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ABSTRACT

Severe difficulties associated with the design of satisfactory

flush-type HF transmitting antennas for supersonic aircraft have prompted

a reconsideration of trailing-wire antennas for such vehicles. The

aerodynamic instabilities which caused mechanical failure of the trailing-

wire type of antenna and led to its abandonment except in low-speed

applications are carefully examined in this report.

The shedding of a spiral vortex by the pear-shaped and spherical

end-weights customarily used was primarily responsible for rotary motions

which occurred at short cable lengths. This behavior can be eliminated

through the use of a streamlined,, aerodynamically stable end-weight.

To ensure that the antenna hangs down out of the turbulent boundary layer

and wake of the aircraft, as well as to take the fullest possible advan-

tage of the favorable electrical properties of the trailing wire, the

end-weight should be relatively heavy and have as little aerodynamic

drag as possible,

The phenomenon of aerodynamic wave amplification, which leads to

violent mechanical cable oscillations in the vertical plane, is subjected

to a comprehensive theoretical analysis. The partial differential

equations of-motion of the curved wire are shown to lead, in the case of

harmonic time-dependence, to an approximate representation in terms of

three waves. A general method is given for solving the boundary value

problem in a given case. Simple analytic expressions are obtained for

the total aerodynamic amplification of a traveling wave on the curvedwire.

The investigation shows that, although the amplification factor cannot

be reduced to unity at supersonic speeds with wires of known materials

and weights of practical sizes, it can nevertheless be held below

dangerous levels.

The theory is applied to the computation of certain properties of an
actual experimentkl trailing wire system which has been successfully flown
at speeds up to Mach 1.24. An amplification factor of about 8 is indicated

for the worst flight condition.
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T MOL' DEFINITION
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SYMBOL DEFINITION

k Aerodynamic growth or damping constant
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N1  Dimensionless transverse displacement

N! Dimensionless transverse displacement (downstream ways)

N2  Dimensionless transverse displacement (upstream wave)

N Dimensionless transverse displacement at particular point

n Transverse displacement

nI  Transverse displacement (downstream wave)

n2  Transverse displacement (upstream wave)
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n. Maximum transverse displacement in standing wave

nz  Transverse input amplitude applied at point
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q(y) Function defined by Eq. (B-41)

r Time-free fractional cable tension variation

S Total cable length

S: Total undistorted cable length

s Arc length along cable

so  Arc length along undistorted cable

T Cable tension

TO  Equilibrium value of T

t Time

U Wave propagation velocity

Uj Wave propagation velocity in vacuo

u (1 + 02)%

u!  Homogenous solution for u (downstream wave)
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SYMDOL DEFINITION

UI Homogenous solution for u (upstream wave)

us  Particular integral for u

uh kth function in expansion of nonlinear solution

V0  Free-stream air velocity

V Component of air velocity normal to cable

y Timedfree dimensionless longitudinal'diiplacement

v2 Functions defined by Eq. (46)

vk Function defined by Eq. (B-35)

= Vki Imaginary part of vk

g v Real part of v,

w Time-free dimensionless transverse displacement
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(2) Real part of u3
(3) Arbitrary independent variable0 o  Equilibrium value of x _

y (1) Vertical coordinate of point on cable

(2) Imaginary part of u , divided by 2yv

y() lain jsin X1

Y0 Equilibrium value of y

a Angular deviation of cable at point

am Dimensionless coefficient of viscous friction in
N-direction

ap Dimensionless coefficient of viscous friction in
P-direction,

Fractional tension variation

'y U/Vo

o Uo/Vo
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CP Coupling constant in P-direction

77 Dimensionless vertical coordinate of potnt on cable

a Variable of integration

x Mechanical wavelength
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AN Coefficient of viscous friction in N-direction

Up Coefficient of viscous friction in P-direction
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Dimensionless natural frequency of end-weight and suspension
in N-direction
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p Air density

E Total dimensionless cable length
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I' Dimensionless amplitude oi second-order length variation

a Dimensionless arc length along cable

01 Dimensionless arc-length coordinate of lower end of cable

02 Dimensionless arc-length coordinate of upper end of cable

00 Dimensionless arc length along undistorted cable

Dimensionless time

Slope angle of cable

00 Equilibrium value of q5
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Phase angle
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AERODYNAMIC CHARACTERISTICS OF TRAILING-WIRE
ANTENNAS AT SUPERSONIC SPEEDS

I INTRODUCTION

Most aircraft antennas for HF transmission act merely as coupling

devicea to excite currents on the airframe; the actual source of radiation

is the airframe currents. This is true of tail and wing cap antennas, and

such variants of these as wing, tail, and nose probe antennas., It is also

true of notch and shunt antennas, and even of fixed wires.w

With the evolution of the airplane through ever more sophisticated

shapes to the delta-wing configuration, however, it has become increasingly

difficult to design HF antenna systems capable of achieving adequate I
coupling. While on the one hand the new shapes have eliminated many of
the natural charge and current concentrations necessary to obtain effective

coupling, on the other hand the weight and structural penalties which can

be tolerated have become ever smaller. Moreover, the drag associated with

any external structure has risen greatly. The problem has been further
complicated by the fact that, in the few remaining possible antenna

locations, high ambient temperatures and limited space make extremely

difficult, if not impossible, the design, housing, and maintenance of the

often quite elaborate antenna couplers which are required.

