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ABSTRACT

Severe difficulties associated with the design of satisfactory ‘

flush-type HF transmitting antennas for supersonic aircraft have prompted
a reconsideration of trailing-wire antennas for such vehicles. The

aerodynamic instabilities which caused mechanical failure of the trailing- ;
wire type of antenna and led to its abandonment except in low-speed :

applications are carefully examined in this report.

The shedding of a spiral vortex by the pear-shaped and spherical

end-weights customarily used was primarily responsible for rotary mctions

b . s

which occurred at short cable lengths. This behavior can be eliminated

through the use of a stream:ined,, aerodynamically stable end-weight.

B o

To ensure that the antenna hangs down out of the turbulent boundary layer

oty

and walke of the aircraft, as well as to take the fullest possible advan-

tage of the favorable electrical properties of the trailing wire, the

[ X

end-weight should be relatively heavy and have as little aerodynamic

drag as possible,

The phenowmenon of aerodynamic wave amplification, which leads to
violent mechanical cable oscillations in the vertical plane, is subjected '
to a comprehensive theoretical analysis. The partial differential
equations of motion of the curved wire are shown to lead, in the case of
harmonic time-dependence, to an approximate representation in terms of
three waves. A general method is given for solving the boundary value '
problem in a given case., Simple analytic expressions are obtained for
the total aerodynamic amplification of a traveling wave on the curvedwire.
The investigation shows that, although the amplification factor cannot
be reduced to unity at supersonic speeds with wires of known materials
and weightg of practical sizes, it can nevertheless be held below
dangerous levels.

The theory is applied to the computation of certain properties of an
actual experimentul trailing wire system which has been successfully flown ]
at speeds up to Mach 1.24. An amplification factor of ebout 8 is indicated
for the worat flight condition. ' ﬂ
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SYMBOL -
A(ol, az)
Aoy, o)
Aylo), 0y)

a

F
fls,.t)
flo)

G

g

SYMBOLS

DEFINITION

Total amplification of downstream wave from o, to oy

Total attenuation of upstream wave from o, to o,
Amplitude of wave

Amplitude of downstream wave at origin

Amplitude of upstream wave at origin

Value of a at particular point

Coefficient of kth harmonic in Fourier expansion
Abbreviation for cofactor in determinant
Coefficient of u;

Coefficient of u,

Coefficient of kth harmonic in standing wave
Characteristic length of trailing cable

Drag coefficient of a cylinder

(1) Cable diameter
(2) Abbreviation for determinant

Aérodynamic force

Function defined by Eq. (B-7)
Abbreviation for 1 - 2ily/w)(1 + o?)7#
Dimensionless gravitational acceleration

(1) Gravitational acceleration
(2) Amplitude deviation of u

Phase deviation of u

Non-aerodynamic damping constant
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SYMBOL

DEFINITION

Aerodynamic growth or damping constant
Mass of end-weight
Dimensionless transverse displacement

Dimensionless transverse displacement (downstream wave)
Dimensionless tranaverse displacement (upstream wave)
Dimensionless transverse displacement at particular point

Transverse displacement

. Transverse displacement (downstream wave)

Transverse displacement (upstream wave)
Transverse displacement at particular point
Maximum transverse displacement in standing wave
Transverse input amplitude applied at point 2

Dimensionless longitudinal displacement

(1) Longitudinal displacement
(2) Number of half-wave loops in standing wave

Function defined by Eq. (B-41)
Time-free fractional cable tension variation
Total cabie length

Total undistorted cable length

Arc length along cable

Arc length along undistorted cable
Cable tension

Equilibrium value of T

Time

Wave propagation velocity

Wave propagstion velocity in vacuo
(1+o)hy

Homogenous solution for u (downstream wave)
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SYMBOL

DEFINITION

Homogenouu‘lolution for u (upstream wave)
Particular integral for u

kth function in expansion of nonlinear solution
Free-stream air velocity

Component of air velocity normal to cable

Time-free dimensionless longitudinal displacement
Functions defined by Eq. (46)

Function defined by Eq. (B-35)
Imaginary part of v,
Real part of v,

Time-free dimensionless transverse displacement

(1) Horizontal coordinate of point on cable
(2) Real part of uy
(3) Arbitrary independent variable

Equilibrium value of x

(1) Vertical coordinate of point on cable
(2) Imaginary part of uy, divided by 2pv

|-in x‘lln x‘

Equilibrium value of y

Angular deviation of cable at point

Dimensionless coefficient of viscous friction in
N-direction

Dimensionless coefficient of viscous friction in
P-direction

Fractional tension variation

v,
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SYNBOL

DEFINITION

ty
&

Ky

Hp

Coupling constant in N-direction
Coupling constant in P-direction

Dimensionless vertical coordinate of pojnt on cable
Variable of integration

Mechanical wavelength

Mass of cable per unit length

Coefficient of viscous friction in N-direction
Coefficient of viscous friction in P-direction

Dimensionless frequency

Dimensionless natural frequency of end-weight and suspension
in N-direction

Dimensionless natural frequency of end-weight and suspension
in P.direction

Dimensionless horizontal coordinate of point on cable
Air density
Total dimensionless cable length

Total dimensionless undistorted cable length-

Dimensionless amplitude oi second-order length variation
Dimensionless arc length along cable

Dimensionless arc-length coordinate of lower end of cable
Dimensionless arc-length coordinate of upper end of cable
Dimensionless arc length along undistorted cable

Dimensionless time
Slope angle of cable

Equilibrium value of ¢

Slope angle of cable at lower end
Phase angle

Angular frequency
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AERODYNAMIC CHARACTERISTICS OF TRAILING-VWIRE
ANTENNAS AT SUPERSONIC SPEEDS

I INTRODUCTION

Most aircraft antennas for HF transmission act merely as coupling
devicea to excite currents on the airframe; the actual source of radiation
is the airframe currents. This is true of tail and wing cap antennas, and

1

such variants of these as wing, tail, and nose probe antennas.’ It is also

true of notch and shunt antennas, and even of fixed wires. >’

With the evolution of the airplane through ever more sophisticated
shapes to the delta-wing configuration, however, it has become increasingly
difficult to design HF antenna systems cepable of achieving adequate
coupling, While on the one hand the new shapes have eliminated many of
the natural charge and current concentrations necessary to obtain effective
coupling, on the other hand the weight and structural penalties which can
be tolerated have become ever smaller., Moreover, the drag associated with
any external structure has risen greatly. The problem has been further
complicated by the fact that, in the few remaining possible antenna
locations, high ambient temperatures and limited space make extremely
difficult, if not impossible, the design, housing, and maintenance of the

often quite elaborate antenna couplers which are required.

These difficulties have prompted a reexamination of one of the older,
more primitive types of antennas—the trailing wire. This antenna is
different from the other antennas mentioned in that the wire itself is the

principal radiating element,

Electrically, the trailing wire has many advantages over other types
of HF antennas. One of the most important of these is that it can be
tuned by simply varying the length., The magnitudes and degree of variation
of the antenna impedances which are then seen at the feed point are such

that very simple coupling arrangements will suffice. The radiation patterns

b R o M o s AU B 81N O, M. 7t ¢ . DA . b«

[

v e sl s SR NSl I ¥ b MR




obtained are, in general, superior to those of the other antennas. In
particular, if the end of the wire is properly weighted, the antenna can
be made to hang down enough to give considerable vertical-dipole radiation,
thus providing more nearly omni-azimuthal coverage. In addition, because
the wire itself is the radiator, both patterns and impedance tend to be
independent of the airframe on which it is installed. Although the
antenna, when extended, contributes appreciable drag to the airplane,

it can be retracted when not in use.

In spite of their electrical advantages, trailing wirec, except for
special low speed applications, were abandoned some years ago; at
increased speeds aerddynamic instabilities set in, resulting in mechanical
failure of the wires or, in some cases, damage to the aircraft. Since
these instabilities were responsible for the abandonment of trailing wires,
it is appropriate to examine possible causes for them to see vhether they
might not be eliminated. Investigation reveals two sources of instability
which appear capable of accounting for the observed behavior.

In virtually all trailing-wire antenna installations until now,
spherical or pear-shaped end-weights have been used. It is known from
aerodynamic investigations that a sphere in a high-speed air stream sheds

a spiral vortex.*

The shedding of such a vortex by the spherical end-
weight on a trailing wire tends to induce a rotary motion of the sphere,
Depending on the length and tension of the wire a standing wave can be
established on it, resulting in large amplitude rotary motions of the
weight. Such motions have been observed in actual trailing wires. They
occur as the wire is reeled in, sometimes causing the weight to pound

against the bottom of the aircraft when the wire becomes short.

FEqually serious as that just described is another form of instability
which occurs when the speed of the aircraft exceeds the spéed of propaga-
tion of mechanical waves on the wire. When this condition exists a wave
traveling downstream on the wire will be amplified by aerodynamic action.
This phenomenon was investigated by W, H. Phillips and others.%¢ Phillips
showed that the downstream wave will increase exponentially with distance,
while the upstream wave is always damped. The exponential index, which
gives the amplification, depends in a complicated way upon the wind
velocity, the amount by which the wind velocity exceeds the velocity of )
propagation on the wire, the angle of attack, and the frequency of the
disturbance.
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Aerodynamic amplification of the type just described accounts very
well for the observed failure of trailing-wire antennas. When the coadition
for high amplification exists a small mechanical motion introduced near
the point of wire attachment, either by motion of the aircraft or by
turbulence of the boundary layer air through which the antenna passes,
will travel downstream on the wire, arriving at the end-weight as a large-
amplitude wave. At the end-weight the wave is partially reflected giving
s high amplitude standing wave. Moreover, coupling through wire curvature
into longitudinal motion leads to tension variations in the wire. The
violent motion existing mear the point of weight attachment, combined
with extreme tension variations, will guickly cause failure of the cable,

The vortex shedding responsible for inssability of the first type
described above can easily be ¢liminated by replacing the previously used
sphere with a streamlined end-weight designed to pcssess inherent aero-
dynamic stability. Furthermore, the use of a heavy, very low-drag end-
weight results in the electrically highly favorable cable configuration
in which there is a region of appreciable length just above the end-weight
where the wire departs only slightly from the vertical. The use of
stabilizing fins does, however, give rise to still another form of system
instability which occurs because of coupling between a weather-vane type
of motion of the streamlined end-weight, and a lateral pendulum oscillationm.’
On the other hand, the spatial region in which this type of instability
is possible is so close to the aircraft that the weight will never normally
be in it except when passing into or out of the aircraft. Furthermore,
the rate of growth of such oscillations is so small that they cannot attain
significant amplitudes in the time the weight spends in the critical region.

