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0. Introduction and-Summary. This paper extends and unifies some

previous formulations aT + theories of estimation for one-parameter

problems. The basic cri. rion used is admissibility of a point

estimator, defined with reference to its full distribution rather

than special loss functions such as squared error. Theoretical

methods of characterizing admissible estimators are given, and

practical computntional methods for their use are illustrated in

a variety of examples.

Point, confidence limit, and confidence interval estimation are

included in a single theoretical formulation, and incorporated into

estimators of an "omnibus" form called "confidence curves," The

usefulness of the latter for some rpplications as well as theoret-

ical purposes is illustrated.

2isher's maximum likelihood principle of estimation is general-

ized, given exact (non-asymptotic) justification, and unified with

the theory of tests and confidence regions of Neyman and Pearson.

Relations between exact and asymptotic results are discussed.

An application of the general theory gives optimal sequential

estimators having prescribed precision in a specified interval.

Further developments, including multiparameter and nuisance para-

meter problems, problems of choice among • dmissible estimators,

formal and informal criteria for optimality, and related problems

in the foundations of statistical inference, will be presented sub-

sequently.
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1. A broad formulation of the problem of point estimation. We con-

sider problems of estimation with reference to a specified experi-

ment E, leaving aside here questions of experimental design includ-

ing those of choice of a sample size or a sequential sampling rule;

some definite sampling rule, possibly sequential, is assumed speci-

fied as part of E. Let S =txt denote the sample spnce of possible

outcomes x of the experiment. Let f(x,Q) denote one of the element-

ary probability functions on S which are specified as possibly true.

Let ý e denote the specified parameter space. For each 0 in 4

and for each subset of A of S, the probability that E yields an

outcome x in A is given by

Prob iX e AIQ = f(x,Q) dt(x),

where i is a specified c- f'inite measure on 6. (We assume tacitly

here and below that consideration is appropriately restricted to

measurable sets and functions only.)

If y - y(O) is any function defined on no(e.g. y(Q) a 0 or

Y(Q) =_ 2 ), with range r, a point estimator of y is any measurable

function g = g(x) taking values in F(or in m, its closure, if, for

example, rlis an open interval). The problem of choosing a good

estimator, that is an estimator which tends to take values close to

the true unknown value of y, has been formulated mathematically in

various ways. Most formulations achieve mathematical definiteness

by introducing criteria of closeness which appear somewihat arbitrary

from some standpoints of application anO undesirably schematic as

expressions of the intuitive notion of closeness.

If Al is given no specific (parametric)structure, then the

latter features can be fully avoided only by a very broad ,formulation



3
which specifies only that if y is true, then an exactly correct

estimate (g = y) is closer than any incorrect estimate (g ý y). If

£'-is finite, A.= 0 l,..Ook , and y(O) W O, this leads to the

formulation of Lindley [1] in which estimators are compared only

on the basis of their error probabilities

ij=Prob to" (X) = 0I0J.1 i,',i = ,..,

where '*(x) is any estimator of Q. This formulation has no very

useful extension to typical estimation problems in which, fcr

example,fl is an interval, and in which the event 04(X) = 0 exactly

has typically negligible probability and little interest.

The case in which Alis any set of real numbers, for example an

interval, and y(Q) a 0, may be termed the central problem of theory

of point-estimation, although very important generalizations of

this problem have been treated extensively. For this problem,

closeness of Q* to Q has been specilied by the introduction of

specific loss functions: T'he absolute error criterion, Ia-*I,

was introduced by Laplace. Gauss replaced this by the squared

error criterion (0*.@Q) 2 which proved mathematically much more tract-

able and provided a definite formulation of the problem which seemed

equally reasonable. A generalized squared error oriterion,

c(Q).(Q.m) 2. where c(Q) is any specifiece positive function, is

used in some work in modern statistical decision theory. Such

criteria are sometimes used in conjunction with the requirement of

unbiasedness, E( *(X)WI) a Qj this is done (evidently primarily to

facilitite mathematical developments) particularly in the theory

of linear estimation eue to Gauss; this reduces the mean squared
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error criterion to a criterion of variance; EV(0*-0)2 10] a

Var(0*I1). (For a brief account of the history of the theory of

point.estimation, of. Neyman (2], pp. 9-14.)

Each such definite specification of closeness can be criticiz-

ed as somewhat arbitrary, except in a context where one postulates

the reality of the indicated costs of errors of each possible kind.

To avoid such features it is evidently necessary and suf:iicient to

adopt the following weak specification of closeness: If •l<W2S

or if Q4a'cQQ, the estimate is called closer than 0 to 0; if

0 0 < no comparison as to closeness is to be made. (The

latter point was put forth by Galileo in an exchange which retains

interest in connection with questions of formulation.of estimation

problems, particularly distinctions between errors of inference

and economic valuations, end the historical origins of unbiasedness

criteria. Cf. (3].)

This specification of closeness leads to comparisons between

estimators on the basis of all of their probabilities of errors of

over-estimation and under-estimation by various nmounts d= I•*.I

a(uoQ*) F(u,Q,*) -Prob {to 4 (X)_ uIQ} for u < 0,

Sl a-F(u-O, ) Prob{ ) W ul ?for u >e

That is, estimators are compared only on the basis of their complete

cumulative distribution functions (c.d.f's.) F(u,Q,0*) for each

0 e iy, rather than on the basis of certain "sumnaries" (functionals"

of these c.d.o's such as mean squared error. The function

a(u,PPQ), defined for any estimator 0 (x) at each 0 e f mnd each

u # o, will be called the risk curve of O* at 0 (or, more precisely,

of Q•.) at 0).
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The family of distributions under consideration may be viewed

as having a parametric structure only in the sense that it is order-

ed by the labeling of each function f(xQ) of x by a different real

number 0, From this standpoint, the problem of estimating 0 is

equivalent to that of estimating y = y(O) if the latter is any

specified strictly monotone function. The formulation adopted

above is clearly unaffected by (invariant under) such transfor-

mations of the parameter space (t-o-y(IA) M f), as contrasted

with some other formulations referred to above.

A theory of point estimation based on this broad formulation

seems appropriate for typical problems of inference occurring in

empirical research, since various kinds of errors of inference and

their probabilities admit simple direct interpretations, whereas

other fo~rmulations introduce specifications akin to costs of

various errors which seem somewhat hypothetical or arbitrary in

such situations. The present theory also has theoretical and

technical relevance for estimation theories based on more restric-

tive formulations, since it includes such theories in a formal

sense which will be elaborated in a following section.

2. Admissible point estimators. An estimator * (x) of 0 is natur-

ally considered a good one if its error-probabilities are suitably

small, i.e. if (the ordinates of) its risk curves a(u. ,Q,*), for

each 0 C • and each u X 0, are suitably small. This leads to a

natural partial ordering of estimators, under which some but not all

pairs of estimators can be ccmpared. As a basis for systematic

evaluations and comparisons of estimators we require the following
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Definitions: ?or a given estimation problem, an estimator Q* in

called at least as good as an estimator Q*if a(UpQ,Q*) ra(u,G,0 4 *)

for all0 e~\and all u , if Q. If nd 0* are each each at least

as the other, then a(u,Q,Q*) a a(u,#,O*), and the estimators are

called equivalent. If neither of Q*, is at least as good as

the other, the two estimators are called not comparable. If is

at least as good as 0Q* and if a(u,Q,0*) < a(u,Q,G *) for some

0 e• 2iLand some u j Go 0 * is called better than Q**. As estimator

0* is called admissible if no other estimator is better than 0*.

The class of admissible estimators is called the admissible class.

A class of estimators is called complete if, for each estimator

outside the class, there is a better one in the class. The minimal

(smallest) complete class, if one exists, coincides with the

admissible class. A class of estimators is called essentially

complete if, for each estimator not in the class, there is one at

least as good in the class. A minimal essentially complete class,

if one exists, is a subclass of the admissible class.

The above definition of admissibility was included in a list

of criteria for point estimators by Savage (4] (pp.224-225), but it

has not previously been used systematically.

The criterion of closeness of estimators introduced br Pitman (5]

also deals with the full o.d.f's. of estimators, in the form of

the joint distribution of each pair of estimators being compared;

however this oriterion does not give a partial ordering of estimators,

and does not lend itself to our present purposes.

For the probabilities of under-estimation and over-estimation,

we define also
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a(O., of) 0 Prob to*(X) -c 010 Lim a(O-eO,9*),

e -0 0,
e. 0

> 0
Por formal convenience, we also define a(GQ,O*) * 0.

When reference to a given estimator e is understood, we may write

simply a(u,Q), a(O-,Q), or a(Q+,Q). The functions a(Q-,Q) and

a(Q+,Q) of Q play a useful technical role, and will be called

respectively the lower and upper location functions of Q*.

In many problems, estimators for which Prob £Q*(X) = Q} > 0

for some 0 are found not useful. The remaining estimators have

continuous c.d.f's,, and have a(Q-,Q) a l-a(Q+,Q). No two such

estimators, having different location functions, can be comparable;

for a(Q-,Q,Q4 ) • a(O-,O,, 0) is equivalent to a(0+,0,0") > a(Q+,,'

this shows that neither e~tinator is at least as good as the other.

The broad and "weak" definition of admissibility adopted here

leads to very large admissible classes in typical problems. However

it does not seem unreasonable to conceive of the problem of point

estimation as one in which the investigator chooses an estimator on

the basis of consideration of the risk curves of all estimators in

some essentially complete class. In principle this consideration

should be complete, but of course the practical counterpart of this

can be at most a more or less extensive fasriliarity with an essen-

tially complete class, developed by study of the risk-curves of a

variety of specific estimators, possibly strengthened by some

general theoretical considerations (including envelope risk-curves,

discussed below),and perhaps also by reference to one or several loss
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functions and criteria of optimality which may seem more or loss

appropriate in specific applicitions. Such an approach is not so

difficult to carry out as might be anticipated,, as ill be illus-

trated. Of course difficulties of computation or complexity may

sometimes dictate that an inadmissable estimator must be adopted;

even in such cases, the most general basis on which any particular

estimator might be Justified as not too inefficient, is evidently

the comparison of its risk-curves with those of other estimators,

especially admissible ones.

Example. Let X be normally distributed with unknown mean 0

and variance 1, withf)- fp I -co < Q <oo). Consider, when 0 - 1,

the risk curves of the classical estimator ý(x) = x, and of the

estimators 0 *(x) = x + 1 and 0'1W(x) a +ca We have

a(u,l,Q) -((u-l) for u < 1, and

f-(u-l) for u > 1,

where 1

J(v) = (2nt) 2 yV ; dv,
-00

a(ulQ4 *) J=(u-2) for u < 10

1 - T(u-2) for u > 1,

and

a(uls*o) 0 for u < 1,

CI for u > 1.
Our wishful goal in choosing an estimator would be to minimize

simultaneously all ordinates of such curves, for all 0 and all

u # Q, since each ordinate is the probability of an error. Of

course this goal cannot be realized in non-trivial problems. The
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estimator i* is superior to $ with respect to all errors of under-

estimation# bWt worse with respect to over-estimation. From this

standroint neither can be called better than the other; they are

not comparable. The apparently trivial estimator 0" (but no

"smaller" one) is perfect in avoiding errors of under-estimation,

but is as bad as possible with respect to over-estimation.

It will be seen below that each of these estimators is not

only admissible but that each has, nmong all estimators with the

same location functions, uniformly smallest risk curves.

In most decision-theoretic formulations of statistical problems

a real-vnlued risk function r(QO ) is defined for each parameter

point and each decision function. In the present formulation, we

associate with each pair Q, Q* a set of error-probabilities

a(u,,Q *), u 0 0. These respective error-probabilities, for each

fixed 0 and Q*, may be regarded as components of a vector denoted

by r(0,0") ka(u,0,0") , the components a(u,,Q,0) having index u.

Then r(,*,Q) is an example of a vector-valued risk function.

Knowledge of the admissible class or of an essentially complete

class of estimators in the present broad sense can be useful in

applying other formulations of the estimation problem. For example,

every estimator which is admissible with respect to a squared error

loss function must clearly be admissible in the present sense; hence

the search for estimators good in the former sense can be restricted

without loss to any class known to be essentially complete in the

broader sense. In this way, a hierarchy of definitions of admissi-

bility leads to a corresponding nested hierarchy of admissible or

essentially complete classes of estimators. (The latter concepts,
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and that of vector-valued risk functions, were introduced in other

contexts by L. Weiss (6].)