These difficulties have prompted a reexamination of one of the older,

more primitive types of antennas -the trailing wire. This antenna is

different from the other antennas mentioned in that the wire itself is the

principal radiating element.

Electrically, the trailing wire has many advantages over other types

of HF antennas. One of the most important of these is that it can be
tuned by simply varying the length. The magnitudes and degree of variation

of the antenna impedances which are then seen at the feed point are such

that very simple coupling arrangements will suffice. The radiation patterns

11

l !f



obtained are, in generil, superior to those of the other antennas. In

particular, if the end of the wire is properly weighted, the antenna can

he made to hang down enough to give considerable vertical-dipole radiation,

thus providing more nearly omni-ozimuthal coverage. In addition, because

the wire itself is the radiator, both patterns and impedance tend to be

independent of the airframe on which it is installed. Although the

antenna, when extended, contributes appreciable drag to the airplane,

it can be retracted when not in use.

In spite of their electrical advantages, trailing wirec, except for

special low speed applications, were abandoned some years ago; at

increased speeds aerodynamic instabilities set in, resulting in mechanical

failure of the wires or, in some cases, damage to the aircraft. Since

these instabilities were responsible for the abandonment of trailing wires,

it is appropriate to examine possible causes for them to see whether they

might not be eliminated. Investigation reveals two sources of instability
which appear capable of accounting for the observed behavior.

In virtually all trailing-wire antenna installations until now,

spherical or pear-shaped end-weights have been used. It is known from

aerodynamic investigations that a sphere in a high-speed air stream sheds

a spiral vortex.4 The shedding of such a vortex by the spherical end-

weight on a trailing wire tends to induce a rotary motion of the sphere.

Depending on the length and tension of the wire a standing wave can be

established on it, resulting in large amplitude rotary motions of the

weight. Such motions have been observed in actual trailing wires. They

occur as the wire is reeled in, sometimes causing the weight to pound

against the bottom of the aircraft when the wire becomes short.

Equally serious as that just described is another form of instability

which occurs when the speed of the aircraft exceeds the speed of propaga-

tion of mechanical waves on the wire. When this condition exists a wave

traveling downstream on the wire will be amplified by aerodynamic action.

This phenomenon was investigated by W. H. Phillips and others.5 '6 Phillips

showed that the downstream wave will increase exponentially with distance,

while the upstream wave is always damped. The exponential index, which

gives the amplification, depends in a complicated way upon the wind

velocity, the amount by which the wind velocity exceeds the velocity of

propagation on the wire, the angle of attack, and the frequency of the

disturbance.

. .. .ii ii i [LU W2



Aerodynamic amplification of the type just described accounts very

well for the observed failure of trailing-wire antennas. When the condition

for high amplification exists a small mechanical motion introduced near

the point of wire attachment, either by motion of the aircraft or by

turbulence of the boundary layer air through which the antenna passes,

will travel downstream on the wire, arriving at the end-weight as a large-

amplitude wave. At the end-weight the wave is partially reflected giving

a high amplitude standing wave. Moreover, coupling through wire curvature

into longitudinal otion leads to tension variations in the wire. The

violent motion existing near the point of weight attachment, combined

with extreme tension variations, will quickly cause failure of tOieiable,

The vortex shedding responsible for instsbility of the first type

described above can easily be dliminated by replacing the previously used

sphere with a streamlined end-weight designed to pcssess inherent aero-

dynamic stability. Furthermore, the use of a heavy, very low-drag end-

weight results in the electrically highly favorable cable configuration

in which there is a region of appreciable length just above the end-weight

where the wire departs only slightly from the vertical. The use of

stabilizing fins does, however, give rise to still another form of system

instability which occurs because of coupling between a weather-vane type

of notion of the streamli,ned end-weight, and a lateral pendulum oscillation.
7

On the other hand, the spatial region in which this type of instability

is possible is so close to the aircraft that the weight will never normally

be in it except when passing into or out of the aircraft. Furthermore,

the rate of growth of such oscillations is so small that they cannot attain

significant amplitudes in the time the weight spends in the critical region.

Eliminating the second type of instability, that due to aerodynamic

amplification, is much more difficult. Since this form of amplification

occurs only when the component of wind velocity tangential to the wire

exceeds the velocity of wave propagation along it, our first thought is

to see whether the propagation velocity cannot be increased to a value

greater than the wind velocity, even at very high speeds.