Eliminating the second type of instability, that due to serodynamic
amplification, is much more difficult. Since this form of amplification
occurs only when the component of wind velocity tangential to the wire
exceeds the velocity of wave propagation along it, our first thought is
to see whether the propagation velocity cannot be increased to a value

greater than the wind velocity, even at very high speeds.

To a first approximation we can say that the propagation velocity of
waves on the wire is the same as that which would obtain in a vacuum. It

can be shown that this velocity, U,, is given by
v, - ',.trff' .
density

3
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Hard-drawn steel wire has the highest available ratio of ultimate stremgth
to density and for such wire stressed to the yield point the propagation
velgcity of the wave on the wire is approximately Mach 2. Since in any
actusl installation we must allow a substantial factor of safety, the
highest propagation velocity that can be obtained in practical sntennas
will be of the order of Mach 1. If the airspeed exceeds this figure, the
smplification can be reduced to unity only by increasing the weight of

the terminating body to such a value that the entire cable is nearly
vertical. For aircrafi in the Mach 2 to Mach 3 speed range, it can be
shown that the weights theoretically required would be of the order of

10 or 20 tons, and the cables would have to be of the order of ¥ to

1 inch in diameter. We therefore conclude that it is imposaible practi-
cally to avoid having some amplification when the trailing wire is mounted
on such aircraft. Attention, then, must be directed toward keeping this

amplification within tolerable limits.

It is worthy of note that the amplification can also theoretically
be reduced to a very low value by using a light end-weight of very high
drag, so that the cable streams out almost horizontally. In practice,
however, this design places the entire cable in the turbulent boundary
layer and wake of the air vehicle, where the airflow is certainly not
laminar and parallel to the cable at all points. This condition, ,which
may very well result in extremely high amplification, will not be
considered in this report.

Phillips’ first order theory applies only to straight cables in
uniform airstreams, and takes no account of the true shape of the antenmna.
The actual curved shape results in substantial departures from first-order
predictions, particularly at lower frequencies. Furthermore, Phillips’
theory assumes constant wire tension. Consequently it not only cannot
predict the conditions under which failure occurs, but provides no insight
into the circumstances under which the theory ceases to be approximately

valid.

Since the preceding discussion makes it clear that aerodynamic wave
amplification cannot possibly be avoided at speeds significantly above
Mach 1, it is important to have a theory which more accurately describes
the behavior of trailing wires at velocities where amplification can occur.
To be useful the theory should include at least a first order description
of the tension variations which can occur because of aerodynamic wave




amplification, since it is obvious that wire failure cannot take place
without tension fluctuations. It should also show the effect of the
curved shape of the wire upon the amplification and resultant wire
tension. In this report such a theory is developed and applied to an
experimental installation designed for flight testing under Air Force
Contract AF 33(616)-5549. While the flight tests, because of limitations
of the F-100 test vehicle, have been conducted at rather low supersonic
speeds (up to Mach 1.24), the installation is designed to simulate the
conditions of wave amplification likely to be encountered at the Mach 2
to Mach 3 speeds representative of the next generation of aircraft.




II ONE-DIMENSIONAL APPROXIMATION FOR WAVE AMPLIFICATION

A. PRELIMINARY CONSIDERATIONS

Before investigating the dynamic situation in which wave motion exists
on the trailing wire it is necessary to explore the static condition,
where the wire is in equilibrium under the action of the aerodynamic forces
of the ‘airstream and gravitational forces—principally those due to the
end-weight. The shape of a trailing wire in an airstream has been con-
sidered by earlier investigators.*’ It is re-examined here, however,
because it is possible to derive the results somewhat more succinctly than

has been done heretofore, and in a form more suited to the analysis of the

dynamic condition which follows.

B. DIMENSIONLESS EXPRESSIONS FOR EQUILIBRIUM WIRE SHAPE

The aerodynamic force on an element of cable suspended in a supersonic
airstream is zlways nearly normal to the axis' of the element, and can be f
considered to arise entirely from the
component of air velocity in the normal

) ) ) oF T+dT 1
direction, V..m For cases of practical in-
terest, the weight of the element can be

neglected, and in the absence of mechanical

waves on the cable the element is in equi-
librium under the action of the aerodynamic

force and the tensions at its ends (see

Fig. 1). The tensions are equel in the AA-2494-113 K
static case because of the absence of any L
other tangential components of force—i.e., FIG. 1 :
dT = 0. FORCES ON AN ELEMENT OF WIRE 4

Let the following quantities be defined:

T = tension in cable

* The small component of serodynamic force tangeamtial to the cable element has been neglected, as its con-
sideration would have made the solutioa of an alresdy very complex problem evea more iavolved. The pria-
cipal effect of this force ia to ceuse a variation in the atatic temsion along the cable. Significast
departures from the value predicted by the simpler theory occur, however, only in the wpper part of long
wires, In this region the effect of iacressed temsion on cable shape is slight. A second effect of the
incrrased temsion~—a decrease in serodynsmic amplificetion—is aleo quite small,

7




ds = length of element
¢ = angle element makes with horizontal
Vo = air velocity (horizontal).

Then, from Fig. 1 one can write for the mechanical force acting on the
wire element

dF « =T d¢ . (1)
The aerodynamic force on the element is

pV? pv3
df = C, —2— (D ds)

sin? ¢ ds (2)

o
%

where

Cp = drag coefficient of a cylinder

D = diameter of cable

p = air density.

For equilibrium the mechanical force equals the aerodynamic force, so that

Pvy

Tdp = Cp —— sin’ ¢ ds (3)
or
iC'_ = -csc? ¢ dop (4)

wvhere C is a characteristic length given by

T

(5)
lad]
‘P T)

Provided that the drag coefficient C) can be considered constant along the

cable,’ Eq. (4) may easily be integrated to give

* See Sec. IV-A for a discwasion of the importence of this limitation.




cotd = cot @ +o (6)

as the equation of the cable shape, where o is defined as the dimensicnless
arc length s/C. Although not apparent when written in this form, Eq. (6)
is the equation of a catenary.

The slope angle of the lower end of the cable, ®, i» determined by
the way in which the cable is terminated at that point. If the termination
is provided by a body of very high weight-to-drag ratio the lower end of
the wire will be essentially vertical, and the tension will be equal to
the weight of the terminating body. If, in addition, the lower end is
teken as origin cf dimensionless Cartesian coordinates £ and 7, defined

as x/C and y/C respectively, the following expreassions result:

P

£ = do' cos @' = csc -1 (7)
Jp'! =2
d

n = do' sin ¢’ = In (csc @ + cot @) . (8)
Jp '=nla

The four quantities £, 7, 0, and ¢ can be expressed in terms of each
other by means of various substitutions among the above equations. Com-

plete results appear in Appendix A, and curves of the wire shape are shown
in Fig. 2.

C. WAVE AMPLIFICATION IN A STRAIGHT WIRE

According to Phillips’ theory, which is restricted to vibrations
taking place in the plane determined by the air velocity and the wire
direction, the amplification depends on the angle between wind and wire,
and on the ratio of wave velocity to wind velocity. To the first order,
the only effect of the wind on in-plane waves (for sufficiently high fre-
quencies) is to cause the wave amplitude to vary exponentially along the
wire. For a wave traveling downwind (negative-s direction along the wire

in Fig. 2), the transverse displacement for a sinusoidal input is given by

, n = a, E.‘.' claltrasU) (9)

i
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where U is the wave velocity on the wire, a, is a constant, and

]

1 U .
h = EE(] e d’)un 2% . (10)

It is seen that a wave traveling in the negative-s direction will be
amplified if the component of wind velocity along the direction of the
wire is greater than the wave velocity (k positive), and damped if it is
less (k negative). For a wave traveling upwind, only the sign of U is
changed in Eqa. (9) and (10). In this case, k is always positive and,
since the wave travels in the positive-s direction, damping always occurs.

The above equation indicates that there can be no amplification when
the wire is exactly parallel to the wind direction. Likewise, the theory
predicts that no amplification will occur for vibrations taking place in
a direction normal to the plane containing the cable. Actually this
result stems from the neglect of certain terms in the first order theory.

A more accurate investigation of wire behavior for zero angle of attack
(see Appendix B) shows that there is o very small aerodynamic amplification
for a downwind wave and very small deamping for an upwind wave, in the case
where one or the other exists on the wire alone.

When complete reflection of the lateral wave occurs at the lower end
of the cable, the resulting standing wave consists of a combination of
the two traveling waves, but the net damping cannot be computed by means
of linear superposition. An approximate treatment of the aerodynamic
damping is still possible, however, and shows that, in the absence of other
damping mechanisms, the wire behaves as s very high-Q system with resonances
at multiples of one-half wave ength.

The most extreme response occurs at one-half-wave resonance, where
it is found that the standing wave smplitude is proportional to the square
root of the input amplitude at the upper end of the cable. The theory
developed in Appendix B takes no account of wire curvature or of other
mechanisms providing coupling to the in-plane vibrations, which are of
much lower Q. Moreover, the end-weight does not constitute a perfectly
rigid terminstion, and therefore will furnish some damping due to its
lateral drag.

The actual Q of the lateral vibrations will therefore be considerably
lower than that predicted by Appendix B. For this reason, and more
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importantly because first-order coupling to temsion v.piationl occurs only
via the in-plane motion, it is not felt that the latersl motion is a
significant cause of cable failure. The anslysis given in the main body

of this report will therefore be confined to vibrations in the plane of
the wire.

D. TOTAL AMPLIFICATION IN THE CURVED WIRE

Equation (9) may be regarded as an equation for a, the wave amplitude
along the wire, which may in the general case be complex:

a = a, €k . (11)

The change in amplitude in an element of the wire is

da = -k a, e ds = -a (cos ¢ - 7¥) sin ¢ do (12)
where
U .
'y = V—. . (13)

An approximation to the total amplification in a curved wire can be
obtained by taking Eq. (12) as the differential equation for the amplitude,
and inserting the known relation between o and ¢ for the gquilibrium shape
of the wire. This is equivalent to the assumption that the transverse
wave in the wire travels along the curve as if the wire were straight,
remaining always transverse, but that the amplification coefficient varies
in the correct fashion from point to point.