3. Admissible confidence limits. If V" = Q" (x) is a point estimator

of 0 in a specified problem, with the property that

Prob [Q"(X) < 0 0 0] a a(-,QQP") is relatively small for all 0,

then 0" is an upper estimator of 0. In particular, if a(Q-,Q,Q")=a

for all 0, then Ol, is an u Rnr confidence limit with confidence

coefficient 1 - a, or an upper (l--a) confidence limit. Typically

a value (l-a)>>.5 is chosen.

The typical use and interpretaticn of an upper estimate is

the following; When a given numerical value (observed value) is

obtained by use of an upper estimator, this is taken as evidence

supporting the conclusion or decision that the true unknown value

is at least as small as the estimated value. Hence the merits of

any upper estimator depend upon the following considerations, in

suitable combination:

(a) The probability should be suitably high that the indicated

conclusions, of the form: "0 is not greater than Q"(x)," are correct

for each possible true value of Q. That is, the confidence coeffi-

cient should have a suitably large value; or, more generally, the

lower location function a(Q-,9,0") should have suitably low values

for all 0. Such properties are sometimes referred to by the term

validity, particularly in the case of confidence limit estimatorsj

a valid (l-a) upper confidence limit estimator is one which does in

fact have the property that Prob [o* 4 010 J a for all 0 L Di'

(b) Given thet one of the indicated conclusions ("0 s 0"(x)") is

correct, it should be as strong and informative a conclusion as

possible; hence for each possible true value of 0, the conditional



distribution of Q" (X), given that 0 S O"(X), should be concentrated

as close to 0 as possible. That is, given the location function

a(0-,Q,0") of any upper estimator 0",, for each 0 and each u > 0

the values a(uO,Ot") = Prob [O"(X) ? ujO] should be suitably small.

Such properties of confidence limits have been termed accuracy

properties by Lehmann (7], P.78. INore generally, in the theory of

confidence region estimation, such properties have been termed

shortness properties by Neyman (8] &

(c) Given that one of the indicated conclusions ("0 6 Q"(x)") is

incorrect (i.e. that in fact 0 > 01(x)), the indicated conclusion

should be misleadinp in the smallest possible degree. For example,

in any given problem, under any given true value of 0, when an

upper estimator takes a value two units below the true value, the

indicated conclusions (or inferences or actions or decisions) are

at least as erroneous (or inappropriate) and in general more so,

than when an upper estimator (with the seme confidence coefficient

or location function) takes a value which is only one unit below

the true value. That is, given the location function a(Q-,QQ"),

for each 0 and each u < 0 the values a(u,0,0") should be suitably

small. This property has evidently not previously been discussed

along with those o- validity and shortness, but it seems necessary

to include it for a complete specification of the practical purposes

and intuitive goals of confidence limit estimation. All three

properties are given some weight in a specific loss function adopted

in the decision-theoretic treatment of Wolfowitz [9].

These considerations lead in the usual way to definitions of

admissibility and of complete classes of upper and lower estimators.

Properties (b) and () together are formally identical with the
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closeness properties considered in the preceding section for point

estimators, while property (a) by itself is merely descriptive of

the location function of a point estimator. Thus every admissible

* confidence limit estimator is, formally, an admissible point

estimator as defined above, and is contained in every complete

class of point estimators.

Hence there is no necessary formal distinction between the

formulations, theories, and practical techniques of point estimation

on the one hand and of confidence limit estimation on the other:

the distinctions required here are only those of qualitative

emphasis and quantitative degree which reflect the variety of possi-

ble purposes for which a point or confidence limit estimator may

be chosen from, say, &n essentially complete class. For example,

in choosing an upper estimator for a given application, it may be

judged that property (c) above should be given no weight as com-

pared with properties (a) and (b) because "a miss is as good as

a mile" in the given context of application; in other contexts,

including probably most cases of estimation for informative

inference, some weight may be given to each property.

4*. Admissible interval estimators. If J = J(x) = (0Ot") (12(W),

G"(x)) is a pair of point estimators such that O'(x) s "(x) for

each x in S, then J is an interval estimator of 0. In partiuclar,

if Prob 101(X) S 0 1 0"(X) 10) = 1-a for each 0, then J is a con-

fidence interval with confidence coefficient I-a, or a (1-a)

* cnfidence intervals (Typically a value (l-a) >>.5 is chosen.) The

typical use and interpretation of an upper estimate is the following$

When given numerical values of m d 4" are obtained by use of an



interval estimator, this is tiken as evidence for the conclusion

that the true unknown value of the parameter 0 lies in the closed

interval [Of. oi" ]

The probability properties of any interval estimator J may be

described in the following terms: It is natural to call a(Q-,0,Ql")

the lower location function of J (as well as of 0"), and to denote

it when convenient by a(Q-,GJ); similarly a(Q+,Q,J) n

is the upper location function of J. As with point estimators,

these functions give respectively the probabilities of under-

estimation and of overestimation when a given interval estimator J

is used. For example, it is n:tural, to cell J a median-unbiased

interval estimator if for each 0 we have equal probabilities of
overestimation and underestination: a(Q-,QJ) = a(Q+,Q,J). This

usage is compatible with the definition of a median-unbiased point

est ima t or.

A quantity of primary interest is the probability that the

conclusion indicated by any interval estimator J ("0 lies in

[Qt,,,],,) will be incorrect, for each possible true value 0. This

probability is just the sum of the location functions of J:
Prob 0 not covered by J(X)IO- Prob [Q"(X) < 0101

+ Prob JQ(X) > 010 7 =(-OJ + a(Q+,0Q,J).

If this probability equals a for each 0, then J is a (1-a) confi-

dence intervel; if in addition J is median-unbiased, then 01 and

al are (1+) confidence limits. As with point mad confidence limit

estimators, it is of interest in general to consider the proba'ili-

ties of errors of under-estimation and of over-estimation of various

magnitudes in interval estimation; we denote these probabilities by
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a(uQJ) a(u,0,01) for each u : 0,

•a(u,O,,") for each u c 0.

In a formal sense, a point estimator may be regarded as an

interval estimator J = (O', 0") having the special form: ;'(x) W

V'(x) for all x. The full specification of what is meant by a good

point estimator 0*, by use of the risk curves a(u,0,@*), corresponds

to the use of the functions a(uQ,J) to specify at least part of

what is meant by a good interval estimator J.

Again, in a formal sense an upper estimitor Q"(x) may be

regarded as an interval estimator J = (Q',Q") having the special

form: O.(x) W the greatest lower bound of fl., for all x. The

full specification of what is meant b; a good upper estimator 0",

by use of the risk curves a(u,0,0"), corresponds to part of what

is meant by a good interval estimator; in particular, small values

of a(uQ, O") for u > 0, which indicate desirable properties of

accuracy or shortness for an upper estimator 0", indicate corre.

sponding shortness properties for an interval estimator J = (',9Q").

The merits of any interval estimator J depend upon the follow-

ing considerations in suitable combination.

(a) The probability should be suitably high that the indicited

conclusions ("0 lies in [Of, V" ]") are correct, for each possible

true value of 0. That is, the ccnfidence coefficient should have

a suit.ibly high vplue; or, more genera: ly, fcr ecch 0, the sum of

the location functions a(0-,@,J) and a(Q+,@,J) should be suitably

low. As with point estimators, it seems desirable to avoid, as far

as possible and convenient in the development of a general theory,

any step which corresponds to a tacit Judgment that errors of over-

estimation and underestimation are necessarily comparable either



qualitatively or quantitively. Hence the present specification

will be given the forms Rach of the location functions a(O-,QJ),

a(o+*,QJ) shculd have suitably small values, for each O0

(b) Given the location functions of an interval estimator (and,

hence, given the probability l-a(Q-,Q,J) - a(Q+,Q,J) of correct

conclusions, for each 0), the indicated conclusions should when

correct be as strong and informative as possible. That is, for

each 0, the conditional distributions of Q'(X) and " (X), given

that 0(X) S 0 w_ 0"(X), should be concentrated as close to 0 as

possible. (In terms of the conditional bivariate distribution of

(1(X)s, 0"(X), this means concentration close to the point (0,0),)

These desirable shortness properties of J correspond to suitably

small values, for each 0, of a(u,0,Q0t) for each u > 0 and of

a(uQ,Q,) for each u < 0.

Wc) Given that one of the conclusions indicated by J is incorrect,

it should be misleading in the smallest possible degree# (The

remarks on property (c) of the preceding section are also applicable

here.) These desirable closeness properties of J correspond to

suitably small values of a(u,QJ) for each 0 and each u # 0; that

is, suitably small values of a(uQ,Q') for u > 0 and of a(uQa")

for u < 0.

To represent all of the properties considered for interval

estimators, we define the risk curves of each interval estimator

j (01,0"), at each 0, as the Pair of functions [a(u,Q,Qt ),

a(u,0,Qt")] of u(u # 0), i.e. the risk curves of Of and of O'l Thus

the risk curves of J at 0 are a representation of the bivariate

cumulative distribution function of O1(X) and Q"(X) when 0 in true,

L% • ;• . ... <': • : - , i . . i . i• " , -- -. . . • • . . • • .. •
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These considerations lead us to formulate the following basic

definitionh: An interval estimator J * (aIQ") will be called at

least as good as another J* =(Q ) if Of is at least as good

as 0" and Q" is at least as good as 0" in the sense defined for

point estimators in Section 2 above* Similarly# J will be called

better than J* if it is at least as good as J* and also Of is

better than Q44 and/or Q" is better than 0*. J will be called

admissible if no other interval estimator is better. Complete

classes are defined in the usual ways

If two interval estimators have different location functions,

they are not comparable (neither is at least as good as the other);

this follows immediately from the corresponding property for point

estimators. A simple sufficient condition for admissibility of

j = (QIQ") is that Of and 0" be admissible point estimators.

5, Confidence curve estimators. The selection of an estimator of

one of the above kinds for purposes of informative inference,

including typical applications in scientific research, is generally

admitted to involve elements of choice which are in some degree

arbitrary. Such elements include the choice of a palicular

confidence level for an interval estimator, and the oloice of

location functions for an interval estimator with given confidence

coefficient. In addition, a point estimate is sometimes desired

along with an intervals Such considerations and related ones have

led to proposals for use simultaneously of a point estimator and a

set of confidence limit or interval estimators having various

confidence coefficients* Such estimators may be regarded as a

mod66wt formulation of a long-standing practice of reporting
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estimates in the form k0 -0±8 where, k is somi constant and

Var (Q*(X)). The latter form may be interpreted as an

ordered set of three point estimatorse For example, if 4*(X) has

a normal distribution with a known constant variance, and k = 1,

then the "estimator" Q*(x) - k&* may be written as the ordered

set of estimators

Eemox) 0*(x),4*(x) + cr,*] ý [O(x~o814jQ(x**5)P Q(x,ol6)].

Estimates of this "omnibus" kind can be interpreted flexibly but

validly# in any context of application for informative inferences,

in the ways customary for (a) point estimates such as Q(x,95),

(b) confidence limits such as Q(x,.84) and Q(x,916), and (o) con-

fidence intervals such as [Q(x,.84), Q(x,.16)].

Tukey (10] proposed that for typical general purposes it would

be advantageous to use a set of five point estimators at standard

levels: Q(xpa) P with a 3. = .9% 50oh ~O,6s, 83 ohs and 9t'O

Cox (11] proposed use of the full continuous family of confidence

limits 0(x,a), 0 S a 1. 1 Such an omnibus estimator includes

formally, as elements, not only confidence limits at all levals

and a median-unbiased point estimator, but also median-unbiased

confidence intervals at all levels* Whether such estimators should

be used in practice, rather than more standard methods, is a matter

of Judgment and taste which can perhaps be decided best in specific

contexts of applications It is often convenient, as will be

illustrated below, to discuss estimation theory and techniques for

estimators of this omnibus form, since such discussion includes

conveniently and compactly a treatment of estimators of the various
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kinds mentionedo

Any such estimator, consisting of a specified set of confidence

limit estimators G(x,a), a in some specified subset of the closed

unit interval (possibly the whole interval), ordered in the sense

that a < at implies O(x,a) Z Q(xat) for each x in S, will be

called a confidence curve estimator@ We shall usually consider

the inclusive case, 0 S a 1 1, so as to include formally all other

oases* In many problems it is convenient to give such estimators

a form which can be reported graphically, if for each x a S, Q(xa)

increases continuously from 0 to 1 as a decreases from 1 to 0, then

we define the confidence curve estimator o(Qsx), for each x e Sp

as the continuous curve (function of Q en.)

o(Q,x) m min [,l-cLjQ(x,a) = 01 o

For example, if X is normally distributed with unit variance and

mean Q, then the confidence curve estimator of 0 is

0(00x):

for any observed value x, the estimate o(Qx) can be described by

* a more or less complete sketch of its graph when convenient. Such

estimates are illustrated in a number of examples in Section 9

below*

The definitions of admissibility and of oomolete olsasee for

confidence curve estimators parallel those above for confidence
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Anter'aw esttmatego, A simple sufficient (but notp in general#

necessary) condition that a confidence curve estimator be ad-

missible is that for each a, its element 0*(xoc) be an admissible

point estimator* In problems for which there exists a uniformly

best confidence limit estimator for each oonfidence coefficients

this condition is necessary as well as sufficient, and there is a

unique (a.e.) admissible confidence curve estimator which consists

simply of the family of these best confidence limit estimators.