To a first approximation we can say that the propagation velocity of

waves on the wire is the same as that which would obtain in a vacuum. It

can be shown that this velocity, U, is given by

UO• stresa

Vdensity

3i



Hard-drawn steel wire has the highest available ratio of ultimate strength

to density and for such wire stressed to the yield point the propagation

velocity of the wave on the wire is approximately Mach 2. Since in any

actual installation we must allow a substantial factor of safety, the

highest propagation velocity that can be obtained in practical antennas

will be of the order of Mach 1. If the airspeed exceeds this figure, the

amplification can be reduced to unity only by increasing the weight of

the terminating body to such a value that tha entire cable is nearly

vertical. For aircraf' in the Mach 2 to Mach 3 speed range, it can be

shown that the weights theoretically required would be of the order of

10 or 20 tons, and the cables would have to be of the order of X to

I inch in diameter. We therefore conclude that it is impossible practi-

cally to avoid having some amplification when the trailing wire is mounted

on such aircraft. Attention, then, must be directed toward keeping this

amplification within tolerable limits.

It is worthy of note that the amplification can also theoretically

be reduced to a very low value by using a light end-weight of very high

drag, so that the cable stream out almost horizontally. In practice,

however, this design places the entire cable in the turbulent boundary

layer and wake of the air vehicle, where the airflow is certainly not

laminar and parallel to the cable at all points. This condition,,which

may very well result in extremely high amplification, will not be

considered in this report.

Phillips' first order theory applies only to straight cables in

uniform airstreams, and takes no account of the true shape of the antenna.

The actual curved shape results in substantial departures from first-order

predictions, particularly at lower frequencies. Furthermore, Phillips'

theory assumes constant wire tension. Consequentty it not only cannot

predict the conditions under which failure occurs, but provides no insight

into the circumstances under which the theory ceases to be approximately

valid.

Since the preceding discussion makes it clear that aerodynamic wave

amplification cannot possibly be avoided at speeds significantly above

Mach 1, it is important to have a theory which more accurately describes

the behavior of trailing wires at velocities where amplification can occur.

To be useful the theory should include at least a first order description

of the tension variations which can occur because of aerodynamic wave

4



amplification, since it is obvious that wire failure cannot take place
without tension fluctuations. It should also show the effect of the

curved shape of the wire upon the amplification and resultant wire

tension. In this report such a theory is developed and applied to an

experimental installation designed for flight testing under Air Force

Contract AF 33X616)-5549. While the flight tests, because of limitations

of the F-100 test vehicle, have been conducted at rather low supersonic

speeds (up to Mach 1.24), the installation is designed to simulate the

conditions of wave amplification likely to be encountered at the Mach 2
to Mach 3 speeds representative of the next generation of aircraft.



II ONE-DIINSIONAL APPROXIMATION FOR WAVE AMPLIFICATION

a I
A. PRELIMINARY CONSIDERATIONS

Before investigating the dynamic situation in which wave motion exists

on the trailing wire it is necessary to explore the static condition,

where the wire is in equilibrium under the action of the aerodynamic forces

of the-airstream and gravitational forces-principally those due to the

end-weight. The shape of a trailing wire in an airstream has been con-

sidered by earlier investigators.8'9  It is re-examined here, however,

because it is possible to derive the results somewhat more succinctly than

has been done heretofore, and in a form more suited to the analysis of the

dynamic condition which follows.

B. DIMENSIONLESS EXPRESSIONS FOR EQUILIBRIUM WIRE SHAPE

The aerodynamic force on an element of cable suspended in a supersonic

airstream is always nearly normal to the axis of the element, and can be

considered to arise entirely from the

component of air velocity in the normal
dF T+dT

direction, V..10 For cases of practical in-

terest, the weight of the element can be + #
neglected, and in the absence of mechanical *+1

waves on the cable the element is in equi-

librium under the action of the aerodynamic

force and the tensions at its ends (see Vo

Fig. 1). The tensions are equal in the T !
static case because of the absence of any

other tangential components of force--i.e., FIG. I

dT - 0. FORCES ON AN ELEMENT OF WIRE

Let the following quantities be defined:

T - tension in cable

The smell component of aerodynamic force tangential to the cable element has been neglected, as its con.
aideratio would have made the solution of an already very complex problem even more involved. The prin-
cipal effect of this force is to cause a variation in the static tension along the cable. Significant
departure@ from the value predicted by the simpler theory occur, however, only in the upper part of Long
wires. In this region the effect of increased tension on cable shape is slight. A second effect of the
acrrvsed tenfion-a decrease in aerodynamic amplification-is also quite smail.

7 -



ds - length of element

- angle element makes with horizontal

V0  a air velocity (horizontal).

Then, from Fig. 1 one can write for the mechanical force acting on the

wire element

dF - -T . (1)

The aerodynamic force on the element is

pV2 pV2oP0
dF - CD ' (D da) - C8D - sin 2 

' ds (2)

where

C D a drag coefficient of a cylinder

D - diameter of cable

p - air density.

For equilibrium the mechanical force equals the aerodynamic force, so that

-T dO . CDD pV sin 2 0 ds (3)

or

ds
. -csc 2rkd, 

(4)C

where C is a characteristic length given by

T
= T(5)

Provided that the drag coefficient C. can be considered constant along the

cable,* Eq. (4) may easily be integrated to give

U oe See. IV-A for a discussioa of the importance of thim imitation.

a
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cot cot + o- (6)

as the equation of the cable shape, where o, is defined as the dimensionless

arc length s/C. Although not apparent when written in this form, Eq. (6)

is the equation of a catenary.