Since do ‘= _.tosc? ¢ dp, .we have

a”l da = (cos ¢ - ¥) cscddp . (12)

If the amplitude at the origin (lower end of the cable) is taken to be
@y, and U (or ¥) is assumed to be independent of ¢, Eq. (12) leads to

a = a, (cscﬂ¢ + cot ¢)” $in ¢ (14a)

or

a fo + /1 A aren™* L (14b)
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The amplification from a point o on the wire down to the end is

a(o)

= (1+ a’)% [a +v1 + o’],"’ (15)

A(0,0) =

while the amplification from a point 0, down to a lower point o, is

a(o,)  A(0,9,)

A1e) Tt Ty (16)

E. THE REFLECTED WAVE

In general there will also be an upwind, or reflected, wave. The

attenuation experienced by such a wave traveling from the origin to a

point o can be found from Eq. (15), using a negative value of . Loci of

constant A(0,0) in the ¥,0 plane are shown in Fig. 3. For example, if
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FIG, 3
AERODYNAMIC AMPLIFICATION CHARACTERISTICS OF TRAILING WIRE
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the wind velocity is twice the wave velocity in the wire (¥ = 0.5), the
incident wave will be amplified by a factor of 2.3 in proceeding from

o = 10 to the end of the wire, while the reflected wave will be attenuated
by a factor of 45 in returning to the same point.
should be remembered that v = 0 corresponds either to zero wave velocity

In using Fig. 3 it
or to infinite wind velocity.

F. THE COMPLETE SOLUTION

The complete solution for the transverse displacement on the cable

for the case of a single sinusoidal excitation is, in the one-dimensional

approximation of this chapter, .
a a,
elel tCo/U) 4 giwlt=Co/U) (17)
4,(0,0) 4,(0,0)

The constants o, and a, represent the (complex) amplitudes of the incident
and reflected waves respectively, at the origin. In ajgiven case, they
can only be evaluated through a knowledge of the npprofrinte boundary
conditions—on the one hand the way in which the wire is terminated at its
lower end, on the other the location of the input excitation and the phase

relationship between the two waves at that same point.

For example, if no transverse motion of the love} end of the wire is
permitted, then a, = —a,—i.ec., complete reflection with phase reversal
occurs. If the input, of amplitude ny, is applied at the point o = Z,

that is, if n(Z) = ny glot, a, can be evaluated as follows:
a = ny [A;l eiwCZ/ll - A;l e'iwCZ/lJ]-- 1 . (18)

1

With the appropriate substitutions, Eq. (18) can be rewritten as

a, = -;- ny Y1 + 22 csch (‘y sinh™1 Z + ta_:i_) . (19)

The maximum response for excitation at
frequency is such that that point is a node
the distance from the end of the wire is an

lengths. If this distance is an odd number
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corresponding to excitation at an satimode, the response is minimum.
Needless to say, since the reflected vave is attenuated in any given icugcb
of wire more than the incident wave is smplified in the same length, the
two waves can never cancel each other at more than ome point, in this case
the origin. This fact tends to reduce the magnitude of the resonances.
These may, however, be quite pronounced for small o (short wires) at rela-
tively high frequencies or for very smell ¥ (very high airspeed) at any
frequency.

The foregoing analysis is not entirely satisfactory for several
reasons. First, the effect of wire shape on waves vhose wavelengths are
comparable with the radius of curvature has not been taken into account
in any way. Second, the possibility of longitudinal motion of the wire,
arising from the curvature, is not considered. Third, non-linear effects

of various kinds are entirely ignored.

G. NON-LINEAR EFFECTS

The non-linear effects mentioned sbove come into play when wave ampli-
tudes on the wire are not entirely negligible in comparison with wavelength.
One such effect arises from the deviation of the sine function from the
tangent function, by means of which it is approximated in the firat-order

theory.

A second effect, which may have a more profound influence on the
behavior of the wire, is the variation in over-all length caused by the
presence of s standing wave. Note that the total wave on the wire is a
combination of a standing and a traveling wave—almost completely standing
at the lower end for a rigid termination there, and predominantly traveling

at the upper end in most cases of physical interest.

The longitudinal motion at the lower end produced in this way will
give rise to tension fluctuations if it is necessary to accelerate a
rolatively large mass. It should be noted also that these._fluctuations
will take place at double the wave frequency. If their amplitude is greater
than T, the cable tension, the cable will go slack during a portion of the
cycle, then go taut again quite suddenly. In an extreme case the cable is
slack most of the time and has very high tension for an extremely short
interval. This condition is obviously one possible cause of cable failure.

It is shown in Appendix C that the amplitude of the length variation
produced by a sinusoidal input on a wire of length 20, when the incident

15
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wave has amplitude a, at the lower end of the wire and is completely re-
flected there, is given approximately by the following equation,

S = 2(n|¢1|/k)’ tan~! 2, - ‘(C-ll)

In the above equation a, and A, the wavelength on the wire, must be speci-
fied in terms of the same units, and £’ is then given in the usual dimen-
sionless units of this theory. Eq. (C-11) holds closely only for
wavelengths short compared with the radius of curvature of the wire.

It is not difficult to show that, if the input consists of several
sinusoids having frequencies w,, phase angles y,, and amplitudes a,, at

o = (0, the length variation may be expressed by

s al,
cos (2wt + 2¢.)

tan"! I @
A = Z 2, cos (2w,t +2) = 'Z
(20)

An extension of Eq. (20) leads to the interesting corollary that the
frequency spectrum of the input must have delta-function type singularities
in order that there be any effect. A “white’” input produces no variation
in length. This fact is a result of the dependence of Eq. (20) upon the
squares of the 6;,- In the limit of a continuous spectrum, the right hand
side can be shown to approach zero.

It should be noted that there are other causes for tension variations,
in particular the creation of a longitudinal wave ws the transverse wave
travels down the wire. This is a first-order effect, however, and it will

be taken into account in the later sections of this report.
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IIT EXACT DESCRIPTION OF THE WIRE MOTION--
FIRST-ORDER THEORY

-

A. COORDINATE SYSTEM

The preceding chapter has given an approximate theory of transverse
wave motion on the trailing wire, based on the assumptions that there is
no longitudinal motion and that the tension in the wire does not vary with

time. A more complete theory,

- -

including these effects, will
now be given,

The position of a point on
the cable will be described in
terms of the Cartesian coordi-
nates of its equilibrium
ﬁo:ition, zy and y,, and its
displacements from equilibrium
in directions normal and
tangential to the cable at that
point, n and p respectively
(See Fig. 4). The ordinary
cartesian coordinates of the
point are related as follows

to those just described:
o P
y“yo+P

B. EQUATIONS OF MOTION

% x
° RA ~2494 - 118

FiG. 4
COORDINATES OF A POINT ON THE WIRE

cos ¢, = n sin @, (21a)

sin ¢, + n cos ¢, . (21b)

An element of the wire in vibration is acted upon as before by the

forces shown in Fig. 1, Now, however, the forces and angles may be

functions of time and dT is no longer identically zero. The component

of air velocity normal to the eleiment of wire is given by

17




) on
V, = V, sing 3 (22)

[

,,m'b°" @ is the actual (displaced) direction of the element. If
/3t << ¥, sin ¢,, then from Eq. (2) one can write for the aerodynamic
force

4] 2 _
dF = Cn—z—Ddssinz¢(l-"v-.‘5';.clc¢) . (23)

From Fig. 1 it can be seen that

. ”
aF+ T2y o s 0 (24)
Os YL

where 4 represents the cable mass per unit length. Now let
T=T, (1+p), where T, is the average tension, and B is a function of

position and time, assumed small compared to unity for the purposes of

B et s o R R ot

this theory. Let U, = VT,/u represent the ordinary wave velocity
corresponding to the sverage tension. In addition, the following new

dimensionless quantities are defined:

N n
C

p - L
C
Uot

T = —
C

The quantities C, £, 7, o, and ¥ are defined as in Sec. II of this report.

Eq. (24) now becomes

oV [-%) 2N
-y N .2 » 2
‘1 2y 2 csc ¢] sin® ¢ + (1 + B) ; 2 (25)
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For the static case 92N/972, W/97, and B are all equal to zero, and
Eq. (25) gives the static shape of the cable: sin? ¢, + 3)/30 « 0, and
o = cot ¢5, as before. It is desirable to expand ¢ about ¢, as follows:

¢(o,7) = ¢ylo) + alo,7) . (26)

It is possible to show, by means of Eqs. (21a), (21b), and (26), and
elementary trigonometry, that

@ - % + P % . (27)

With a << 1,
sin? ¢ = sin? @ + 2a sin ¢ cos @, (28a)
csc ¢ = csc P, - a csc By cot ¢, . (28b)

Egs. (26), (27), (28a) and (28b) may now be substituted into (25),
a and B being treated as small quantities whose products and squares are
neglected. Using the known equilibrium shape of the wire, and remembering
from Eq. (22) that 7y (WN/9r) << sin ¢, one obtains finally the following
differeatial equation of motion normal to the cable:

LT S R U U SO
! 1+02 % 4?42 ar? (1+02)° 07
(29)
A second examination of Fig, 1 leads to the following:
T ?p
— ds = —
o s uds 3t (30)
or
9 ??p
x .22 (31)
r?

This is the differential -equation for motion tangential to the cable,
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C. INEXTENSIBILITY OF THE CABLE

Egs. (29) and (31) give two relations among the three variable N, P,
and 8. The problem is therefore not yet sufficiently determined for a
solution. A third relation may be obtained from the elastic properties
of the cable. If, as before, the cable is considered to be inextensible,

one must have

ds? = dx? + dy? dx} + dy} . (32)

With the help of Eq. (21a,b), and remembering that n and p are amall

compared with x, and y,, one easily obtains

%, 9p
"% (33
or
N -(1+ a’)jzi (34)
%o '

Eq. (34), together with Eqs. (29) and (31), yields in principle a complete
solution to the problem, provided the appropriate boundary conditions are

specified.

D. SIMULTANEOUS SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

It is possible to eliminate either P and B or N and S from the system
of three partial differential equations. The result in either instance is
a fourth-order linear pertial differential equation whose coefficients are

rather complicated functions of o,

Because the coefficients are independent of time, it is possible to

find product solutions in whi~h the time occurs only through the factor

e i e., let

N(o,7) = w(o)eiv™ (35a)

P(o,7) = v(o)e'¥T (35b)

Blo,7) = r(o)e'v” . (35¢)
20




Such solutions represent the steady-state behavior of the wire under the
influence of a single sinusoidal excitation of dimensionless frequency v,
defined as follows:

vV s — (36)

where @ is the angular frequency of the input,.

Formal substitution of Eq. (35a) or Eq. (35b) into one of the above-
mentioned fourth-order equations converts it into a linear, fourth-order,

ordinary differential equation with complex, non-constant coefficients.

