. After s intzoduz-
tion into the study of optical systems, the t~ _.sfer function analys.e was apolied
to the stuly of the mapping problems of radic astroenomy (see Bracewe.l and
Roberts (1954) ) and rada:.

Tt.is analysis i particularly promising in the study of cascaded syste 9
as exemplified by Schade's /1948) treatment u. television systems. In cascaded

systems the {inal image in the frequency domain 18 obtained by multipiying the
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anzctrum of the object with the product of the traneier {funciions describing
evch stage cf the system.

The escential stcp in this approach is the recognition that many optical
systems may tc a good a2pproximation be treated as linear stationary systems
in terms of their spatial as well as their temporal dependence. All the
advantages, familiar to electruaics engineers, of performing linear system
analysis in tne frequency dormain may thepr be realized in optical imaging
protlems. In optics there are, however, Jome difficulties confronting this
approach.

For example, the functions, describing objects an¢ images, met in the
analysis of optical systems, depend on spatial as well as tempo.al coordinates;
some cntical systems of pructical interest are not "stationary' in their spatial
variation. The most significant difficulty is the fact that the form of the trans-
fer function is determined by the degree of ccherence of the object iilumination.
As we shall see {1 the following G« velopment, some of these difficulties dc not
zppear in analogous problems in radio astronomy and racar, though these t.elds
present other p. oblems.

The realization that imaging systems canjunder suitable cenditions, be
analyzed as linear stationary systems suggests strongly the application of the
techniques of information and communication theory. Here again, horever,
several basic difficulties are encountered.

Apart from the considerations already mentioncd, an imaging device is

not in general a communication system (since no opporturity of enccalog the

inpul exists) but rather an observation system. Tne diffizulties con'routing

the snalysis of such a system in termus ci Inforination and communicstion theory

are discussed and illustrated by Woodward (1952) and lie outside the domain of
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our present discussion.

in spite of these considerations some results have been obtained from
the application of information theory to imaging systems. The chief contri-
butions of this theory to the study of image formation are: 1.) the czmon-
stration that an optical image has a finite number of degrees of freedom (see
Fellgett and Linfoot {1955) and Gabor (1956) ) ; aad 2.) the demonstration that
the criteria for judging the quality of an imaging device must take account of
the objects that the system i8 to image (see Fellgett and Linfoot (1855) and
Schade (1948) ). The .. . of these conclusions follows immediately from
Shannon's Sampling Theorem (c.f. Woodward, 1953) and the fact that an
imaging system behaves as a low pass filier with a finite cut off frequency. The
second consideraticn will become evident from ths subsequent discussicn of this
chapter.

Some of the varfour quality criteria for imaging devices which were intro-
duced by Fellgett anu Linfoot and Schade have beer evaluated for aberrated
optical sysiems (see O'Neill (1858), Fukui (1957) and Parrent and Drane (1956))
and for ; :tenna svstems emploving Dolph-Tchebbycheff apodlzation' (see Drane
(1857} ).  The results obtained in each case were in good qualitative agreement

with experience.

* It can be shown (ses Dolph (18468) ) that if the currents in the elements
of a {inear (antenna) array are pmrortlona! to the coalficients of the
Tchebbycheff polynomials the resulting aiffraction pattern has the mini-
mum possible 3ide-lobe level for a given beam width. These polynomials
provide a means of varying the apodlzation continuously fcom edge illumi-
nation (which gives the cosine squared diffraction pattern of a simple
interferometer and hence the minimum beam 'vidih for a given aperture
size) to a hinomial distribution of currents which gives a diffraction
pattern consgisting ol a main lobe with no side lobes.
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I spite of the difficulties mentioned, the transfer function analysis has
cortributed to the understanding of the problems of image formation. Among
the interesting consequences of the application of the transfer function analysis
to opticul systems are the apatial filtering techniques developed by O'Neiil
(1956) and Marechal and Croce (1953) for sharpening blurred edges and recover-
ing wanted detzil from an image containing noise (e.g. photcgraphic grair).

The computation of the transfer function of any given system often leads
to numerical integration; and for this reason detailed analysis has been limited to
relativély simple sys.ems, utilizing etrictly coherent ur strictly incoherent
filumination, with small aberrations (see Steel (1953) or with a single aberration
/Parrent (1955), Hopkins (1855), De (1955), O'Neill (19856) ).

The limitation to coherent or incoherent illumiration is, however, more
basic and stems from the foliowing considerations : 1.) A system imaging an
incoherently illumninated object may be regardsd as iinear in intensity; 2.) A
system imaging & coherently {lluminated object may Le regarded a8 linear in
smplitude; 3.) Bystems using partially cocherent illumination are linenr in neither
of t.ese quartities. H. H. Hopkina (19568) and Dumontet (1954) extended the trans-
fer function analysis to systema imaging partially coherent objects by showing
that such systems may be regarded as linear iv mutual intensity. The transfer
functions for systems with small aberrations and partially coherent objecis
have been computed by Steele (1057) using the Hopkins formulation.

