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0. Introduction and Summary. This paper extends and unifies some

previous formulations ar3 theories of estimation for one-parameter
problems, The basic eri. prion used is admissibility of e point
estimator, defined with reference to its full distribution rather
than special loss functions such as squared error. Theoretical
methods of characterizing admissible estimators are given, and
practical computotional methods for thelr use are 1llustrated in
a variety of examples.

Point, confidence limit, and confidence intervel estimation are
included in a single theoretical formulation, and incorporated into
estimators of an "omnibus" form called "confidence curves;“ The
usefulness of the latter for some ~pplications as well as theoret=
ical purposes is illustrated,

fisher's maximum likelihood principle of estimation is general=-
ized, given exact (non-asymptotic) justification, and unified with
the theory of tests and confidence regions of Neyman and Pearson.
Relations between exact and asymptotic results are discussed;

An application of the general theory gives optimal sequential
estimators having prescribed precision in a specified interval;

Further developments, including multiparameter and nuisance para-
meter problems, problems of choice among .dmissible estimators,
formal end informal criteria for optimality, and related problems
in the foundations of statistical inference, will be presented sub-

sequently,
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l, A _broad formulation of the problem of point estimation. We con-

sider problems of estimation with reference to a specified experi-
ment E, leaving aside here questions of experimental design includ-
ing those of choice of a sample size or a sequential sampling rule;
some definite sampling rule, possibly sequential, is assumed speci-

‘ fied as part of E. Let S ={x} denote the sample space of possible
outcomes x of the experiment, Let f(x,Q) denote one of the element-
ary probability functions on S which are specified as possibly true.
Let N1 = {O¥ denote the specified parameter space. ror each & in {}
and for each subset of A of S, the probability that E yields an

outcome x in A is given by

Prob :_x € Alo} = «L £(x,0) au(x),
where p is a specified ¢- {inite measure on 5. (We assume tacitly
here and below that consideration 1s appropriately restricted to
measurable sets and functions only.)
If v = ¥(P) is any function defined on {l(e.g. ¥(@) = @ or
y(Q) = 02), with ranze I, a point estimator of y 1s any measurable
function g = g(x) taking values in [ (or in{', 1ts closure, if, for
example, ["1s en open interval). The problem of choosing a good
estimator, that is an estimator which tends to take values close to
the true unknown value of ¥y, has been formulated mathematically in
various ways. Most formulatiocns achieve mathematical definiteness
by introducing criteria of closeness which appear somewhat arbitrary
* from some standpoints of application and undesirably schematic as
expressions of the intuitive notion of closeness.

If () is given no specific (parametric)structure, then the

latter features can be fuliy avolded only by a very broad formulation
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which specifies only that if y is true, then an exactly correct

estimate (g = y) is closer than any incorrect estimate (g £ y)e If
0 1s finite, 1= 8;,...0, , and ¥(6) = &, this leads to the
formulation of Lindley [1] in which estimators are compared only

on the basis of their error probabilities
3
Py = Prob {o" (x) = °1|°3}o 1,5, = 1,00k, 1 # 3,

where O*(x) is any estimator of @, This formulation has no very
useful extension to typical estimation problems in which, fcr
example, (L is an intervel, and in which the event o*(x) = exactly
has typically neglizible probability and little interest.

The case in which lis any set of real numbers, for example an
interval, and y(Q) = @, may be termed the central problem of theory
of point-estimation, although very important generalizations of
this problem have been treated extensively. [For this problem,
closeness of o* to @ has been speciiied by the introduction of
specific loss functions: The absolute error criterion, IO*-O|,
was8 introduced by Laplace. Gauss replaced this by the squared'
error criterion (0*-0)2 which proved mathematically much more tract-
able and provided a definite formulation of the problem which seemed
equally reasonable. A generalized squared error criterion,
c(Q)°(°*-0)2, where c(9) is any specifiec positive function, is
used in some work in modern statistical decision theory. Such
criteria are sometimes used in conjunction with the requirement of
unbiasedness, E(O*(X)IO) & @3 this is done (evidently primarily to
facilitate mathematical developments) particularly in the theory

of lineer estimation cdue to Gaussj this reduces the mean squared
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error ocriterion to a criterion of variance: E[(O*-O)zlol 8
var(0¥|8). (For a brief account of the history of the theory of
point.estimation, ef, Neyman [2], pp. 9=1L.)

Each such definite specification of closeness can be criticiz-
ed as somewhat arbltrary, except in a context where one postulates
the reality of the indicated costs oi errors of each possible kind,
To avoid such features it 1s evidently necessary and sufiicient to
adopt the following weak specification of closeness: If 0§<O§§D
or if 0gay<6y, 1 to 8; if
Oi < 8 < Q%, no comparison as to closeness is to be made. (The

the estimate Og is called closer than @

latter point was put forth by Galileo in an exchange which retains
interest in connection with questions of formulation.of estimation
problems, particularly distinctions between errors of inflerence
and economic valuations, end the historicel origins ol unblasedness
criteria. Cf. [3].)

This specification of closeness leads to comparisons between
estimators on the basis of all of their probabilities of errors of

over=sstimation and under-estimation by various amounts 4= |0%-O|:

a(u,0,0%) = F(u,0,0") EpProb {O*(X)§ ulO:} for u <8,
| 1-F(u-0,0,6%) = Prob{ 6¥(X) z ule Y for u > 6,
That 1s, estimators are compared only on the basis of their complete
cumulative distribution functions (c.d.f's,) F(u,0,0*) for each
N @ ¢ {}, rather than on the basis of certain "sumraries" (functionals,
of these ¢,d.f's such as mean squared error. The function
a(u,0,0*), defined for any estimator 0*(x) at each @ ¢ {1 md each
. u # 0, will be called the risk curve of o" at © (or, more precisely,

of 0*(0) at 0).
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The family of distributions under consideration may be viewed
as having a parametric structure only in the sense that it is order-
ed by the labeling of each function £(x,Q0) of x by a different real
number &, From this standpoint, the problem of estimating @ 1is
equivalent to that of estimating ¥ = ¥(Q) if the latter is any
specified strictly monotone function. The formulation adopted
above is clearly unaffected by (invariant under) such trensfore
mations of the parameter space (lﬂ.e-y(§1) &), as contrasted
with some other formulations relferred to above.

A theory of point estimation based on this broad formulation
seems appropriate for typical problems of inference occurring in
empirical research, since various kinds of errors of inference and
their probabilities admlt simple direct interpretations, whereas
other fcermulations introduce specifications akin to costs of
various errors which seem somewhat hypothetical or arbitrary in
such situations. The present theory also has theoretical and
technical relevance for estimation theories based on more restrice
tive formulations, since it includes such theories in a formal

sense which will be elaborated in a following section.

2., Admissible point estimators, An estimator 0*(x) of @ is natur-

ally considered a good one if its error~probebilities are suitably
small, i.e. if (the ordinates of) its risk curves a(u,0,0*), for
each © ¢ {land each u # 0, are suitably small. This leads to a
natural partial ordering of estimators, under which some but not all
pairs of estimators can be ccmpared., As a basis for systematic

evaluations and comperisons of estimators we require the following



6
Definitions: for a given estimation problem, an estimator o* 1a
called at least as good as an estimator o**1r a(u,O,G*) ga(u,n,c**)
for all @ ¢ Nand all u # 8, If 6 md 0™ are each each at least
as the other, then a(u,0,0") = a(u,0,0"¥), and the estimators are

called equivalent. If neither of @*, o*¥

is at least as good as
the other, the two estimators are called not comparable, If o™ is

“and 1if a(u,o,o*) < a(u,0,0**) for some

at least as good as o

3635

9 ¢ £ and some u ¥ 0, 0% 1s called better than ©°", As estimator

o¥ i1s called admissible if no other estimator is better than G*.

The class of admissible estimators is called the admissible class.,
A class of estimators is called complete if, for each estimator
outside the class, there is a better one in the class. The minimal
(smallest) complete class, if one exists, coincides with the

admissible class. A class of estimators is called essential}l

complete if, for each estimator not in the class, there is one at

least as good in the class., A minimal essentially complete class,

if one exists, is a subclass of the admissible class.

The above definition of admissibility was included in a list
of criteria for point estimators by Savage (4] (pp.224-225), but it
has not previously been used systematically.
The criterion of closeness of estimators introduced by Pitman [5]
also deals with the full c.d.f!'s, of estimators, in the form of
the joint distribution of each palr of estimators being compared;
however this oriterion does not give a partial ordering of estimators,
and does not lend itself to our present purposes.

For the probabilitles of under-estimation and over=-estimation,

we define also
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a(0-,0,0%) = Prob {0*(X) < 0|0} = Lim a(0-¢30,0™),

e —» O,
e > O

a(0+,0,0%) = Prob { 0¥(X) » 6|6} = Lim a(0+e; 0,0%),

e~ 0,
e > 0

for formal convenlence, we also define a(0,0,0*) g O,

When reference to a given estimator o* 1s underatood, we may write
simply a(u,@), a(@-,Q0), or a(6+,0), The functions a(f-,8) and
a(0+,0) of @ play a useful technical role, and willl be called

respectively the lower and upper location functions of 0",

In many problems, estimators for which Prob {O*(X) = O]D}‘> 0
for some © are found not useful. The remaining estimators have
' continuous c.d.f's,, and have a(@-,0) & 1-a(¢+,0). No two such
estimators, having different location functions, can be comparable;
for a(@-,0,0%) < a(0-,0,0"") 1s equivalent to a(0+,0,6%) > a(6+,0,d"
this shows that neither estimator is at least as good as the other,
The broad and "weak" definition of admissibility adopted here
leads to very large admissible classes in typical problems, However
it does not seem unreasonadble to conceive of the problem of point
estimation as one in which the investigator chooses an estimator on
the basis of consideration of the risk curves of all estimators in
some essentially complete class. In principle this consideration
should be complete, but of course the practical counterpart of this
can be at most a more or less extensive famriliarity with an essen-
tially complete class, developed by study of the risk-curves of a
. variety of specific estimators, possibly strengthened by some
general theoretical considerations (including envelope riskeourves,

discussed below)and perhaps also by reference to one or several loss
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functions and oriteria of optimality which may seem more or less
appropriate in specific applicatlions. Such an approach is not so
diflicult to carry out as might be anticipated, as will be illuse
trated. Of course difficulties of computation or complexity may
sometimes dictate that an inadmissable estimator must be adopted;
even in such cases, the most general basis on which any particular
estimator might be justified as not too inefficient, is evidently
the comparison of its risk-curves with those of other estimators,
especlally admissible ones.

Example, Let X be normally distributed with unknown mean @
and variance 1, with(l= {OI -0 < @ <0} . Consider, when 0 = 1,
the risk curves of the classical estimator ﬁ(x) = x, and of the

estimators O*(x) = x + 1 and 0**(x) s +toqa We have

-~

a(u,1,0) ={ §(u-1) for u < 1, and
i 1 - §(u-1) for u > 1,
where 2 v - %g
B(v) = (2n) © S e v,
%00
a(u,1,0") ={ P(u-2) for u < 1,
1 - J(u=2) for u > 1,
and
a(u,1,8"") =J 0 for u < 1,
L1 for u > 1,

Our wishful goal in choosing an estimator would be to minimize
simultaneously all ordinates of such ourves, for all 6 and all
u # 9, since each ordinate is the probability of an error. Of

. course this goal cannot be realized in non=-trivial problems. The

POt
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estimator 0% 1s superior to 8 with respect to all errors of undere
estimationy but worse with respect to over-estimation, From this
standpoint neither can be called better than the otherj they are
not comparable. The apparently trivial estimator Q** (but no
"smaller" one) 1s perfect in avoiding errors of under-estimation,
but is'as bad as possible with respect to over-estimation;

It will be seen below that each of these estimators is not
only admissible but that each has, 2mong all estimators with the
same location functions, uniformly smallest risk curves.,

In most decision-theoretic formulations of statistical problems
a real-valued risk function r(0,0*) is defined for each parameter
point and each decision function., In the present formulation, we
assoclate with each pair 9, 0" a set of error-probabilities
a(u,O,O*), u # 0, These respective error-probabilities, for each
fixed @ and 0*, may be regarded as components of a vector denoted
by r(o,e*) = {a(u,O,o*)}', the components a(u,0,0*) having index u.
Then r(O,D*) is an example of a vector-valued risk function.

Knowledge of the admissible class or of an essentlally complete
class of estimators in the present broad sense can be useful in
applying other formulations of the estimation problem. For example,
every estimator which is admissible with respect to a squared error
loss function must clearly be admissible in the present sense; hence
the search for estimators good in the former sense can be restricted
without loss to any class known to be essentially complete in the
broader sense. In this way, a hlerarchy of definitions of admissi-
bility leads to a corresponding nested hlerarchy of admissible or

essentially complete classes of estimators., (The latter concepts,
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and that of vector-valued risk functions, were introduced in other
contexts by L. Weiss (6].)