In principle it is then possible to obtain the functions w(o), v(o),
r(o) in a particular case, provided four suiteble boundary conditions are
supplied, In practice, however, the nature of the differential equations
is such that it is nearly impossible to obtain any sort of general
information from them. ‘In fact, any attempt to find approximate forms of
a literal solution becomes rapidly so involved as to obscure entirely the
basic phenomena which it is desired to represent.

E. THE UNIFORM-TENSION CASE

In many cases of bhysical interest, the total mass of the wire is
very much smaller than that of the end-weight. Under these circumstances,
the fluctuation in tension produced -at the lower end of the wire by
acceleration of the end-weight is much larger than any variation with
distance along the wire produced by longitudinal acceleration of the wire
itself. This is especially true for long (large X) wires where the inputs
are largely transverse, as then any longitudinal motion is confined almost
entirely to the lower part of the wire, between o = 0 and o= 2,

If the conditions described above are satisfied, the tension can be
considered to be independent of o, although the time dependence remains.
In other words, the tension variation amplitude r(c) becomes a (complex)
constant, whose value is determined by the boundary conditions at o = 0.
Eqs. (34), (35a), and (35c) may now be substituted into Eq. (29), giving

" 20 ! 1 2 N 1 1
v ' + [ + ¢ = 20y — | v - r
1+0? 1+ 0?) (1 +0?) 1 +o?

(37)
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where primes denote differentiation with respect to o.

A further simplification may be effected through the following !
substitution: =

w(©) = (1+0)7 % u(o) . (38) -

The result is

s el ¥ s A 5t e+

u" + 1 fo)u = (1+ 02)°% r , (39)

where

flo) = 1 - 2i(y/v)(1 + o’)-% . (40)

The general solution of Eq. (39) will consist of a homogenecus solution
containing two arbitrary constants, plus a particular integral which will
be proportional to r,

If f(o) is sufficiently slowly-varying, a very good approximation to
the homogeneous solutions is given by

u = const X explti v [ Vf(o) do] . (41)

For the range of values of ¥ and v represented by the shaded portion of
Fig. 5 (Regions I and II), the approximation of Eq. (41) holds, and it

is possible to obtain analytic solutions of the following form:

u,(0) = (o + /T +02) expli v [0 + (1/2)(7/¥)? tan! o]}
(D-14a)
u,(0) ~ (o +vV1+ o) exp{~i v [0 + (1/2)(y/v)? tan~! o]} .
(D-14b)
Details of the derivation of (D-14a,b) and the determination of the
boundaries in Fig. 5 may be found in Appendix D.

The arc-tangent term represents a deviation of the wave velocity
from its normal value U, which is not sufficient to alter the amplification
in this order of approximation., This term can be ignored in Region I of r
Fig. 5, but even in Region II, where strictly speaking it cannot, only
the phase of the wave at points other than the origin is affected.
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DOMAINS OF VALIDITY OF SOLUTIONS

For the sake of mathematical simplicity, the remainder of this
investigation will be limited to the case where this term is neglected,
with the understanding that it could be included if necessary. Using
Eqs. (35a) and (38), one then has

N(o,7) = (1+ o) * (o + T +0%)” eivire) (42a)
Ny(o,7) = (1+ o) % (o + TT N7 evtro (42b)

which are easily seen to be identical with the solutions for the transverse

wave obtained by the simple approach of Sec. II of this report.
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It will be remembered that the complete solution of Eg. (39) consists
of the homogeneous solutions, Eqs. (D-14a,b) plus s particular integral.
The latter may be represented as r u,(a)[ where u,(0) is a particular
integral of the following equation:

u’ + vif(o) u = (1 4 a’)-% . (43)

There are several well-known and straightforward methods for findipg
an integral of such an equation. In this case, however, all require one
or more nuxerical integrations for each value of v which it is desired to
consider, Also, since there is an infinite number of particular integrals
differing by arbitrary multiples of the homogeneous solutions, there is
no assurance that one of these methods will yield an integral which will
aid in the physical interpretation of the problem.

If the range of o which is of interest in % particular case is known,
a suitsble approximate expressi&n for (1 + o?) may be found in a form
which can be handled analytically. An expression in the form of a sum
of exponentials is especially useful, as it leads to an integral which
becomes very small for values of o greater than a few times unity—i.e.,
for the less sharply curved portions of the wire. In additiomn, for many
cases the solution is very nearly pure real and positive, corresponding
to a sort of heaving motion of the wire as a whole., (See Sec. IV for a

specific application of this approach.)

Thus, one is led to a representation of the wire motion in terms of
a downward-traveling wave u,, a reflected, or upward-traveling, wave uy,
and a heaving motion u; which is most important in the lower, more
sharply curved, portions of the wire, The general motion of the wire

can be written as

Ne,7) = (1+ oty [b,u,(0) + byu,(0) +r uy(0)] € (44)

where b, and b, are arbitrary constants yet to be determined and r is the

complex amplitude of the fractional tension fluctuation in the wire.

The general longitudinal motion of the wire can be obtained from
Eq. (44) by means of Eq. (34). The result is
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Po,7) = [v(0) = byv,(0) = byv,(0) = r vy(0)] €'¥7 (45)

where

volo) = | (1+0'?) " u (0f)do! . (46)

F, APPLICATION OF BOUNDARY CONDITIONS

It will be remembered that the exact solution of the problem revolves
about a fourth-order linear differential equation. Since such an
equation requires the specification of four boundary conditions, any
approximate solution, to be valid, must contain the same number of
conditions. '

If the case of interest is that in which the input is at the upper
end of the trailing wire, then the first two conditions will be the
specification of N(Z,7) and P(Z,7), the transverse and longitudinal
inputs at the upper end of the cable. The remaining two conditions will
depend upon the manner of termination of the cable at its lower end.

One will be a relation connecting 8(7), the tension fluctuation, with
P(0,7), the longitudinal response of the terminating body. The other
will describe the transverse response of the same body by means of a
relation between WN/30(0,7) and N(0,7). Now N(Z,7) = w(Z)e'¥T, and an
application of Eq. (44) at o = Z yields

(1+ 2’)% w(Z) = b,u,(2) + byu,(2) +r u (2) . (47)

Proceeding in the same manner with Eq. (45), one obtains
v(Z) = v(0) - b,v,(2) - byvy,(2) = r vy (3) . (48)
The varying tension in the cable will, in general, produce a response
of the terminating weight, which will depend upon the method of attach-

ment, damping forces present, etc. This response can always be expressed

by means of a complex coupling constant [,, as follows:

v(0) = Lpr . (49)
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Similarly, there will be a transverse motion of the weight in response
to the transverse component of the tension force applied to it:

w(0) = {,»'(0) . (50)
This is equivalent to the following:

by + b, +ru,(0) = (y+ iw)b, = (y+iv){yb, + {,r u;(O)
(51)
1f Eq. (49) is substituted into Eq. (48), and Eqs. (47) and (51)
are rewritten, one obtains the following system of algebraic equations:

w (Db, + uy ()6, + ug(Dr = (1 +31)" w(5)
v (2)b, + v, (2)b, + [v,(2) ~ L)r = ~~v(%) (52)
[1=(y +iv)g, )b, + [1+ (v + 02, b, + [ug(0) ~LWuy(0)Ir = 0

Eqs. (52) can readily be solved for b,, b,, and r, if the four boundary
conditions are expressed in terms of »(Z), v(Z), {,, and {,.

In addition to the vibrational inputs expected at the point of
attachment to the airframe, there will be, depending upon speed and
details of the mechanical configuration, other inputs at points farther
down the wire resulting from the action of oblique shock waves originating
on the airframe. Because of their lower point of application, the
amplification will be less, but the net effect is difficult to assess
theoretically in the absence of experimental data.

G. LOW FREQUENCY BEHAVIOR

It is of considerable interest to examine the behavior of low-
frequency waves on the wire under conditions for which the approximations
of the preceding theory do not hold (Region III of Fig. 5). It will be
remembered that the approximate theory of Sec. II gives correct results
for the transverse motion for the case where the end is longitudinally
free—that is, where the longitudinal motion is ignored. More importantly,
it gives the correct value for the amplification undergone by the
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downward-traveling wave, which is the primary factor governing the
amplitude of transverse motion near the lower end of the wire and the

severity of the ténsion fluctuations if the end is restrained,

If the propagation of a wave in a straight piece of wire is
considered, it is easily found that, for sufficiently high frequencies,
the wave velocity is independent of frequency and of the angle made with
the airstream, having a value of /7:7;. However, for lower frequencies,
the velocity depends on the angle and in general increases with decreasing
frequency. The ratio of this velocity to the high frequency value
(cf. W. H. Phillips®) is given by

7‘: - v/@'%,,z - sin? ¢ cos? @) + E;ﬂ -sin? ¢ cos? ¢)? +4ydv? sin 43%}-% .

(53)
This expression may be used to compute, for any given v, a corrected
value of Y. Then, ignoring the effect of wire curvature, Eq, (13) leads to

'-12
cot
A (0,2) = exp {- L [cos ¢ = ¥(¢,v)] csc ¢ d¢} . (54)
/2

This amplification is shown as a function of v in Fig. 6 for a wire of

Z = 10 and the flight parameters of Sec. IV of this report—i.e., for

Ve = 0.23. The results can be interpreted to indicate, at least gqualita-
tively, that the amplification decreases rapidly for very low frequencies.

However, it is also found that the attenuation of the reflected wave
computed in this way decreases to unity at these low frequencies. As a
result, there is little net aerodynamic damping in the path from the upper
end of the cable to the lower and back again, and the resonances which
occur for certain frequencies can therefore be very extreme unless there
are other sources of mechanical damping.
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INCIDENT WAVE AMPLIFICATION AT LOW FREQUENCIES

H. NON- AERODYNAMIC DAMPING

The analysis to this point hes entirely neglected damping from sources

other than the airstream itself.

Such damping may arise through the action

of viscous forces within the cable, or througii the transfer of energy to

another, coupled, mode of oscillation.

The first type of damping can be described in terms of a damping

constant K characteristic of the particular cable used. The effect will

be to decrease the amplification of the incident wave by a factor exp(-KCZ),

and to increase the damping of the reflected wave by the same factor.