6. Elementary theory of admissible Doint estimators. An important

part of the general theory of admissible point estimators, and of

corresponding practical techniques of estimation, can be developed

conveniently by an essentially elementary use of the theory of

tests of one-sided hypotheses as originated by Neyman and Pearson

and as extended (by simple use of their Fundamental Lemma) to

generate a variety of admissible tests of such hypotheses. In

problems for which uniformly best one-sided tests exist, the com-

plete theory of admissible estimators is obtained in this wayi for

other problems, the development of the remaining parts of the

theory requires more general methods introduced in Section 10 below.

For each 0 in fL., we consider two one-sided testing problems:

(a) the problem of testing the hypothesis H(Qo): a S o 0(against

the general alternative H(Q 0): Q > a0); and (b) the problem of

testing H(Qo-)" Q < %e (against the general alternative HV(00-)s

0 0 0)' In ease o is a minimum value in j'10, consideration of

H(Q -) is to be ommitted; if o is a maximum in Av H(%0) is omitted.

Any given point estimator Q" n e*(x) of 0 can be used in the

following way to define a test of eaoh of the hypotheses mentioneds
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Accept the hypothesis if and only if the observed value O*(W) is

consistent with the hypotheais.. Such a test of the hypothesis

H(% ) has the acceptance region A(%) tW w s o such a

test of E(O)has acceptance region MOO~ ' JxG() 0

if @l C 020 then A(01 -) C. A(Q1 ) c A(Gr) c A(02 ); for brevity, we

shall say that such a sequence of sets A(Q) is nondeoreasing in Op

with the understanding the argument Q may take a value (Q-) which

is considered smaller than Q and larger than Q-e for each positive

Ce

Such a test of H(Qo-) has probabilities of errors of Type I

given by
1 - Prob (A(Go-)1Q) = a(%oOG"°) for each 0 < 0o0

and of Type II given by

Prob (A(Go-)jQ) = a(Qo-,QQs) for each 0 z 0 0

Such a test of H(Go) has probabilities of errors of Type I given

by

1 - Prob (A(%o)10) = a(Qo + ,QQ*) for each Q S 00 #

and of Type II given by

Prob (A(%o)I•Q) = a(Q-,PGS*) for each 0 > Q0

Thus each of the error-probabilities a(u8Q,* ). upon which depend

the admissibility of any given point estimator Q%, appears as an

error-probability of a test of a one-sided hypothesis based upon

•use of 0 These relationships provide the following simple

sufficient condition for admissibility of a point estimator*

L* ,A For any specified family of probability density functions

f(zx,) (with respect to an underlying a-. finite measure jk(x) defined

L;
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on the sample space S =f4 ), 0 fl.(a subset of the real line),

a given estimator * = Q*(x) (any measurable function taking

values in the closure l offL) is admissible if each of the accept-

ance regions A(%o)* A(%o-), based on Q * as defined above$ gives an

admissible test of the corresponding one-sided hypotheses

H(%o)o H(%o-) defined above.

Proof: (A test is called admissible if no other test has all error-

probabilities at least as small, with at least one strictly smaller.)

If 0* satisfies the assumptions of the Lemma but is inadmissible#

let @• be an estimator better than Q . Then

a(%oQQ- **) s a(oGG*) for each 0 e fland each o0 Q# and the

inequality is strict for some 0 = Oe rLand some

o0 = Of a " A o '. Assume for definiteness that Q1 > Of (the

other case can be discussed in the same way). Then the acceptance
region {xI 0i'€() < g gives a better test of the hypothesis H(0'-)

than does -xIQ*) < of.- This contradicts the assumed admissi-

bility of the test based on the latter region, completing the proof.

Many estimators of interest can be conveniently investigated

theoretically and constructed practically by the device of using as

indicated below a function v(xQ), defined for each sample point x

and each Q e/.. If, for each fixed Q, v(x,Q) is a measurable

function of x, it is a statistic; and as 0 varies, v(xQ) represents

a family of statistics. We term such a function v a QuasistatistLo.

Corollar. le A sufficient condition for admissibility of an estim-

ator G*(x) is that it be defined, for each x, as the solution 0 of

the equation v(x#Q) = Op where v is a quasistatistic such thats
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(a) For each x in S, v(xv) n 0 holds for a unique 0 In .

(b) If 01 c 0. and 01' 02 are in?,. then (xlv(xQ 1 ) C 03

C~txlv(x.,Qa) < 03.
(A simple sufficient condition for (b) is that for each x, v(x,Q)

be nonincreasing in 0.)

(a) For each 0 0 in fJ1., the acceptance regions txlv(x,Qo) S 01 ami

fx 1v(x,.%) < 01 are admissible re .spectively for testing the one-

sided hypotheses H(Q ) and H(Oo-).

Proof: If v(xQ) satisfies the stated conditions, the conclusion

follows immediately from Leimna 1 upon observing that

{xl•v(x,o) 4 0 I to - .(x) S O. land txlv(xoo -o ;= {cx1Q*(x) C 0

When an estimator Q* is defined implicitly, by use of a quasi-

statistic v(xQ), as the solution 0 of the equation v(x-,G) = O, in

applications it is not necessary to have an explicit formula for

Q (x) since for any observed sample point x it suffices merely to

determine the corresponding root 0 of the defining equation; and in

the cases of MWy such estimators of practical and theoretical

interest, no explicit formula for 0'*(x) is available. The pre-

ceding lemma shows that basic qualitative properties of efficiency

can be established for such estimators without use of any explicit

formula for 0 (x)* Their quantitive properties can also be

determined without such explicit formulas: Since v(x,u) -C 0 is

equivalent to Q*(x) < u, and v(x,u) = 0 is equivalent to

e(x) -u, we have



•Prob (Q*(X) g ujO] - Prob [v(X,u) 0 O101 for u c 0
Prob [(*(X) i ujQ] a Prob [v(Xu) ,0101 ]for u > G,

Thus all quantitative properties of such estimators e can be de-

terminedq when convenient, by determining

Prob [v(Xpu) L 010] and Prob [v(Xju) = OQ] for each u ' Q.

Some theoretical properties of such estimators are also con-

veniently treated in terms of the codeftSo of v. For example, if.

for each n = 1, 2,..opn is an estimator determined by a quasi-

statistic vn = Vn(xn,Q)t then the condition that the sequence of

estimators Q* be consistent (that is, that Limn a(u,QQ) = 0, for

each 9 ef iand each u p Q), can be stated, and in many cases con-

veniently proved, in the form: Limn Prob [vn.(Xnu) 9 O1Q] = 0 or 1,

according as u - Q or u > 9, for each Q e ft.

For estimation by confidence intervals or confidence curves,

it is sometimes convenient to employ a family of quasistatisticso

Suppose that for each of several values of an index a, V(x,G,a) is

a quasistatistic which determines as above an estimator Q(xoa), and

that, for each x in S, G(xa) is decreasing in a* Then for any

pair of values of a, at > a"# the pair of estimators

[G(x,a.I), (xa")] = J(x) is an interval estimator of 0, whose

quantitative properties may be investigated in terms of the dis-

tributions of v(X~u,a) as indicated above, and whose admissibility

can in some cases be established by direct application of Corollary 1

to v(xpQ,4,1) and v(x,Qga")* A case of interest is that in which

a Prob [v(X*,Q*) 1OO- a* Prob [v(X,Qv.) - 010] for each

IJ



a# 0 S a S l# and each 0 efla Then the family of estimators

Q(xa) constitutes a confidence curve estimator of 0 (assuming

again that v(xDQ0a) is decreasing in a); this estimator is admissible

If for each a the quasistatistio v(xp,#a) satisfies the assumptions

of Corollary lo Examples of such estimators, and of convenient

techniques for their computation and presentation* are given below*

7. Uniformly best estimators. Let 0 (x) be any estimator of

0 e rL. Q* will be called a uniformly best estimator of 0 if# among

all estimators with the same location functions a(0-,Q), a(0+,Q), al

has uniformly minimum error-probabilities a(uQ). Since the

a(u,Q)'s are error-probabilities of tests of one-sided hypotheses

H(%o'), H(Oo),q o j-& with respective acceptance regions

A(00-) = txjt*(x) 4 901 A(%o) =={x'Q(X) S Q 0, a necessary

condition for 0* to be a uniformly best estimator is that f(x#Q)

and j-. admit uniformly best tests of the hypotheses H(Qo-), H(0o)0

of respective sizes a(Go-t, g'o* a(%+) ", *) G 0

It is well known [12] that uniformly best one-sided tests of

all sizes exist if and only if there exists a sufficient statistic

t(x) with the monotone likelihood ratio (m.l.r.) property, in which

case each best test may be obtained by use of an acceptance region

of the form

A(4O') ={(xY)I z(t(x),Y,%O) g a(Go-,@o)3 or

A(o) = (x~Yt z(t(x),y,o) 0 l-a(Q0 +,o). o

where Y is the observed value of a gq distributed aUxjI1&'
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randomization variable y# 0 ; Y - 10 and Z is the continuous

probability integral transform of Ys

Z(t(x),y,Q) = yF(t(x),Q) + (w-y)F(t(x)-,Q), where

F(tQ) = Prob {t(X) I tIQJ.e If such a sufficient statistic t(x)

exists, then a simple sufficient condition for admissibility of an

estimator Q* is clearly that Q* be a non-decreasing function of

t(x); for then A(%o-) ={xIG*(t(x)) < %0J and

A(0o) = txlo*(t(x)) g Qo4 are uniformly beat one-sided tests. If

such a statistic t(x) has a discrete distribution on a subset of the

integers, then t(x ) + y is another sufficient statistic having

the monotone likelihood ratio property, and having a continuous

cod.fo under each 0; as above, a simple suffioient condition for

admissibility of an estimator Q* is that it be a non-decreasing

function of t(x) + y.