3. Admissible confidence limits., If Q" = Q"(x) 1s a point estimator

of @ in a specified problem, with the property that
Prob [@"(X) < 0 | @) = a(0-,0,0") is relatively small for all O,

then @" is an upper estimator of &. In particular, if a(@-,8,0")=a

for all @, then O* is an upper confidence limit with confidence

coefficient 1 - a, or an upper (l-a) confidence limit. Typically

a value (l-a)>>.5 is chosen.

The typical use and interpretaticn of en upper estimate is
the following: When a given numerical value (observed value) is
obtained by use of an upper estimator, this is taken as evidence
supporting the conclusion or decision that the true unknown value
is at least as small as the estimated value. Hence the merits of
any upper estimator depend upon the following considerations, in
suitable combination:
(a) The probability should be suitably high that the indicated
conclusions, of the form: "Q is not greater than 0" (x)," are correct
for each possible true value of ©, That is, the confidence coerfi-
clent should have a suitably large value; or, more generally, the
lower location function a(0-,0,0") should have suitably low values
for all @, Such properties are sometimes referred to by the term
validity, particularly in the case of confidence 1limit estimators;
a valid (l-a) upper confidence 1limit estimator is one which does in
fact have the property that Prob {0* < OIO‘}= a for all Q@ ¢ 51;
(b) Given thet one of the indicated conclusions ("0 g M(x)") 1is
correct, 1t should be as strong and informative a conclusion as

possible; hence for each possible true value of @, the conditional
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distribution of 0" (X), given that & g 0" (X), should be concentrated

as close to © as possible., That is, given the location function
a(0=,0,0") of any upper estimator €", for each @ and each u > @
the vel ues a(u,9,0") = Prob [0"(X) 2 u|@] should be suitably small.
Such properties of confidence limits>have been termed ascuracy
properties by Lehmann [7], p.78. liore generally, in the theory of
confidence region estimation, such prcperties have been termed
shortness properties by Neyman (8] ,
(¢) Given that one of the indicated conclusions ("8 g &"(x)") is
incorrect (i.e. that in fact © > ¢"(x)), the indicated conclusion
should be misleadine in the smallest pcssible degree. For example,
in any given problem, under any given true value of @, when an
upper estimator takes a value two units below the true value, the
indicated conclusions (or inferences or actions or deciéions) are
at least as erroneous (or inappropriste) and in general more so,
than when an ugpper estimator (with the szme confidence coefficient
or location function) takes a value which is only one unit below
the true value., That is, given the location function a(R-,8,0"),
for each @ and each u < © the values a(u,@,0") should be suitably
small. This property has evidently not previously been discussed
along with those o. validity and shortness, but it seems necessary
to include it for a complete specification of the practical purposes
and intuitive goals of confidence limit estimation., All three
properties are given some weight in a specific loss function adopted
in the decision-theoretic treatment of Wolfowitz [9].

These considerations lead in the usual way to definitions of
admissibility and ofkcomplete classes of upper and lower estimators.

Properties (b) and @) together are formally identical with the
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closeness properties considered in the preceding section for point
estimators, while property (a) by itself is merely descriptive of
the location function of a point estimator. Thus every admissible

. confidence limit estimator is, formally, an admissible point
estimator as defined above, and is contained in every complete
class of point estimators.

Hence there is no necessary formal distinction between the
formulations, theories, and practical techniques of point estimation
on the one hand and of confidence limit estimation on the other:
the distinctions required here are only those of qualitative
emphasis and quantitative degree which reflect the variety of possi-
ble purposes for which a point or confidence limit estimator may
be chosen from, say, &n essentially complete class, For example,
in choosing an upper estimator for a given application, it may be
judged that property (¢) above should be given no weight as come
pared with properties (a) and (b) because "a miss is as good as
a mile" in the given context of application; in other contexts,
including probably most cases of estimation for informative
inference, some weight may be given to each property.

4. Admissible interval estimators., If J = J(x) = (Q',8") = (at(x),

¢"(x)) 1s a pair of point estimators such that @'(x) g " (x) for
each x in S, then J is an interval estimator of @, In partiuclar,

if Prob {0'(X) £90¢g O“(X)IO} = l-a for each @, then J is a cone
fidence interval with confidence coefficient 1-a, or a 1;:2%
gonfidence interval., (Typically a value (l-a) >>,5 is chosen,) The
typical use and interpretation of an upper estimate is the following:

When given numerical values @' md &" are obfained by use of an
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interval estimator, this is t.ken as evidence for the conclusion
that the true unknown value of the parameter € lies in the closed
interval [0O',Q8"],

The probability properties of any interval estimator J may be
described in the following terms: It is natursl to call a(f-,e,&")
the lower location function of J (as well as of 9"), and to denote
it when convenient by a(9-,0,J); similarly a(0+,0,J) = a(0+,0,0')
is the upper location function of J. As with point estimators,
these functions give respectively the probabilities of undere
estimation and of cverestimation when a given interval estimator J
is used. For example, it 1s n~tural, to call J a medimn=-unbiased
interval estimator if for each © we have equal probabilities of
oversstimation and underestimmtion: a(0-,0,J) = a(e+,0,J), This
usage is compatible with the definition of a median-unbiased point
estimator,

A quantity of primary interest is the probability that the
conclusion indicsted by any interval estimator J ("0 lies in
[e1,0"]") will be incorrect, for each possible true value @, This
probability 1s just the sum of the locestion functions of J:

‘Prob {O not covered by J(X)IO}= Prob {O" (X) < OIO}

+ Prob {0(X) > 0|0 } = a(0-,0,J) + a(e+,0,J).
If this probability equals a for each @, then J 1is a (l=a) confie-
dence intervelj if in addition J 1is medlan-unblased, then @' and
" are (1-%a) confidence limits, As with point emd confidence limit
estimators, it is of interest in general to consider the probahili-

ties of errors of under-estimation and of over-estimation of wvarious

- magnlitudes in interval estimationj we denote these probabilities by

i
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a(u,0,J) = (a(u,0,0!) for each u > 9,
{a(u,o,o") for each u < 0,

In a formal sense, a point estimator may be regarded as an
interval estimator J = (0!, &") having the special form: &'(x) =
" (x) for all x. The full specification of what 1s meant by a good
point estimator 0*, by use of the risk curves a(u,0,0*), corresponds
to the use of the functions a(u,0,J) to specify at least part of
what is meant by a good interval estimator J.

Arain, in a formal sense an upper estimator Q"(x) may be
regarded as an interval estimator J = (Q',0") having the special
form: ©'(x) @ = the greatest lower bound of {1, for all x. The
full specification cf what is meant b; a good upper estimator &,
by use of the risk curves a(u,0,0"), corresponds o part of what
is meant by a good interval estimatorj in particular, small values
of a(u,8,8") for u > 6, which indicate desiralble properties of
accuracy or shortness for an upper estimator &', indicate corree
sponding shortness properties for an interval estimator J = (O';b").

The merits of any interval estimator J depend upon the follow-
ing consideretions in suitable combination.

(a) The probability should be suitably high that the indicnted
conclusions ("Q lies in [0', §"]") are correct, fcr each possible
true value of @, That is, the ccnfidence coefficient should have

a suitably high value; or, more generaly, fcr esch @, the sum of
the location functions a(0-,0,J) and a(0+,0,J) should be sultably
low. As with point estimators, it seems desirable to avold, as far
as possible and convenient in the development of a general theory,
any step which corresponds to a tacit judgment that erroars of over-

estimation and underestimation are necessarily comparable either
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qualitativelj or quantitively. Hence the present specification
will be given the forms Eagh of the location functions a(0=,Q,J),
a(0+,0,J) shculd have suitably small values, for each &,
(b) Given the location functions of an interval estimator (and,
hence, given the probebility l-a(0-,Q,J) - a(0+,0,J) of correct
conclusions, for each Q), the indicated conclusions should when
correct be as strong and informative as possible. That is, for
each @, the conditional distributions of 0'(X) and &" (X), given
that 8(X) g @ g 0" (X), should be concentrated as close to @ as
possible. (In terms of the conditional bivariate distribution of
(6t (X), & (X), this means concentration close to the point (8,8),)
These desirable ghortness properties of J correspond to suitably
small values, for each @, of a(u,8,08") for each u > 0 and of
a(u,Q,Q') for each u < 0,
(¢c) Given that one of the conclusions indicated by J is incorrect,
it should be misleading in the smallest possible degree. (The
remarks on property (c) of the preceding section are also applicable
here.) These desirable closeness properties of J correspond to
suitably small values of a(u,@,J) for each © and each u # ©; that
1s, suitably small values of a(u,9,0') for u > @ and of a(u,o,8")
for u < 0,

To represent all of the properties considered for interval
estimators, we define the risk curves of each interval estimator
J = (0',0"), at each 9, as the pair of functions [a(u,9,0!),
a(u,8,8")] of u(u ¥ 0), i.,e, the risk curves of @' and of &', Thus
the risk curves of J at O are a representation of the bivariate

cumulative distribution function of @' (X) and 9" (X) when & is true,
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These considerations lead us to formulate the following basic
definitions: An interval estimator J = (3!,0") will be called at
least as good as another J* = (6%,0%*) 1f @1 1s at least as good
as 0" and o" 1s at least as good aslc** in the sense defined for
point estimators in Section 2 above, Similarly, J will be called
better than J° if it is at least as good as J° and also &' 1s
better than 6 and/or ©" 1s better than ¢ ', J will be called
admissible if no other interval estipator is better, Complete
classes are defined in the usual way,

If two interval estimators have different location functions,
they are not comparable (neither is at least as good as the other);
this follows immediately from the corresponding property for point
estimatora; A simple sufficient condition for admissibilit; of
{ = (Q1,0") is that 0! and Q" be admissible point estimatorse

S5, Confidence ourve estimators. The selection of an estimator of

one of the above kinds for nurposes of informative inference,
including typical applications in scientific research, is generally
admitted po involve elements of choice which are 1ln some degree
arbitrary. Such elements include the choice of a pan%icular
confidence level for an interval estimator, and the clioice of
location fupctions for an interval estimator with given confildence
coefficients In addit}on, a point estimate 1s sometimes desired
along with an intervale Such considerations and related ones have
led to proposals for use simultaneously of a point estimator and a
set of confidence limit‘or interval estimators having various
confidence coefficlients, Such estimators may be regarded as a

modérn formulation of a long-standing practice of reporting
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estimates in the form o* I ka-gu, where k is some oconstant and
o'iﬁ = Var (6¥(X))e The latter form may be interpreted as an
ordered set of three point estimatorse For example, if 6*(X) has
e normal distribution with a known constant variance, and k = 1,
then the "estimator" &%(x) ¥ kO3 may be written as the ordered

set of estimators

(o¥(x) ;-o's*, é*(x),ﬂ*(x) + gl = (8(x,08l),0(x,05), O(x,016)],

Estimates of this "omnibus" kind ean be interpreted flexibly but
validly, in any context of application for informative inferences,
in the ways customary for (a) point estimates such as 0(x,+5),

(b) confidence limits such as &(x,¢84) and &(x,°16), and (c) con-
fidence intervals such as [Q(x,*84), 6(x,¢16)],

Tukey [10] proposed that for typical general purposes it would
be advantageous to use a set of five point estimato?s at standard
levels: &(x,a), with a = 2%%, 16-§-°,6 , 50%, 83%";6 , and 97%016 .
Cox [11] proposed use of the full econtinuous family of confidence
limits O(x,a), 0 g @ g1, Such an omnibus estimator includes
formally, as elements, not only confidence limits at all levals
and a median~unbiased point estima;or, but also median-unbiased
confidence intervals at all levels, Whether such estimators should
be used in practice, rather than more standard methods, is a matter
of judgment and taste which esan perhaps be decided best in specific
contexts of application. It is often convenient, as will be
illustrated below, to discuss estimation theory and teqhniquos for
estimators of this omnibus form, since such discussion includes

convenlently and compactly a treatment of estimators of the various

ot b s 8
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kinds mentiono&.