Qualitatively, the amplitudes near the lower end will be reduced for any

set of conditions, while the resonant fluctuations of these amplitudes with

cable length will become less pronounced because of the decresse in re-

flected wave amplitude at the input point (the upper end) relstive to the

incident wave.
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The quantitative effect may perhaps most easily be seen by rewriting
Eqs. (19) and (42a,b) to include this damping:

1

¢, = Y ng V1 + 3? csch [y sinh~! £ + KCZ + ivZ] (19)
Ny(o,m) == (1+ D) % (0 + /TT o) ekto.civirse) (422)

Ny(e,7) = (14 a’)-% (0 + V1 +0¥) 7 eKCo givir-o) . (42b)

The most important case of the second type is the coupling which is
certain to occur between the oscillations in the vertical plane and lateral
oscillations perpendicular to that plane. As pointed out in Sec. II-B,
the latter kind of motion experiences only slight aerodynamic amplification

or damping.

Lateral vibrations will arise in two ways. First, there will be
direct lateral inputs at the upper end of the wire and to a lesser extent
along the wire. Second, there will be the coupled energy from the in-
plane vibrations, as mentioned above. The total attenuation in a round
trip to the lower end of the cable and back to the input point is sctually
less for these waves than the net attenuation for the in-plane waves.
However, because there is no amplification of the incident waves, their
contribution to the amplitude at the lower end will be small. VWithout
detailed knowledge of the coupling mechanism it is most difficult to
analyze this effect in a quantitative way, but qualitatively it can be
seen that the total asmplitudes on the lower parts of the wire will be
reduced.

Both of the damping mechanisms described above will be more effective
for a stranded cable, in the one case because of the obvious increase in
internal friction, in the other because the helical form of individual
wire strands tends to rotate the plane of vibration of the wire, converting

an in-plane vibration to a lateral vibration.
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IV APPLICATION OF THE THEORY TO A PARTICULAR PROBLEM

A. FLIGHT PARAMETERS AND CONSTANTS OF AN EXPERIMENTAL
TRAILING- WIRE ANTENNA

Computations have been made for an experimental trailing-wire antenna
whose mechanical properties have been tested in flight at about 35,000 feet
altitude and speeds up to Mach 1,24. Results of these highly successful
flight tests will be presented as a part of the final report on another
SRI project.*

The cable, 1/16 inch in diameter, was tested at lengths up to 150 feet.
It is terminated in a 19-pound fin-stabilised weight of high fineness ratio,
attached at its center of gravity to the cable. Two systems of springing
were investigated, one an essentially rigid coupling, the other a pre-
stressed spring permitting approximately a % 10-percent variation in cable
tension with a t l-inch travel in the vertical direction. The drag on the
eﬂa-'eight in flight is quite small, so that the cable is essentially ver-
tical at its lower end, and the static value of tension is very nearly
equal to the weight, or 19 pounds.

The accepted value of the drag coefficient for a circular cylinder of
infinite length, at moderate subsonic Mach numbers and subcritical Reynolds
numbers, is 1.20.12 Ag the Mach number is increased above 0.3, the coef-
ficient rises with some irregular variations to a maximum of 2,13 just below
sonic speed. Beyond this maximum, a decline occurs toward an asymptotéc
value of 1.33.1% Clearly, the value of drag coefficient for a trailing-wire
antenna will be a function of the speed of .the aircraft, and also will vary
with position along the éeble. However, the physically interesting case of
high wave amplification always implies large values of dimensionless cable
length Z, and therefore very small angles of attack over most of the length
of the cable (see Fig. 2). As a result, even when the aircraft speed is
highly supersonic .the transverse. airflow across most of the wire is
subsonic. It is possible to compute bothtthe cable shape and the total
amplification exactly in a given case by means of numerical integration.

N »
b v .

* SRl Project 2484, “Investigation of an Excited Airframe as sn Asteans.”

i

PURE—N

RS Y S




However, it has been found that a constant value of C, = 1.25 gives the
correct value of amplification within about 5 percent over a very wide
range of flight conditions, and it has been adopted for the sake of com-
putational simplicity. On this basis, and with the additional information
that u, the cable mass per unit length, is 2,34 x 10°4 slug/ft, one finds

for Mach 1.24 at 35,000 feet altitude and a typical cable length of 100 feet. ¢
Yy = 0.23
C = 5.25 feet
2 = 19.0

The cable shape for these conditions, on the other hand, corresponds more
nearly to C) = 1,44,

The weight of the wire at this length is only 1.13 pounds, and there-
fore the uniform-tension approximation of Sec. III-E is justified. Ref-
erence to Fig. 5 shows that the system parameters lie in Region I, where
the simplest form of solution holds if v is greater than about 0.88,
corresponding to an actual frequency of 7.6 cycles. The aerodynamic
smplification of the downwiand wave is 8.2. )

The system described above is designed to simulate the aerodynamic
samplification of a hypothetical higher-speed system identical to it in all
respects except for the use of a 50-pound end-weight. On the basis of a
100- foot wire, the following are typical speed-altitude combinations for
the.hypothetical system which give the same theoretical amplification as the
experimental system does in the Mach 1.24 flight test:

Mach 2.0 - 35,000 feet
Mach 2.5 - 48,500 feet
Mach 3.0 - 59,000 feet,

It should be noted that, although the wave amplification is the same in

all the above cases, the cable shape differs £rom one case to another be- .

cause each represents a different ¥,2 combination.




B. COMPUTATION OF THE u,(c) AND v (o)

The magnitudes of the two homogeneous solutions ul(a) and u,(0)
(downwind and upwind waves, respectively) depend only upon ¥, and have

been shown in Fig. 7 for ¥ = 0.23. The phases, of course, depend upon
. position through the factors e*ive,

l The particular integral uy(o) is a solution of Eq. (43), which is
here repeated for convenience:

\

%

u' + v flo)u = (1+0%) " (43)
23 T T T
.0
e 1.3
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MAGNITUDES OF TRAVELING WAVE SOLUTIONS
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The solution, which is in general complex, will be written in the following
form:

z(o) + i 2w y(o) (55)

uy(o) =
where z(0) and y(o) are real. If Eq. (55) is substituted into Eq. (43),
and real and imaginary parts of the resulting equation are written sepa-
rately, one obtains the following:

A R e B L (56a)

%

y" +vly « (1+0%) 7z (56b)

This system of equations can be solved quite readily for x and y if

l4y? (1 + oty A yi<<ix] - (57)

A procedure for finding a particular integral of Eqs. (56a,b) under the
assumption that Eq. (57) holds is given in Appendix E. Resulting values
of uy(c) are shown in Figs. 8(a), (b) for the experimental system at

several frequencies.

Detailed examination of a number of cases shows that at worst
(v %1, o = 0) the left side of Eq. (57) is about 13 percent of the right
side. Although this would seem to make the approximation rather marginal,
both |y|x| and (1 + o’)_ decrease rapidly with o, and |y/x| also decreases
with . Thus the neglected term is nearly always much smaller than

13 percent of the leading term.

The longitvdinal wave functions v (o) can readily be obtained from
the u (o) through numerical evaluation of Eq. (46). The integral converges
very rapidly to a constant value v [®) for o 2 5. These asymptotic values

are shown in Table I.

TABLE I
v 1 2 3 4 5
vy (@) | 0.851 / 41.4° | 0.586 [/ 63.1° | 0.414 / 76.2° | 0.305 / 83.9°] 0.234 /88.1°
vy(w) | 0.689 /34.8° | 0.508 /-55.4° | 0.378 /-68.6° | 0.288 /-76.9° | 0.227 /-82.0°
vy(@) | 0.652 / 12.9° ] 0.1915 /_9.1° | 0.0874 /_6.6° ] 0.0493 / 5.1° | 0.0315 /_4.2°
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C. RIGID TERMINATION

If the lower end of the cable is attached directly to the center of
mass of a heavy, stable end-weight, practically no motion of that point
will take place. Mathematically, this condition is expressed as follows

in terma of the two mechanical coupling coefficients:
po =0 , Ly =0 . (58a,b)

Let us suppose that the vibrational input at the upper end of the wire is

purely transverse and of unit amplitude—i.e.,
v(Z) = 0 , w(Z) = 1 [0° . (59a,b)
Further let it be assumed that

225 . (60)

[,




Then the amplitudes of the incident and reflected waves, aos well as
the resulting tension fluctuation, can be computed with the aid of
Eqs. (52), which may now be written as follows:

b2 u,S)  uy(®\ [b) Eei)
V(D) v, (®) vy (®) by - 0 ‘ . (61)

1 1 uy(0) r 0

Solutions for b,, b,, and r may be obtained in the following form:

B, V1 +32

bl = ) (62!)

B2 v] + Z!
. b, = "'—"'3"'—" (62b)

. B, v1 + 3
r = -—— (62¢c)

D
where

Bl = uz(m) u’(O) - ”3(w) (63.)
B, = =[v,(®) u,(0) - vy(™)] (63b)
B, = v (D) - v, (®) (63c)
D = B,u,(%) + Byu,(Z) + Byuy(2) . (63d)

The absolute magnitudes of the solutions, Eqs. (62a,b,c,), pass through
maxima and minima as 2 is varied, corresponding to resonances in the
standing wave on the wire. The principal factor controlling the location

and height of these maxima is the quantity |D|.

The complex factors B, are constant for these relatively large values

of 2. In describing the total transverse motion of the wire according to

Eq. (44), the term b, u (0) can be represented by a vector which increases

slowly in length with o while rotating counterclockwise at a rate of
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v radians per unit of o; the vector representation of bz uz(a) decreases
slowly with o while rotating clockwise at the same rate; and r u,(a)
decreases quite rapidly with o, maintaining very nearly a constant angular
position.

A numerical evaluation of the various quantities in Eqs. (63) shows
that the third term in D is always considerably smaller than either of
the other terms. Thus, the magnitude of the resultant D will be a minimum—
i.e., the response will be a maximum—when the first two terms are very
nearly antiparallel. On the other hand, minimum responses (maximum IDl)

will occur when the two dominant terms are nearly in phase.

The angular position of the third term is such that, in the minimum
response condition, it is nearly parallel or antiparallel to the resultant
of the first two terms. As a result, there are two classes of minima,
which alternate as 2 varies, one lying on a higher envelope than the other.
In the maximum reaponse condition, however, the third term has practically
no effect on the magnitude of D.

Of the greatest physical interest is the “worst” case (maximum
response), which may be obtained by ignoring the third term in D entirely
and treating the first two terms as antiparallel. Values of b,, b,, and
r have been computed in this way for various values of Z and v, on the
sssumption that each input point is a node in the standing wave, regardless
of the actual phase relationships at the point in question. The results
bave been shown in Tables II and III. 1In additiom, Fig. 9(a), (b), (¢),
(d) shows the way in which the three waves combine at the origin.