More generally, let Q* be any estimator, lot

G(Q) = Prob { *(W) Qt Qs let G(Q-) = Prob "(X) -C GIQ let

F(t*Q) = Prob ýt(X) :s tIý3, where t(x) is a sufficient statistic

with the m.l.r. property, and as above let

z(t(x),y,Q) = yF(t(x),Q) + (l-y)F(t(x).,Q). Consider the quasi-

statistic v = v(xy,Q) a z(t(x),y,Q) - G(Q)o For each Qo#

A(0o) =(x,y)jv(xY,%o) C O is clearly a uniformly best accept.

anoe region for testing H(Qo) at level l-G(Qo) a(go+,Q0 ,Q*).
Consider the quasistatistic vt = vt(x,y*Q) = z(t(x),y,O)-G(*-)

" .v + (G(Q) -G(Q-)]. For each 0o,A(0o-) a{((x,y)jv(xY,%o) < 0

is clearly a uniformly best acceptance region for testing H(o-);

at Q =o it has Type II error probability G(,o-) *a(,o-,0o,,*)q
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To verify that these acceptance regions constitute a sequence

of sets which is nondeoreasing in 0 in the sense defined In

Section 6, we note that obviously A(M4-) C A(o0)# and we proceed

to prove that 0, -c 2 implies A(0l) C A(02-): Assume that

(x'Dy') e A(G1 ); but (xisy') j A(0 2 -)J then

S1 a z(t(x'),y'*,l) c G(01 ) and z" = z(t(x'),y',02 ) & G|02-) A

best test of H(0 1 ) of size (1-z') (the test which rejects when

i(t(x),y.Ql) > z') has maximum power at 0 = 02, namely 1-z"; the

test with acceptance region jxIQ*(x) :s Q3 has size

1 - G(O0) < (1-z') and hence has power Prob {J*(X) a 4•to 1 - A"

Hence z" < Prob L0 (X) s 01'0 21 S Pi'ob IQ (X) -ca4 G(027.).,

contradiction which proves that A(0I) c A(02-)0

For each (x,y), let 0** = 4"(xsy) be defined by
Q**(xpy) = inf 0IQ eM.?, (x,y) e A(Q) . Then @** is a non-

decreasing function of t(x) and of y. and is a uniformly best

estimator having the same location functions as the arbitrarily

given Q'. If each best test is admissible, then ** is admissible,

and hence is strictly better than Q* or else it is equivalent to

ee These considerations establish the following

Lem 2.a If the family of density functions f(xQ), 0£ e f14 admits

a sufficient statistic t = t(x) having the monotone likelihood ratio

property, then an essentially complete class of estimators is con-

stituted by estimators of the form Q* = @*(ty), any nondeareasing

function of t and of y, where y is an observed value of an auxiliary

randomization variable Y bavit"g uder each 0 the same uniform dis-

tribution on the unit interval 0 • y - 1, and such that t I t"

implies a (ttyt) g*(t",y") for all y',y",
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If t(x) has a continuous oed#fop for each 0# then estimators

of this form but sot dependibg upon y constitute an essentially

complete class of estimators*

8 _ Score quasistatistigs and g2eneralized maxim=m likelihood

estimators.

For a given family f(x0), # e a L# let 1(@),P 02(0) be two

functions defined on jfl. taking values in Xý4 and satisfying

i(@) -c 02(Q) and Ql(@) -s 0 -s 02(0) for Q e fto Then for each

Of e CL, a best test of Hi: Q = QI(Qt) against H2:Q 02(01) is one

which accepts H1 when the quasistatistic

S(xQl(Q),0 2 (Q)) r (log f(x,02 (G)) - log f(x,,01 ())]/[Q 2 (Q)-0 1 (G)]

satisfies S(x, 1 (01'), Q2 (01))_S G(Q,,a(Q.)), where G(0,a(a')) is a

constant such that a(0I)is the probability, when Ot is true, that this

inequality will be satisfied. For many problems the functions

OI(G), Q2(Q), and a(Q) can be chosen so that the generalized score

auasistatistio v(x,Q) = S(x,0 1 (Q),0 2 (0)) - G(Oa(Q)), 0 c 1-

satisfies the conditions of Corollary 1 and hence defines an

admissible estimator G*(x) as the solution 0 of the equation

v(x,Q) = 0 If, for example, Prob tv(X,P) = oI0J j 0 for 9 e

and the set {xlf(xQ) > 0) is independent of 0 e j%., then each

acceptance region Lxlv(x,o) s 0} gives a best test which is

essentially unique (a.e. P%, @0 e rJ, and hence admissible for

* . testing H(Q) and H(0-).

Again, as 02 () -. ,() --- 0, S(xsl(0), 02(Q)) -= S(xQ)

Slog f(x,0),

if the derivative exist& at each x, for each 0 i f4q consider as

IL
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above the (locally-beet) scots -uasistatisli

v(x,O) - S(Q) ) - G(Q~a(Q)). Again, if this v(x,Q) satisfies the

conditions of Corollary 1# then an admissible estimator 0*(x) is

defined as the solution 0 of the equation v(xQ) = 0. It is well

known that, under a mild regularity condition, an acceptance region

ilxv(x,,Q) S 03 gives a locally-best test of H(M) and of H(0-); under

additional mild restrictions, such as those mentioned above, these

tests are also admissible* The case G(Qa(Q)) a 0, 0 eA, de-

termines (tbrough the equation S(x,0) = 0) the maximum likelihood
A

estimator Q(s), which is thus shown to be admissible (and to be

locally-best, ioe. to minimize a(u,Q) for 0 near u, among all

estimators with the same location functions) provided that

v(xQ) = S(xQ) satisfies the conditions mentioned* Estimators of

this form were proposed by Tukey [10] on different theoretical

grounds in connection with the methods diseussed in Section 5 above.

Estimators defined by use of the various score quasistatistics

mentioned may be called eneralised mimum likelihood estimators.

If S(xQ) has (or may have) discontinuous distributions, it

can be replaced, as may be desired at least for some theoretical

purposes, by its continuous probability integral transform

a(x,y,Q). = yOProb [S(X,0) 5 S(x,Q) 103,,

+ (l-y)oProb [S(X,0) , S(x,Q)Ig] ,

where y is the observed value of Y, an auxiliary randomization

variable having, for each 0, the sae uniform density on 0 • y - 1I
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Then for each Op a(Q) may be prescribed arbitrarilyp and the

statistic

v(XyQC(Q)) M a(xoyQ)

has a continuous distribution and takes negative values with

probability a(Q). In suitable problems, with suitable choices of a(,

the quasistatistic v so defined will satisfy the conditions of

Corollary 1 The same treatment can be applied to the form

S(xI (),2 (0)). eTo avoid technicalities of littls intrinsic

interest, we discuss the case in which such randomization is not

used*

If Prob (v(x,Q) = 01 01 = 0 for each 0 e PL, then each such

estimator has the location functions a(Q.-,Q) = 1 -a(Q+,Q) r Q(Q)*

If a(Q) a 4* a constant, such an estimator is a confidence limit;

if a(Q) u 1/2, such an estimator is a median-unbiased point esti-

mator. In the important case that X = (Yl,...Yn), a sample of in-
n

dependent observations Yi' we have S(XQ) =7 S (YiQ); the normal

approximation (based on the Central Limit Theorem)

a(Q-,Qe) = Prob {S(X,Q) < O 01& ](0) = 1/2

(using that E(S(X,Q)IQ) a 0) is often close; hence in such cases

the maximum likelihood estimator 6(x) is approximately median-

unbiased. If S(X,G) has a symmetrical distribution under g, then

clearly 3 is exactly median-unbiased.

In some oases, as illustrated below# a family of score quasi-

statistios eag.
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v(x,Qa) = S(x,Q) - G(QC), 0 S a ¾ l,

or

V(xQa) = S(x,0(Q),9 2 (G)) -G(Qa), 0 1 a S I#

can be used to determine admissible confidence curve estimators

Q(x,a)# 0 S a I ID as solutions of equations v(xQa) = 0.

Estimators based on score quasistatistios have direct useful-

ness, which is enhanced by the simplicity of their theory and of the

practical techniques for their use. In addition they are of special

theoretical interest, due to their relations to the asymptotic

theory and techniques of maximum likelihood estimation; they

generalize and justify these techniques in an exact senses The

following considerations lend them further intrinsic interest: For

any given problem of estimation of s, consider the class of esti-

mators having specified location functions a(G-,Q), a(Q+,Q)o For

each Q t £•and each u ý Op u t Ai let a(uQ) - m$ a(u,0,0*), where

for u > Q the minimum is taken over all estimators such that

a(Q+,Q.Q*) = a(Q+,Q), and for u < Q the minimum is taken over all

estimators such that a(Q-,Q,*)= a(Q-00). Then a(u,G) is the

enveloe rk curve (i.e. the minimum of the respective ordinates of

risk curves) for the class of estimators with the given location

functions. For each (u#Q)p it is possible to attain a(uQ) in the

following sense; if u > O, the relatively trivial estimator which

takes the value 0 with probability 1 - a(o+,Q) when 0 is true, and

which takes the value u otherwise, and which minimizes a(u,Q, *)

subject to these conditions, is equivalent to a boat test between

the simple hypotheses 0 and u, of the indicated size; such a test
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can be based on the score statistic S(x#uQ); similar remarks

apply to the case u < e. Each such single statistic S(xu#Q) can

be embedded, as an elemento in a score quasistatistio

8(X#Ql(Q)J02(Q)) for 0 e f-4 it may or may not be possible to define

by use of this quasistatistic an estimator which has the specified

location functions, An estimator can attain a(uQ) uniformly in

(u,,Q) only in problems having the special structure described in

Section 7 above# for which uniformly best estimators exist* In

other problems, some estimators defined by generalized score

quasistatistio attain &(u,Q) at some but not all (u#Q). In all

problems, the computation of a(u,Q) requires. calculations of

probabilities of events defined by score statistics S(x,u*Q); and

the possibility of its attainment by some estimator at specified

points (uQ) is related to the existence of suitable score

quasistatistics.

8.1 Large-sample approximations,

If x = (y7l#..yn) is a sample of n independent identically

distributed observations (non-identioal distributions can be
n

discussed similarly), S(x,0I(Q),Q 2 (Q)) = .• S(y 1 ,Ql(Q),0 2 (Q)). Let

V(u,0) = E[S(Y1 ,I 1 (u))jQ1] and (u,Q) = Var [S(Y1 ,O1 (u),Q 2 (u))jQ]

exist for each QGu e /-.L We allow 01 (Q) = 02(0) = 0 here, taking

S(X,0,0) s S(XQ) in this case, and assume that 0104020) are

fixed, while n may vary, in the present discussions
nIn the special case vn(XQ) =I S(yji,), which determines

the maximum likelihood estimator Qn(x) as the solution 0 of

vn(xQ) = 0, we have by Xhintchine's Theorem (even if c-e(uQ),s do

not exist) that n Vn(X'u) converges in probability to ji(u,) when
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a is true It ut < 0 c u" implies V(ut*0) -c P(Q*) 9 0 - 0(u",Q),

then LUmn a(u,40 8 n) n 0 for u # 0; that is, Zn is consistent.

Returning to the general oases for large n the Central Limit

Theorem gives the normal approximation to the distributions of

n
V n(Xusc) 3 S(Yi';l(u)'Q2(u)) - Gn(Ua).

Prob tv.(X~u~a) 1 11 3 OJI( Gn..ammm 0(u,0))

and for u 0, the approximate determination of Gn(Qa):

which in the preceding formula gives

Prob{Iv (Xqu) S I 'Ioja (VS Lt- U.- + .a r~il(a))

For the maximum likelihood estimator# Gn = 0, corresponding to

a = in these formulae* Thus the risk curves of the confidence

limit estimator Q = 0n(xa) determined by vn(x*,Qa) = 0 are

approximately

u n((h(u,,a,,n)), U < Q,

a(u,.QQn(.,cL))a

1 - j(h(uA,a,n)), u > 00 0 < C 1,

wher

*h(u,Qasn) rn + *+ 00)r1(aL)*

*0 0 U



Here the sufficient (and necessary) condition for consistency of

Qn(xoa), for a fixed as 0 - a -1I is again that ul c 0 c u" imply

(u',o) 'C 0 C P(U".Q).

The verification of the conditions of Corollary I# for a given

v(xQ), is sometimes difficult. Large-sample approximations are of

some theoretical and practical help in this oonnection#, For example

for a locally best confidence limit estimator Q(x,0a), where

x (y 1 ,...yn) and the Y.'s are independent and identically dis-

tributed, we have as above

G n(Qas) A Vro(QQ) r1"(a) s,
and we take

v n (xIQoc) = S(x,Q) /~( )r()

If S(xQ) satisfies the conditions of Corollary 1 (i.e. if for each

x the maximum likelihood estimator 0(x) is determined as the root Q

of S(x,Q) = 0), and is decreasing in 0 for each x, then:

(A) If o(,0) is constant (this is the case in some examples in the

following Section, but not in most examples), then v n(x,,a) is

also decreasing, as required by Corollary 1.

(B) If cr(O.0) is decreasing or increasing at 0 = 0', then for a

fixed x and a sufficiently near 0 or 1, either

mndlo(QVWr 1 a or - nAQ#4)r1 (lma) a na(0,QGr 1 (a)

will be increasing more rapidly than S(x,0) is decreasing at

a a 0I, so that vn(xQ#a) and vn(x,*,l-a) cannot both be de-

oreasing in 0 at 01.
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(C) On the other hand, for any fixed a, 0 < a < 1, since

vn(x,'Qa) Cs(y870) W 3- )

a sufficient condition for vn to be decreasing in 0 is that

S3l(-()

be decreasing in 0, for all values of yl. Clearly as n

increases, this condition becomes a less restrictive one, being

in general satisfied for a wider range of values of a.