The slope angle of the lower end of the cable, 0, ib determined by

the way in which the cable is terminated at that point. If the termination

is provided by a body of very high weight-to-drag ratio the lower end of
the wire will be essentially vertical, and the tension will be equal to

the weight of the terminating body. If, in addition, the lower end is

taken as origin cf dimensionless Cartesian coordinates f and 7, defined

as x/C and y/C respectively, the following expressions result:

- d:a" cos 45, cac -1 (7) 4

- da' sin ' - In (cac + cot 5) (8)

The four quantities , , , and 4 can be expressed in terms of each

other by means of various substitutions among the above equations. Com-

plate results appear in Appendix A, and curves of the wire shape are shown

in Fig. 2.

C. WAVE AMPLIFICATION IN A STRAIGHT WIRE

According to Phillips' theory, which is restricted to vibrations

taking place in the plane determined by the air velocity and the wire

direction, the amplification depends on the angle between wind and wire,

and on the ratio of wave velocity to wind velocity. To the first order,

the only effect of the wind on in-plane waves (for sufficiently high fre-

quencies) is to cause the wave amplitude to vary exponentially along the

wire. For a wave traveling downwind (negative-# direction along the wire

in Fig. 2), the transverse displacement for a sinusoidal input is given by

n a O L'.- E I(t+/Vl) (9)

0,
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where U is the wave velocity on the wire, aG is a constant, and

L - 2 ) sin 2 (10)

It is seen that a wave traveling in the negative-s direction will be

amplified if the component of wind velocity along the direction of the

wire is greater than the wave velocity (k positive), and damped if it is

less (k negative). For a wave traveling upwind, only the sign of U is

changed in Eqs. (9) and (10). In this case, k is always positive and,

since the wave travels in the positive-s direction, damping always occurs.

The above equation indicates that there can be no amplification when

the wire is exactly parallel to the wind direction. Likewise, the theory

predicts that no amplification will occur for vibrations taking place in

a direction normal to the plane containing the cable. Actually this

result stems from the neglect of certain terms in the first order theory.

A more accurate investigation of wire behavior for zero angle of attack

(see Appendix B) shows that there is a very small aerodynamic amplification

for a downwind wave and very small damping for an upwind wave, in the case

where one or the other exists on the wire alone.

When complete reflection of the lateral wave occurs at the lower end

of the cable, the resulting standing wave consists of a combination of

the two traveling waves, but the net damping cannot be computed by means

of linear superposition. An approximate treatment of the aerodynamic

damping is still possible, however, and shows that, in the absence of other

damping mechanisms, the wire behaves as a very high-Q system with resonances

at multiples of one-half waveength.

The most extreme response occurs at one-half-wave resonance, where

it is found that the standing wave amplitude is proportional to the square
root of the input amplitude at the upper end of the cable. The theory

developed in Appendix B takes no account of wire curvature or of other
mechanisms providing coupling to the in-plane vibrations, which are of

much lower Q. Moreover, the end-weight does not constitute a perfectly
rigid termination, and therefore will furnish some damping due to its

lateral drag.

The actual Q of the lateral vibrations will therefore be considerably

lower than that predicted by Appendix B. For this reason, and more

11
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importantly because first-order coupling to tension variations occurs only

via the in-plane motion, it is not felt that the lateral motion is a

significant cause of cable failure. The analysis given in the main body

of this report will therefore be confined to vibrations in the plane of

the wire.

D. TOTAL AMPLIFICATION IN THE CURVED WIRE

Equation (9) may be regarded as an equation for a, the wave amplitude

along the wire, which may in the general case be complex:

a - 8, E "a. (11)

The change in amplitude in an element of the wire is

da - -k a, 68 ds - a (cos 0- y) sin k do (12)

where

U
Y - (13)

An approximation to the total amplification in a curved wire can be

obtained by taking Eq. (12) as the differential equation for the amplitude,

and inserting the known relation between a and q for the 4quilibrium shape

of the wire. This is equivalent to the assumption that the transverse

wave in the wire travels along the curve as if the wire were straight,

remaining always transverse, but that the amplification coefficient varies

in the correct fashion from point to point.