TABLE 11
TERMINATION z v r v(0)
Fixed end 10]1]832 12.86 . 22,5 ° 0
‘ 2 {733 8.97 46.8 0
3] 708 7.87 65.5 0
4 | 6.92 7.40 83.8 0
5 | 6.88 ; 2.19 100.5 0
Free end 10} 1 (6717 ° 6.77 ° 0 6.49
2 | 611 6.1 0 6.71
3} 617 6.17 0 5.11
4 | 617 6.77 0 3.96
5 | 6.17 6.77 0 S}
Experimental | 10 | 1 | 7.78 10.98 20.5 /24.20. | 2.51
System 2 | 676 6.36 51.2 6.28
3 | 622 4.60 61.6 7.55
4 | 6.63 6.21 48.5 5.94
5 | 670 6.47 32.7 4.00
38
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TABLE III
TEMINATION | 2 | 2 “;1 i by | r v(0)
. Fixed end S| 31 4.90 /= o 5.47 /- ° | 45.6 ° 0
10 17.05 1.87 65.5 0
15 9.02 10.18 | 84.5 0
Free end 5| 3| 460 ° 1 460 ° 0 3.47 (8L
r o ¢ 10 6.77 6.77% 0 .11 /87,
, 15 8.73 8.73 0 6.59 8T,
 Experimental 5 1 3 | 4.04 /- o 2.99 /- ° | 4.0 ° | 4.90 9}
systes 10 6.22 Eg_ﬁz 4.60% 61.6 7.55
15 7.28 5.39 72.2 8.84
!
ru,lo)
ru'(ol
oy lo) g‘“'(.,
§|u'(o)
by uyt0)
lo) v = th) ys2
ru’(o)
B0y fo! by vg (o)
ted vy 4) ves
RA-2404-)22
[
FIG. 9

SUPERPOSITION OF THREE WAVES AT FIXED LOWER END
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D. TERMINATION WITH ZERO SPRING CONSTANT

If one postulates a cable termination consisting of a pre-stressed
spring giving the proper value of equilibrium tension, but permitting
longitudinal motion with a dynamic spring constant of zero, the boundary
conditions are expressed by {y ~0, r =0, v(3) = 0, and w(Z) = 1/0°.
Although the tension variation r is zero, the longitudinal motion of the
lower end of the cable, v(0) [ = {pr], is finite. For this case, Eqs. (78)
may be written

8 (2)  u,(3) 0\ b, V1 + 28
i
V(@) v,(®) -1 ’ b, = 0 ) (64)

1 1 o/ v(0) 0

The first and third components of Eq. (64) can be solved independently of

the second, since Eq. (64) can also be written as follows:

© e e s B R N o [ et

u, (%) uy(2)\ [ b, /1 + 22

‘ = (65a)
i 1 1 b, 0
§ v(0) = b v (®) + b, v,(®) . (65b)
E The solution of Eqs. (65a,b) gives
H
§ b V143t (66a)

NG RT3 :
; / + 2!
; b, = - — 2 (66b)

u () - u,(S)

b (®) - v, ()
v(0) = /T +3f |2— P (66¢)
u,(3) - ug(Z)

% It is seen that when the lower end of the wire is free to move longi-
tudinally, there results a simpler type of transverse motion than if it

is constrained, involving only u, and 4,. Maximum and minimum responses
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in this case correspond exactly to nodes and antinodes in the standing

wave pattern formed by the incident and reflected waves. Numerical results,
again for the "worst’” case, have been obtained and are shown for comparison
in Tables II and III. The two waves are always equal in magnitude and

180° out of phase at the origin.

A clearer idea of what happens on the wire can be had b& plotting
the tranaverse emplitude as a function of position uldng the wire. The
result, for £ = 10, v = 1, and for both the fixed and free cases, is shown
in Fig. 10. The amplitude, for the free-end case, oscillates between

smooth upper and lower envelopes, given by

Iw(a‘)l-.x - 6.17 /1 + 02 (Iul(g)' + qu(a)l) B (67.)
@)1, ,. 6.11 V1 + 02 (Juy(0)] = |uy(0)]) . (67b)
r T T T T T I | ] !
N,
\\
\
12 = \\ 7023 i
" Fmeavencr tveLore .

FIXED END

-
-

-——————

fad X,
-~

—— .- -
-

FIG. 10
VIBRATIONAL AMPLITUDE AS A FUNCTION OF POSITION ON THE WIRE FOR v =1
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At higher frequencies, the envelope remsins the same, while the fluctuations
of amplitude with position become increasingly repid. The first maximum
is always the highest, but cen never exceed 13.54 times the input amplitude.

With the rigid termination, the three solutions combine in a compli-
cated way in the lower part of the wire, yielding an amplitude pattern
which does not necessarily stay within the same two envelopes. The exact
nature of this pattern is dependent upon frequency, and it is possible for
the second maximum to be as high as about 20 times the input amplitude at
some frequencies. At points farther up along the cable, the standing wave
has much the same appearance as in the free-end case, except for a phase
shift of the maxima and minima relative to their former positions, and a
somewhat greater fluctuation in amplitude due to the presence of a larger
proportion of u, than before. The effect of u, decreases markedly at

higher frequencies, and the whole pattern approaches that which is obtained
for the free case.

It should be noted that, although the transverse amplitude patterns
in the two extreme cases are the same at high frequencies, the longitudinal
motion and tension fluctuation are quite different. In the free case the
tension, of course, remains constant, while there is considerable longi-
tudinal motion of the lower end of the cable, decreasing at the higher
frequencies; in the fixed case there is no motion of the lower end, but
the tension variation becomes progressively more severe with increasing
frequency.

E. OTHER TERMINATIONS

It is possible to consider many other theoretical terminations, in-
cluding viscous types capable of absorbing energy. Since two constants,
{y and [,, are needed to describe the termination completely, it is
possible, at a given frequency and for a particular set of flight parameters,

to satisfy two independent conditions. It is not difficult to show that

(VRp ~ ORp) * Oy, ¥ o
Txp
Ly

In Eq. (68), G represents the acceleration of gravity in consistent

dimensionless units, and Qp is a dimensionless coefficient of viscous
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friction in the N or P direction. These quantities are defined mathe-
maticslly as follows:

e e eI e mar e s

. 8C
G = — |, 69 R
2 (69) \
FxpC
au = al » (70) i

where HBxp is the coefficient of viacou; friction in conventional units—
e.g., lb-sec/ft. The frequency Vgp 18 the (dimensionless) natural fre-
quency of the weight and its suspension, and m is the mass of the weight.

For the actual experimental system using a pre-stressed spring, the
flight-test conditions and the constants of the linkage are such that

G = 207x10% , v, g ®

v, x .0.13 , @y = 0 .
These values lead to the following:

Ly = 0 , {, ~ 0.123 f0°

Numerical results in the computation of w(o) are shown for comparison in
Tables II and III. It is seen that this termination is very much like the
fixed case at low frequencies, and very much like the free case l? high
frequencies. It is possible however, at certain frequencies, to have
either longitudinal amplitudes greater than in the free case or tension
fluctuations greater than in the fixed case.

The longitudinal amplitudes have been shown as functions of frequency
in Fig. 11 for a wire of £ = 10 and fixed input amplitude of 10~3 in
dimensionless units, corresponding to 0.063 in. in this case. For some
purposes it is of greater interest to know the longitudinal response for
a fixed acceleration. This has been shown in Fig. 12 for a dimensionless
acceleration amplitude of 10”2, corresponding to 4.82 g. The amplitudes |
of the tension fluctuation, in percent, have been shown for the same con-
ditions in Figs. 13 and 14. It is worthy of note that, for amplitudes of
such size that the cable never goes slack, the motion of the lower end of
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LONGITUDINAL AMPLITUDE AT LOWER END OF CABLE WITH FIXED INPUT AMPLITUDE
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the cable due to the second-order effect described in Sec. I1I-G can be
neglected in comparison with the first-order effect.

It would be at least theoretically possible in this same system .under
a particular set of flight conditions, to eliminate both the return wave
u, and the “tension wave’’ ug. First, the tension wave can be eliminated
by making (, = ® a3 already described. There are, however, considerable
practical difficulties attendant upon designing a springing arrangement
to give the correct static tension, to center properly, and still to be
much “softer” dynamically than that which is used in the experimental

system. Second, u, may be eliminated by making
Ly = (y +iv)"t : (11)

leaving a pure traveling wave on the wire. Reference to Eq. (68) and con-

sideration of the magnitudes involved show that this may be achieved if

ay = G (72a)
vy % VG (y *+ Q) . (72b)
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The result is independent of frequency, but the values of spring and
damping constants required in thé suspension in order that Eq. (72a,b) be
satisfied depend upon airspeed and altitude. Such an arrangement is
therefore of rather doubtful utility. It should be remembered also that
the method of suspension described above fails entirely to eliminate the
longitudinal motion.
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LONGITUDINAL AMPLITUDE AT LOWER END OF CABLE WITH FIXED INPUT ACCELERATION
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A

'V SUMMARY AND CONCLUSIONS

In summary it can be said that the aerodynamic characteristics of
trailing wires at both subsonic and supersonic speeds are well understood.
In particular, the factors leading to cable failure are known and have been
subjected to mathematical analysis. Investigation of various means for
control of the undesirable phenomena indicates a strong possibility that

trailing-wire antennas may be practical even for supersonic aircraft.

The static shape of a trailing cable can be described very closely
for all speed-altitude combinations by a single dimensionless expression.
The mechanical waves which can exist on the wire have also been described
in dimensionless form. The theory developed in this report expresses the
motion in terms of an amplified wave traveling downwind, a damped wave
traveling upwind, and a standing wave resulting from wire curvature and
existing primarily in regions where the curvature is large. On this same
highly curved portion of the cable there is a tendency for the tranaverse
oscillations to give rise to longitudinal oscillations. If the longitudinal
motion is restrained in any way, first-order fluctuations in tension
result.

The lower end of a trailing antenna can be stabilized through the use
of a heavy, serodynamically stable end-weight of low drag. Under these
conditions, the most important vibratory inputs are those at or near the
upper end of the wire, and the crucial factor determining system instability
is the aerodynamic amplification experienced by the downwind wave. The
high value of cable tension limits the smplification to a relatively low
figure, but cannot eliminate it entirely at supersonic speeds without
exceeding the breaking stress of the cable.