In vvary case, coherent, parilally coherent or incoherent, the analysis has,
however, been limited to quasi-monochromatic iight. it {8 our aim in this chapter
to provide the framework for the analysis in terms of the transfer function oi
systems employing polychromatic illumination; and further using the theorems
and results of the preceding chapters to verify that the familiar solutions to the

PRV
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quasi-monochromatic imaging problems follow from our general scluvtions as
appioximate forms. It is hoped that, in addition to providing the mathematical
fraimework for the solutions to these general problems, this appreach will elim-
inate the frequently encountered confusion concerning the significance and in-.
terpretation of the varicus transfer functions. *

5.1 General Formulation of the Imaging Problem

In this section it will be shown that the general scalar imaging probiem,
involving partially coherent polychromatic objects, can be completely solved
in terms of the observabies, [/5(7) , in object and image space with no
recourse to the random disturbance, Vr(t) , {tseif. By dealing solely with
the mutusl coherence function, and functions simply derivable from it, our entire
analysis, apart from the limiting forms, will involve only square-integrable
functions. The advantages of such an approach are immediately obvious since
we deal extensively with both Fourier and Hilbert transforme and thei: respec-
tive inversion theorems.

it will be shown here that using this general solution {* i¢ porsiine {c
define generalized transfer functions whose properties are formily similar
to those of the quasi-monochromatic transfer functions. Further it will be
shown that these new functions are simply derivable from the apertu.e illumina-

tion function (pupil functicn) of the imaging system.

e This confusion is discussed and illustrated by F. J. Zucker in his summary
comments published in the Electronics Research Directorate, Air Force
Cambridge Research Center, ARDC, January 1057.
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5.1.1 M ‘thematical Conventions and Notarions

In t:e develtpment that follows extensive use is made of multi-dimensional
Fourier ‘ransforms. To prevent the equations from becoining too unwieldy the
followiag conventions and condensed notat.ons will be vsed.

Cartesian coordin: tes will be denoted by (¢,7n) in object space, (x, y)
in image spac-, and { ,8) in the exit pupil. The ccordinates in image space
are normalized by the lateral magnification of the imaging system. This is
done to make the coordinates of a given object point equal in magnitude to those
of the corresponalig image point. The conventions regarding functional

representation are :

W = 16y, (65.1.1)

i(x, - %) = f0r;-%5, ¥;-¥q), (5.1.2)

dx, = dx dy, (5.1.3)
and

X, = ):1’5_0 + yl_):o . (5.1.4)

Here the subscripts 1 and 2 denote the point, P,
arc used; and _2(_0 and yo are unit vectors in the direction of the x anu y axis

or Pz, whoge coordinates

respectively. The sams conventions of course apply in the anerture and cbject
planes \see Figure 3).

We shell be coicernad with the transmission of distributions from otject
gpace to image space and the subscripts 0 and i will denote that the distribution
is an object or image respectively, l.e.,

I () distribution in object space (5.1.5)

f.(x) Corresponding distribution in
- image space.

- E
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FIGURE 3.

8ince we shall require the Fourter transiorm of space functions, we
associate with each space ccordinate a spatial frequency ccordinate using the
following convention : Hyx is the spatial frequency assoéiated with the
Cartesiun c-ordinate x, , and My Is associated with y,. The functional
conventlons introduced for the space functions will of course 2iso be used for

‘he npatial frequency functions; i.e,,

() = L, my) (5.1.8)

- 0 .0
B = HBpd ot oy Y (5.1.7)
and

dp = duy, d“ly . (5.1.8)

-
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The time coordinate is denoted by t and the time delay coordinate by 7.
The associated temporal frequency is denoted by v .

Contrary to the convention of the preceding chapters, the mutual coherence
functicn will be written here with its full argument rather than with the sub-
script 1a.

Associated with every function of the space time coordinates, F(xl,xz, T),
will be three other functions; namely, its "spatial'' Fourler transform, F(gl,&,f) ;

its "temporal" Fourier transform, ﬁ‘(ggl,g_;z,u) ; and its total Fourier transform

F{gp, ug¥); le,

. rf 2y )+ ipXp)
F(Uly uz:f,\' = JJ F(Elr’;‘z:T)e dﬁl uz

..... (5.1.%,
A qrivr
F(;l,xa, V) = f F(gl,)_(z, T)e dr, (5.1.10)
. ~ 211(g1.51+kf2.52 +VT)
F(ﬁl’ew V) = ﬁf[ F(}l,h, T)e Ql%d-r_
..... (5.1.11)

Throughout the rest of the chapter all integrals will be written with & single
integral sign without limits. The order of the integration will be implied by the
differentials.
5.1.3 A Generalized Transfer Function

P In this section will be discussed the problem of defermining the image of

an uxtended polychromatic object and the inverse problem, viz., tha! of determining
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the object from a knowledge of the image. We shall show that the solution »f
this later problem is fundamentally impossible with systems of finite apzrture.
The object i8 considered to be planar and is specified by its mutual coherence
function, r'o( §1:527)  The central problem is toformulate the
relation between rZ) (&p £7) and  [7,(x;,%9, 7) interms of the
aperture illumination function. No assumptions concerning the spectral width
or degree of coherence will be made in this section. We shall show that, while
the evaluation of the integrals might prove somewhat formidable in certsin
practical applications, a solution in ciosed form can be obtained and a transfer
function defined which is simply related to the pupil function.