8.2 Local approximations for locally best estimators.

In cases where there exist precise estimators, that is

estimators whose risk curves are small except for u very near 0. it

is natural to center attention on small neighborhoods of the possible

true values 0, and to consider estimators whose risk curves are

relatively small in such neighborhoods, such as those based on score

quasistatistics with 02(0)-@1(G) small or zero for all 0. If

'(u,Q) %-i- • (u,) and cH(u,@) = au -(u,Q) exist, then

h'(u,Q,,a,n) = - h(ugaan) gives the Taylor series approximation

h(u,0,a,n) a h(0,Q,a,n) + hl(Q,0,a,n) (u - 0)

and a corresponding alternative form of the above approximation to

a(uO,9,n (*,a))* In the special case of locally-best score quasi-

' tatistios, since p(Q,0) - 0 and 0'(080) (200). we find



h(uDGo~,n) & V• D)( - u) + r 1 (w)(l + (Q . u)]-

In the first terms the coefficient /o(QA) of the error (0 - u) is

VI(TT where I(Q) is Fisher's "Information in X at 0," The second

term is zero for a = and for the maximum likelihood estimator; for

other estimators $ the first term dominates the second as n increases.

The indicated approximations to risk curves are

a(us n)& a(u, ,00n(6,65)) ([u - 00p

and for az•

r (... same argument .. o), u> as

& (more roughly) ](.-V'nd 0 .u-•.

These approximations exhibit the approximate normality of distribu-

tion of these estimators for large no While locally best estimators

are in general not comparable with other estimators (e~g. those above

with 0i(0) - a2 (Q) for all 0) having similar location functions

except in problems of a simple structure# the designation

"Information" for I(Q) is clearly appropriate and useful for cases in

which so much precision is attainable that interest is practically

restricted to very small ju - 01, in which case an appropriate choice

of an estimator will usually be one whioh is locally best or perhaps

on* defined as above with 02M.)-Q m) small for all Ge
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It should be noted that the preceding approximations which

utilize a Taylor series approximation are not accompanied by bounds

on errors of approximations. Even in oases where such approximations

are very close, under a severly nonlinear transformation of the

parameter space (0-07q = R() with ¶() differentiable and increasing

such approximations can become very inaccurate. Hence the principal

concrete value of such approximation formulae seems to be that they

provide convenient quantitative conjectures which are more or less

plausible but which require independent confirmation (or disoon-

firmation) for specific problems and sample sizese Similar remarks

apply to the preceding approximation formulae based on the Central

Limit Theorem onlyo with the qualification that such approximations

could be termed "less asymptotic" than those which also use the

Taylor series approximation, in the sense that the former approxi-

mations are unaffected by monotone transformations of the parameter

space, and their use can be accompanied by use of the known bounds

on errors in the Central Limit Theorem approximation.

823 Remarks on asvmptotio efficiency of estimators.

The theory of the asymptotic efficiency of maximum likelihood

estimators (of. for example Cramer (13], pp. 500-504) utilizes a cri-

terion of asymptotic efficiency (leo. 489-490) which is restrictive

in that it applies only to estimators having asymptotically normal

distributions with means equal to the parameter estimated; such

estimators are clearly asymptotically median-unbiased (probability

of underestimation approaches as n increases). It is advantageous

to use a less restrictive criterion of asymptotic efficiency* one.

which applies to all (sequences of) estimators which are asymptotgo'

I+++
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ical1y median-unbiased. In order to embrace confidence limit

estimation as well as point estimations it is advantagous to defIne

a criterion of asymptotic efficiency which can be applied to any

sequence of estimators whose probabilities of underestimation (at

each Q) converge with increasing n to a fixed constant a, 0 < a < 1;

any such sequence may be termed an as-ymptotioall, valid sequence of

confidence limit estimators (of specified coefficient a)*

Under broad conditions (some simple ones were given above)

consistent estimators exist; it is then natural to define asymptotic

efficiency of estimators in terms of the properties of risk curves

of estimators in the neighborhood of the true value of Q: an

asymptotically efficient sequence of confidence limit estimators may

be defined informally as one which is asymptotically valid and

asymptotically locally best. The estimators defined above and

illustrated in the following section based upon quasistatistics of

the form v n (xn,,) = S(xn,). 0n (Q,a)provide examples of such

estimators, and have the further properties of being exactly

(non-assymptotically) valid and locally-best (and typically ad"

missible). Additional examples are based on quasistatistios of the

form Vn(xn,,Qa) = S(xn#Ql~n(Q),Q2,n(0)). Gn (Qa,) where as n increases

02,n (0)- .a1,n() decreases to zero rapidly enough to give the

asymptotically locally-best property; such estimators have the

further properties of exact validity and admissibility, and the

functions Q Ln(Q) can be chosen so that for any finite sample size

a suitable emphasis is given to avoiding errors exceeding specified

positive magnitudes; for practical applications, such estimators

seem preferable in principle to (exactly) looally-best estimators,
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The usual asymptotic theory ('loc) is free of the important

assumption (b) of Corollary 1 above. From the present non-

asymptotic standpoint, for each Q the acceptance region

A(Q) a txIS(x,o) s oJ represents a locally-best one-sided test, and

the family of such tests can be used as usual to define a confidence

region for estimation of 0,. namely UWx = Qjx e A(0)Q e C-' in

general such a confidence region will not have a constant confidence

coefficient, but its theory and interpretation in applications

follow usual lines. The failure of assumption (b) corresponds to

the failure of the sets A(Q) to constitute a nondecreasing sequence

in 0; this in turn corresponds to the fact that, for some x. the

confidence region U(x) will fail to constitute an interval
[Q*(x),;] which can be described by a lower estimator 0 (x). The

theory of admissible confidence regions not necessarily of interval

form, and their interpretation in applications, lie outside the

scope of the present paper. However, from the present standpoint it

may be observed that the principal role of the regularity assumptions

in, for examples Cramer (l.co) is to guarantee that with increasing

n, for each Q the probability that U(x) will be an interval (or

equivalently that S(x nQ) will satisfy the assumptions of

Corollary 1) approaches unity: More precisely with increasing n,
for each Q the probability of the set of points xn on which S(xnpu)

,

is decreasing in u (at least for u near 0) approaches unity. The

key step of the derivation from this standpoint is the observation

that the law of large numbers appliess when 0 is true, to the sum

au(Xu) =z auM S(Yipu)p each term of which has (at least for u

near 0) a negative expected value ZE[- 2 log f(Y 1 ,u)IQ], (Similar

remarks apply to use of generalized soore quaasistatistios which fail
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to satisfy condition (b) of Corollary 1.) Dropping the qualification

"for u near Q" gives that the probability of multiple roots of

S(xn,Q) = 0 approaches zero with increasing no Asymptotic

efficiency properties of confidence limits and intervals defined by

use of quasistatistics of the form S(xnoQ) - GA (,a) were proved

under broad regularity conditions by Wald (14]a

The remarks of Lehmann [15], on the limited value of any

exclusively-asymptotic theory of optimum tests apply with equal

force to estimation theory. Asymptotically efficient estimators

may approach efficiency at arbitrarily slow rates as n increases.

Only on the basis of an auxiliary non-asymptotic investigation of

the quantitative and/or qualitative (optimality) properties of an

asymptotically efficient estimator can it be recommended in an

application with a specified (finite) sample size*

9. Examples. Zxamples 1-3 illustrate that the formal treatment of

Section 8 can often be applied conveniently to problems admitting

uniformly best estimators.

Example 1. Normal mean. Let x = (yI''" Yn ) be a sample of n

independent observations from a normal distribution with known

variances say 02 = 1, and unknown mean Q, - co c 0 c oo. Then

f(x,Q) =(2) ( e-

Let

v(xQ) = e2loAsL



where a(Q) is a given function* Then

V(X#Q) =M - 0) - G(Q,a(Q)) = n - nQ - Vn! ](a(Q)) ,

where n = yi and "(u) is the standard normal c.d.f. Then

v(xQ) clearly satisfies the conditions of Corollary 1 if c(Q) is

such that 0 + 1 '-l(Q()) is increasing in Q; as n increases, the

latter condition becomes a less restrictive one on a(Q); it is

obviously satisfied if a(Q) 9 a, 0 S a S 1. For each such function

a(Q), an admissible estimator W (x) is defined as the solution 9

of v(x,G) = 0, that is, of

Q +__i _(Q) .

Denoting the solution by Q(y), this gives Q0(x) W Q(); Q(j) oan be

any increasing function of j if c(Q) is suitably chosen. For

a(G) = a, this becomes (in the general case where cy2 is any positive

number)

'* (x) = G(x,a) = y - - p1 (a) ,

an upper confidence limit of confidence coefficient 1-a (and/or a

lower confidence limit of coefficient Ca)* Each of these estimators

is, by Lemma 2 above, uniformly best among all estimators with the

same looation functions a(Q .- ,) al-a(Q +,Q) - a(Q). Taking

a(Q) gI gives 3(x,.5)ý' = (x) Q. Since this estimator is



independent Of the value assumed for crý2 the classical (maximum

likelihood and man-unbiased) estimator ' is uniformly best among

all median-unbiased estimators of Q even if 2 is not known. The

same property clearly holds for the classioal least squares

estimators of linear regression theory under normality assumptions.

Examvle 2. Normal variance. Let x = (Ylt* Yn) be a sample

of n independent observations from a normal distribution with known

mean, say Ii = Op and unknown standard deviation Q = ( 0 < dC< oo.

Then

f (x,Q) =(2v02~)'2e2 2Y

Let v(x,Q) = h log f(x,Q) - G(Qa(Q)), where a(Q) is a given

function. Then

v(x#Q) -1) - G(cra(e')) a

where s2 ~Y2 is the usual unbiased estimator of e2. For a

n2given d, * has the Chi-Square distribution with n degrees of

freedom; hence G(Cra(O)) 2 where is the lower

a-point of the Chi-square distribution with n degrees of freedom.
2

Thus v(xQ) =A U- - A9(e)), If, for examplev a(U) = a., then

Q*(M) Q(x,E) = s n a

whieh is a uniforaly best estimator, by Lemma 2 above. A uniformly
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best median-unbiased estimator of dis oix,.•). Similarly, uni-

formly best estimators of the variance C are given by

~2 2xG 2 Z'n

2 2.
When n is not small, n/ys *5 1, and a-(x,.5) a 5 and r (x,.5) 1 52 .

Thus the commonly used point estimators s and c2 can be Justified

on the grounds that they are uniformly best (among estimators with

the sasm location functions) and very nearly (except when n is

very small) median-unbiased. Tables of the Chi-square distribution

provide the constants , which can be used in place of n in

standard procedures for computing s or s2, to obtain the estimates

o-(x,*5) oro?(x,*eS) respectively. Comparisons of these and other

estimators from the standpoint of median-bias, with tables, were

given by Eisenhart and Martin [16]. For the more usual problem in

which I is unknown, with N = n+l observations, the same remarks

apply to the usual mean-unbiased estimator 2 - - 1)

and to so The theory of such multi-parameter problems lies outside

the formal scope of the present papers

Example 3. Binomial mean. Let x = (y 1 ,...Yn), where the Yits

are independent, Prob (Y 1) = a, Prob (Y 0) Z 1 -0,

0 < 0 < le Let Z be an auxiliary randomization variable, uniformlyn
distributed on 0 -S Z 1< . Then t = t(x,z) =n + z, where nr =y

is a sufficient statistic having the monotone likelihood ratio

property; hence each nondecreasing function Q*(t) taking values in

the unit interval Is a uniformly best estimator. The classical

(maximum likelihood, unbiased) estimator Is 0 [t]/n ' y, where [t]



Is the largest integer not exceeding to By use of binomial tables,

exact confidence limits Q(tc) and median unbiased estimators

Q(t,.5) can be determined easily as the solutions 0 of the

equations a * Prob (T L tIG), where t is the observed value of

the statistics For typical purposes of informative inference, it

seems preferable to dispense with use of the randomization

variable z; a non-randomized uniformly best point estimator having

location functions closest to ½, in a certain senses is defined

for each observed value of nY as the solution 0 of the equation

Prob (Y 'F1Q) = Prob (Y > jtQ); this estimator 1t•) is easily

determined by use of binomial tables; when n is not small, we have

( - .In all cases the effect of the randomization variable

is minor except when n is small. Thus the classical mean-unbiased

estimator can be justified on the grounds that it is uniformly

best (among estimators with the same location functions) and is

very nearly (except when nQ or n(l-0) is very small) median-unbiased

Other discrete examples with the m.l.r# property, such as the

Poisson and negative binomial, may be treated similarly.