Any such estimator, consisting of a specified set of confidence
limit estimators &(x,a), a in some specified subset of the closed
unit interval (possibly the whole interval), ordered in the sense
that a < at implies O(x,a) z»O(x,at) for each x in S, will be
called a gonfidence curve estimator, We shall usually consider
the inclusive case, 0 g & g1, so as to include formally all other
casess In many problems it is convenient to give such estimators
a form which can be reported graphically: if for each x & S, @(x,a)
increases continuously from @ to @ as a decreases from 1 to O, then
we define the confidence curve estimator ¢(@,x), for each x ¢ S,

as the continuous curve (function of & ¢ A.)
0(0,x) = min [a,l-a|0(x,a) = 8]

For example, if X is normally distributed with unit variance and

mean @, then the confidence curve estimator of @ is

(o -x), -0058gx,
o(Q,x) =

l1- Jo=-x), xg@g oo;

for any observed value x, the estimate o(9,x) can be described by
a more or less complete sketch of its graph when convenient; Such
estimgtes are illustrated in a number of examples in Section 9
belowe

The definitions of admlssibility and of oomplete oclaseesg for

confidence ourve estimators parallel those above for confidence

L4
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dnterval oatinaterl; A simple sufficient (but not, in general,
necessary) condition that a confidenoce curve estimator be ad-
missible is that for each a, its element G*(x,a) be an admissible
point estimator; In problems for which there exists a uniformly
best confidence limit estimator for each confidence coefficient,
this condition 1is necessary as well as sufficient, and there is a
unique (a;e;) admissible confidence curve estimator which oons}sts
sinply of the family of these beat confidence limit estimators.
6; Elementary theory of admissible point estimstors. An important
part of the general theory of admissible point estimators, and of
corresponding practical techniques of estimation, can be developed
conveniently by an essentially elementary use of the theory of
tests of one=sided hypotheses as originated by Neyman and Pearson
and as extended (by simple use of their Fundamental Lemma) to
generate a variety of admissible tests of such hypotheses.s In
problems for which uniformly best one=sided tests exist, the come
plete theory of admissible estimators is obtained in thls way; for
other problems, the development of the remaining parts of the
theory requires more general methods introduced in Section 10 below;
For each 00 in N, we consider two one-sidedltesting problems:
(a) the problem of testing the hypothesis H(Oo)z Qg e, (against
the general alternative H'(Oo): o> Do); and (b) the problem of
testing H(O,~): 8 < &, (against the general alternative H'(Oo;):
© 2 9,)e In case 9, 1s a minimum value in £}, consideration of
H(Oa) 1s to be ommitted; if 6, is a maximum in N, H(Q,) is omitted.
Any given point estimator ¢ = ©™(x) of & oan be used in the
following way to define a test of each of ths hypotheses mentioned:
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Accept the hypothesis if and only if the observed value o (x) is
consistent with the hypothesis, Such a test of the hypothesis
H(O,) has the acceptance region A(8,) = {xfd”(x) g 90,0 ; such a
test of H(&, =) has acceptance region A( GQ-) ={xl0*(x) < 90} .
If 0, < &,, then A(Ol-) CA(OI) C A(Og-) < A(OZ); for brevity, we
shall say that such a sequence of sets A(Q) is nondecreasing in A,
with the understanding the argument O may take a value (@=) which
is oonsidered smaller than @ and larger than 9-¢ for sach positive
e}.

Such a test of H(Oo-) has probabilities of errors of Type I
given by

1 - Prob (A(Go-)lo) = 3(00,0,0%) for each @ < @,
and of Type II given by |

Prob (A(0,-)0) = a(8,-,0,8") for each @ z 9

Such a test of H(OO) has probabilities of errors of Type I given
by

1 « Prob (A(OO)GO) = a(Q, + ,0,0*) for each 8 g &, ,

and of Type II given by
Prob (A(6,)[0) = a(oo,o,o*) for each @ > ¢ ..

Thus eaoh'of the error-probabilities a(u,0,0*), upon which depend
the admissibility of any given point estimator 0*, appears as an
orror-pro}oability of a test of a onee~slded hypothesis based upon
‘use of 0*. These relationships provide the following simple
aufﬁcignt ocondition for admissibility of a point est:hnator..
Lepma le For any specified family of prgbability density functions
£(x,0) (with respeot to an underlying o-= finite measure u(x) defined
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on the sample space S -{x} ), © ¢ N.(a subset of the real line),
a given estimator 0¥ = G*(x) (any measurable function taking
values in the closure A.of {1) is admissible if each of the accept=
ance regions A(Q,), A(9 -), based on 6" as defined above, gives an
admissible test of the corresponding one~sided hypotheses
H(Oo), H(Oo-) defined above.
Proof: (A test is called admissible if no other test has all error=
probabilities at least as small, with at least one strictly smallers)
Ir o* satisfies the assumptions of the Lemms but is inadmissible,
let 0" be an estimator better than 0, Then
a(OO,O,O *) < a(Go,0,0 ) for each & & (land each o, # @, and the
inequality is strict for some @ = Q'e MNand some
o, =0} € N, &} # 0!y Assume for éefinitengss that 0f > @t (the
other case can be disgussed in the same way)es Then the acceptance
region {xio**(x) < 9! }gives a better test of the hypothesls H(O'-)
than does {xlc (x) < ot}. This contradicts the assumed admissi-
bility of the test based on the latter region, completing the proof.
Many estimators of interest can be conveniently investigated
theoretically and constructed practically by the device of usling as
indicated below a function v(x,0), defined for each sample point x
and each @ ¢ N« If, for each fixed ¢, v(x,9) is a measurable
function of x, it 1s a gstatistic; and as @ variles, v(x,0) represents
a family o( statisticss We term such a funotion v a guasistatistioc.
Corollary le A sufficient condition for admissibility of an estime
ator 0¥(x) 1s that it be defined, for each x, as the solution @ of
the equation v(x,3) = 0, where v is a quasistatistic such thats
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(a) PFor each x in 8, v(x,0) = 0 holds for a unique @ inA .

(b) If @ <&, and &, 0, are in A, then {x|v(x,0;) g O}
c{xlv(x,oa) < 03 .

(A simple sufficient condition for (b) is that for each x, v(x,Q)

be nonincreasing in Q.)

" (e¢) For each Oo in N, the acceptance regions {xlv(x,oo) s 0} and

{xlv(x,oo) < O}.are admissible regpeotively for testing the one=
sided hypotheses H(Q,) and H(O =)«

Proof: If v(x,Q) satisfies the stated conditions, the conclusion

follows immediately from Lemma 1 upon observing that

{xl'v(x,%) < o}g {x“*(x) < o. %and {xlv(x,oo) < O}= {xl’o*(x) < éo}

When an estimator o is defined implicitly, by use of a quasi-
statistioc v(x,0), as the solution & of the equation v(x,0) = 0, in
applications it is not necessary to have an explicit formula for
6*(x) since for any observed sample point x it suffices merely to
determine the corresponding root @ of the defining equation; and in
the casesof many such estimators of practical and theoretical
interest, no explicit formula for Oﬁ(x) is avallable. The pre=
ceding lemma shows that basic qualiﬁative properties of efficiency
can be establisheg for such estimators without use of an& explicit
formula for ©*(x)e Their quantitive properties can also be
determined without such explicit formulas: Since v(x,u) < 0 is
equivalent to 0"(x) < u, and v(x,u) = 0 is equivalent to

6%(x) = u, we have
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Prob [6%(X) g u|0] = Prob [v(X,u) g 0]Q] for u <&
a(u,0,0%) = ,
Prob [0*(X) 2 u|d) = Prob [v(X,u) 2 0]4] for u > 9,

Thus all quantitative properties of such estimators ¢* can be de-

termined, when convenient, by determining |

Frob [v(X,u) g 0|Q] and Prob [v(X,u) = b|o] for each u # 9,

Some theoretical properties of.spch gstimgtors are also con=

veniently treated in terms of the c.def'se of ve For example, if
i for each n = 1, 2,;..,03 is an estimator determined by a quasie
| statistic = vn(xn,o), then the condition that the sequence of
estimators Oi be consistent (that is, that Lim a(u,G,O:) = 0, for
each © € Nand each u # 9), can be stated, and in many cases cone
veniently proved, in the form: Lim Prob [vnﬂxn,u) < 0|0l =0 or 1,
according as u < & or u > 9, for each & & L,

For estimation by confidence intervals or confidence curves,
it is sometimes convenient to employ a family of quasistatistics;
Suppose that for each of several values of an index a, w(x,0,a) is
a quasistatistic which determines as above an estimator 9(x,a), and
that, for each x in S, O(x,a) is decreasing in ;. Then for any
pair of values of a, a! > a", the pair of estimators
(e(x,at), O(x,a")] = J(x) 1s an interval estimator of 9, whose
quantitative properties may be investigated in terms of the dise
tributions of v(X,u,a) as indicated above, and whose admissibility
can in soms cases be established by direot application of Corollary 1
to v(x,9,a!) and v(x,0,a")s A case of interest is that in which
e = Prob [v(X,0,a) g 0|@) = Prob [v(X,0,a) < 0]|0] for each
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a, 0 gagl, and each & ¢ Ny Then the family of estimators

o(x,a) constitutes a confidence curve estimator of & (assuming

again that v(x,9,a) is decreasing in a); this estimator 1s admissible

1f for each a the quasistatistioc v(x,0,a) satisfies the assumptions
of Corollary 1; Examples of such estimators, and of convenient ‘
geohniques for their computation and prgsentation, are given below,
Ts _Uniformly best estimators. Let 6*(x) be any estimator of

o e. 6 will be called & uniformly best estimator of @ if, among

all estimators with the same location functions g(O-,O), a(o+,0), a*
has uniformly minimum error-probabilities a(u,0). Since the
a(u,0)'s are error-probabilities of tests of one-sided hypotheses
H(0°~), H(Oo), 9, ¢ N, with respective acceptance regions
A0g=) = {x18%(x) < 0} , A(0;) ={x10™(x) 5 0.}, & necessary
condition for @ to be a uniformly best estimator is that £(x,0)
and M. admit uniformly best tests of the hypotheses H(Oo-), H(OQ),
of respective slzes a(@ -, @, O%), 1 - a(o+, 0, o*), 8, € e
It is well known [12] that uniformly best one-sided tests of
all sizes exist if and only if there exists a sufficient statistic
t(x) with the monotone likelihood ratio (m.l.r.) property, in which
case each best test may be obtained by use of an acceptance region

of the form

A(8,-) = {(x,y)l z(t(x),y,9,) 5 a(Oo-,Oo)} or

A(Q,) = {(x.y)l 2(t(x),¥y,8,) g l-a(°°+,°°)} ’

where Y is the observed value of g yndforaly distributed auxiliary

s
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randomization variable y, 0 g ¥ <1, and Z is the continuous
probability integral transform of Y:
2(t(x),y,0) = yF(t(x),0) + (l-y)F(t(x)=,0), where
P(t,0) = Prob {t(X) g tIO}. If such a sufficient statistic t(x)
exists, then a simple sufficient condition for admissibility of an
estimator 6" is clearly that 0¥ ve a non-decreasing funct;on of
t(x); for then 4(6,-) —{ x|o¥(t(x)) < o }and
A(Q) = {xlo (t({x)) g Oo} are uniformly best one-sided tests. Ir
such a statlistic t(x) has a disorete distribution on a subset of the
integers, then t(x ) +y 1s another sufficient statistic having
the monotone 1likelihood ratlo property, and having a continuous
c.d;f; under each @; as above, a simple sufficient condition for
admissibility of an estimator ¢" 1s that it be a non-decreasing
function of t(x) +'§.

More generally, let 6" be any estimator, let
6(0) = Prob {0%(x) 5 010 }, let 6(6-) = Prob §0*(x) < 016§, 10t
F(£,0) = Prob {£(X) 5 [0, where t(x) 1s a sufficlent statistic
with the mele.re property, and as above let
z(t(x),y,0) = yFP(t(x),Q9) + (1-y)F(t(x).,O); Consider the quasi-
statistic v = v(x,y,0) = z(t(x),y,q) = G(G); For each 9,
A(Q,) = {ﬂx,y)lv(x,y,oo) < 0} is clearly a uniformly best acoepte
ance region for testing H(Oo) at level l-G(OO) = a(0°+,0°,0*).
Consider the quasistatistic v! = v1(x,y,0) = 2(t(x),y,0)=G(8=)
sV + [6(Q) «G(8=)], For each 0,,A(0 =) ={(x,y)|v'(x,y,0 ) < 0}
is clearly a uniformly best acceptance region for testing H(® -),
at @ = 0, 1t has Type II error probability G(OO-) = a(Oo-,Oo,O )e
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To verify that these acceptance regions constitute a sequence

of sets which is nondecreasing in O in the sense defined in
Section 6, we note that obviously A(Oo-) c A(Oo), and we proceed
to prove that ¢, < @, implies A(9)) © A(0y=): Assume that
(x!,71) € A(9y); but (x!,y") £ A(0,=); then |
2! = 2(t(x?),y',8;) < 6(9;) and 2" = z2(t(x1),y,0,) 2 6(6,=)e A
best test of H(Ol) of size (1-2') (the test which re jects when
z(t(x),y,el) 2 2z!) has maximum power at & = @,, namely l-z"; the
test with acceptance region {xlé*(x) < Ol} has size '

3* ot
l - G(Ol) < (1-zl)“and hence has power Prob {O (X) » olﬁoe}c: l-8
Henos z" < Prob {0(X) 5 9,19,% 5 Prov {6%(x) < 02} = G(0,-), &
contradiction which proves that A(Ol) c A(Oz-),
** = 0" (x,y) be defined by
st ' a3
**(x,3) = tnf {0]0 e 7T, (x,7) ¢ 4(0)} + Then ** 1s a non-

decreasing function of t(x) and of y, and is a uniformly best

For each (x,y), let 9

estimator having the same location functions as the arbitrarily
given @"s If each best test is admissible, then o™ 1s admissible,
and hence 1is strictly better than oF or else it 1s equivalent to