From the linearity of Maxwell's equation i* follows (see Appendix 4) that
if there are no non-linear devices in the imaging system the mutual spectral
density will be propagated through the system in accordance with two linear
differential equations, i.e.,

A

Dy [ [[gm ] = 0 (8=1,2) , (51.132)

where Ds i. a linear differeniial operator in the coordinates of Ps‘ \ Solving
the first of these equations we obtain the mutual spectral density, [[(x,,%q,v) ,
between the oscillations at a typical object point §1 and those at a typical
image point X - Here the subscript {0 denotes that the function depends
on a point in the object space and a point in the image space. This partial =o-
lut.,on may be obtained by uaing only the linearity of (5.1.12) as follows : Let
the contribution to the ""complex disturbance’ at X due to the "'disturbance”

A
from an element d{, of the aource around §, be r‘o(gl, £V

K(g,/Bp¥) 4§ ;- The function K(£,,%;,v) describes the optical imaging

system. Then, since (5.1.12) is a linear differential eyuation, the total "disturbance”




69
at & is given by

' Moty £2v) i[ro(ﬁpﬁz’ VY Ky, £, v)dEy (5.1.13)
Next v/e repeat the argument used above solving this time the second of the
equations (5.1.12). For the sake of generality we assume the optical sys-
tem to be characterized by a second function, J (xz, §2,V). The relation
between J and K will be determined below. Using the linearity of the
remaining equation we obtain the image as

P,(xl,xz,V) ‘fﬂo“rﬁz"’) J®Bgk g ¥) G dq. (5.1.14)

Substituting from (5.1.13) into (5.1.14) we obtain finally

f‘i(xlvxzv V) =j[r;)(§ly£2v V) J(Sz»ﬁz, V)K(Kliil!v)dil d§2

Before discussing the physical significance of the functions J and K,
we ghall show that there {8 2 simple relation between them. To this end we

intexchange the roles of X and X9 of 54 and 52 in (£.1.15) o™taining

ri(xzr&ilp) :)/:/‘KQEZ'-{T U)J(Elyélvy) r~0(_§21 ‘i:ry)agl d§2

However, by Lemma I (Chapter 1)
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r‘i(xzvxlyv) = r;‘(x.l,&z,”) ]

and

A ~

rg(ﬁg»ﬁl;v) = r‘O*(ﬁl’é? V) .

Using these two relations, comparison of (5.1.16) and ($.1.15) shows that

[K(llxglvu) J (2‘.2)52)1')] * = K&z:éz» U) J @1!&1) V)

From (5.1.17) it followe immediately that
J(xlvglvv) = K (xlyé_lvu)' (51.18)

Using this result, (5.1.18), we mav rewrite (5.1.15) as

ri@lfézvu) = Jr‘[x(ll,ﬁ_lﬂ’) K‘ (Ezvﬁ_z;‘/) r‘o(ﬁl,_ﬁ_zb’)dﬁl d§2

Equation (5.1 18) is the besic relation of this analysis. It expresses the
temporal mutual spectral denaity of the image in terms of the tempcral mu-
tral apectral density of the object and a function K which characterizes tie
imaging system.
Beiore continuing the development, it is useful to consider the physical
irtcrpretation of the functicn K(xl,i_l,u). The demonstration of the iaterpre-
tation of K(z;l, 51,1‘) is straightforward but requires some results from a later .
section. Therefore, topreserve the continuity of the present discussion, this demon-

stration is given in Appendix 3 and we simply state here that the function K
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represents the complex amplitude at Xx,, due to a meonochromatic point source
at El of frequency, V.

Until ncw we hLave not specified the position of the image plane. Since there
are by «Jefiniiion no imaging clements between the exit pupil and the image plane
it is clear that equation {(5.1.i9) 18 valid throughout this entire region. However,
since the form of K in the exit pupil varies significantly from its form in
Gaussian image plane, and since its behaviour in each of these plenes is of
particular physical importance, it will prove convenient to designate by two
different symbols the form of K()_cl, §1,v) on these two surfaces. Accordingly,
we shall denote by A({,g,v) the form of K in the plan2 of the exit pupii. Thus
A(%, g v) is the complex disturbance a* a point @inexit pupil due to the mono-
chromatic point source of frequency » ata point in the object plane. We rewis
the symbol K(x,§, v) io denote the function in the L.nage plane. Using this con-
vention, K(x, ¢, v) may be thought of as t' - distribution in the image plane due
to a morochromatic distribution of complex amplitude in the plane of the exit
pupil. remembering of cours: that the distribution in the exit pupil is determined

by the object. The relation between these two functions may then be expresredas

Kx, 5, v) ~ jA(ﬁ.g V) %S (% 5 vide (5.1.20)

Here g s a point in tle aperiure of the system; G i-a Green's function satis-
fying the Helmholtz equation and vanishing over the plane of the exit pupil.
Under the conditions characterizing most imaging sysiems (5.1.20) takes
a particularly simple (...0; but before discussing this point, we shall continue
the development up to the introduction of the general transfer function. This i3

done to avoid the erroneous impression that the transfer function analysis
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involves the Fraunhofer (or far field) approximations, as is sometimes be-
lieved to e the cace.