Since do ;.- aosc2 k -d,.we have

a-" da - (cos 0 - y) cac 0 d4 (12)

If the amplitude at the origin (lower end of the cable) is taken to be

a., and U (or 7) is assumed to be independent of k, Eq. (12') leads to

a = a. (cac k + cot k) tin (14a)

or

a a a. [a + /j__+0,]1 (I + 0,)- (14b)

12



Ile amplification from a point 0' on the wire down to the end is

U~ 0
A(O,o) 7(- % 1+2 [a + (15)-al

while the amplification from a point a2~ down to ] y a owrponta is

A~cr, a (a 1) A(O,cr 2) (6
2( a (,a) 2) A(O,a1) (6

E. THE REFLECTED WAVE

In general there will also be an upwind, or reflected, wave. The
attenuation experienced by such a wave traveling from the origin to a

point 0' can be found from Eq. (15), using a negative value of -y. Loci of

constant A(O,a) in the *I,o' plane are shown in Fig. 3. For example, if

1.0

A-2

0 .

z Az4

I.-L

0

-Q4 0

-0.-

-0.8

-1.0
0 4 a 12 62

WIRE LENGTH - a,444-l

FIG. 3

AERODYNAMIC AMPLIFICATION CHARACTERISTICS OF TRAILING WIRE
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the wind velocity is twice the wave velocity in the wire (V " 0.5), the

incident wave will be amplified by a factor of 2.3 in proceeding from

a 10 to the end of the wire, while the reflected wave will be attenuated

by a factor of 45 in returning to the same point. In using Fig. 3 it

should be remembered that y - 0 corresponds either to zero wave velocity

or to infinite wind velocity.

F. THE COMPLETE SOLUTION

The complete solution for the transverse displacement on the cable

for the case of a single sinusoidal excitation is, in the one-dimensional

approximation of this chapter,

n l e i t+ c o / ) + a 2 e-c l u/L) (17)
A1(0,0') A2 ( 0,')

The constants o and a2 represent the (complex) amplitudes of the incident

and reflected waves respectively, at the origin. In algiven case, they

can only be evaluated through a knowledge of the appropriate boundary

conditions- on the one hand the way in which the wire is terminated at its

lower end, on the other the location of the input excitation and the phase

relationship between the two waves at that same point.

For example, if no transverse motion of the lowe; end of the wire is

permitted, then a2 a -a,-i.e., complete reflection with phase reversal

occurs. If the input, of amplitude nE, is applied at the point a =

that is, if n(l) = n eio, a, can be evaluated as follows:

u ,n [A-1 ei'cl/u - A-1 e-C 2/.]-- 1 (18)

With the appropriate substitutions, Eq. (18) can be rewritten as

a / + 2 csch (s ,inh- 1 I + i (19)

The maximum response for excitation at a given point occurs if the

frequency is such that that point is a node in the standing wave-i.e.,

the distance from the end of the wire is an even number of quarter wave-

lengths. If this distance is an odd number of quarter wavelengths,

14
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corresponding to excitation at an antinode, the response is minimum.

Needless to say, since the reflected wave is attenuated in any given length

of wire more than the incident wave is amplified in the sme length, the

two waves can never cancel each other at more than one point, in this case

the origin. This fact tends to reduce the magnitude of the resonances.

These may, however, be quite pronounced for small o (short wires) at rela-

tively high frequencies or for very smail y (very high airspeed) at any

frequency.

The foregoing analysis is not entirely satisfactory for several

reasons. First, the effect of wire shape on waves whose wavelengths are

comparable with the radius of curvature has not been taken into account

in any way. Second, the possibility of longitudinal motion of the wire,

arising from the curvature, is not considered. Third, non-linear effects

of various kinds are entirely ignored.

G. NON-LINEAR EFFECTS

The non-linear effects mentioned above come into play when wave ampli-Itudes on the wire are not entirely negligible in comparison with wavelength.
One such effect arises from the deviation of the sine function from the

tangent function, by means of which it is approximated in the first-order

theory.

A second effect, which may have a more profound influence on the

behavior of the wire, is the variation in over-all length caused by the

presence of a standing wave. Note that the total wave on the wire is a

combination of a standing and a traveling wave-almost completely standing

at the lower end for a rigid termination there, and predominantly traveling

at the upper end in most cases of physical interest.

The longitudinal motion at the lower end produced in this way will

give rise to tension fluctuations if it is necessary to accelerate a

r ilatively large mass. It should be noted also that thesa.fluctuations

will take place at double the wave frequency. If their amplitude is greater

than T, the cable tension, the cable will go slack during a portion of the

cycle, then go taut again quite suddenly. In an extreme case the cable is

slack most of the time and has very high tension for an extremely short

a interval. This condition is obviously one possible cause of cable failure.

It is shown in Appendix C that the amplitude of the length variation

produced by a sinusoidal input on a wire of length E O, when the incident

15



wave has amplitude al at the lower end of the wire and is completely re-

flected there, is given approximately by the following equation.

V - 2( lja 1I/)
2 tan- E0 " (C-ll)

In the above equation a, and X, the wavelength on the wire, must be speci-

fied in terms of the same units, and ' is then given in the usual dimen-

sionless units of this theory. Eq. (C-11) holds closely only for

wavelengths short compared with the radius of curvature QL the wire.

It is not difficult to show that, if the input consists of several
sinusoids having frequencies w., phase angles 0., and amplitudes a,. at

a - 0, the length variation may be expressed by

tan 1  ' w2 2

cos (2wt + 20.)- 2 cos (2wot + 20n)

(20)

An extension of Eq. (20) leads to the interesting corollary that the

frequency spectrum of the input must have delta-function type singularities

in order that there be any effect. A"white" input produces no variation

in length. This fact is a result of the dependence of Eq. (20) upon the

qquaresol the a,.. In the limit of a continuous spectrum, the right hand 4
side can be shown to approach zero.