The theory described in this report was applied to the design of an
experimental system which has been successfully flown at speeds as high as
Mach 1.24. The theoretical amplification in the worst flight-test condition
was about 8, and the tension fluctuations were calculated to be of the order
of 20 percent for liberally assumed vibratory inputs. The tests showed
clearly that this degree of serodynamic amplification is tolerable, as the
observed tension fluctuations attributable to the phenomena discussed in
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this report were relatively slight. Tension variations resulting from
other causes were observed, but none vas of sufficient magnitude to bring
about failure of the antenna in flight. A practical antenna for use on
Mach 2 to Mach 3 aircraft would have maximum amplification of the same
order of magnitude as the experimental system. Although the indications
are favorable, the question of the stability of such a higher-speed

installation can be finally settled only through appropriate flight testing.
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APPENDIX A

EQUATIONS OF THE CABLE SHAPE IN TERMS OF THE
DIMENSIONLESS VARIABLES ¢, 7, o, AND ¢
FOR ZERO-DRAG END-VWEIGHT
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APPENDIX A

FOR ZERO-DRAG END-VWEIGHT

EQUATIONS OF THE CABLE SHAPE IN TERMS OF THE
DIMENSIONLESS VARIABLES ¢,.7, o, AND ¢

VARIABLE IN TERMS OF £ | [IN TERMS OF 7 IN TERMS OF o IN TERMS OF ¢
4 --- cosh n -1 V] + -1 csc -1
n cosh™! (1 + &) - sinh”! o In cot (¢/2)
o vm sinh 7 .e- cot ¢
) cscl (1+¢) cot™! (sinh ”) cot”! o .--

&
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. APPENDIX B

WAVE NOTION IN THE CABLE AT ZERO ANGLE OF ATTACK

1. THE NON-LINEAR EQUATION OF MOTION

The theory given in Sec. III for wave motion on a wire immersed in

an airstream is not applicable at very small angles between wind and wire.

The purpose of this Appendix is to develop an approximate theory which is

5
4

valid when the wind direction is exactly parallel to the cable. Before
proceeding, however, it is convenient to describe s mathematical develop-

ment “hich will be needed.
Consider the function

y(x) = |sin x| sin x (B-1)

shown in Fig. B-1. This function can be expanded in s Fourier series as

gt oS e a2 RN b ko S A o

RA-2494-142

follows:
. ® - ;
y(x) = 2: a, sin kx . (B-2) %
k=1 &
:
;
+ r g
: i
- 0 F
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FIG. B-1
THE FUNCTION ybd = | sin x | sin x ]
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Ouly odd harmonics are present, and their coefficients are given by

5 i
[ . B-3 °
s k (k2 -4) 7 (B-3) ‘l
Numerically, )
8 8 8
. = - — -—— .. -4
%1,3,5... 3w’ 157 ' 1057 (B-4)

The coefficients of the higher harmonics decrease approximately as the
inverse cube of k. |

Now, for slope angles ¢ in the neighborhood of ¢° = 0, the second
term of Eq. (22) cannot be neglected in comparison with the first, and
the approximation of Eq. (23) does not hold. The angle ¢, however, may
be approximated as follows:
on -

$® = sin¢d = tan¢p = — . (B-5) !
ds §
The aerodynamic force on an element of cable is proportional in magnitude

to V: and has the same algebraic sign as V,_ . It may be written in the

following form:

dF = f(s,t) T ds (B-6)
where
1|V|V
f(s,t) = EITolv_o . (B-7)

Substicution into Eq. (24) gives for the equation of transverse motion

3 1

—é_s-; U’ atz + f(‘rt) = o . (B'a)

To obtain an approximate solution of (B-8) in a particular case where
damping is known to be small, an undamped solution is used to evaluate .
V., and thence the small term f(s,t). The damped solution is then computed
from the resulting equation.
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2. TRAVELING VWAVES

Suppose that the solution desired is that of a traveling wave in the
. downwind direction, excited sinusoidally at the origin. The dependence
on time must be harmonic, and a solution of the form

n = u(s) sin @ (t +‘:7’ (B-9)

is assumed, where u(s) is real and slowly-varying. Then

12
" on 1 on
VT e V.t (B-10)

or, if the term in the derivative of u is neglected,

| 4
n wu . _"_ 1
. -;: - T (1 =) sin [w (t + U) + 2] . (B-11)

. Also,

1 [wul? - a3 8\,
fa,0) = l-a—) a-» y[w(t+u)+2] (B-12)

which, by Eqs. (B-2) and (B-3), is seen to coﬁnilt.of a Fourier series
whose fundamental leads the displacement by 90 degrees.

With this linearization, Eq. (B-8) cln.now be treated more con-
veniently with complex numbers. Since the complete solution must also be
periodic in time, although higher harmonics may be present, it will be
taken to be of the form

L
no= ) u(s) ettt/ (B-13)

k=]
odd

The boundary condition at the origin is

. n(0,t) = n, glwt (B-14)
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and therefore

u(0) = n, (k = 1) (B-15a)

u,(0) = o k 4 1 . (B-15b)

Equation (B-8) can now be written as

2 12 - ‘
_3_71 -1 & - Iwul (a-»3 i a, eiho(140/U) ikmy2
3‘2 UZ Jt? ‘ U Cc K ]
odd .

(B-16)

or

2 2 wu,)? - a2
-.a—%- lz a—: - i __l) Lu i (_1)%(‘0]) a,. ei‘ﬂ(!’l/”)
ds U% ot U Cc -2

odd
(B-17)

I R N T s o 2

where the @, are given by Eq. (B-3). When (B-13) is substituted in (B-17),

the resulting equation must be satisfied component by component, and we
have

d?u du wu 12
Y A [ 1 1
; —_—— . i = 3 - )2 (=1)4(h+1)
") i 2k v i ( 7 ) (1 -v)? (-1) e,

(B-18)

The amplitudes 4, will be assumed to be sufficiently slowly-varying that

e « g2 (B-19)
ds? U ds : ;

Then Eq. (B-18) can be rewritten to give the following set of equations:

du 2
& w(l - y)
—_— e (=])HChe1) D T YT 2 .
T (-1 kel e, u} . (B-20)

e
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In particular, for k = 1, Eq. (B-20) becomes

du - )2
. ¥ 41 = y)* o

—_ - o, B-

A , u} (B-21)
. which cen be integrated directly to give

(B-22)

-~ -

sy (s) (1 =~ ) n, ]"’
= |1+ 8
=

Ry

14 the foregoing is substituted in Eq. (B-20), the amplitudes for k ¢ 1
can be found:

y - 2 -1
“i(’)‘ . EUD 3 P (1 = v)° n, .
n, k2(k? - 4) 3InCU

(B-23)

B e haaacht

In dimensionless units the complete solution csn be written:

Mo,7)

4 -1
- . - v)? ¥ ivireo)
N, [1 k] 1= ¢ ] €

1+ 4 q-m2 -y 3 iy (re0)
+{1 [1+&(1 ) w,a] }Z(n" Faron <"

(B-24)

Equation (B-24) shows that the fundamental component of the wave is
amplified, although not exponentially, with distance along the wire, while
small amounts of higher harmonics are created. A similar investigation
of an upwind wave gives, under the same conditions,

-1
M = [14»;‘;'(1 +7)2 m“i eivir=-o)

- N,
4 3
+ - + - 2 ~1y8(4=1) ihv(r=-o)
' 1 [1 3 1Y mp} }E’(l)" P
odd
(B-25)

from which it can be seen that this wave is attenuated with distance.
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3. STANDING WAVE

Because of the nonlinearity of Eq. (B-8), it is not possible to
superpose the traveling-wave solutions given in Eqs. (B-24) and (B-25) to
obtain s standing-wave solution. Let the case where complete reflection
at the origin occurs be considered. The initial solution will be taken
to be

@ws

n = n_ sin —6- sin wt (B-26)

where n_ is real, positive and constant.

Using Eq. (B-10), one finds

v, n %
_V_ - v [co.lz 201 + y? gin? ill.] sin (wt = ) (B-27)
[}
where
Y = tan”! ['y tan %’] . (B-28)

In this case the fundamental component of f(s,t) lags the displacement
by the angle , and we can write

n w

*(B-29)
The complete solution will be taken to be, in complex notation,
hd . ws ws )
n = ,,);,[b‘ sin (k-u—) + u,(s) cos (k—u-)]e'“" . B- 30)
odd

If the system is excited sinusoidally at the point s = S—that is, if
n(s,t) = n, givt , (B-31)
the boundary conditions become
u,(0) = 0 (B-32a)
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b N (b = 1) (B-32b)

wS
b, = =~ u,(S) cot(k’v’) (k 4 1) (B-32¢)

. wS @S
n,sin — + u,(S) cos ~— = n

. 7 T 0 (B-32d)

With the use of Eq. (B-29), Eq. (B-8) can be written

3n 1 3 1 [*a® : ws ws] 2
—_——-—1 ., -2 2 @5 2 .2 ©8 ikt =ik
WRATEYY c\ 7 [cos U + y% sin U El a, € wt e~ihy

odd
(B-33)

As in the case of the traveling wave, substitution of Eq. (B-30) into

(B-33) leads to a set of equations for the individual components:

dlu, ws © 98,
L &2
pol U R gt u)
a. n.w 2 w$ ws .
=" —l—]— [cos’ '—u‘ +? sin? "'U‘] i (B-34)

Let the function v, (s) be defined as follows:

+ 3 d_uf 2 ﬁ.’ (B-35)
v,(s) = v, (s) it v, (s) = 7s cos (k iR -

Then Eq. (B-34) can be written -

dvl a, [{p® ws

(B-36)

Since v, (7U/2w) must be zero, the real and imaginary parts of v, are

-ﬁ‘..n_'f’ . e P SRS Tl kﬂ) ky ds
v, (¢) = ¢ |7 cos m y* sin v cos( U cos
o/t (B-370)

03

2
T = - ~c— T) [c:o.2 .F + y? sin? _(%s_] [col k) = i sin hﬁ] col(kiu‘-) .
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8, (p 2
vyle) = — —')

1]
L [co:’ % + ! sin? -“;Ji] cos (k%"’)‘lin kp ds
vt de ‘

clvu
(B-37b) .
{ — e - e s e . . -

Now, from Eq. (B-32s) u,(0) must be zero, and therefore Eq. (B-35) can be o
integrated to give i
: ws :
u,(S) = [ v,(s) sec? (k'-ﬂ-) ds . (B-38) ;

0

The evaluation of u,(S) in the general case requires two successive
numerical integrations for each value of ¥ which is of interest. However,
there is one important special case for which the problem is greatly
simplified. Since the integrands of Eqs. (B-37a) and (B-37b) have symmetry
and antisymmetry, respectively, about the point s = 7U//2w, the corresponding
integrals have the reverse properties. Consequently, when the cable length
S is equal to an integral number of half-wavelengths the real part of
u,(S) vanishes in the integration of Eq. (B-38). The imaginary part of
v,(s), unlike the real part, can be found analytically, end u, for any -
value of ¥ is computed by means of a single numerical integration.