6*. These considerations establish the following

Lerma 2.', If the family of density functions £(x,0), @ ¢ /N, admits
a sufficient statistic t = t(x) having the monotane likelihood ratio
property, then an essentially complete class of estimators is con-
stituted by estimators of the form & = 0*(1:,3‘) , any nondecreasing
function of t and of y, where ‘3( is an observed value of an auxillary

randomization variable Y having\mder each @ the same uniform dis-
tribution on the unit interval 0 sy < 1, and such that t! «¢ t"

implies 6(t1,y') 5 0°(t",3") for all y!,3"
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If t(x) has a continuous c.defe, for each ¢, then estimators
of this form but ot dépendipg upon y constitute an essentially
complete class of estimatorse
8’. Score Quasistatistiocs and generalized maximum likelvihoog

estimatoré,

For a given family £(x,Q0), 0 ¢ N, let 01(0), 02(0) be two
functions defined on s, taking values in .M, gnd satisfying
0,(0) < 0,(0) and 6,(9) g 0 5 0,(Q) for & € N, Then for each
Ot e N, a best test of Hy: 0 = 0,(Q!) against Hy:0 = 9,(0) is one
which accepts 1-11 when the quasistatistie

5(x,0,(9),8,(0)) = [1og £(x,0,(0)) = log £(x,9,(0))1/[8,(0)-0,(0)]

satisfiesS(x,Ol(O'), 0,(01)) < G(@1,a(a1)), where G(9,a(Q!)) 15 a
constant such that a(0") is the probability, when ©'is true, that this
inequality will be satisfied. For many problems the functions
9,(9), 6,(9), and a(Q) can be chosen so that the generalized score
quasistatistie v(x,9) = S(x,Ol(O),GZ(O)) - G(0,a(Q)), ¢ € N,
satisfies the conditions of Corollary 1 and hence defines an
admissible estimator @"(x) as the solution O of the equation
v(x,9) = 0, If, for example, Prob {v(X,O) = OIO} £0for 0 ¢ n,
and the set {x[f(x,0) > 0} 1s independent of @ & .\, then each
acceptance region {xl’v(;,@) s 0} gives a best test which is
esgentially unique (a.e, Py, © & A), and hence admissible for

v, testing H(Q) and H(9-),

Again, as 0,(9) "°1(°) —» 0, 3(x,0,(0), 8,(9)) -f-—’ S(x,9Q)

- 5% log £(x,0),
if the derivative exists at each x, for each @ ¢ /N\; oconsider as
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above the {;ggg;;z-begt) goore quasistatistic
v(x,0) = 8(x,0) = G(9,a(®))., Again, if this v(x,Q) satisfies the

conditions of Corollary 1, then an admissible estimator o¥(x) 1s
defined as the solution @ of the equation v(x,9) = 0, It 1s well
known that, under a mild regularity condition, an acceptance region
{xlv(x,c) s 0} gives a locally-best test of H(Q) and of H(Q=); under
additional mild restrictipns, such as those mentioned above, these
tests are also admissible. The case G(9,a(®)) =0, ¢ efL, de-
termines (throush the equation S(x,8) = 0) the maximum likelihood
estimator 3(x),‘wp1ch is thus shown to be admissible (and to be
locally=best, ieee to minimize a(u,®) for & near u, among all
estimators with the same location functions) provi@ed that
v(x,0) = S(x,0) satisfies the conditions mentioneds Estimators of
this form were proposed by Tukey [10] on different theoretical
grounds in connection with the methods diseussed in Section 5 above;
Egstimators defined by use of the various score quasistatist}cs
mentioned may be called generalized maximum likelihood estimators.
If S(x,0) has (or may have) discontinuous distributions, it
can be Yeplaced, as may be desired at least for some theoretical

purposes, by its continuous probability integral transform

a(x,y,9) = yoProb [S(X,0) g S(x,0)[e],
+ (1-y)oProb [S(X,0) < S(x,0)}e] ,

where y is the observed value of ¥, an auxiliary randomization

variable having, for each 9, the same uniform density on 0 g ¥ < 1.
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Then for each 9, a(Q) may be prescribed arbitrarily, and the
statistic

V(X,V.O.G(O)) = a(x,y,O) - G(O)

has a oontinuous.distribution and takes negative values with
probability a(®)es In suitable problems, with suitable cholces of a(s
the quasistgtistic v so defined will satisfy the conditions of
Corollary 1l. Thg same treatment can be applied to the form
s(x,Ol(O),GZ(O)). To avoid technicalities of littls intrinsic
interest, we discuss the case in which such randomization is not
used,

If Prob {v(x,O) = Olo}z 0 for each & & f1, then each such
estimator has the location functions a(0=,0) = 1 -a(9+,0) = a(Q).
If a(Q) s a, a constant, such an estimator 1s a confidence limit;
if a(Q) = 1/2, such an estimator is a median-unbiased point esti-
matore In the important case that X = (Yi,...Yn), a sample of in-

n
dependent observations Y,, we have S(X,Q) = ; S (Yi,o); the normal
=
approximation (based on the Central Limit Theorem)

a(6,0,8) = Prov {s(x,0) < ol = J(o) = 1/2

(using that E(5(X,0)}e) s 0) is often 6losse; hence in such cases
the maxiyum 1ikelihood estimator 9(x) is approximately median=
unbiaseds If 5(X,0) has a symmetrical distribution under 9, then
olearly & is exactly median-unblased,

In some oases, as illustrated below, a famlly of score quasie

statistics, 0.8
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v(x,0,a) = 8(x,0) -~ G(0,a), 0gagl,
or

v(x,0,a) = s(x,ol(O),oz(o)) - G(0,a), 0gagl,

can be used to determine admissible confidence curve estipatora
o(x,a), 0 g @ g1, as solutions of equations v(x,0,a) = 0,
Estimators based on score quasistatistics have direct useful=-
ness, which is enhanced by the simplicity of their theory and of the
practical techniques for their use, In addition they are of special
theoretical interest, due to their relations to the asymptotie
theory and techniques of maximum likelihood estimation; tpey
generalize and justify these techniques in an exact sense, The
following considerations lend them further intrinsic interest: For
any given problem of estimation of @, consider the class of esti-
mators having specified location functions a(9-,9), a(0+,0); For
each @ € Nnand each u # 9, u ¢ n, let a(u,Q) = mﬁg a(u,G,G*), where
for u > @ the minimum is taken over all estimators sueh that
a(0+,0,0*) = a(6+,0), and for u < © the minimum 1s taken over all
estimators such that a(@-,0,0") = a(4-,0)s Then a(u,0) is the
envelope risk curve (i,e. the minimum of the respective ordinates of
risk curves) for the class of estimators with the given location
functions, For each (u,0), it 1s possible to attain a(u,®) in the
following sense: 1f u > Q, the relatively trivial estimator which
takes the value @ with probability 1 - a(6+,0) when ¢ is true, and
which takes the value u otherwise, and which minimizes a(u,0,0*)
subjeot to these conditions, is equivalent to a best test between

the simple hypotheses O and u, of the indicated size; such a test
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can be based on the score statistic S(x,u,0); similar remarks
apply to the case u < & Each such single statistie S(x,u,9) can
be embedded, as an element, in a score quasistatistio
s(x,ol(o),oz(c)) for @ ¢ N} it may or may not be possible to define
by use of this quasistatistic an estimator which has the specified
location functions. An estimator can attain g(u,o) uniformly in
(u,0) only in problems having the special structure desoribed in
Section 7 above, for which uniformly best estimators exist. In
other problems, some estimators defined by generalised score
quasistatistic attain A(u,9) at some but not all (u,9), In all
problems, the computation of a(u,@) requires. calculations of
probabllities of events defined by score statistics S(x,u,9); and
the possibility of its attainment by some estimator at specified
points (u,Q) is related to the existence of suitable score
quasistatistics,

8.1 Large-sample approximations.

Ifx = (yl,...yn) 1s a sample of n independent identically
distributed observations (non-identical distributiona can be
discussed similarly), S(x,o (9) 02(0)) = {_ S(y4,0,(9) 02(0)). Let
w(u,0) = E[5(Y,,8,(u))|9] and 62(u,0) = Var [S(Y 126 (w) oa(u))ltal
exist for each 9,u ¢ .A.. We allow 6,(8) = 9,(0) = 0 here, taking
5(X,0,0) = s(X,0) in this case, and assume that 01(0),02(0) are
fixed, while n may vary, in fhe present disocussion.

In the special case v (x,O) g; S(yi,G), which determines
the maximum likelihood estimator 9 n(X) as the solution @ of
n(x,O) = 0, we have by Khintohine's Theorem (even if cr-z(u,o)'a do
not exist) that % vn(x,u) converges in probability to u(u,9) when
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0 is truo'. If u! < 0 < u" implies p(ut,0) < pu(0,0) = 0 < p(}z",o),

then Lim, a(u,o,an) = 0 for u # 9; that is, 8:: is consistent,
Returning to the general case, for large n the Central Limit

Theorem gives the normal approximation to the distributions of _

v (X,u,a) = ,f; S(%,,0, (u),0,(u)) = G_(u,0);

‘ G (u’a)-np‘(ugg)'
o4 & -l
Prob v, (X,u,0) 5 0 } !( vVio(u,Q) ) y

and for u = 9, the approximate determination of Gn(o,a):

«2 g (G2 ), or G_(0,a) &yRe~(0,0)F 1 (a) ,
vno(9,0) n

which in the preceding formula gives

Prob {vn(x,u) < o|o} £ 3 (.y;; g(ﬁ%:%} +§%_g§. I-l(a)) .

For the maximum likelihood estimator, Gn = 0, corresponding to
a 8% in these formulae. Thus the risk curves of the confidence
1imit estimator & = On(x,a) determined by vn(x,G,a) = 0 are
approximately
| ¥(h(u,9,a,n)), u<o,
a(u,a,on(.,a)) =

f1 - ¥(h(u,0,a,n)), u>9, 0<a<l,
where

n(u,9,a,n) = = yA 5{-5:%} + %&‘i—:ﬁ-} T,
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Hare the sufficient (and necessary) condition for consistency of
Gh(x,a), for a fixed a, 0 < a < 1, is again that u! < & < u" imply
u({ur,9) < 0 < p(u",0),

The verification of the ponditions of Corollary 1, for a given
v(x,0), is sometimes diffioult, Large=sample approximations are of
some theoretical and practical help in this oonnections For example
for a locg;ly best oonfidence 1limit estimator 0(x,a), where
x = (yl.;..yn) and the Y,'s are independent and identically dis-

tributed, we have as above

¢,(0,a) & VAe(9,0) THa) ,
and we take
v (x,0,0) = 8(x,0) - vAEe(9,0)F ) .

If 3(x,0) satisfies the conditions of Corollary 1 (i.es if for each

x the maximum likelihood estimator @(x) is determined as the root o

of S(x,Q0) = 0), and is decreasing in @ for each x, then:

(A) If o{(Q,9) is constant (this is the case in some examples in the
following Section, but not in most examples), then vn(x,o,a) is
also deoreasing, as required by Corollary 1,

(B) If o(@,Q) 1s decreasing or increasing at ¢ = Q!, then for a
fixed x and a sufficiently near O or 1, either

-na(9,0)T1(a) or -~ nA0,8)F (1~a) = ne(9,0)F " (a)

will be increasing more rapidly than S(x,9) is decreasing at
9 = 01, so that v, (x,0,a) and v,(%,9,1=a) cannot both be de=
oreasing in @ at 6Ot,
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(C) On the other hand, for any fixed a, 0 < ¢ < 1, since
0, -
(%000 = I (8(7,0) - S e,

a sufficient condition for v, to be decreasing in 9 is that

0,0 1
5(3,,0) -‘-’iﬁ-—’-r (a)

be deoreasing in &, for all values of Tqe Clearly as n

increases, this condition becomes a less restrictive one, boing

in general satisfied for a wider range of values of a:.

8.2 Local approximations for locally best estimators.

In cases where there exist precise estimators, that 1s
estimators whose risk curves are small except for u very near 9, it
is natural to center attentlion on small neighborhoods of the possible
) true values 9, and to consider estimators whose risk curves are

relatively small in such neighborhoods, such as those based on score
quasistatistics with 02(0)-01(0) small or zero for all @, If
p'(u,o) s-a?a w({u,0) and ot (u,o) =5aﬁcr(u,9) exist, then

ht(u,0,a,n) = fﬁ h(u,0,a,n) gives the Taylor series approximation
h(u,0,a,n) & h(9,9,a,n) + h1(8,0,a,n) (u =~ 9)
and a corresponding alternative form of the above approximation to

a(u,c,on(.,a)). In the special case of locally-best score quasi-
atatistios, since w(@,0) = 0 and u'(9,9) = ag(0,0), we find
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h(u,6,a,n) & VE6(9,0)(0 = u) + Fl(a)1 + THSadd (o - w)) .

In the first term, the coefficient /no(0,0) of the error (o - u) is
VITO), where I(Q) is Fisher's "Information in X at 0." The second

term is zero for a ='%_and for the maximum likelihood estimator; for
other estimators, fhe first term dominates the second as n increases.