Example I. Logistic mean. Let x = (yl,•e.yn) be a sample of

n independent observations from a logistio distribution with unknown

mean 0: Prob (Y __ yIQ) = iy - 0) = I + e'(YQ))"'l, -o00 < y < 00,

- 00 < Q < oo; Y has the density function

*(y-Q) a ein(Y')/(l.e'(YQ))2, - o< y .0 4P

For any fixed > O, taking I( = 0 . , () Q +

determines a score quasistatistic



s(xDm/~+) =~ [• (log ) -log

For any fixed Ca 0 a 1*, taking a(Q) a= a determines a score

quasistatistic

v(x,Q,a) = s(x,Q-mI,Q+A) -G(Q,a)

which satisfies the conditions of Corollary 1 of Section 6 above,

and hence determines an admissible confidence limit estimator
Q= (x,a) as the solution Q of the equation v(x,Qa) = 0* Since

Q is translation parameter, G(Q,a) is independent of g, and may be

written G(a). By symmetry, G(.5) = O. G(a) can be determined

approximately, except for a very near 0 or 1 and for very small n,

by use of the Central Limit Theorem; let V(u,Q) and 7 2 (uQ) denote

respectively the mean and variance of S(Yu-/,u+&) when Q is

true; then ti(Q0,) = 0 by symmetrys we may write i.(u-Q) and

•(u-Q) because Q is a translation parameter. We have

Prob 1v(X,uoa) s 0 (G(a.)-mnglu-Q)

which provides an approximation to the risk curves a(u,,Q*) of the

estimator * = Q(x,a); for the determination of G(a), similarly

Prob wv(XQha) s orula a o 1(G(a)/vetea-(O)pp or 0(a) r veeo]"(a)'.

This, with the formula above gives the approximate risk curves of 01



a(u,+QQ*) "

1 - (...same argument...) roy u > 0.

The preceding discussion depended throughout on the chosen

value L > Oe A locally best confidence limit estimator

Q* = Q(xsa) is determined as the solution Q of the equation

v(xQsa) S S(X,Q) - G(a) = 0.

Here S(yQ) = log *(y-Q) = 21py-0) - l;j(Y-Q) has, when Q is

true, a uniform distribution on the unit interval; hence when Q
n

is true the ood.f; of Tj(Yi-Q) ( and hence that of S(XO)) can

be calculated as in Cramer (13], pp. 244-246. The normal

approximation gives (since

e-2(0) = Var(S(Y,Q)IQ] =½, Var [S(XQ)IQ] = n), G(a) A

a = gives exactly G(0) 0 and determines the maximum likelihood

estimator a = Q(x,.5). In generals a locally best confidence limit
1estimator Q(x.a) is determined (approximately, except for a = as

the root Q of the equation S(x,Q) = /' rl(a), or

nnn

*- + 2 + ~r1(a)

Such an equation is easily solved numerioally by use of Berkson's

LItables of T(u) ([17]
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The present example serves also to illustrate the deter-

mination of an admissible confidence curve estimator by use of a

family of quasistatistics as described at the end of Section 6

above. Each of the families of quasistatistios v(xQpa), 0 Sa a 1

considered here (each based upon a fixed 0 • 0) has the property

that Q(x,a) is, for each fixed x. decreasing in a; in fact, for

each x, Q(xa) decreases continuously from co to -oo as a

increases from 0 to 1. Thus for each observed x, each 0

( -oo S Q g oo) will be a confidence limit Q(xoa) for some a; we

can conveniently determine the required solutions Q(x,a) of

v(xQa) = 0 in the form

a(x,.Q) = Prob {S(X,G) S S(x,'P) [Q An S(xQ))

for as many values of Q as desired.

Numerical example, Let x = (yl,y 2 0y3 ) = (O,0,6). Letting Qi

denote a trial value of 9. Si = S(xQi), and ai =a(x

Prob {S(XQi) • S(xO i)1i , i = 1,2,.e., and taking 01 = = 2

as a trial value plausibly near Q(xo.5) = we obtain

S0 = 2 1(yi-2) - 3 = -0.9, 559 ](- 9)= .288.

Further similar computations are summarized in Table 1 and in Fig* 7

a sketch of the confidence curve *(ADx) mi na(x,,Q)# l-a(x,)j]

I



Table I

a 81 approx* a e xaot a1

1 2, 0 -o.,559 4288
2 1.44 -. s 256 .o399
3 1.o18 -0,758 *470
4 1,.12 -0. 031 ,,488
5 1*08 -o, 0005 .4998 .4998
6 34*08 -Q.927 .,177
7 4.0 -l1.66 .122
8 5.0 -1.511 ..065
9 6.0o -2.o 0 .0023

10 7T0 -2o.462 ,007
11 -i.* 0 1.924 .0973

12 -2.o 0 2.523 ,994 .,998
13 0.0 1,0 o841 o833

c(e,x)

I \

.3 -

.2 /

Ie

I - -w t --2 -1 0 1 2 3 4 5 6 7 8

Figure 1
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The closeness of the normal approximations can be checked in

the present case by use of the exact formula (based on Cramer, l.o°

3

- 3 1

1 0(3-2)3  2 z 3

where z z(xoQ) = -(S(xQ) + 3). The approximation is seen to be

quite adequate here* In other examples, if exact values of

a(x,Q) cannot be obtained by use of standard tables or tractable

integrals, one may consider checking approximate values of

a(x,Q)p for a few values of Q of particular interest, by use of

(a) the error-bound on the normal approximation, (b) numerical

integration, (c) empirical sampling (Monte Carlo), or possibly

(d) an asymptotic expansion* For (a) and (d), see Wallace, [183.

The values Qi above, for i = 2,te*5, were determined by

Q i+l = 4 + Sip based on Fisher's formula

Qi+l = a + S(X'Q )/Var [S(X HQ for iterative calculation of

maximum likelihood estimates* If log f(x,Q) I aQ2 + bQ + o for

some constants a c Obc, at least for Q near %(x) (asymptotic

theory shows that this will be the case with high probability for

sufficiently large n, under certain regularity conditions), then

S(x,Q) 1 2aQ + b,9 S(x,Q) = 2a; (a2 + bQ + o) is minimized by

0 mb/2a Q - S(x,Q)/ 6 S(xQ). 5 S(xQ) may be calculated

directly; or approximated numerically from difference quotients

based on previously calculated 0 t'; or (as done above)
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"estimated" by its expected value: for sufficiently large n, with

high probability the approximation

* ns(xso) EC E(ýS( On)I Eva- log f(X,)tQ]

=-Var [S(X,Q)jQ] - I(Q)

is effeotively close1 The rate of convergence of 01 to may be

slow as above, for samples with "improbable configurations" and/or

small n; use of #S(x,Q) rather than its expected value here would

evidently give faster convergence, but would require additional

calculations for each ig Speed of convergence is not of exclusive

interest here; since a number of values of ai = a(xQ 1.) are

desired for a sketch of the confidence curve estimate, any oonvenie

method of choosing successive %iIs may be used.

The values @6 and 911 above were chosen as trial approxi-

mations to the confidence limits G(x,,025), Q(x,.975) respectively,

by use of the asymptotic formula for such confidence limits:

. r 1 (.975)/Var (S(XQ)IS] B .1 2

The poor approximations obtained provide a limited illustration

of the fact that such approximations are "more asymptotic," i~e.

my be expected to be often less olose, than the normal

approximations to distributions of score statistics.

Wale 5 La•laoeMce aA , Let x = (y1 ,...yn) be a sample

of n independent observations from a Laplacean (double exponential)

distribution with unknown man Q, -oo < -c oo, with density



function

hlyQ) = *•ly-e - 00 < < < 00

For any fixed Z > 0, let v(x.Qa) S(xQ - L + - G(Qa)

-~ ~ ty - - ~i- y1 - 0 +~) G(ca)

We note that

if _y

y - A- - ly-Q+ & = 2 (y-Q) ify-/ •S;gy +A

ify +A -go,
and hence

n
'2&n _ (l~i " 0 I.x - " + t:) g 2An f or all xe.

Since Prob 4Y S Q o -IQ- 1 the o.d.'f of

t( tyi " " -i -Q + AI!) has a jump of (1 e-A)n at each
end of its range, and is continuously increasing between these

jumps. Hence G(a) is well-defined if (2e-/)n < t o (.-/A)nl

for other ats use of an auxiliary randomization variable would be

necessary; by symmetry, G(g) = 0 A simple computation gives

Var (IY - A - At " IY - 0 + 4&) = 8(l - '- Ae-A), = v,

say; for n not very small and a not extreme, the normal approxi-

mation to the distribution of v(X,*Qa) gives
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G(a)" -().

For any a bounded as above, by Corollary 1 the estimator Q(xo),

defined as the solution G of v(xQ#a) = O, is admissible,

The median-unbiased estimator Q(x) Q(x,.5) defined as the

solution 0 of

n np kyi - A) - *t - (yi~ ÷A) - .

(which is easily solved numerioally)p depends upon the particular

value L chosen; the error-probabilities a(G - A.900,0

a(Q + /,QO*) have a minimized common value for all Q.

Locally-best estimators ("/ 1L 0") O(x,a) are defined by

use of

n nv(xQa) :• I(yt 3) .,) I(yi < Q) . G(aL)

where, for any relation R, the indicator-function I(R) is defined

by I(R) = 1 if R is true and I(R) = 0 If R is false* Thus

n n

; I(Yl > 0) - I(y'i < 0) is the number of observations y,

exceeding 0 minus the number of observations., less than 0; with

probability one, the observations yi have n distinct values, and

may be ordered, Y(1 ) < y( 2 ) < ,,"< Y(n)' Then



n, if 0 <
n-1 0 if 0 =

SI(yi > a) I(yi < 0) = A.2, if 7(l)

.n+1o if = W! and

--n if 0 > 7(n)*

Let r be any integer, 1 s r s no It is easily seen that for

1 n (), G(a) n + 1 - 2r;

hence

n n
V(x,Q,4) = I l(y > 0) -1- QIly • ) - (n + 1 - 2r)

With probability one, v(x,Q,a) = 0 will have a unique solution,

namely Q(xa) = 7(r)" Since G(O) = -n and G(1) = n, Q(x,l) r -oo

and Q(x,0) r oo. For any observed x, the set of (n+2) confidence

limits

[Q(x.l xl(½n,.(x.,(1)n)'Q(x,0)] =_ [_oo,7(1)Y2.yn,]

-OY()OY( 2 ). Y(n)#0oJ

serves as a (locally-best) confidence curve estimate. (For other

values of Ca use of an auxiliary randomization variable would be

required in defining v(x,Q,a).) In contrast to the approximate

confidence limits given by asymptotic methods, the various exact

confidence limits here depend on all values y. in the sample x and

not only on the value of 7 =((n+l)/2)' the sample median (for n

odd).



For the more general problem of estimating the median 0 of a

Laplaooan density function

h~y, ) = 0 <-y- l/ao . , < , ,

with known scale parameter o > 0 similar derivations give the

same locally best confidence limits and confidence curve esti-

mators. Since these estimators are independent of c, they can be

used for estimation of Q in the more general problem in which c

is unknown. For the latter problem, they remain valid and locally

best (with respect to errors in estimation of Q# uniformly in o),

and their risk curves respectively depend on the argument (u-G)/oo

Still more generally, let the YiIs be independent with any

continuous oedefe of unknown form, with unknown median 0. Since

the estimators of Q given above remain valid (have the given

location functions), and are essentially unique locally-best

estimators with the given location functions in the special case

of Laplaoean distributions, these estimators may be called

admissible for the non-parametric problem of estimation of a median

of a (continuous) distribution of unknown form. Similar remarks

apply to such use of order statistics y(i) as estimators of the

p-quantile of a continuous distribution of unknown form; here the

generalized Laplacean density function

h(yQ) 
4

• 1-~o'•"•l, ' y• I



for which 0 is the p-quantile, replaces the Laplacean density#

for any specified pp 0 < p < 1. and the derivation proceeds in

essentially the same way as above where p =

Examole 6. quantal response models. Let x a(ylnOOYn),

where the Yito are independent,

Prob JY, =i1toj = P,(Q), Prob JY1 = OIQJ -q,(G) = 1 .- (~

1 = l,eeen,

where the Pi(G)fs are known increasing funotions of 0, having

derivatives P•(G), 0 e_ (_Q,•), an open interval. Examples in-.

elude: (1) Dilution series (19]: Pi(0) = 1 - ea I, where di is a

known "dose" (volume) of material examined in the ith observation,

and 0 is the unknown mean concentration of minute particles per unit

volume randomly distributed in the material* (2) Mental ability

tests, normal model [20]: Pi(Q)= (1/ki) + ((ki-l)/ki)1(ai+b1 0) is

the probability that a subject with unknown ability-parameter 0 will

respond correctly to the ith item in a test. Here I is the standard

normal odofe, and the parameters 0 - ki oP, -00 < a1 I oo, and

bi > 0 which characterize the ith item may be assumed known (or

estimated with high precision) on the basis of previous investigation,

ai represents the item's level of difficulty, bi its sensitivity, and

(1/ki) if positive may be interpreted as the probability of a correct

response due to guessing only. (3) Mental ability test, logistic

model (21]t As in (2), with (u) replaced by the logistic e.d.t.