L3

The amplitude of harmonics other than the first cannot be found in
this special case by the method under discussion, because of the appearance
of cot 7 in Eq. (B-32c). (In principle, the inclusion of higher order
terms in Eq. (B-33) would have yielded this information.) Results for the
fundamental, however, are obtainable and will be given here. Integration
of Eq. (B-37b) for k = 1 gives

Bwn ws ws |V
n —— LI 2 442 gin?— /B-
v T~ 50 [7 (con v ¥4 sin v ] {B-39)

and, taking into account the fact that the positive 3/2-power must always
be used, Eq. (B-38) reduces to

n?

W(S) = -ip— qr . (B-40)
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The index p gives the number of half-wave loops, and g(y) is defined by

w/2
q(Y) 16 ) J [(cos? 6 + ¥? sin? 6)3 - 3] gec? 8 d6

om(1 ~ 3
(B-41)

Numerical values of ¢() are shown graphically in Fig. B-2.

The information of greatest interest from the point of view of design

is the relationship between the excitation n, and the first-harmonic

response n_. In the case of half-wave resonance, Eq. (B-32d) shows that

4
‘;

ny = u,(S), and we can write

n_ = vVpq(y) - VC [n,| . (B-42)
-4
The standing wave amplitude is seen to be proportional to the square root 5
of the input amplitude. z
- 1.5 T ;
. 1
p
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APPENDIX C

VARIATION OF VWIRE LENGTH DUE TO STANDING WAVE
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APPENDIX C

KEN-TRE PR

VARIATION OF WIRE LENGTH DUE TO STANDING WAVE

If the first-order wave on the wire is known, it is possible to
obtain an approximate expression for the variation of over-all wire length
with time. Let ds, be the length of an element of the distorted wire,

n its displacement normal to its equilibrium direction, and ds its pro-
Jection on that same direction. Then

-%
an)?
N ds = [1+ (;o” ds, . (c-1)

Note that n here represents the actual instantaneous value of the dis-

4

¢
¥
3

placement, not its complex value, which is meaningful only in the first-

i order theory. For moderate amplitudes, Eq. (C-1) can be expanded as
3 follows:
2 1 {9n)\2 .
. -= 1 |4 , -
. ds [l > (3'0 ] $o (C-2)

el

For a single cycle of a sinusoid of amplitude a and wavelength A on a
straight wire, it is easy to show by integration of the above that

S ma \?
15; = 1 t—:—} . (C-3)

Now the instantaneous transverse displaéement along the curved wire is
given by the real part of Eq. (17). If the time origin is chosen to make

a, real, and total reflection is assumed, the result is

. Cao Cao
Re[n] = e, [A;l cos w t—a- + t) ~ A;‘ cos w t—;— - t)] . (C-4)

69

© e RS




This equation can be rewritten as follows:

Co,
Re[n] =« a(oy,t) con(wT+¢) )

where
a(0y,t) = a, [A]? + 477 - 2477 A3} cos 2wt)%

and

A, + AS
2 1

Ylog,t) = tan”! [—— tan wt]
1,4,

(C-5)

(C-6)

(C-17)

At any given instant of time, Eq. (C-5) represents a sinusoid with ampli-
tude and phase varying along the cable. For waves of sufficiently short
wavelength, this variation will be negligible over one wavelength, and the
contraction of the wire can be considered as the sum of a number of small
contractions in which the local length decreases by the factor given in
Eq. (C-3). Then it is possible to write

Z

e v

-

.

s . L [1-(’1—“)’]@ :

or

(C-8)

2 [
£ - 3, -(—*) J (472 + 432 - 2471 A7 cos 2wt] do, . (C-9)
0

The first two terms in the integral, which can be evaluated numerically
in a particular case if desired, are not of any physical interest, as they

represent only a static change in the equilibrium length. It is the third,

ST SUSN

or time-dependent, term which gives the amplitude of the fluctuation.

This amplitude is =asily seen to be
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i 2 2o do, may |2 Zo do }
! = 2 = 2 - c 3
\ - , (C-10) ]

o 0

A AlAz 1 + o2 2

or

Wdl

. .
I 2( )\) tan~! z, . (C-11) ‘i
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APPENDIX D

VALIDITY OF EQUATION (41) AND ANALYTIC EXPRESSIONS
FOR THE HOMOGENEOUS SOLUTIONS
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APPENDIX D

VALIDITY OF EQUATION (41) AND ANALYTIC EXPRESSIONS
' FOR THE HOMOGENEOUS SOLUTIONS

The purpose of this Appendix is to determine the range of conditions
under which Eq. (41) is a good approximation, and then to find an analytic
representation of the integral.

e ae mragm &

Differentiation of Eq. (41) gives

L u[l - i —2-5—,&” . (D-1)

The condition that Eq. (41) be a good solution is evidently that

B e LI

£

rv——

ufV2

4

<< 1 (D-2)

or say

< 107! . " (D-3)

A%

The quantity on the left-hand side of Eq. (D-3) alwaya has a maximum for
some value of o. If this maximum is less than 107!, then the approximate
solution is valid for all values of 0. Based on this fact, it is possible
to find for any value of ¥ a critical value of ¥ below which the approxi-
mation of Eq. (41) fails. The resulting curve is shown in Fig. (D-1), and
will be referred to as Criterion A.

The evaluation of the integral appearing in Eq. (41) is greatly
simplified if [1 - 2i (¥/¥)(1 + 0?)~%]% can.be expanded in powers of
2(y/v)(1 + a’)'%. The first few terms in the expansion are

[ IR 7

VF@) = 1- ity + o) ? +—;—(7/v>’ (1+0)"

+% i)y (1 + o) -% /)t 1+t e

(D-4)
%
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CRITERIA RELATING TO THE APPROXIMATE SOLUTION OF EQUATION (39)
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Careful testing of the real and imaginary parts of this series yields the
result that for convergence at the worst point (o = 0) one must have

v > 2y (Criterion B) . (D-5)

This criterion may be seen from Fig. (D-1) to be less restrictive than

Criterion A for values of ¥ less than 0.67, and more restrictive for
Y > 0.67.

The imaginary part of (D-4), when integrated, leads to multiplicative

factors in the amplitude of the wave, while the real part leads to additive

terms in the phase. To ascertain how many terms of Eq. D-4 are needed,
the integral must be evaluated term by term. The result is

VJVf(U') do' = ivE+_;_(%) tan’
0

+'yEn (0+V1+0") -—( ) mz :l
(D-6)

The two independent homogeneous solutions of Eq. (39) thus become
u(0) = ‘oc+vV1+ o2 7 give (g(c) eirla)] (D-7a)
u,(0) = o+ /Ttol 7 e [e7ihlo)/g(0)] (D-7h)

where
(@) A A (D-8a)
& PN W AT -8a
AT R N ad (_3_ -1 )

h(oc) ov tan~! o 6 v° \1+of +tan"l o) + . .. . (D-8b)

Now for certain ranges of y and v it will be possible to approximate
the two functions of Eqs. (D-8a,b) by unity and zero respectively. The
deviations will be worst for large o, and in fact g(o) and h(c) approach
limiting values as o becomes irnfinite:

m

+ tan”! u> + .:2]

o

T o et
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53
g(%®) = exp (' —_ ¢ ) (D-9a)

22
h(xy = %(72/1/) E"%(’)’/V)2 + :l . (D-9b)

The factor g(o) will be considered approximately unity if the exponent in
Eq. (D-9a) is less than 0.1 or, equivalently,

v >224 v (Criterion C) . (D-10)

On the other hand, a term in k(o) will be neglected if it is less than
0.1 radian. This condition, applied to the two terms of (D-9b) respec-
tively, yields

v >15.7 2 (Criterion D) - (D-11)

v> 1,70 y*# (Criterion E) . (D-12)
Criteria C and E ware seen from Fig. D-1 to be less restrictive than
Criterion A for values of ¥ which are of physical interest, while

Criterion D is more restrictive only for v > 0.24. Thus, we have for ail

cases of interest where the approximate solution is at all valid

glo) = 1 (D-13a)
h(o) = (v%*/2v) tan™lo , (D-13b)

and )
u (o) = (’o +v] + 02)7 exp <ivE7 +-;- (v/v)? cen”! %} (D-14a)
uz(o) = (’o + V1 + o? "7 exp {-ivE +% (')'/v)2 tan~l ﬂ} . (D-14b)
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APPENDIX E

APPROXIMATE METHOD FOR THE COMPUTATION OF u, (o)
FOR THE EXPERIMENTAL SYSTEM

The computation of u, (o) depends upon the finding of a particular
integral of Eqs. (56a,b). If the inequality of Eq. (57) holds, then this
system of equations can be written as follows:

" +vix = (1 +0%)"12 (E-1a)
y' +vly = (1 +02)7 1y . (E-1b)

Over the range of values of 0 which are of interest in the current problem—

i.e., 0 S0 g 19, theright-hand side of (E-la) can be represented quite well
by the following exponential function:

(1 + 02)’lﬁ ~ 0.708 €°9-6220 4 o 2992 €~0.11350 0.440 0 ¢~1-8980 -

. ’ (E-2)

Figure (E-1) shows the original function and the approximation of Eq. (E-2)
for purposes of comparison. It is seen that the approximation is very

good in the most important region, near the lower end of the wire, while

it deteriorates somewhat for values of o above about 10.

Use of Eq. (E-2) in Eq. (E-la) leads to the following:

x(o) = __0.708 e-0.6220 +__.9£.&_ e 0.11350

043865 + v2 . 0.01289 + 2

0.440 ( 3.80

+ O’) e-1.8980c
3.60 + v? 13,60 + 12

(E-3)
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It is then possible, for each value of v, to obtain graphically an approxi-
mate expression for (1 + 02)"Mx(0). For the case at hand, an expression

of the form
(1 +-02)'lﬂx(a) - alv)ebdvie (E-4)

yields sufficiently good resulta. Substitution of Eq. (E-4) into
Eq. (E-1b) leads to the following expression for y(o):

y(o) = S L A e*h(vio . (E-5)

[b()]? + 02
The complete solution u,{0) is then easily obtsined from Eq. (55).

Results for v = 1, 2, 3 are shown in Fig. B of the main body of thia

reaort.
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