The indicated approximations to risk curves are
A o
8(u,0,0.) 2 a(,0,0 (4,05)) & (= Vna(o,0).[u - 0l),

and for a #~%

a(lhopon(oaa)) 2 I(" ﬁ‘(clo)(o"u) "'I.l(a')[ . O’O (Q=u)+1l), u <‘;*
1« k] ('.... same argument ....o), u> 8,

& (more roughly) {(- vns(s,0)eju - 0}),

These approximations exhibit the approximate normality of distribu-
tion of these estimators for large n. While locally best estimators
are in general not comparable w;th other estimators (e.é. those above
with 01(0) < @,(0) for all @) having simllar location functions
except in problems of a simple structure, the designation
"Information" for I(Q) is clearly appropriate and useful for cases in
which so much precision is attainable that interest 1ls practically
restricted to very smell |u - 9}, in which case an appropriate choice
of an estimator will usually be one which is locally poat or perhaps
one defined as above with 02(0)-91(9) small for all Q.
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It should be noted that the preceding approximations which
utilize a Taylor series approximation are not accompanied by bounds
on errors of approximations. Even in cases where such approximations
are very close, under a severly nonlinear transformation of the
parameter space (e = ](Q) with §(Q) differentiable and increasing
such approximations can become very inaccurate, Hence the principal
concrete value of such approximation formulae seems to be that they
provide convenient quantitative conjectures which are more or less
plausible but which require independent confirmation (or discon-
firmation) for specific problems and sample sizes, Similar remarks
apply to the preceding approximation formulae based on the Central
Limit Theorem only, with the qualification that such approximations
could be termed "less asymptotic" than those which also use the
Taylor series approximation, in the sense that the former approxie
mations are unaffected by monotone transformations of the parameter
space, and their use can be accompanied by use of the known bounds
o_n errors in the Central Limit Theorem approximation..

8-3 Remarks on asymptotic efficiency of estimators,

The theo?y of the asymptotic efficiency of maximum likelihood
estimators (of. for example Cramer [}3], ppe 500=504) utilizes a grie
terion of asymptotic efficiency (le.0e 489-490) which is restriotive
in that it applies only to estimators having asymptotically normal
distributions with means equal to the parameter estimated; such
estimators are clearly asymptotically median-unbiased (probability
of underestimation approaohss«% as n inoreases). It 1s advantageous
to use a less restrictive oriterion of asymptotic efficiency, one.

whioch applies to all (sequences of) estimators which are asymptots
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ically median-unbiased. 1In order to embrace confidence limit
estimation as well as point estimation, it is advantageous to define
a ocriterion of asymptotic efficiency which can be applied to any
sequence of estimators whose probabilities of underestimation (at
each Q) converge with increasing n to a fixed constant o, 0 < a < 1;
any such sequence may be termed an asymptotically valid sequence of
confidence limit estimators (of specified coefficient a),.

Under broad conditions (some simple ones were given above)
consistent estimators exist; 1t is then natural to define asymptotic
efficiency of est;mators in terms of the properties of risk curves
of estimators in the neighborhood of the true value of 9: an
asymptotically efficient sequence of confidence limit estimators may
be defined informally as one which is asymptotically valid and
asymptotically localiy best, The estimators defined above and
1llustrated in the following section based upon quasistatistics of
the rorm.vn(xn,o,u) = S(xn,o)- Gn(o,u)provide examples of such
estimators, and have the further properties of being exactly
(non-assypptotically) valid and locally=-best (and typically ade
missible), Additional examples are based on quasistatistics of the
form.vn(xn,o,c) = s(xn,cl’n(o),oz’n(O)); Gh(O,aJ where as n increases
°2,n(°) - °l’n(0) decreases to zero rapidly enough to give the
asymptotically locally-best property; such estimators have the
further properties of exact validity'and admissibility, and the
functions Oi’n(O) can be chosen so that for any finite sample size
e suitable emphasis is given to avoiding errors exceeding specified
positive magnitudes; for practical applications, such estimators
seem preferable in principle to (exactly) locally=-best estimntors;
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The usual asymptotic theory (1l.0e) is free of the important
assumption (b) of Corollary 1l above, [Irom the present non-
asymptotic standpoint, for each @ the acceptance region
A(Q) = {xtS(x,O) s 0} represents a locally~best one-sided test, and
the family of such tests can be used as usual to define a confidence
region for estimation of O, namely U(x) = {0]x e A(Q) ¢ Iiiy in
general such a confidence region will not have a constant oconfldence
coefficlent, but its theory and interpretation in applications
follow usual lines. The fallure of assumption (b) corresponds to
the failure of the sets A(9) to conatitute a nondecreasing sequence

; in 0; this in turn corresponds to the fact that, for some x, the
confidence region U(x) will fail to constitute an interval

[6%(x),3] which can be described by a lower estimator 9" (x)s The
theory of admissible confidence regions not necessarily of interval
form, and their interpretation in applications, lie outside the

scope of the present paper, However, from the present standpoint it
may be observed that the principal role of the regularity assumptions
in, for example, Cramer (l.ce) is to guarantee that with increasing

n, for each & the probability that U(x) will be an interval (or

! equivalently that S(xn,O) will satisfy the assumptions of
Corollary 1) approaches unity: More precisely with increasing n,
for each & the probability of the set of points X,

‘ is decreasing in u (at least for u near @) approaches unitye The

on which S(x_,u)

key step of the derivation from this standpoint is the observation
that the law of large numbers applies, when @ is true, to the sum
ZL

= 8(X,,u) = au
near ) a negative expected value Ebib log £(Y,,u)|e]. (Similar

S(Y,,u), each term of which has (at least for u

remarks apply to use of generaligzed scoro quasistatistios which fail
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to satisfy condition (b) of Corollary 1,) Dropping the qualification
"for u near 9" gives that the probability of multiple roots of
8(x,,0) = 0 approaches zero with increasing n. 4symptotic

efficiency properties of confidence limits and intervals defined by
use of quasistatistics of the form S(xn,o) - Gn(o,a) were proved
under broad regularity conditions by Wald [14].

The remarks of Lehmann [15], on the limited value of any
exolusively=-asymptotic theory of optimum tests apply with equal
force to estimation theorye. Asymptotically efficient estimators
may approach efficiency at arbitrarily slow rates as n increases,
Only on the basis of an auxiliary non-asymptotic investigation of
the quantitative and/or qualitative (optimality) properties of an
asymptotically efficient estimator can it be recoymended in an
application with a specified (finite) sample size,

9 Exam les; cxamples l«3 illustrate that the formal treatment of
Section 8 can often be applied conveniently to problems admitting
uniformly best estimators,

Example 1, Normal megane Let x = (y,,eee ¥, ) be & sample of n
independent observations from a normal distribution with known

variance, saytrz = 1, and unknown mean @, - 00 < @ < 00e Then

-3 '%ﬁ (33 = )
£(x,0) = (2n) % =

Let

v(x,0) = LLBLX0) _ 4(9,a(0)),



where a(®) is a given function, Then
v(x,0) = n(F = 0) = 6(0,a(0)) = 1§ = no = V& FL(a(e)) ,

where ¥ ='% f v, end §(u) 1s the standard normal c.defe Then
v(x,o) clearl; satisfies the conditions of Corollary 1 if a(Q) 1is
such that @ + m’l(a(o)) is increasing in 9; as n increases, the
latter conditiog becomes a less restrictive one on a(Q); it is
obviously satisfied if a(Q) ¥ a, 0 g @ g 1 For each such function

a(Q), an admissible estimator O*(x) is defined as the solution ¢
of v(x,0) = 0, that is, of

1 el -
0 + = (a(0)) = .
\/E:E Y

Denoting the solution by Q(y), this gives o¥(x) = Q(y); QUy) oan be
any increasing function of § if a(@) is suitably chosen, For

2

a(Q) = a, this becomes (in the general case where o=~ is any positive

number)

ﬁm)=omﬂ)=§-£1EQM),
Vn
an upper confidence limit of confidence poefficient l1=a (and/or a
lower confidence limit of coefficient a)e Each of these estimators
is, by Lemma 2 above, uniformly best among all estimators with the
same location functions a(Q =,0) = 1-a(@® +,0) = a(0)., Taking
a(Q) s'i gives 3(x,.5)‘a 9(x) =y. Since this estimator is



2

independent of the value assumed for 0'2, the classical (maximum
1ikelihood and mean-unbiased) estimator ¥ is uniformly best among
all median-unbiased estimators of @ even if o is not known. The
same property clearly holds for the classical least squares

estimatoprs of linear regression theory under normality assumptions,

Example 2, Normal variance. Let x = (yl,... yn) be a sample

of n independent observations from a normal distribution with known
mean, say pu = 0, and unknown standard deviation 0 = C, 0 < 0O < o0,
Then

it
-3 ¥y
£(x,0) = (2nd?)” 26 28 =

Let v(x,Q) = -35 log £(x,0) - G(9,a(Q)), where a(9) is a given
function, Then

e
v(x,0) = 2(%5 - 1) - Gloya(®) ,

where 82 = % ﬁ yi is the usual unbiased estimator of 0‘2. For a
i=

2
giveng, %.-?z has the Chi-Square distribution with n degrees of
2 2
freedom; hence G(g,a(d)) = l(% a(a))=n)s where'xn 1s the lower
a=point of the Chi-aquaro distribution with n degrees of freedom,

Thus v(x,Q) = 'MZ 'Xﬁ a(c-))‘ If, for example, a(¥) = a, then

o"(x) = &x,0) = 5 Yo/

Y]

which is a uniformly best estimator, by Lemma 2 above., A uniformly
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best median-unbiased estimator of &is o(x,¢5)e Similarly, unie
formly best estimators of the variance 62 are given by

o—a(x,a) = azn/Xﬁ’a °

When n is not small, “/Xi,; 2 1, and 0(X,e5) = 8 and e"z(x,.S) & g2,
Thus the commonly used point estimators s and sa can be Jjustified

on the grounds that they are uniformly best (among estimators with
the same location functions) and very nearly (except when n is

very small) median-unbiased., Tables of the Chi-square distribution
provide the constants 7\5‘1"5, which can be used in place of n in

standard procedures for computing s or 82

» to obtain the estimates
0-(x,e5) or og(x,.E) respectively, Comparisons of these and other
estimators from the standpoint of median-bias, with tables, were
given by Eisenhart and Martin [16], For the more usual problem in
which p is unknown, with N = n+l observations, the same remarks
apply to the usual mean-unbiased estimator 8l = FN;_ (yi -y)/(N =1)
and to s The theory of such multi-parameter prozlems lles outside
the formal scope of the present paper..

Example 3. Binomial mean, Let x = (y1s0007,), where the Y, 's
are 1ndapgndent, Prob (Yi =1) =9, Prob (Yi =0)=1=-0,
050 <1l.s Let Z be an auxiliary randomization variable, uniformly
distributed on 0 2 <1, Then t = t(x,2) = ny + 2, where ny = ;rf_;yi
is a sufficlient statistic having the monotone likelihood ratio
property; hence each nondecreasing function 0*(t) taking values in
the unit interval 1s a uniformly best estimator. The classical

(maximum likelihood, unbiased) estimator is @ = [t]/n = §, where (t)
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is the largest integer not exceeding t, By us; of binomial tables,

exaot confidence limits O(t,a) and median unbiased estimators

0(t,.5) can be determined easily as the solutions @ of the

equations a = Prob (T g t|0), where t is the observed value of

the statistic, For typilcal purposes of informative inference, it

seems preferable to dispense with use of the randomization

- varlable z; a non-randomized uniformly best point estimator having

i location functions closest to %, in a certain sense, is defined

for each observed value of ny as the solution @ of the equation
Prob (Y <y |@) = Prob (¥ > §J10); this estimator B(F) 1s easily

determined by use of binomial tables; when n is not small, we have
UF) L F . In all cases the effect of the randomization variable
is minor except when n is small, Thus the classical mean-unbiased
estimator can be justified on the grounds that it is uniformly
best (among estimators with the same location functions) and is
very nearly (except when n@ or n(l-9) 1s very small) median-unbiased
Other discrete examples with the mel.r. property, such as the
Polsson and negative binomial, may be treated similarly,.
Example lLe Logistic mean., Let x = (yl,,g.yn) be a sample of
n independent observations from a logistic distribution with unknown
mean @: Prob (Y 5 y|@) = Yly - 0) = (1 + e'(y'O))'l, -00 <y < 00,
= 00 < @ < 00; Y has the density function

V(y=0) = e'(y'o)/(l*e'(y”g))a, -00<y < 00,

) For any fixed /\ > 0, taking 9,(9) = 0 ~ A\, 0,(0) =0 + A,
determines a score quasistatistic
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S(xaQ-A,O*A) = i [é (log V(yi-O-A) - log v(yi-c-..A)] o

For any fixed a, 0 g o 5 1, taking a(Q) = a determines a score
quasistatistic

v(x,0,a) = 5(x,0-/\,8+A) = G(9,a)

which satisfies the conditions of Corollary 1 of Section 6 above,
and hence determines an admissible confidence limit estimator

¥ = O(x,a) as the solution @ of the equation v(x,9,a) = O, Since
9 is translation parameter, G(9,a) is'independent of @, and may be
written G(a), By symmetry, G(.5) = 0, G(a) can be determined
approximately, except for a very near O or 1 and for very small n,
by use of the Central Limit Theorem: 1let p(u,Q) and:Jz(u,G) denote
respectively the mean and varlance of S(Y,u-A,u+/\) when ¢ is
true; then u(9,8) = 0 by symmetrys we may write p(u=-9) and

cz(u-o) because @ is a translation parameter, We have

Prob {V(X,u,a) < olo} =7 (G(\;%‘;ﬁ‘-‘;‘;))

which provides an approximation to the risk curves a(u,0,0*) of the

estimator 6" = o(x,a); for the determination of G(a), similarly
Prob {v(x,o,a) s oIO}a a £ B(6(a)/ vRo-(0)) or G(a) é\/-m'(o)ﬁ'l(a)‘.