It should be noted that there are other causes for tension variations,

in particular the creation of a longitudinal wave us the transverse wave

travels down the wire. This is a first-order effect, however, and it will

be taken into account in the later sections of this report.

16

|9



III EXACT DESCRI O OF THE WiU MOTIO-

FIUST-OEDMN TEOST

A. COORDINATE SYSTEM

The preceding chapter has given an approximate theory of transverse

wave motion on the trailing wire, based on the assumptions that there is

no longitudinal motion and that the tension in the wire does not vary with

time. A more complete theory,

including these effects, will

now be given. Y

The position of a point on

the cable will be described in

terms of the Cartesian coordi- . .. ......

notes of its equilibrium

position, x0 and yo, and its

displacements from equilibrium

in directions normal and

tangential to the cable at that

point, n and p respectively so NA -404-If

(See Fig. 4). The ordinary

cartesian coordinates of the FIG. 4

point are related as follows COORDINATES OF A POINT ON THE WIRE

to those just described:

X = so + p coo 40 - n sin 60 (21a)

Y " Y0 + P sin 40 + n cos .0 (21b)

B. EQUATIONS OF MOTION

An element of the wire in vibration is acted upon as before by the

forces shown in Fig. 1. Now, however, the forces and angles may be

functions of time and dT is no longer identically zero. The component

of air velocity normal to the element of wire is given by

17



V V* sin4 - (22)

where 4 is the actual (displaced) direction of the element. If

an/at << V* sin 08, then from Eq. (2) one can write for the aerodynamic

force

df Cp in 2 1 ,a (23)

From Fig. 1 it can be seen that

dF + T-ds s Md*s (24)

where u represents the cable mass per unit length. Now let

T - To (1 + 0), where T. is the average tension, and 8 is a function of
position and time, assumed small compared to unity for the purposes of

this theory. Let U0  V T0/T represent the ordinary wave velocity

corresponding to the average tension. In addition, the following new

dimensionless quantities are defined:

n
N

C

P
C

Uot

The quantities C, e, 7, o, and y are defined as in Sec. II of this report.

Eq. (24) now becomes

1 2Y -csc sin2 j+ 1 - N (25)
la
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For the static case B2N/Z r, aN/Br, and A are all equal to sero,*and

Eq. (25) gives the static shape of the cable: sin2 O 0 + 20/aa - 0, and

0 a cot l'oI as before. It is desirable to expand 4 about j6, as follows:

t'(0,r) - (oa) + a(o,r) . (26)

It is possible to show, by means of Eqs. (21a), (21b), and (26), and

elementary trigonometry, that

a - P (27)

With a << 1,

sin in2  + 2a sin 00 cos 0o  (28a)

cac csc - a cac go cot . (28b)

Eqs. (26), (27), (28a) and (28b) may now be substituted into (25),

a and 6 being treated as small quantities whose products and squares are

neglected. Using the known equilibrium shape of the wire, and remembering

from Eq. (22) that y (?N/ir) << sin 0, one obtains finally the following

differential equation of motion normal to the cable:

Z2N 2& aN 1 ap 1 -1 2- + - + +2"y
aa2 I +o 0- BO + as 2o IC +o0- 'r ( +o 0-) a

(29)

A second examination of Fig. 1 leads to the following:

-ds - yds- (30)

or

(31)

This is the differential-equatinn for motion tangential to the cable,

19
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C. INEXTENSIBILITY OF THE CABLE

Eqs. (29) and (31) give two relations among the three variable N, P, ,

ad 6. The problem is therefore not yet sufficiently determined for a
solution. A third relation may be obtained from the elastic properties
of the cable. If, as before, the cable is considered to be inextensible,

one must have

ds2  - dx2 + dy2  - dz + dy . (32)I

With the help of Eq. (21a,b), and remembering that n and p are small

compared with x0 and y., one easily obtains

(33)

or

N - -(1 + o2 ) . (34)

Eq. (34), together with Eqs. (29) and (31), yields in principle a complete

solution to the problem, provided the appropriate boundary conditions are

specified.

D. SIMULTANEOUS SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

It is possible to eliminate either P and A or I. and P from the system

of three partial differential equations. The result in either instance is

a fourth-order linear partial differential equation whose coefficients are

rather complicated functions of a.

Because the coefficients are independent of time, it is possible to

find product solutions in whi-h the time occurs only through the factor

e~v4-i.e., let

N(o-,r) - e(o)e ivr (35a)

P(o,r) - v(olei)E (35b)

3(o-,T) = r(o)e i"" (35c)

20
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Such solutions represent the steady-state behavior of the wire under the

influence of a single sinusoidal excitation of dimensionless frequency v,

defined as follows:

C
U0

where w is the angular frequency of the input.

Formal substitution of Eq. (35a) or Eq. (35b) into one of the above-

mentioned fourth-order equations converts it into a linear, fourth-order,

ordinary differential equation with complex, non-constant coefficients.