Equaticrn (5.1.19) assumes a chnvunient and useful form if the 8ystem

under consideration is "spatially statio.ary", i.e., if the funciion K(x, £,v) is

a tw “tion of the difference of the spatial coordinates,

Kix,§, v) = K({-% ) . (5.1.21)

This condition is gatisfied by scanning systems, * which includes 1108t an-
tenna systers and also by rmany imporiant (viaiule) optical systems. For
systems which do not scan but form the 2ntire spatial image simultaneously, K
will not in general be a function of the difference (£ - x) only. dowe.er, for .
most opticai systems the form of the diffraction pattern varies slowly across the
image plane. Hence, the image space may be divided into "isoplanatic' aress
over which K mey be assumed to be a function of ({- x) to any desired
accuracy. This possibility 18 discussed at length by Fellgett and Linfoot (19585)
and by Dumontet (19585). .
Throughou! the rest of thig discussion wr shall uiily be concerned with systems

fu: which the condition (65.1.21) is satisfied.

* By this we mmean sy:tems in which the image forminrg device (e.g. antenna)
scans while the position of the detector (e.g. feed) relative to the aperture .
remains {ixed, i.e., the antenna and feea move together. The above con-
sideration i8 not valid for a system tn which the image forming device re-
mains {ixed while the detector scans the aerial image. A camera with a foca) -
plane shutter is a simple example of such a system; the lens creates the
entire image simultaneously and the shutcer slit then scans the image.
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Ueing the stationaritv cousditicn, (5.1.19) may be rewrition as

x, A
XXl = [[K(ﬁi‘xp")x (£9- 2554 [gllp S dd dhyp

J
. 15.1.22)
Taking fhe "space-type" Fourier transform of both sides of (5.1.22) and

using the convolutios theorem yields

0 ok 0
r‘ii;_ii; &;2") = K(Elyv) X ('Ez: 'V) r;\( g‘;‘];ﬂgyp) . (3123)
At thig peani w. ‘ntroduce the transfer function, L \91, gz,v}, defined by

L (ppegy) = Klpw) X (ogy, - vy (5.1.24)

Ir *~rims ol L {£.1.2) becomes simply

0
Mg ¥ =X (ypia v Mol W) (5.1.2%

kquation (5.1.2) may be regsrded as the basic equation in the {requency
domvin analysis of imaging systems. It i8 clear from the foregoing discussion
that the transfer function aralysis is rigoroualy applicable to any ''spatialiy
stationary' syatem. Thai is8 no approximation need be made cGneerning the re-
lation between the aperiurs illumination function, A, and the diffracticn pattera,
K. Howover, in m.ost optical applications and in fact in mosi antenna applications,
the diffracticn patiern is characterized by the Fraunhofer approximations (or
the: formaliy equivalent far field spproximations}; and since under these condi-
tions (5.1.20) assumes a particularlv simple form, we shall introduce these

approximations at this point and retain them throughout the subeequent sections.
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Under the uscal approximations whicih characterize ¥ aunhofer diffraction,

(5.1.30) reduces to

K(lls ﬁl’ v) = ; A(&.‘”;V:’e TR d_a (5.1.26)

whare A is the wave length of the spectral component belonging 1o frequency
v and R is the radius of the Gaussian reference sphere. However, K(x,§,V)

may be expressed as

K{x, ¢, ¥ = f K(x g, 220 gy (5.1.27)

By comparing (5.1.26)and (5.1.27: we identify the spatial frequency, u, as the

reduced aperture coordinate, f.e.,

4
TR 1 = J 0 -
Bes% - le By TR My T fR :

Further we note the finporiant relation

Kuv) = K 1h,v) = A®uy)
Our subse. ient analysiz will deal solely with K and its tranaform X From
(5.1.34), (5.1.26) und (5.1.27) it s clear that under the cond.tions stated the
trausfer function, L(g,,uq¥), OF a systen. utilizing partially coherent poly-
chromatic illumination is the product of the {requency dependent aperture illumina-
tion function considered as a function of spatial frequency and evaluated at

By = glgla with it8 complex conjugate evaluated at =_O_!2/A R

It is clear from the above considerations that the inverse problem, namely
that of determining the object from a knowledge of the image, cannot be solved

if the imaging system has a {inile aperture. Thig copeclusion can be anderstocs
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bv fermally inve-ting (5.1.25). We then obtain

ru'(ﬁl E?)V)
0 S

0
Mlepigy) = X #o0. (123

X (El’ U;Z:V)

However, from (5.1.27) and (5.1.24) it followc that if the aperture .s finite
L is identically zero beyond some maximum frequency | 4| max, and hence,
(5.1.28) is indeterminate. Thus the inverse problem is soluble oniv up to an

aroitrary function, § ,

0
0 [‘;(&1,.&2, V)
Tolko ke, v) = o + i (5.1.29)
{idy Wy 1

where { is ary function of frejuencies greater than | L‘| max

Equation (5.1.25) gives the relation between the total epectral densities
of the obi~ct and image and is thus the solution sought in this section. "owever,
in many appliciations one is interested in a much less general solution, namely,
the intensity distribution in the iinage. Obtaining the intensity distribution in
gen ral, from (5.1.22), is somewhat invoived ard not very helpful. However,
in the limiting cases of coherently and incoherently illuminated objects the
problem is tractable, and in the subsequent sections we shall discuss these
limits in detail for both polychromatic and quasi-monochroxﬂatic illum?ination.
5.2 The Limiting Forms oi the Transfer Function

Following the pattern established in the earlier chapters we f{irst examine
the limiting forms for poiychromatic light and in a later section examine the ex-
tremes under the quasi-monochromatic approximation.