This, with the formula above gives the approximate risk curves of ¢
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3 - \/ﬁo‘é&:-g-} +ﬁ%1‘1(a)) for u < @,

1 = Bleeesame argumentess) for u > &,

a(u,9,8") a

The preceding discussion depended throughout on the chosen
valus /\ > Os A locally best confidence limit estimator
oF = @(x,a) is determined as the solution & of the equation

v(x,0,a) = 8(X,Q) = G(a) = 0'.

Here S(y,Q) = 35 log ¥(y=@) = 2P{y=6) = 1;P(¥=Q) has, when @ is

true, a uniform distribution on the unit interval; hence when @
R n

is true the cedefs of ; p'(Yi-O) ( and hence that of S(X,0)) can

be calculated as in Cramer [13], ppe 24ii=246e The normal

approximation gives (since
2 - - 1 < - e N "xel .
&<(0) = Var[s(Y,0)]|e] = 3, Var (s(X,0)]|0] = 3), G(a) = /g} (a);

a =% gives exaotly G(%) = 0 and determines the maximum likelihood
estimator @ = O(x,.S)‘. In general, a locally best oconfidence limit
estimator @(x,a) is determined (approximately, except for a = %) as
the root @ of the equation S(x,Q) = \/%I"l(a), or

9

Sl 23+ 3BT .

Such an equation is easily solved numerically by use of Berkson's
tables of Pr(u) ([17]),
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The present example serves also to illustrate the deter-
mination of an admissible confidence curve estimator by use of a
tamily of quasistatistics as described at the end of Section 6
| above, Each of the families of quasistatistics v(x,0,a), 0 ga sl
' considered here (each based upon a fixed /\ 2 0) has the property
| ) that O(x,a) is, for each fixed x, deoreasing in a; in faoct, for
i each x, 0(x,a) decreages continuously from oo to =00 as @
increases from O to 1, Thus for each observed x, each @
( =00 g @ g 00) will be a confidence limit @(x,a) for some a; we
can conveniently determine the required solutions @(x,a) of

v(x,0,a) = 0 in the form
. a(x,0) = Prob {5(X,0) g S(x,8) [0} £ /% 8(x,0))

for as many values of © as desired.

; Numerical example, Let x = (yl,ya,ys) = (0,0,6)e Letting o,
denote a trial value of 9, S, = S(x,Gi), and a; = a(x,Oi),
Prob {5(X,9,) s S(x;°1)|91} » 1= 1,2,000, and taking 6, =F = 2

as a trial value plausibly near 0(x,.5) = 9, we obtain

8o = 2 {i}*{f(n-ﬂ - 3= -0.559, oy & (-4559) = 268,

Further similar computations are summarized in Table 1 and in Fig, *

a sketoh of the confidence curve 6(4,x) = min [a(x,0), l-a(x,0)],




Jable I
i O!L SL approx. a,; exact al
1 240 =04559 288
2 144 =04256 0399
3 1,18 «0,758 #1470
b l.12 -0,031 «488 .
5 1,08 -0,0005 #14998 014998
6 3408 ~06927 <177
7 u-.o "'1.166 0122
8 560 -1,511 2065
9 6‘. 0 -2,.0 0 023
10 7.0 -2.462 +007
11 «1e0 1.924 0973 :
12 240 24523 299 4998
13 060 1,0 8l 833
c(e,x)
[ ] e ’0\\
o} - /‘ "
3L \'
02 _‘/ \\ -
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The closensss of the normal approximations can be checked in
the present case by use of the exact formula (based on Cramer, l.o.

§3 0sssl,

3
alx,0) = {& = Hz1)2, 15552,

l - %'(3-2)3: 2g2g3,

where 2z = z(x,0) = %(S(x,o) + 3)s The approximation is seen to be

quite adequate here, In other examples, 1f exact values of

a(x,?) cannot be obtained by use of standard tables or tractable

integrals, one may consider checking approximate values of

a(x,0), for a few values of Q@ of particular interest, by use of

(a) the error=bound on the normal approximation, (b) numerical

integration, (6) empirical gampling (Monte Carlo), or possibly

(d) an asymptotic expansion, For (a)‘and (d), see Wallace, [18].
The values Qi above, for 1 = 2,¢se5, Wwere determined by

°1+1 = Qi + Si’ based on Fisherts formula

04 =9 *+ S(x,Qi)/Var [S(X,Gi)loi] for iterative caleulation of

maximun 1ikelihood estimates, If log £(x,0) = ao® + bo + o for
soms constants a < 0,b,0, at least for © near ©(x) (asymptotic
theory shows that this will be the case with high probability for
sufficiently large n, under certain regularity conditions), then
S(x,0) = 2a6 + b,g% S(x,Q) = 2a; (goa + b@ + o) 1is minimized by
6% = up/2a = 9 - S(x,0)/ g% S(x,9)e g%S(x,O) may be calculated

directly; or approximated numerically from difference quotients

As(x,0)
——Z:;—- based on previously ocaloulated 6,'s; or (as done above)
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Yestimated" by its expected value: for sufficiently large n, with
high probability the approximation

| . 2
ggs(x,m - E[§3s(x,0)|€cl = E['-g-;z log £(X,0)}0)
= aVar [5(X,9)[|Q] = = I(9)

i1s effectively closes The rate of convergence of Oi to 9 may bg
slow as above, for samples with "improbable configurations" and/or
small n; use of‘§%s(x,0) rather than its expected value here would
evidently give faster convergence, but would require additional
calculations for each i, Speed of convergence is not of exclusive
interest here; since a number of values of o, = a(x,oi) are
desired for a sketch of the confidence curve estimate, any convenle
method of choosing successive Oi's may be used,

The values 06 and 011 abqve were_ohosen as prial approxi-
mations to the confidence limits ©(x,.025), ©(x,.975) respectively,
by use of the asymptotic formula for such confidence limits:

] : I’l(;975)/Var [S(X,Q)IS] 25z ;

The poor approximations obtained provide a limited illustration
of the fact that such approximations are "more asymptotic," 1;9;
may be expeoted to be often less close, than the normal
approximations'to distribuxions’of soore statistics;

g;ggg;g_ﬁ. Laplacean means Let x = (¥,,ees7,) be a sample
of n independent obaer#ationa from a Laplacean (double exponential)

distribution with unimown mean 9, =00 < 9 < 00, with density
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funoetion

h(y,9) 8%0"7'0', - 00 <y <00 .
For any fixed A\ > 0, let v(x,0,a) = S(x,0 = A, 0 + A) ~ 6(9,a)

n

=% [Euyi-o-m- |yi-o+An>]-e<a>
We note that
2/\ iresy-A
ly-0-Al-ly-9+Al=2y -0 iry-Asosy+A .
=2\ iIry +Aso,
and hence
n .
«2/\n §g (lyg = 0 =Al = lyy - ¢ + Al) £ 2An for a1l x,

Since Prob {Y 0 - AI‘Q} ----]é e"A s the cedefe of N

n

1 _=/\\n
§= (Y, =0 = Al =ty =9 +Al) has a Jump of (3 eA) at each
end of its range, and is continuously increasing between these
Jumps. Hence G(a) 1is well-defined if (%Q-A)n <a<| = (%G-A)ns
for other ats use of an auxiliary randomization variable would be

necessary; by symmetry, G(%) = O A simple computation gives
Var ()Y « 8- Al - [t -0 +A]) =81« e"A-Ae'A). = v,

say; for n not very small and a not extreme, the normal approxie

mation to the distribution of v(X,9,a) gives
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6la) = vE¥ Ta) .

For any o bounded as above, by Corollary 1 the estimator O(x,a.),
defined as the solution & of v(x,0,a) = 0, is admissible.
The median-unbiased estimator 8(x) = @(x,.5) defined as the

solution @ of

n n
- - 0: = - °
E l(yi A) l E “yi +A) '

(which is easily solved numerically), depends upon the particular

value /\ chosen; the error-probabilities a(@ - A,0,0*’),

a(e + A\,9,6") have a minimized common value for all Qs
Locally-best estimators ("/\ —» 0") 9(x,a) are defined by

use of

n
v(x,0,a) =¥f; 1(71 >0) = ;-;J; I(yi < Q) - Gla) ,

where, for any relation R, the indicator-function I(R) is defined
by I(R) = 1 if R is true and I(R) = 0 Lf R is falses Thus

n n
}i:;: Iy, >9) - ; I(y, < @) is the number of cbservations y,

exceeding @ minus the number on "obserirations.. less thahwé; w'it‘;"h
probability one, the observations ¥y have n distinet values, and
may be ordered, V(1) <T(2) < 320 < T(n)* Then
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n, if o< y(l)’
n-l, if e = Y(l)

};;: Iy, >8) - 2;: Iy, <0) = J n=2, 1if y(4) <9 <7¥(5)

"'n"’l’ ito= y(n)’ and
-n, ir & > Y(n)*

Let r be any integer, 1L s r s ne It is easlily seen that for

1--—%%(“), Gla) =n +1 - 2n;

hence

n n :
v(x,9,a) =E Iy, >9) - E Iy, <8) =(n+1=2r),

With probability one, v(x,0,a) = 0 will have a unique solution,
namely 9(x,a) = T(p)® Since G(0) = =n and G(1) = n, @(x,1) = =00
and o(x,0) # ooe For any observed x, the set of (n+2) confidence

limits
[o(x,l),O(x,l-(%)n),..e(x,(%)n),O(x,O)] = [-oo,y(l),y(z).-y(n).oo]

serves as a (locally-best) confidence curve estimate, (For other
values of a, use of an auxiliary randomization variable would be
required in defining v(x,0,a)s) In contrast to the approximate
oconfidence limits given by asymptotic methods, the various exact
confidence limits here depend on all values ¥y in the sample x and
not only on the value of & = Y((n+1)/2)s the sample median (for n
odd).
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For the more general problem of estimating the median @ of a
Laplacean density function

h(y,9,0) ='%5 e-ty-Ol/o’ -0 <y <00,

with known scale parameter ¢ > O, similar derivations give the
same locally best confidence limits and confidence curve estie-
mators, Since these estimators are independent of ¢, they can be
used for estimation of @ in the more general problem in which ¢
is unknown, For the latter problem, they remain valid and locally
best (with respect to errors in estimation of Q, uniformly in ¢),
and their risk curves respectively depend on the argument (u-6)/c.
Still more generally, let the Yi's be independent with any
continuous cedefe of unknown form, with unknown medlan @, Since
the estimators of 6 given above remain valid (have the given
location functions), and are essentially unique locally-best
estimators with the given location functions in the special case
of Laplacean distributions, these estimators may be called
admissible for the non-parametric problem of estimation of a median
of a (continuous) distribution of unknown form. Similar remarks
apply to such use of order statistics y(i) as estimatbrs of the
p-quantile of a continuous distribution of unknown form; here the
generalized Laplacean density function

pa-ly-Ol’ Ty <e,
h(y,9) =
(1.9),'E¥-°,i’ 29,
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for which @ is the pe-quantile, replaces the Laplacean density,

for any specified p, 0 « p <1, and the derivation proceeds in

essentially the same way as above where p =% . |
m. Quantal response modelse Let x = (y,,see¥,),

where the Yi's are independent,

Prob {Yi = 1[0} = P,(0), Prob{Yi = olo} =Q,(9) =1 - p,(0),
i = l’i.cn,

where the Pi(O)'s are known increasing functions of @, having

derivatives Pj'.(O), een = (0,0), an open interval, Examples in-
-d,8

clude: (1) Dilution series [19]: P,(0) =1 -e 1, where 4, 1s &

known "dose" (volume) of material examined in the gth

observation,
and @ is the unknown mean concentration of minute particles per unit
volume randomly distributed in the materiall. (2) Mental ability
tests, normal model (20]: P,(0) = (1/k,) + ((ki-l)/ki)I(ai-fbiO) is
the probability that a subject with unknown ability-parameter O will
respond correctly to the 1*® jtem in a tests Here § is the standard
normal cedefe, and the parameters 0 < ki S %0, ~00 < a, < 00, and
b, > O which characterize the 1%B 1tem may be assumed known (or
estimated with high precision) on the basis of previous investigation;

. &y represents the item's level of diffioulty, bi its sensitivity, and
(1/1:1) if positive may be interpreted as the probability of a correct
response due to guessing only.. (3) Mental ability test, logistio
model ‘[2113 As in (2), with §(u) replaced by the logistic c‘.d’.f..
"P’((l.?)u) = 1/(1 + .(-1.7)\1)' This very slight quantitative modie
fication gives a model which is equally plausible and has much
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greater mathematioal tractability; in the case where 1/}:1 = 0, it
provides a sufficient statistic with the monotone likelihood ratio
propertys (4) One-parameter bicasssy model, normal form [22]):

. Py(8) = (1/k) + ((k=1)/k)F(O + bd;)e Here & is the unknown con=
centration of a component in material being assayed; the case
1/k = 0 is most common; di is a known dose parameter; b 1s a
sensitivity parameter which in special cases may be known or
estimated with relatively high precisions (5) One-parameter
bloassay model, logistic form [23]: As in (4), with § replaced by
-+ In the usual case 1/k = 0, with b known this model provides a
sufficient statistic with the monotone likelihood ratio property.