In principle it is then possible to obtain the functions w(o), v(a),

r(o) in a particular case, provided four suitable boundary conditions are

supplied. In practice, however, the nature of the differential equations

is such that it is nearly impossible to obtain any sort of general

information from them. :In fact, any attempt to find approximate forms of

a literal solution becomes rapidly so involved as to obscure entirely the

basic phenomena which it is desired to represent.

E. THE UNIFORM-TENSION CASE
In many cases of physical interest, the total mass of the wire is

very much smaller than that of the end-weight. Under these circumstances,

the fluctuation in tension produced-at the lower end of the wire by

acceleration of the end-weight is much larger than any variation with

distance along the wire produced by longitudinal acceleration of the wire

itself. This is especially true for long (large 1) wires where the inputs

are largely transverse, as then any longitudinal motion is confined almost

entirely to the lower part of the wire, between a = 0 and o, w 2.

If the conditions described above are satisfied, the tension can be

considered to be independent of a, although the time dependence remains.

In other words, the tension variation amplitude r(7) becomes a (complex)

constant, whose value is determined by the boundary conditions at a - 0.

Eqs. (34), (35a), and (35c) may now be substituted into Eq. (29), giving

+ 20 W1 + [ + V2 - 2iy- - 1 r
1 + a2 + a2) (1 + 0 i j 1 +.a2

(37)
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where primes denote differentiation with respect to 0.

A further simplification may be effected through the following

substitution:

au(0) - (1 + ) u(0-) (38)

The result is

u" + V2 f(o-) u (1 + a2)-% r (39)

where

f(o-) = 1 - 2i(y/v)(1 + a2 )-% (40)

The general solution of Eq. (39) will consist of a homogeneous solution

containing two arbitrary constants, plus a particular integral which will

be proportional to r.

If f(o) is sufficiently slowly-varying, a very good approximation to

the homogeneous solutions is given by

u - const X exp[ti v f vff(o) dal (41)

For the range of values of y and . represented by the shaded portion of

Fig. 5 (Regions I and II), the approximation of Eq. (41) holds, and it

is possible to obtain analytic solutions of the following form:

u(o) = (o + i + ) yV exp{i v [o + (I/2)(y/v)2 tan "1 o]

(D-14a)

u2(o) - (a + T )- exp(-i v [a + (1/2)(y/V)2 tan-' a] .

(D-14b)

Details of the derivation of (D-14a,b) and the determination of the

boundaries in Fig. 5 may be found in Appendix D.

The arc-tangent term represents a deviation of the wave velocity

from its normal value U0 which is not sufficient to alter the amplification

in this order of approximation. This term can be ignored in Region I of

Fig. 5, but even in Region II, where strictly speaking it cannot, only

the phase of the wave at points other than the origin is affected.
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DOMAINS OF VALIDITY OF SOLUTIONS

For the sake of mathematical simplicity, the remainder of this
investigation will be limited to the case where this term is neglected,

with the understanding that it could be included if necessary. Using

Eqs. (35a) and (38), one then has

N Il',*r) _ (1 + a2) "% (' + /-' 2 ) -+a (42a)

N2 (o,,r) _ (1 + c) " (0, + /F- :or)' E'( (42b)

which are easily seen to be identical with the solutions for the transverse

wave obtained by the simple approach of Sec. II of this report.
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It will be remembered that the complete solution of Eq. (39) consists

of the homogeneous solutions, Eqs. (D-14a,b) plus a particular integral.

The letter may be represented an r u (a), where u3( ) is a particular

integral of the following equation:

u' + vOf(0)u ( + ,)"  (43)

There are everal well-khown and straightforward methods for findipg

an integral of such an equation. In this case, however, all require one

or more nuLerical istegrations for each value of v which it is desired to

consider. Also, since there is an infinite number of particular integrals

differing by arbitrary multiples of the homogeneous solutions, there is

no assurance that one of these methods will yield an integral which will

aid in the physical interpretation of the problem.

If the range of a which is of interest in _ particular case is known,

a suitable approximate expression for (I + (r2) may be found in a form

which can be handled analytically. An expression in the form of a sum

of exponentials is especially useful, as it leads to an integral which

becomes very small for values of a greater than a few times unity-i.e.,

for the less sharply curved portions of the wire. In addition, for many

cases the solution is very nearly pure real and positive, corresponding

to a sort of heaving motion of the wire as a whole. (See Sec. IV for a

specific application of this approach.)

Thus, one is led to a representation of the wire motion in terms of

a downward-traveling wave u, a reflected, or upward-traveling, wave u,

and a heaving motion u. which is most important in the lower, more

sharply curved, portions of the wire. The general motion of the wire

can be written as

N(o,i) - (U + o-2 )"  [blul(a) + b2u2(o) + r u3 ()] e"" (44)

where b, and b2 are arbitrary constants yet to be determined and r is the

complex amplitude of the fractional tension fluctuation in the wire.