We shall show in this sectinn thai the transfer function for cohcrent objects

is the frequency dependent aperture illumination fi.action K= A (x, X%' v)
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evaluated at Yo and considered as a function of spatial frequency. (Here Yo
is the frequency of the illumination. See Clapter §

The analysié of the systems imagii.7 incoherent objects is complicated
by the fact that as explained in Chapter 4 the image is partially coherent.
Thus, if one seeks a complete soluiion (l.e. the mutual coherencc of the image),
the transfer function must operate on the spectral density of the object, f( TR
{a function of one point only) to produce the mutusl spectral ¢ msity of the image,
[0"1(5_1, Hg,v), (a function of two pointg). This consideration, overlooked or
omitted in the lllterature on the imaging problem, is important in the treatment
of cascaded systems. The required transfer function will be shcwn to be the
function L introduced in the previous section. |

If, on the other hand, one requires only the inteneity distribution ia the
image, I(3,0), the entire analy:!s may be performed with functions of one
pcint only, the spectrsl denoities of the object and mage. For this problem,
the ‘ransfer function, ™, will be shown to be the convolution of the frequency
devendent aperture illumination with its complex conjugate.
5.2.1 The oherent Linit

It was shown in Chepter  that in a coherent field the mutual ccherence

function is of the form

. -2 g7
Molsp &3 = Ul Uy (£p)e (5.2.1)
with a mutual spectral density
A .
'0(51’ 53"') = Uo( £1) UO (fa) 6 (v - Vo) . (5.2.2) .
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Substituting from (5.2.2) into the general solution, (5.1.18), and teking the

temporal Fourier tranaform on both sides we obtain

NG5 = Uls) U @e (5.2.3)

where

U =[Uo(§) K(f- na (5.2.4)

From ¢5.2.3) and the theorems of Chapter 3 it follows immediately that:
Theorem XIV : The image of a coherent object is coherent.
Taking the spatial Fourier transform of both sides of (5.2.4) and using

the convolution theorem we obtain

Uy = Upley) K (up,vg) - (5.2.5)

The appropriate transfer functicn is the frequency dependent aperture {llumina-

tion function evaluated at Yo and considered as a function of spatial frequency,

“E( gpvy = Al M R vo). The coherent image i8 completely determined by
(5.2.5), and the intensity distribution ir obtained as a special case of (5.2.3) by
getting X = Xq and 7 = 0,

5.2.2 The Incoherent Linoit

An incoherent cbiect i8 described by a mutual coherence function of the

form (see Chapt~: 3)

ol kg = Yl 0 5376y (8.2.6)
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where lo(gz, 7) is the self coherence tunction st §.2 defined by the relation
7 =<Vt + 71 VIEY> . (5.2.7)

The mutual spectral density is, therefore,

A
M pEgy = Ngn 8 5y~ {0 - (5.2.9

Suhstituting from (5.2.8) into the general aciution, (5.1.19), w. obtain the
image, ﬁ(xl,)sa,u), ie.

A * a
n(xlxxg:") ”jjx(gl "31'3’) K (52 '53:") Io(ﬁz:l-‘)a (52" {1) d§1 d{z

We may now integrate over diq and obtain

A LY
&3 ¥) =fu§1 - KV x'(;1 - %) L(§,vdE ;0 (6.2.10)

and taking ‘he spatial Fourier transform of both side: and using again the convc-
.ution theorem yields

0
My ge?) = gy + pg MLy sg?), (5.2.11)

where X (), g, ¥) 18 the generaittad transfer fuiction defined in Section 5.1

4 (Eptfz: v = i(ﬂél, +1) i‘(°&3,‘v) - - (6.2.13)
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It is convenient to rewrite (5.2.11) in the form

0 8 '
n(yl’ E-EI’V) = I(E’V) x (.'_4_1) E‘_“'I;V) . (5.2.13)

Equation (5.2.13) expressee the fact that the erergy contained in the object *
at u is dlstributed amoeng all pairs of frequency, oG and - By in the image.

" While equation (5.2.13) is the complete solution (for an incoherent object)
for the total mutual spectral density ‘n'the image and hence for the mutual
cohercace function, one is often interested in the more restrictive solution, the
intensity in the image. This is obtained at once by setting X} = Xy In (5.2.10),
which gives

fv) = f';(x,,xy ) =f|x( b -Zp| 2l(£1,t')d.£1 :

Toking the spetial Fourier transform of both sides of (8.2.14) we obtain

L) =M (9 Yyl (5.3.15)

where

M (v =[| K(z, v) Izem“'au : (5.2.18)
From th~ interpretation of K giver in Appendix 4 it is clear that |K| 2 s
the frequency dependent intensity diffraction pattern of the imaging system. The
transfer function for determining the total spectral density of the image of an in-
ccherent object is thus tho transform of the "intensity diffraction pattern"” of the
system. The formula (5.2.18) is simplified further by again uaing the convelution
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ti:eorem and (6.1.2) which gives

T (E,V) =[i(g-y_,v) ﬁ*(g,u) do . (5.2.17)

The spatial spectral dersity may now be obtained by taking the Fourier trane-
form of both #ides of (6.1.15) and evaluatingat 7 = 0 ; thus

fi(g',O) = j;;’t(g,v) ‘.;fo(g.,v)dv . {5.4.18)

The formula (3.3.18) expresses the fact_ that each temporal spectral component
coniributes separately and independently to the energy in the spatial frequency
component y . The intensity distribution in the image is tlien given by the spatial
transform of (5.2.18).
5.3 Imaging with Quasi- Monochromatic Light

While many imaging systems of practical and theoretical interest deil
with polychromatic light, orly the problem of imaging with quasi-monochromatic
or monochromatic illumination has been extensively discussed in the literature.
This omission of the more genoral problem is easily understood since without
a rigorous and genersi formulsation of coherence theory the mathematical analysiy
is prohibitive; and the earlier formulations of this thenry discussed in Chapter 1,

are not well suited for extension to this general case. Therefore, the transfer
function analysis as found in the available literature is applicable only to quae!-
ronochromatic light, and in order tc compare the results given hera with those
of earlier writers, we examine in this section the form of tie transier functions
under the quasi-monochromatic approximation. .