We have

| P;(O)/Pi(O) for vy = 1,
S(Yioo) =
Q7(0)/2,(8) = =P} (8)/(1=P,(9))  for y,

]
O
)

or

S(y,,0) = P;(G)/Qi(O) +y1P;_(0)/P1(0)Q1(0), y, =0 or 1,

and

' P,(0) Q,(9)
gi(u,é) = E[S(Yi,u)lOI = Pi(u){pim-y - E}Fﬂ ’
. o3(u,0) = Var [s(,,u) 6] = PJ(wLR, ()3, (0)/P, (W, (2] ,

L 1y(9,0) = 0,02(5,0) = B}(0)2/2,(0),(0) .




57

The normal approximation gives

k‘: ui(uﬁa)
Prob [S(X,u) gk[e] = | (}':io-i(u,O))m

For a given (u,9), this approximation is close provided that (a) the
right member is not very near O nor 1, and (b) the number m of
1(u,G)'s near max, 1(u,o) in value is not small,

If for each i and y,, S(yi,c) is decreasing in @ (i.e.,

Pi(O)Pi(O) < P1(°)2 and Qi(O)P (0) <P (0)2), then v(x,0) = S(x,Q)
satisfies the conditions of Corollary 1, and the maximum likelihood
estimator a(x), the solution of S(x,O)'= 0, is admissible; if the
normal approximation above (with u = @) is close for respective
values of @, @ 1s approximately median-unbiased; if the approxi-
mation is close for respective valuzs of (u,Q),‘a has the
approximate risk curves
BTy 0,0/ zic-f(u.o))l/a). <o,
a(u,0,9) & '

1-F(eee same argument ese), u>8e.,

More generally, to determine locally best (approximate)
confidence limits 9(x,a) as solutions @ of

v(x,0,6) = 8(x,0) - (T, a2(6,01)Y23(a) = o,

a simple adaptation of the discussion at the end of Section 8.1
above may be applied to the problem of verification of the

conditions of Corollary 1,
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Example 7. Rectangular mean Let x = (yys00e ¥,) be a sample
of n independent observations on a rendom variable Y with density

11r0-33759%%
h(y,0) =
0 otherwise,

with @ = E(Y) unknown, Let r and s denotg respectively the smallest
and the largest of the observed values y,e Let 0¥ = 6™(r,s) ve any
function, defined for all r,s such that r g 8 g r + 1, which
satisfies s -'% s 0¥ (r,8) g v +'% and which 1s nondecreasing in r
and in ss Then 0%(r,a) satisfies the conditions of Lemma 1 since,
for each @, {xlO* s Oo} and {xlc""L < 09} satisfy the (necessary and)
sufficient conditioq given by Pratt (23] for admissibility of
one-sided tests on @« Venketeraman [25] has shown that such
estimators constitute an essentially complete class, and has given
minimal completg and minimal essentially complete classes of
estimators of @,

For samples of size n = 2, each of the following estimators 1l1s

admissible and median-unbilased:

¥ (x) = (» + s)/2, the usual mean-unbiased estimator,

0'(x)={a-§’ irszr+1/ /2,
r+(/2a-1)2, irsgr+1/ /2,
o"(x)l-gr*hé’ itrgs-13/72,
pd

s=(/2=-1)2, itrps=-1//2.,
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Among median-unbiased admissible estimators, 0! is uniformly best
with respect to errors of underaestimation, and O" is uniformly
best with respect to errors of over;estimation. Analogous confie
dence curve estimators are easlly constructed,

For any fixed k, 0 g k g %, for testing hypotheses of the form
H(9,): @ g 8, or H(Q ~): & < 8, there is an admissible acceptance

region

A8y) = {x‘!? 0, *k, 8go,+ %}

and another admissible acceptance region
AVO ) = xl’&?sO-k orr<0 -2
o ‘ = %o ’ S% "~ 2

From such tests we obtain admissible confidence limit estimators at
each level, and the corresponding admissible confidence curve

estimator:

0, 1fo__>;r+%or°_s_s.%,
c(Q,x) =
2[%, -0 - %—gllz, otherwise

If x = (0s9,141) = (r,s), or alternatively if x = (0.6,1.4) = (r,s),
we obtaln respective confidence curve estimates which reflect that

the "amount of information in a sample" increases with (ser):

c(0,x)

T /\ c(G,x)T'S; m

1
0 .5 1.0 1.5 0 W5 1.0 1.8
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Alternatively, for any fixed k, - % g k 5 #, there is for

each H(Oo) and H(Oo-) an admissible acceptance region
A(Q ) = xIO% - k)r + (1 +k)sg@ +Xk ;
) 2 2%

From such tests we obtain admissible confidence limit estimators
at each confidence level, and the corresponding admissible cone

fidence curve estimator:

0, 1f0gr+%or0§s-% ’
3 --’{-f_’ﬁ-‘f%l, otherwise .

For the two samples considered above, we obtain the respective

c(9,x) =

confidence curve estimates :

e(e,x) ‘: 6(9,x) |
-F-OS ' o
. } /l\t B . /« i
I 1 1 f A ¥ T
0 5 l.0 1.5 0 5 1.0 1.5
& ) > “— § —

Since the last curve llies under that given by the first estimator
for the same sample, it provides stronger inferences about 3. This
is not inconsistent with the admissibility of the first estimator,
which provides (at most confidence levels) stronger inferences

* (shorter confidence intervals) from relatively uninformative
samples like the first sample,
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Example 8. Cauchy mediane. Let Y have the Cauchy density

function h(y,9) = --——-L—z-, “00 € § < 00, =00 < & < 00 5hen
w(1+(y=0)“)

2y=8) Taking v(x,0) = S(y,9), the conditions of

S(ypc) =
1+(y=8)
Corollary 1 are satisfied, and v(x,0) = 0 defines the median-

unbiased locally«best estimator Q*(y) = y, However for a ¥ %,
0 <a <1, the conditions of Corollary 1 are not satisfied by
v(x,0) = S(y,9) = G(a)e For x = (yl,yz), even for a = %,

2 ,
v(x,0) = S(x,0) =§ S(yi,O) fails to satisfy the conditions of
=

Corollary 1‘. (For |"Y2 - yll large, S(x,9) = O has three roots @)
Thus in general there do not exist confidence limit estimator

(nor median-unbiased estimators) which are locally-best uniformly
in 9.

10e¢ Introduction to general theory of admigsible estimators:.

To illustrate the general theory of admissible estimators, and
the place of the methods introduced above within the genara;l. tpeory,
we consider the oase in which .Nis finite: N = {0[0 = 1,2,.-.k}.
The principal features of the general case (in which nis any
subset of the real 1line) can be illustrated conveniently in this
case, for which the complete theory can be developed by relatively
elementary methods. For any such estimation problem, we pave a
specified family of density functions f(x,0), © = l,see,ke For

each estimator & (x), let

, Prob [0*(X) = ujel, ifuFe ,
b(u,9,0%) =
0, iIfu=0 ,
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for u,0 = 1,,eeks The risk curves of 6" are

f}gu v(3,0,0%), if u <o,

8(u,0,0") =< % if u =0,

F v(3,0,6%), iru>0 ,
\J24

It is useful to interpret such an estimation problem in
relation to a somewhat different statistiocal inference or decision
problem, which for brevity we shall call the multidecision problem:
This other problem is that of choosing, on the basis of an observed
value x, one of k specified simple hypotheses; it may also be
described as an estimation problem which lacks a parametric struce
ture in the sense that no ordering of.the labels @ of the k
hypotheses 1s relevant to the problem. Any measurable function
o¥(x) taking only the values 1l,.eek, represents both a possible
solution to the multidecision problem (a decision function, or an
inference function, or an "estimator” in the last-mentioned sense)
and an estimator in the sense discussed aboves

For the multidecision problem, the merits of each decision
function 87 (x) ave represented completely by its error-probabilities
b(j,0,0*); for each @, such probabilit}es are the components of the
vector-valued risk function of o at @+ The general goal is to
determine decision functions 6* for which these error-probabllities
are minimized Jjointly in some suitable sense, A decision function |
6" 1s called admissible if there is no other for which all corre=-

sponding error-probabllities are at least as small, with at least
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one strictly smaller, Complota classes, minimal essentlally ocome
plete classes, eto,, are defined correspondingly (of, Lindley [26]
and Wolfowitz [27],)

A simple necessary condition that D*(x) be admissible for the
T estimation problem is that it be admissible for the multidecision
problems For 1if 6" 1s better than @" for the latter problem,
b(4,9,0"") g v(4,0,07) for all (J,0), with at lpast one inequality
strict; therefore a(u,0,0**) s a(u,0,0*) for ail (u,Q), with at
least one inequality strict. Thus the admissible estimators are a
subclass (typically a relatively small one) of the admissible
multidecision functions, Similarly every essentially complete class
of multidecision functions contains an essentially complete class
of estimators.

The relations between the estimation and multidecision problems
can be illustrated further in terms of techniques,related to
Bayes' formula, which play basic roles in the theory of each
problem: For any estimation problem specified as ahove, let
q = q{u,9) be an arbitrary real-valued function such that
q{u,®) 2 0 for u, ® = 1,,.0k; any such function will be called a
weight function (for the estimation problem). For any such q and
any estimator ¢, we define the (generalized) Bayes risk:

k k B :
R(q,e") = q(u,e) alu,0,0) .
) g B S

On the other hand, for any multidecision problem specified as
’ above, let Q = 3(u,0) 2 0 be an arbitrary weight-function; then
for any multidecision function o% the corresponding Bayes risk 1s:




6L,

k_ _k '
R1(2,0%) :EEQ(\;,G) b(u,0,0%) .

For any _given @ and q(u,9), we have

-

-

1 M
R(q,0%) = ‘ 0 b(4,0,8 (u,9) v(3,9,0")
(q,0%) }:; ‘gﬁq(u.)zj; (3,%, )+2‘2';qu, % 3,

el

=z°: g:)_; b(3,6,0" ) a(u,0) +§; b(§,0,0%) 2‘.‘; q<u:°)

= ; a(3,9), b(4,0,6") ,

where

(u,9) f (=
ééggo q\u,v), or ) >0,

Q(j,g) = 0 ? for § = 4] ’

2 a(u,®), for J <@,

Jgu<o
For each A, Q(j,®) is nondecreasing in j for § 2> 0, and none
increasing in j for j g 9; that is, 2(J,9) has a single relative
minimum which i.t assumes on one or more consecutive values of J
including § = 8. Thus each weight=function q(u,®) for the esti-
mation problem determines uniquely a weight-function Q( §,9) fo§
the multidecision problem, which has, for each 9, a single relative
minimume Conversely a weightefunction Q(j,9Q) for the multidecision
problem having, for each &, a single relative minimum (in the pree-
oeding sense) determines uniquely (through the last equation) a
unique weightefunction q(u,Q) for the estimation problem, Thus the
Bayes solutions 6° for the estimation problem (i.e. the functions
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o"whioh, for some given q, minimize R(q,é*) are a subclass of the
Bayes solutions for the multidecision problems, characterized by
the preceding restriction on the posaiple forms of the weight
funotion Q(u,9) for the latter probleme

For any given weight-function q, the determination of Bayes
estimators is obnveniently carried out as follows: Lef Q be
determined by q as abovee Then R(q,8%) = R1(Q,0) is minimized if,
for each x, ©'(x) takes the (a) value u which minimizes

g Q(u,0) f(xgﬂ); A simple sufficient econdition for admissibility
of an estimator is that it be an essentially unique Bayes solution
in the sense that for some q it minimizes R(q,O*), and every other
estimator which also minimizes R(q,0%) has the same risk-curves
a(u,0)s (A related sufficient condition for admissibility is that
an estimator bp‘a Bayes solution with respect to each of the weight
functions ql’;"qr-l’ and that among all such estimators ;t is an
essentially unique Bayes solution with respect to some qr.) Ane
other simple sufficient condition for admissibility is that an
estimator be a Bayes solution with respect to some q which is
positive for all u,0, Every admissible estimator is a Bayes
solution with respect to some q; and the class of Bayes solution
with respect to weight-functions q 1s a complete class of estimatas