1 ((l.?)u) = 3./( + e(hl*7)u)* This very slight quantitative modi.

floation gives a model which is equally plausible and has much
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greater mathematical tractability; in the case where 1/ki - O It

provides a sufficient statistic with the monotone likelihood ratio

property. (L) One-parameter bioassay modelj normal form [223 :

P I(Q) = (1/k) + ((k-1)/k)](Q + bdi). Here 0 is the unknown con-

centration of a component in material being assayed; the case

1/k = 0 is most oomnon; di is a known dose parameter; b is a

sensitivity parameter which in special cases may be known or

estimated with relatively high precision. (5) One-parameter

bloassay model, logistic form (23]: As in (4)p with I replaced by

-jr . In the usual case i/k = O, with b known this model provides a

sufficient statistic with the monotone likelihood ratio property*

We have

SPI(Q)/Pi(0) for y. 1,

S(Yi,Q)=

(q (o) = -Ps(Q)/(l-Pi(Q)) for y, = O0

or

and

Pi(uQ) = E[S(Yiju)IQ] 'P(u) 4- 1 u

0"4(U,0 0 Var [S(Y.,u)tlO = P'(u)2 P i(Q)Qi(-)/Pi(u)2qI(u)21

a 000-2(Q*0) , PI(Q)}/P 1(.}Q( *
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The normal approximation gives

Prob (S(X,,u) * kj.Qj 2( i

For a given (u,Q)v this approximation is close provided that (a) the

right member is not very near 0 nor l1 and (b) the number m of

&12(uO)'s near maxia-2(uQ) in value is not small#

If for each i and y., S(y1,Q) is decreasing in 0 (ise.,

P G)"O)ý PI(Q)2 and ()"0 C PI(Q) )0 then v(x,0) = S(x,Q)

satisfies the conditions of Corollary 1, and the maximum likelihood

estimator 2(x), the solution of S(xQ) = 09 is admissible; if the

normal approximation above (with u = Q) is close for respective

values of Q, Q is approximately median-unbiased; if the approxi-

mation is close for respective valuss of (uQ)v 0 has the

approximate risk curves

a(uQ,*) -AM/

l-.(o.. same argument ,), >

More generally, to determine locally best (approximate)

confidence limits O(xpa) as solutions 0 of

V(x,0,ci) M S(x,0) -( a-2oo)lal~)-0

a simple adaptation of the discussion at the end of Section 8.1

above may be applied to the problem of verification of the

conditions of Corollary 10
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Example 7. Reotanuar • Let x a (y1,... yn) be a sample

of n independent observations on a random variable Y with density

h(y,Q)-{ot iei ½ , ÷

0 otherwise,

with Q u E(Y) unknown. Let r and a denote respectively the smallest

and the largest of the observed values yie Let Q = Q*(r,s) be any

functions defined for all r,s such that r a r + 1, which

satisfies s - 7 S*(r,s) I r + 2 and which is nondecreasing in r

and in so Then G*(rs) satisfies the conditions of Lemma 1 since,

for each Qo' xje.A 1 and txl@* - @oj satisfy the (necessary and)

sufficient condition given by Pratt (243 for admissibility of

one-sided tests on Ge Venketeraman [251 has shown that such

estimators constitute an essentially complete class, and has given

minimal complete and minimal essentially complete classes of

estimators of 0.

For samples of size n = 2, each of the following estimators is

admissible and median-unbiased:

e(x) (r + S)/2, the usual mean-unbiased estimator.

01W(x) =if a>r+

r + / 1), W if a r + 1///,

(x) + r s

i f r "l/ .



Among median-unbiased admissible estimators, Of is uniformly best

with respect to errors of under.estimations and G" is uniformly

best with respect to errors of overn.estimation, Analogous confi-

dence curve estimators are easily constructed.

For any fixed kI 0 1 k • , for testing hypotheses of the form

H(Q0): 0 g Q 0 or H(go-): Q , < QO# there is an admissible acceptance

region

A(% ) t {0 + ks 0 +

and another admissible acceptance region

From such tests we obtain admissible confidence limit estimators at

each level, and the corresponding admissible confidence curve

estimator:

O Oif 0 2 r + or a -
O(Q~x) = 1x, . 10 . r_3I] 2 , otherwise .

If x = (0.9,1.1) = (rs), or alternatively if x = (0.6,1.4) = (r,s),

we obtain respective confidence curve estimates which reflect that

the "amount of information in a sample" increases with (s-ur):

S( 9,x) C(e,x)

0 05 1.0 .5 1.0 1.5
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Alternatively# for any fixed k# k there is for

each H(Q ) and H(Qo-) an admissible acceptance region

A(%o) axI((I- k)r + ( + k) s 0o +k "

From such tests we obtain admissible confidence limit estimators

at each confidence level, and the corresponding admissible con-

fidence curve estimator:

C 0,if a .r +uorQ s -
o(Qx) =

I[,s~r~i, otherwise

For the two samples considered above, we obtain the respective

confidence curve estimates z

c(Ox)

0 .5 1.0 1.5 0 .5 1.0 1.5

< 04- 0 -

Since the last curve lies under that given by the first estimator

for the same sample, it provides stronger inferences about Q* This

is not inconsistent with the admissibility of the first estimator,

which provides (at most confidence levels) stronger inferences

(shorter confidence intervals) from relatively uninformative

samples like the first sample.
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M L Cauchy medai. Let Y have the Cauchy density

function h(yG) Tmy -o0 'C y -C mo0 -0 T Q I 0, 7.hen

S(YOQ) * Taking v(x,Q) = S(yG). the conditions ofl+(y-O)•

Corollary 1 are satisfied# and v(xG) = 0 defines the median-

unbiased locally-best estimator Q*(y) = y7 However for a p .p

0 - a -c 1 the conditions of Corollary I are not satisfied by

v(x,Q) = S(y,Q) - G(a). For x = (y 1 ,Y2 ), even for a =,

2
v(x,G) = S(x,Q) = S(yi) fails to satisfy the conditions of

Corollary 1, (For t72 - Yl' large, S(x,Q) = 0 has three roots Q.)

Thus in general there do not exist confidence limit estimators

(nor median-unbiased estimators) which are locally-best uniformly

10. Introduction to general theory of admissible estimators.

To illustrate the general theory of admissible estimators, and

the place of the methods introduced above within the general theory,

we consider the case in whichfMis finite: 1-. = {QIQ = 1,2,.ek 0

The principal features of the general case (in which i..ia any

subset of the real line) can be illustrated conveniently in this

case, for which the complete theory can be developed by relatively

elementary methods@ For any such estimation problem, we have a

specified family of density functions f(xQ), Q = 1,**.,k* For

each estimator Q*(x), let

Po [Q*(X) u 1 if u# 0

b(uPQO*)

{Ob if U ,
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for u#0 1,oL*k. The risk curves of 0* are

F~ub(J#QQ*)# if u 4 go

a(u9000*) = 0, if u = as

b(5,Q#Q'), if u > Q

It is useful to interpret such an estimation problem in

relation to a somewhat different statistical inference or decision

problem, which for brevity we shall call the multidecision problem:

This other problem is that of choosing# on the basis of an observed

value x, one of k specified simple hypotheses; it may also be

described as an estimation problem which lacks a parametric struc-

ture in the sense that no ordering of the labels 9 of the k

hypotheses is relevant to the problem. Any measurable function

g*(x) taking only the values l,...k, represents both a possible

solution to the multidecision problem (a decision function, or an

inference function, or an "estimator" in the last-mentioned sense)

and an estimator in the sense discussed above.

For the multidecision problem, the merits of each decision

function QW(x) are represented completely by its error-probabilities

b(J,*,Q@); for each Q, such probabilities are the components of the

vector-valued risk function of 0* at 0. The general goal is to

determine decision functions Q* for which these error-probabilities

are minimized jointly in some suitable sense. A decision function

0* is called admissible if there is no other for which all corre-

sponding error-probabilities are at least as small, with at least
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one strictly smller. Complete classes# minimal essentially com-

plete classes, etc., are defined correspondingly (of. Lindley (26]

and Wolfowits [27].)

A simple necessary condition that Q (x) be admissible for the

estimation problem is that it be admissible for the multideoision

problems For if 4" is better than e* for the latter problem,

bQ~jQ, )S Q b ,QQ*) for all (J,0), with at loast one inequality

strict; therefore a(u,*Q.**) s a(uQOQ*) for all (u,Q), with at

least one inequality strict. Thus the admissible estimators are a

subclass (typically a relatively small one) of the admissible

multidecision functions. Similarly every essentially complete class

of multidecision functions contains an essentially complete class

of estimators.

The relations between the estimation and multidecision problems

can be illustrated further in terms of techniques, related to

Bayes' formula, which play basic roles in the theory of each

problem: For any estimation problem specified as above, let

q = q(u,Q) be an arbitrary real-valued function such that

q(u,Q) > 0 for u, Q = l,...*;k any such function will be called a

weight function (for the estimation problem). For any such q and

any estimator 00, we define the (generalized) Bayes risk:

* k k, ..

R(q,*Q*) =q(u,Q) a(uQQ) ,

On the other hand, for any multidecision problem specified as

above, let Q = 1(uQ) g 0 be an arbitrary weight-funotion; then

for any multideoision function Q" the corresponding Bayes risk is:
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R,(QQ*) = u• Q(u,0) b(u,G ) .

For any given Q* and q(uG), we have

R(qo*) = ru q(uG) = b(j•o-) +' q(u,)) fob(JOGOG*

=>u

Sb(JpQ(0') ]:; q(u.,Q) + 0 b(joQ*) qor = '

where

_ q(u,G), for j zo 0

0 , for J= 0

Sq(u,Q),, for 3 -c 0

For each 0. Q(J#Q) is nondeoreasing in J for J = G. and non-

increasing in J for J 1 0; that is, '_1(.Q) has a single relative

minimum which it assumes on one or more consecutive values of J

including J = 0. Thus each weight-function q(uoQ) for the esti-

mation problem determines uniquely a weight-function Q(J#G) for

the multidecision problem. which has, for each 0, a single relative

minimum. Conversely a weight-function Q(.(3) for the multideoision

problem having# for each 0. a single relative minimum (in the pre-

oeding sense) determines uniquely (through the last equation) a

unique weightofunction q(u,0) for the estimation problem. Thus the

Bayes solutions 0 for the estimation problem (iee. the functions
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o* which, for some given q, minimise R(q•g*) are a subclass of the

Bayes solutions for the multidecision problems, ohar'aoterized by

the preceding restriction on the possible forms of the weight

function Q(uG) for the latter problem.