A partially coherent quasi-monochromatic object will be described by a
mutual cohersnce fuaction of ihe form (see Clhapter 3)
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-2nivT

[o(EpEaT) = Toh,. 50 0)e (1ri<<g); (6.3.)

its temporal transform is

Blepiph = iy 500 G-n  (FI<<L). (3.2)

Substituting from (5.3.2) into the general solution (5.1.16) and taking the

inverse Fourier transform, we obuin

A ~27iv7T o -
r:()-sl_-EZ’V) = 2 ]K(ﬁl‘xlyv) K (ﬁz's‘(ztu)[a(ﬁpﬁzso) d§_1 déz .

C .. (539

Equation (5.3.3) provides the starting point for the analysis of partially co-
herent images. Beginning from (5.3.3) the entire amalysis of the two pre-
ceding sections may be taken over mmtatis mutandis for the quasi-maaochromatic
imaging problems considered here. Denoi.ag by the suffix q that the functions
are applicable to quasi-monochromatic light, the various transfer functions
and frequency domain image equations are :
Coherent Object

transfer function X Q- ﬁ(-E,-F)

imaging equation 61(5, ) =7(q(g,l7) 60(55)
Parilally Coherent Object

transfer function X _-= K(-p,,-% k' (#9,9)

o 4
imaging equation [ (p, g, 7) = ’fq(u 10827 ﬁ)(&p&g.v)
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Incoherent Object *

-~ - "'.* -
transfer function xq = K(--EI,V)K (Ez»”)

imaging equation ﬁ(gl,gz,ﬁ) = zq(&}.’g’i’v) IO(EI,V)
transfer function )nq = j Kla-pv) K*(g, Vido .

imaging equation z‘_(g, ) =7’1q(g, v). "io(ﬁ 141

The transfer functions for quasi-mesochromatic light are thus seen to
be sin:ply the generalized transfer functions evaluated at the mean frequency.
f This resgult i8 to hav. been expected since mathematically the quasi-monochro-
matic approximnation is characterized by an approximately moncchromatic mutual
coherence function. Hewever, it should be emphasized tiat while the transfer
functir:ns obtained in this section may be formally obtained by taking a single
spectral component of the general solutions the inverse procedure (integrating

the quasi-monochromatic solution over frequency to obtain the general solutions)

is not justifiable. This conclusion is evident from the fact that the solutions

obtained in this section are only approximate ( | 1| < < Z.li) and accordingly

the iransfer functions depend on the mean frequency, ¥ , not on an isolated

frequency, Vo It is thus logically impossible to obiain the general so-
; lutions from the quasi-monochromatic solutions.

The transfer iunctions defined in this chapter are summarizad in Tabie 2.

* N.B. Two imaging equations are required for systemsa involving in- .
coherent objects. 1 (u,7) is used to determine spatial spectral density
in the image, while th¢ more general problem of determining the mutuzl
spectral density involves the transfer function ’tq @y ug,V). However, -

both of these functions operate on the spatial spectral density of the object.
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APVPENDIX 1
KELATION BETWEEN VON LAUE'S MEASURE CF

COHERENCEZ AND THE COMPLEX DEGREE OF COHERENCE

The measure of coherence, YL introduced by von Laue (19807) is
defined by
(L OL,O> E e (g0 2
W Rl D ﬂ% 8gt)
L~ R
o) {1 0
Here fl(t) and fz(t) are real funciicns of time which describe the (scalar)

(A.1.3)

optical disturbance at the two points P1 and Pz, respactively. The function-

fl(t) ({ = 1,2) bhave, therefore, the Fourier representation

o«

fl(t) = f Fy (v) cosf¢ ‘(v) - 3wt Jdv (A.1.2)
0

&nd tne functions gi(t) are defined as

gl(t) = f Fi(u)sin [e() - 2xi]dr . (A.1.3)
0

This formulation strongly suggests the introduction of the aanlytic signal;

and accoruungly, we may rewrite (A.1..) as

2 2
~<V11(t) vz"(t_);) + <V1r(t)ﬂ)>
7
ST

where the functions V.* and V," are identified as { and g, respectively.