Various specific formulations of the estimation problem can be
exhibited as special cases of the present formulation. For example
let W(J,0) denote the loss function adopted in any decision-
theoretic formulation: the loss 1nourro§, if O is true and it 1is
inferred that 0 = j, is equal to W(j,0), Then use of any estimator
9* leads, when O is tm,' to the expected loss



EW(6"(X),0) o) = 5:"_: (3,0,0%) W(3,0) = r(e,6") ,

a real-valued risk function (of €)s To illustrate the frequently
adopted specification that losses are proportional to the gggg;gg
error of the estimate, we replace the convenient.;gbela 0= 1,40k
by the more general parameter values @ = 01, °2”“°k’ where

9; < 0,,,, and write W(ufci) = 0(0,) (u - 01)2, where u is any
valiie in the range of 0*. (The expected mean-squared error ocan
generally bd reduced further by dropping the restriction that the
range of 6" be the range of 01; the conflict between these con-
siderations disappears in typilcal prob‘ems where the rangs of @ is

an interval,) For any a priori probabllities g, = Prob (0 )s
1 = 1,000k, any estimator o gives the Bayes risk

k . . »
3op i7(01s0) =T £;0(0)) T b(,0,,07)(u - 9)

= R1(2,0%) = R(q,e%) ,

wher;.Q = Q(u,oi) = 8i°(°1)(u - 01)2; q(u,Oi) is determined by Q as
above, Numerous examples are treated (without restrictions on .. )
in the texts and research literature of decision thaorf.
A gimple loss function for the estimation problem is one of

the form

0, 1f 0,(0) < § < 9,(0) ,

W(§,0) =40,(0), 1r J 54,(9),
2(0)  if § 2 05(9),

where
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0,(0) 20, 8,(0) 50 50,(0), ,(8) < 6,(0) for @ = 1,2,004,ke
This gives the risk function
r(0,0%) = 0,(0)a(0,(0),0,6") + 0,(0)a(0,(6),0,6") »

If a priori probabilities g(9) are adopted, then the Bayes risk,
with the use of O*, is

= 8(9) [0, (0)a(0,(0),0,6%) + 0,(0)a(0,(0),8,6™)]

= R1(2,0%) = R(q,o%) ,

whare

'g(O)ol(O), 1f u = 6,(9),
q = q(u,0) = {g(0)c,(0), if u=0,(9),

0, otherwise,

and Q(J,0) is determined by q as aboves
The methods of Sections 6«9 above can be characterized in the

present terms as follows: Writing

R(g,6") =3 [.F a(u,0)a(u,0,6") +% q(u+1,0)a(u+1,0,0*;] ’
u >u

for each u the summand can be interpreted as a linear combilnation,
with coefficients q 2 0, of the various probabilities of errors of
Types I and II given by a test of the one-sided hypothesis H(u):

9 § u, against H'(u): @ > u, where the test has the acoeptance
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region A(u) -{xle*(x) s u} o In other words, each such term
(with index u) is the Bayes risk in a certain one-sided testing
problem; it is minimized by a suitable acceptance region A(u)
(determined by a technique equivalent to the Neyman-Pearson lemma)}
such Bayes acceptance regions are admissible under mild conditions,
If the estimation problem has a suitably simple structure, and if
the weight-function q is a suitable one, then the acceptance
regions A(u) will constitute a nondecreasing sequence in u; in such
cases, the Bayes risk in the estimation problem can be minimized by
minimizing simultapeously each of the mentioned terms with respect=-
ive indices u = l,ees,ke The Bayes estimator obtained in such

cases 1s:

u, if x ¢ A(u) = A(u=l), for u = 2,404,k
Q" (x) = :
1, 1rx e A(1)

It is problems having this structure which are treated in Section
6-9 above (without the restriction that n.be finite)s. The method
of Section 8 is represented by the form assumed by R(q,o*) for the
speclal case of a simple loss-function, defiped as aboyp; in suoéhh
cases the minimization of a term of Ruwifﬁuindei u corresponds t§
use of the Neyman~Pearson lemma to determine a best acceptance
region A(u) for testing between two simple hypotheaea;

If nis not finite, after choosing any finite subset N> < N
(more or less "representative" of N ) we can apply the above simple
computational methods to determine Bayes estimators of @ e.t\f‘.

If for any q, the Bayes estimator Foroce 41? is determined

- —— 8
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essentially uniquely on the sample space (up to sets having
probability O for all @ ¢ n.), then o is an admissible estimator
of @ es.o In this way, elementary techniques ocan provide a
number of admissible estimators illustrative of the variety to be
ropnd in the full admissible class;

1l, An application of the general theory s estimators having

presoribed precision in a specified regiong sequential probability
ratlo estimators, |

It is sometimes desired that an estimator have high precision
in some interval in the parameter space, while in the remainder of
the pa;amater space much lower precision would suffice; In general
erficiént achievement of such a specification.requires use of an
estimator based on a séquential sampling rule, One formulation
and solution of such a problem 1s the fol;owing; for 1illustrative
purposes, a concrete example 1s discussed,

Let Y ’YZ"“ be independent Bernoulli trials, with
Prob (Y, = 1) = 6, Prob (¥, = 0) = (1 = o)e An estimator o 1s
required which will have high precision for 9 near 5. Thig
?equirement may be formulated iq part as follows: For O = .4 or
6, the probability is at least 95 that @ will be closer to the
correct one of these two values; in terms of risk ourves of
estimators, we require essentially that a(.S,.h,O ) s .OS and
a(.S,.6,° ) § .OS. (Further interpretations of these requirenanps
in relation to the general notion of precision will appear below,)
To meet these requirements, consider any est}mator 0*, and oons}der
the test of the one-sided hypothesis H: @ g «5 against H': 0 > ,5
given by the acceptance region {xlé'"(x) - -5} o (The description
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of the sample space on which our estimators are defined remains to
be apeoified;) The requirements to be met py o¥ imply tpat this
test has error=probabilities not exsceeding «05 when @ = .l and

o= ;6. If sequential sampling rules are allowed, it is known that
the last condition 1s satisfied most efficiently, in tgrma of
expepted number of observationsY1 required under 9 = Ll and

Q@ = 6, by Wald!s sequential probability ratio test [28]. (We
discuss such tests ignoring "excess at termination"; in problems of
the type being considered, this entails that some of the following
equations represent close approximations; for certain problems, no
such qualificat}yn is necessary.) The indicated sampling rule is:

Observe Yi’YZ""’ compute after each observation ¥ the sum

a = é y, and h = h(m,dm) = 24,em, and terminate ‘observation as
soon as either h = k = log (19)/;93 (3/2) or h = =ke The resulting
sample space is S ={xlx = (FyseeesTy)s 0 = 1,2,000;5 Inlmay)) <k
or=kasm<norms= n} e« Thes conditions specified above are met
(with minimum expected sample siZes under gll values of @) by use
of this sampling rule and any definition of Oﬁ(x) which satisfies:

O*(x) S o5 for x such that h = -k

9*(x) > 6 for x such that h = k,

The definition of 0*(x) can be completed soc as to make it
admissible and msdian—unbiased; (Because S is disorete, use of an
auxiliary randomization variable is necessary to obtain exact
median-unbiasedness; we omit suoh randomization, obtalning an
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admissible estimator which is approximately mdian—ﬁnbiued.)
Every estimator satisfying the preceding inequalities is a Bayes
solution for the above stated problem, given the sample space S.
The determination of an admissible estimator among these can be
interpreted as an 1llustration of the techniqus of using a sequence
of a priori distributions; and of choosing, among all Bayes
solutions for the first such distribution, one which minimizes the
Bayes risk for the second such dlstribution..

We have

;*(x.O) =4 /0 - (n-d4_)/(1=0)

= %/0(1-0) - n/(l;o)

n(} - 0)/6(1-0) + k/20(1-0), if h =k,

n(% - 0)/8(1-9) - k/20(1-0), if h = X .

For any fixed 00 < -Jé, S(x,co) is an increasing function of n as x
varlies subject to h = =k; and the set of such points has probability

exceeding % when @ = Q4 To determine a test of H(Q,): 0 g &,

0'
against H'(Q ): 6 > ¢, with acceptance region {xftﬂ'}(x) s Go} R
having size 1/2, and having the property that it is a locally=-best
test of‘this form subject to the conditions already imposed upon
o"(x), it 1s necessary and suffiocient that o*(x) satisfy the

following additional condition: Let n(Oo) be determined by

Prob (h = <k and n g n(0,)}e,) 5% ..
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In general, this relationship can be satisfied only approximately,

‘but always closely except for °o very near O, Then

"(x) g 0, for x such that h = -k and n g n(Qy) ,

¥ (x) > 6, otherwise.

As °o increases.;?om_o to %, n(Oo) takes successively the values
kyk +1, & + 25000 o

Proceeding similarly for any fixed @, >'%, we define n(9,)
similarly for such values, and obtain the conditions

6%(x) § 0, for x such that h = k and n 2 n(9,) ,

o¥(x) > %  otherwise .

It is olear that all of these conditions on ©*(x) oan be met
simultaneously (allowing the approximations mentioned), and that
they provide a full definition of the estimator., Since this
definition depends on x only through n = n(x) and h = h(x) = ¥k,
oF depends on x on;? through t = t(x) = h/kn. The range of t is
$1, 21/2,  1/3,e¢s and " 1s an increasing function of t;

Let F(t,8) = Prob {t(X) s tl‘,o} » then the estimator
6" = 6"(x,¢5) 1s defined as the root ¢ of the equation

¥(x,0,05) = F(5(x),0) = o5 = 0 o
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More generally, for each ¢, 0 < a <1, a confidence lgmit estie-
mator 0°(x,a) is defined as the root @ of v(x,0,a) = Os (The
admissibility of such estimators can be shown as aboves) The
famlly of suoh gstimators constitutes an admissible confidence
curve estimator,

Conflidence curve estimates of this kind will be narrow,
reflecting high precision, when n is very 1arg§, and will be wide
reflecting low precision, when n 1s'very small, It follows from
the requireyents imposed upon 0*(x,f5) above that whenever
0¥(x,45) > o5, we have 0*(x,.?5) > o (whsther.n is small or large),
and that whenever 0*(x,.5) < +5, we have 0*(;,.05) < .6; hence the
90 percent confidence interval J(x) = [0*(x,.95), 0™ (x,005)] will
never include both the values @ = .4 and 0 = .6; (The event
n(x) = +0o, which has probability O under each 9, gives |
J(x) = [o4,e6] and 0%(x,¢5) = ¢5.) This constitutes a useful inter-
pretation of the formulation adopted above of the general require=
ment of high precision for © near .5.

For practical reasons, it is sometimes necessary to terminate
sampling before this is indicated by the above sampling rule, and
the question arises what inferences can be made validly on the
basis of such partial determination of an observation x; Term=
ination after m observations with Ih(m,qm)l < k is equivalent to
observation of the event -1/m < t(x) < 1/m. For each a, this
implies that the estimate @ (x,a) (which would have been determined
by oontinuing sampling) satisfies ﬁf(x,a) < o*(x,a) < T(x,q),
where §"(x,a) are respectively the roots @ of F(-1/m,0) = a and
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of F(l/m,O) = a4 These bounds on an estimate narrow progressively
with inocreasing ms When such bounds on an estimate (or confidence
curve ) become sufficiently narrow for the purpose at hand, sampling
can be terminated without affeo?ing the validity of the
(approximate) estimates obtaineds

Concerning the computation of values of F(t,0) required for
use of such estimators, the function F(0,@) of ¢ is the operating
characteristic function of a sequential probability ratio test, on
which there is an extensive theoretioal and quantitative litérature
for a wide range of problems, For each @, when F(0,0) is known,
the determination of F(t,Q) is reduced to the problem of deter-
mining the conditional cumulative distribution function of n
(the number of observations required for termination of sampling,
or the duration of a random walk with two absorbing barriers) oq
the condition of termination with h = «k ("acceptance of H: @ g +5",
or absorption at the lower boundary), and again on the condition
of termination with h = k ("rejection of H", or absorption at the
upper boundary)e (The unconditional distribution of n, together
with one of these conditional distributions and F(0,0), determines
the other conditional distribution..)
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SCHEMATIC ILLUSTRATIONS OF CONFIDENCE CURVE ESTIMA‘I‘ES
OF A BINOMIAL PARAMETER @ HAVING HIGH PRECISION FOR @ NEAR z

(A) n(x) very small, h(x) = =k

45
c(9,x)

(B) n(x) very large, h(x) = =k

45
c(9,x)
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(C) Bounds on estimates sampling curtailed with m very large,
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