For any given weight-function qp the determination of Bayes

estimators is conveniently carried out as follows: Let Q be

determined by q Ks above. Then R(qO*) . Rt(Q#Q*) is minimized if,

for each xv e*(x) takes the (a) value u which minimizes

Q(uG) f(xQ)* A simple sufficient condition for admissibility

of an estimator is that it be an essentially unique Bayes solution

in the sense that for some q it minimizes R(qge), and every other

estimator which also minimizes R(qQ*) has the same risk-curves

a(u,Q)o (A related sufficient condition for admissibility is that

an estimator be a Bayes solution with respect to each of the weight

functions ql,*q r.l, and that among all such estimators it is an

essentially unique Bayes solution with respect to some qr) An-

other simple sufficient condition for admissibility is that an

estimator be a Bayes solution with respect to some q which is

positive for all u#Q. Every admissible estimator is a Bayes

solution with respect to some q; and the class of Bayes solution

with respect to weight-funotions q is a complete class of estimate

Various specific formulations of the estimation problem can be

exhibited as special oases of the present formulation. For example

let W(J0Q) denote the loss function adopted in any decision-

theoretic formulations the loss Incurred, if 0 is true and it is

inferred that 0 a I# is equal to W(JOS), Then use of any estimator

0 leadb, when 0 is true, to the expootod loss
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ELW~Q*(x).G)iQ] Uy." b(JQQ ) W(J,•,) - r(@,Q') ,

a real-valued risk function (of 9). To illustrate the frequently

adopted specification that losses are proportional to the sQuared

error of the estimate, we replace the convenient labels 0 = lD...k

by the more general parameter values = u l 9 20'*.' 0 k' where

01 01+1' and write W(u00i) = o(Q@) (u- Gi)2, where u is any

vaile in the range of 0@* (The expected mean-squared error can

generally be reduced further by dropping the restriction that the

range of 0* be the range of Q.; the conflict between these con-

siderations disappears in typical probtems where the range of 0 is

an intervale) For any a priori probabilities gi = Prob ( 1),

i = l,.p..k any estimator e* gives the Bayes risk

k )a-
Sgir(Qi.Q = r gie(Gi) T' b(u#QiO*)(u - a

= RI(,Q@*) : R(q,Q*) ,

where Q = M(u,oi) : giO(01 )(U - I)2 ; q(uI) Is determined by q as

above. Numerous examples are treated (without restrictions on Jý-)

in the texts and research literature of decision theory.

A simple loss function for the estimation problem is one of

the form
00' if~ 4O() -C j C 02(a) ,

w(j,Q) - t (:), if j I 01(0)

V2(Q) if 3 2 0(a)

where
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o(G) a 0* 0(a) S a S 02(a, i(G) O< 02(s) for . l,2,9...,k.

This gives the risk function

r(QQ ) =o 1 (Qla(0 1 (Q),Q,Q ) + Ca(G)a(Qa(G),Q,Q• .

If a priori probabilities g(Q) are adopted# then the Bares risk,

with the use of Q* is

Sg(Q)(o 1(Qla(Q1(Q),Q°Q*) + c2 (Q)a(G 2(Q),O,Q*')3

= RI(QVQ) = R(qQ ) ,

where

fg(Q)dl(Q), if u = 0I(9)*

q = q(u,Q) a g(O)o2(O), if u =2(Q),

0, otherwise,

and Q(J.Q) is determined by q as above.

The methods of Sections 6--9 above can be characterized in the

present terms as follows: Writing

R(q,0') = r q(u,Q)a(uQ,Qp*) +~ q(u+l.,Q)a(u+lGDQe

for each u the summand can be interpreted as a linear combination,

with coefficients q > 0, of the various probabilities of errors of

Types I and II given by a test of the one-sided hypothesis H(u):

0 I u, against Hl(u); 0 > u, whore the test has the acoeptanoe
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region ANu) = {x IQ*z OW U3 In Other words# each such term
(with index u) is the Bayes risk in a certain one-sided testing

problem; it is minimized by a suitable acceptance region A(u)

(determined by a technique equivalent to the Neyman-Pearson lemma);

such Bayes acceptance regions are admissible under mild conditions*

If the estimation problem has a suitably simple structure, and if

the weight-function q is a suitable one, then the acceptance

regions A(u) will constitute a nondecreasing sequence in u; in such

oases, the Bayes risk in the estimation problem can be minimized by

minimizing simultaneously each of the mentioned terms with respect-

ive indices u = l*...,k. The Bayes estimator obtained in such

cases is:

u; = if x : A(A) - A(u-l), for u =2#...k

1# if x e A(1),

It is problems having this structure which are treated in Section

6-9 above (without the restriction thati-Lbe finite). The method

of Section 8 is represented by the form assumed by R(qQ*) for the

special case of a simple loss-function, defined as above; in such

oases the minimization of a term of R with index u corresponds to

use of the Neyman-Pearson lezma to determine a best acceptance

region A(u) for testing between two simple hypotheses*

If fis not finite, after choosing any finite subset fj.* C.

(more or less "representative" of x). ) we can apply the above simple

computational methods to determine Bayes estimators of 0 a %

If for any qp the Bayes estimator of Q e is determined
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essentially uniquely on the sample space (up to sets having

probability 0 for all 0 € fL.), then 0 is an admissible estimator

of 0 ex%-* In this way, elementary techniques can provide a

number of admissible estimators illustrative of the variety to be

found in the full admissible class*

11. An application of the Seneral theoryvs estimators having

Prescribed Precision in a specified region.| sequential probabilitv

ratio estimators*

It is sometimes desired that an estimator have high precision

in some interval in the parameter space, while in the remainder of

the parameter space much lower precision would suffices In general

efficient achievement of such a specification requires use of an

estimator based on a sequential sampling rule. One formulation

and solution of such a problem is the following; for illustrative

purposes, a concrete example is discussed*

Let YIY 2,... be independent Bernoulli trials, with

Prob (Yi = 1) = 0, Prob (Yi = O) = (l. -). An estimator * is

required which will have high precision for 9 near .5. This

requirement may be formulated in part as follows: For 0 = .4 or

.6, the probability is at least .95 that 0* will be closer to the

correct one of these two values; in terms of risk curves of

estimators, we require essentially that a(@5,.e4,Q ) S 0o5 and

a(.5,.6,9*) e .05o (Further interpretations of these requirements

in relation to the general notion of precision will appear below.)

To meet these requirements, consider any estimator Q%, and consider

the test of the one-sided hypothesis H: 0 ,5 against H': 0 > .5

given by the acceptance region {zI*(x) g . (The description
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of the sample space on which our estimators are defined remains to

be specified*) The requirements to be met by Q* imply that this

test has error-probabilities not exceeding ,0 when 0 ' *4 and

G = .6. If sequential sampling rules are allowed, it is known that

the last condition is satisfied most efficiently, in terms of

expected number of observations Yi required under 0 =4 and

o = .6# by Wald's sequential probability ratio test [28]. (We

discuss such tests ignoring "excess at termination"; in problems of

the type being considered, this entails that some of the following

equations represent close approximations; for certain problems, no

such qualification is necessary*) The indicated sampling rule is:

Observe YlOY20,**# compute after each observation Ym the sum

dm -yi and h = h(md) = 2dm-m, and terminate observation as

soon as either h = k = log (19)/log (3/2) or h = -k. The resulting

sample space is S = x{xlx (ylp eqyn) n = 1,2,...; ih(md,) I c k

or = k as m c n or m = nj The conditions specified above are met

(with minimum expected sample sizes under a values of Q) by use

of this sampling rule and any definition of Q 4.(x) which satisfies:

O(x) 1.Sfor x such that h a= k

Q*(x) > *5 for x such that h = ke

The definition of 0 * (x) can be completed so as to make it

admissible and median-unbiased* (Because S is discrete, use of an

auxiliary randomization variable is neOessary to obtain exact

M~dian-unbiasdness; we omit such randomization, obtaining an
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admissible estimator which is approximately median-unbiased,)

Every estimator satisfying the preceding inequalities is a Bayes

solution for the above stated problems given the sample space So

The determination of an admissible estimator among these can be

interpreted as an illustration of the technique of using a sequence

of a priori distributions; and of choosing, among all Bayes

solutions for the first such distribution, one which minimizes the

Bayes risk for the second such distribution,

We have

S*1(x,) dn/Q - (n-dn)/(l-Q)

d dn/Q(l'Q) - n/(l-Q)

i n( I )/0(1-@) + k/20(1-0), if h =k

-- k/20(l--)s if h -k

For any fixed o0 S(xQ0) is an increasing function of n as x

varies subject to h =-k; and the set of such points has probability

exceeding when 0 = got To determine a test of H(Qo): 0 g 00

against H'(0o): 9 > 0o, with acceptance region {x14*(x) S 0o

having size 1/2, and having the property that it is a locally-best

test of this form subject to the conditions already imposed upon

e(x), it is necessary and sufficient that e (x) satisfy the

following additional condition: Let n(0o) be determined by

Prob (h -k and n • n(O) 10O) £
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In general# this relationship can be satisfied only approximately,
but always closely except for 00 very near O, Then

e*(x) -S 0 for x such that h = -k and n % n(%O)

Q*() > 00 otherwisee

As 0o increases from 0 to , n(Qo) takes successively the values

kk + lI k + 2lIooe

Proceeding similarly for any fixed o >1 we define n(GO)

similarly for such values, and obtain the conditions

Q1(X) S 00 forx such that h = k and n =z n(o),

G*(x) > o otherwise *

It is clear that all of these conditions on Q*(x) can be met

simultaneously (allowing the approximations mentioned), and that

they provide a full definition of the estimator. Since this

definition depends on x only through n = n(x) and h = h(x) = . k,

Q@ depends on x only through t = t(x) = h/kn. The range of t is

+ i, ! 1/2, ! 1/3,.o. and Q* is an increasing function of t.

Let F(tQ) = Prob {t(X) s t:' I, then the estimator
S* =@(xjs) is defined as the root Q of the equation

v(x,*,.;) a F(t(x),Q) - .5 = 0
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More generally,9 for each a. 0 c a < 1, a confidence limit esti.

mator *(x•a) is defined as the root Q of v(x,#Qa) = O (The

admissibility of such estimators can be shown as above.) The

* family of such estimators constitutes an admissible confidence

curve estimators

Confidence curve estimates of this kind will be narrow.

reflecting high precision, when n is very large, and will be wide

reflecting low precision, when n is very small. It follows from

the requirements imposed upon G*(x,.5) above that whenever
"(x,5) > .5, we have 0*(x,.95) > .14 (whether n is small or large),

and that whenever 4*(x,95) c *5, we have Q*(xo05) c 96; hence the

90 percent confidence interval J(x) = [*(Xo95), Q(x,*05)] will

never include both the values Q .14 and Q = 96s (The event

n(x) = +oo, which has probability 0 under each Q, gives

J(x) = [o4,,.6] and Q*(x,o5) a 95,) This constitutes a useful inter.

pretation of the formulation adopted above of the general require-

ment of high precision for Q near .5o

For practical reasons, it is sometimes necessary to terminate

sampling before this is indicated by the above sampling rule, and

the question arises what inferences can be made validly on the

basis of such partial determination of an observation x. Term-

ination after m observations with lh(modm)I c k is equivalent to

observation of the event -1/m C t(x) I/as For each a, this

implies that the estimate e*(xc) (which would have been determined

by continuing sampling) satisfies _*(x•a) < 0*(x,) c 4(xa)P

where 2*(x.a) are respectively the roots 0 of F(-/m,,Q) a and
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of F(l/m.0) = a, These bounds on an estimate narrow progressively

with increasing ma When such bounds on an estimate (or confidence

curve) become sufficiently narrow for the purpose at hand, sampling

can be terminated without affecting the validity of the

(approximate) estimates obtained.

Concerning the computation of values of F(tsQ) required for

use of such estimators* the function F(O•O) of Q is the operating

characteristic function of a sequential probability ratio test, on

which there is an extensive theoretical and quantitative litbrature

for a wide range of problems* For each Q, when F(OQ) is known,

the determination of F(tQ) is reduced to the problem of deter-

mining the conditional cumulative distribution function of n

(the number of observations required for termination of sampl.ingo

or the duration of a random walk with two absorbing barriers) on

the condition of termination with h = -k ("acceptance of H: 0 95",'

or absorption at the lower boundary), and again on the condition

of termination with h = k ("reJeotion of H", or absorption at the

upper boundary). (The unconditional distribution of n. together

with one of these conditional distributions and F(O.Q), determines

the other conditional distribution.)
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SCHEMATIC ILLUSTRATIONS OF CONFIDENCE CURVE ESTIMATES

OF A BINOMIAL PARAMETER 0 HAVING HIGH PRECISION FOR 0 NEAR

(A) n(x) very small, h(x) -k

o(0,x)

.1 .2 .3 .4 .5 A .7 .8 .9 1.0
- 0-

(B) n(x) very large, h(x) -k

o(Q, x) -.

0 .91.2 .3 .4 .5 .6 .7 .8 .9 1.0

(C) Bounds on estimatei sampling curtailed with m very large.

o(o,x) - .7

o .1 .2 .3 .4. .6 .7 .8 .9 1.0
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