YL : (A.1.4)




85

| .
In order ic obtain the relation belweer vy and ylz(r) we have but
tn recall the definition of "'12(7) . Equation (1.2.10) of Chapter 1 may

be formally expanded to give

(A + iB)
712(7) . .
/ O <vz(t)v2 (t+e7)>
where
A= (vt ) « v iovgieen)
B = | [<’V1i(t)vzr(t+1)> - (v vples r)>} .
C (A.1.5)

but by the theorems established in Chapter 2

&lovgeny,

] <vz’ )V, s 7P,

\AC v.‘,’(tn))
and
i
, <v1’(:) \L (m))
whence Equation (A.1.5) becomes

2 [<V1r(!) Vot v, V’r(t+1’>]
Ylg(") = - = .. .-
R X AT

Multiplying both sices o1 (A.1.8) by ;5 (1) and aoting from (3.2.14) that

H

(A-1.6)

- vy v ey = 2 T veen)
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we obtain
CCAGR 2Lt mvyis 1)>2

i‘}llr‘(‘r) i r T ; - r r '
<v1 M v, (t+‘r)><V2 () V" (t+ 1)
(ALY
orat 7 =0
‘ l'*" <v1" RO <vii ) vy© ) 2
7’12{0) = 5 > —
. i Glr (t)><V2r (t)>
..... (A.1.8)

Comparison of (A.1.8) and (A.1.4), ylelds the relaition between von Laue's

measure of coherence and Wolf's complex degree of coherence function as

e @t (A.1.9)




APPENDIX 2
THE QUASI-MONOCHROMATIC APPROXIMATION

We may define quasi-monochromatic illunination by the following

property : the mutual spectral density, fﬂ,?(v) . is appreciably different

from zero only for those spectral comiponents, v, which satisfy the inequality

!v - 7 l <& Ay,
where U is the mean frequency and A » is the spectral width of the lignt.
Physically this condition implies that most >f the energy in the field i8 con-
tained in the spectral region 7 - Av < vV + AV

Tv obtain the form of the mutual coherence function {or quasi-mono-

chrematic {ields we first recall that r,lz(T) mav always be expressed in
the form
- A -2nivr
0

We may now factor out the mean frequency teim of the fategrand in  (A.2.1)

and obtain

x

-2 ivT . ~2ai(v-9) 7
Fm(ﬁ = e [r'lg(u)e dv . (A.2.2)

0

If we limit our attention to sufficiently small | 7|, more precisely if
i r! << Klﬁ , the frequency dependert factor of the exponent of the integrand

satiafies the inequality

‘(p-p)Tl < i,
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t
for all values of v for which t ﬁl?.(u) ‘ is significant.  Thus, the

. -2 7 . . .
variations in e miv-7) 7 may to 2 good spproximation be ignored, and .

(A 7.2) may be rcwritten as

»
O
o 2mvr ~ ‘ 1
fafn< e r’lz(u)du (7 < g5) - (A23)
0
The integral in (A.2.3) may be formally evaluated to give
o
J{‘nz(y) dv = rlz(o) 3
J
and we have finally ¢
) - -arivy . ] ¢
[a(n = [q0e (7)< <) (A.2.4)
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APPENDIX 3

THE GENERAL UNIMODULAR ANALYTIC SIGNAL
AS AN AUTOCORRELATION FUNCTION

We will show in this appendix that the general unimodular analytic signal
can be interpreted as an autocorrelation function only in the degenerate case

that it can be written as

i 2ri(v,7
o ¢11(T) . 7”(”0 +8)

*
" The constants a, determine the position of the poles of the meromorphic

function

1 %
an-z

1910 * - 18 -2
A2, $122) ) ‘H’ a (an z) e(ﬁ T oZ)

n=1 an

. ... (ASD)
In (A.3.1) the imaginary part of a, has the same signas v, le,

1 {an} < 0, (A.3.2)

and B and vy Aare real constants.

‘The most general unimodular analytic signal i3 obtained by setting
z = 7 in (A.3.1) (see Chapter 2).  The requirement that (A.3.1) repre-

esid an autocorrelation function is equivalent (see Chapter 3) to
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]
R /r?l(r) sinZrvrdr = 0, (A.3.3)
Zeo

where

i
2 e ¢11(T)

[0 = A, (A.3.4)

We shall shew here that (A.3.3) can be satisfied if and only if the
meromorphic function, (A.3.1), has ro poles.
The integral in (A.3.3) 18 conveniently evaluated in the complex plare.

Equation (A.3.1) can be written as

R{F, + F.} = 0, (A.3.5)
where
o0
i +21 ivgz i
F =9 ['l‘l(z)e dz . (A.3.6)
- s
-0
In (A.3.5) and (A.3.6) the identity,
?.nivoz ) -21:11/02
sin2ryz = oo ¢ (A.3.7)

2i

wap used. The function F+ in (A.3.6) is given by an int2gral along the

ceal axis, i.e.,

2 - a * Joa -z 1 Bee v, 7)
AT | —n n__ " e
F+ ‘ .ﬂ [ { r!;l ‘l ( ’ 1)} e

-~ &0

Y
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The integral in (A.3.8) can be evaluated by contour integraiion closing

the contour at infinity above or below the real axis accordingly as Vg + V

is less than ur greater than zero. Thus by Cauchy's residue theorem

2 0 v<- VO
g b X * Y ) *
_ ‘A2 > _‘_} an‘ [ a, - a, ig 21ri(v0+v)am
F+'m m=1 n=1 a, \a"‘-a* e e v>—v0, ,
. n¥m ) n m
..... (A.3.9)
since by (A.3.2) the poles are all in the lower helf plane.  Similarly,
v<vw
( o . 0 )
A TT oA sy -ay \ 18 2m(yy-via ;
F _\m m=l n=1 =& |2 ¥-4 ii € e V> g -
. / n n m
1 n¥m | i
y \ ;
oo (AL319)
; The preduct
{ o
. * }
a a_ -z
l T T {‘E‘"‘——-\ ) (A.3.11)
- ¥ . ‘ -
n=1 a, \ 8 z /
*

converges for aiiz  (c.t. Chapier 2). 1t therefore converges for z = an, ;

and we may write

Rle
| =
1
‘w
=

3
sm——————rio..

D .

1
®
5

* »

\___,
1]
jo-e)

+
a
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Using (A.3.12) we may write

% 2n(v+vg)C
F,_+F_ = mZ;l (B, + 1€ ) | cos 2m(v+ygb + i8sin 2n(v+v g | e
E
g 21r(v0-u)Cm )
+ ol (Bm+ i Cm) cos 21r(vo-v)bm+ i sin 27 (VO +v)bm]e yoVg
..... (A.3.12)

In (A.3.13) bm and o = are the r~al and imaginary parts respectively of a

and ¢ ‘s greater thar zerc (see Chapter 2) The physical requira.nent,

m’

(A.3.1), is that F, o+ F_  vanish identically for all ». Equation (A.3.13)

can be wriiten in a inore convenlent form as o
1 -\ .
, = (v ,vv)C 1
; R {y‘+ + F} = r%iva “e 0 m,cos[q)mﬂw(vow)bm} +
" 2n(vy-0)C, |
? \e © 0 M coa[¢ +2m(vy-v)b J= 0 v>v,.
|
' o (A8 14)
3
t where
; 2 2 2 1 Ch
Rm * Bm + Cn] and ¢m=tan [ E;] . (A.3.15)

‘ That this equation cannot be satisfied for R, # 0 i8 clear from the asymptotic

behaviour of the sums. The second sum vanishes for large v while the {irst

sum diverges term by ter:n as e’ . Thus we must have .

% R,»* 0 (A.3.16)
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However, since in the solution of the integral equation (3.7) poles at the
crigin were excluded and the product was taken only over the poles occurring
for finite 2z, the R, cannot vanish jf there are poles or zeros in the
meromorphic function.  Consequently there can be no pecles for finite 2z if

(A.3.1) is satisfied. Thus

{8 + 21ru0~r)

(A.3.17)

[ = AAje
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APPENDIX 4

EXISTENCE OF A LINEAR DIFFERENTIAL EQUATION .
FOR THE MUTUAL SPECTRAL DENSITY

From Maxwell's equations it follows that each spectral component of
the optical disturbance, V* (t), satisfies a linear differential equation, in
particular the Helmholtz equation in each medium comprising the imaging

BT S

system. Hence we may write

D[ VW] = D[m V(W] = 0 , (A4Y) /
T -0
where V' (T, v) is the spectrum of the truncated function introduced in
Chapter 2 and D is a liucar differential operatcr. Using (A.4.1) and the con- .

volution theorem of Fourier analysis we may write

0
im D[P (MY ] = lm [SNIWET 51 §Tg) 1 av-o,
T—pﬂo T a0 2§(V'T)
or s.mply
D[V (Ty) ] =0 (A.4.2)

; Thus each spectral component of the truncated function satisfies th2 sa.ae
| differential equation. That the function T{’x(u), likewise introduced in

Chapter 2, also satisfies the same equation can be seen as follows. By

definition
L} ac o0 A
2 it . 2 rivt’
~ 1 r '
[ Ve dv = L f”‘“‘"t' ~ f ViT, 1) e dudt’ .
- -0 -0
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Operating on both sides with D and using (A.4.2) we fimd

D] - o (A.4.3)

From the linearity of D and equations (A.4.2) and (A.4.3) it follows that

D[V(T|¥) ] = o, , (A.4.4)

where \}(TI v) = VF (T,v) + i T\?‘(v) is the spectrum of the analytic
signal associated with the truncated function V*© (T,v). Equation (A.4.4)
expresses a particularly convenient property of the analytic signals, viz.,
that an analytic s.gnal satisfies the same iinear differential equation as the

real function with which it is associated.

We recall from Chapter 2 that

A
r;a(v) = lim {

A A B
Vl (T1v) Vz (T _li) ,
T o0

ar

and operating on both sides with D, (8 = 1,2), where the subscripts denote
that the operation is in the coordinates of P, we ohtain finally

A
Dy [ [jam 1= 0 (8=1,2) (A.4.5)

Thus the mutual spectral density will be propagated through the system by the

same equations which govern the optical disturbance itself.
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APPENDIX 5
INTERPRETATIGN OF THE RESPONSE FUNCTION K(x, &,v)

It was shown in Chapter 4 that a coherent (scalar) field may be com-
pletely described by a single complex wave function U. In Chapter 5 itlis
shown that this complex function is of central importance in treating the image
of coherent objects. To determine the physical significance of K(x, £ ,v) we

consider a coherent point object as the input to the imaging system. For this
object the function U is of the form

ﬁo(_g,v) = 5(¢§-¢ o ¢ (v - Vo) (A.5.1)
Substituting from (A.5.1) into (5.2.4) and integrating over d  we obtain

Ug,1) = K(go») 8 (-vp) (A.5.2)
or

U(§,7) = K( §o % ¥ - (A.5.9)

The physical interpretation of K({,5,v) is clear from (A ©.8); thatis

K({,5,v) is the complex amplitude in a diffraction pattern due to a point source
of {frequency v lccated at
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