The general longitudinal motion of the wire can be obtained from I

Eq. (44) by means of Eq. (34). The result is
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1

P(cT) = [v(O) - b vz(o) - b v2 (o) - r vs(0 1 e (45)

where

V (a) =+ 0,2 u(o)d ' (46)

0

F, APPLICATION OF BOUNDARY CONDITIONS

It will be remembered that the exact solution of the problem revolves

about a fourth-order linear differential equation. Since such an

equation requires the specification of four boundary conditions, any

approximate solution, to be valid, must contain the same number of

conditions.

If the case of interest is that in which the input is at the upper

end of the trailing wire, then the first two conditions will be the

specification of N(Y,r) and P(%,r), the transverse and longitudinal

inputs at the upper end of the cable. The remaining two conditions will

depend upon the manner of termination of the cable at its lower end.

One will be a relation connecting ,('r), the tension fluctuation, with

P(O,,r), the longitudinal response of the terminating body. The other

will describe the transverse response of the same body by means of a

relation between N/ar(0,r) and N(O,-r), Now N(I,r) v w(X)ei vo, and an

application of Eq. (44) at o , Z yields

(I + 12) w(M) a b uI(Z) + b u(2) + r u3(Z) . (47)

Proceeding in the same manner with Eq. (45), one obtains

v(.)= v(O) - biv 1(Y) - b2, 2 (1) - r v3(1) . (48)

The varying tension in the cable will, in general, produce a response

of the terminating weight, which will depend upon the method of attach-

ment, damping forces present, etc. This response can always be expressed

by means of a complex coupling constant C., as follows:

v(O) - r (49)
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Similarly, there will be a transverse motion of the weight in response

to the transverse component of the tension force applied to it:

w(0) - C,.'(O . (50)

This is equivalent to the following:

bi + b2 + r u3(O) - (y + iv)CNbj " (y + iv)Cb 2 + C, r u;(O)
(51)

If Eq. (49) is substituted into Eq. (48), and Eqs. (47) and (51)

are rewritten, one obtains the following system of algebraic equations:

ui(-)bl + u2 (E)b 2 + u3(Y)r - (1 + 22)% w(m)

v1(1)b1 + v2 (5)6 2 + (v3 (1) - C.]r _---V(E) (52)

1-y + iv)WCb, + [1 + (-y+ iv)CV1]b2 + [u(O) -Cu'(0)]r 0

Eqs. (52) can readily be solved for bl , b,, and r, if the four boundary

conditions are expressed in terms of w(1), v(1), Cp, and C..

In addition to the vibrational inputs expected at the point of

attachment to the airframe, there will be, depending upon speed and

details of the mechanical configuration, other inputs at points farther

down the wire resulting from the action of oblique shock waves originating

on the airframe. Because of their lower point of application, the

amplification will be less, but the net effect is difficult to assess

theoretically in the absence of experimental data.

G. LOW FREQUENCY BEHAVIOR

It is of considerable interest to examine the behavior of low-

frequency waves on the wire under conditions for which the approximations

of the preceding theory do not hold (Region III of Fig. 5). It will be

remembered that the approximate theory of Sec. II gives correct results

for the transverse motion for the case where the end is longitudinally

free-that is, where the longitudinal motion is ignored. More importantly,

it gives the correct value for the amplification undergone by the

26
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downward-traveling wave, which is the primary factor governing the

amplitude of transverse motion near the lower end of the wire and the
"- ... severity of tlie'iiniion fluctuations if the end is restrained.

If the propagation of a wave in a straight piece of wire is

considered, it is easily found that, for sufficiently high frequencies,

the wave velocity is independent of frequency and of the angle made with

the airstream, having a value of AT*T00. However, for lower frequencies,

the velocity depends on the angle and in general increases with decreasing

frequency. The ratio of this velocity to the high frequency value

(cf. W. H. Phillips$) is given by

Uj=2v -sin2 (k Co 2 q6) + [2- sin2 q6 CoS2 0)2 + 4y2V2i sin 4]M

(53)
This expression may be used to compute, for any given v, a corrected

value of y. Then, ignoring the effect of wire curyature, Eq. (13) leads to

AI(0,E) = exp - [cos k - y(0,)] cac 0 d (54)

This amplification is shown as a function of v in Fig. 6 for a wire of

= 10 and the flight parameters of Sec. IV of this report-i.e., for

V0 = 0.23. The results can be interpreted to indicate, at least qualita-

tively, that the amplification decreases rapidly for very low frequencies.

However, it is also found that the attenuation of the reflected wave

computed in this way decreases to unity at these low frequencies. As a

result, there is little net aerodynamic damping in the path from the upper

end of the cable to the lower and back again, and the resonances which

occur for certain frequencies can therefore be very extreme unless there

are other sources of mechanical damping.
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FIG. 6

INCIDENT WAVE AMPLIFICATION AT LOW FREQUENCIES

H. NOW-AEBODYNAMIC DAMPING

The analysis to this point has entirely neglected damping from sources

other than the airstream itself. Such damping may arise through the action

of viscous forces within the cable, or through the transfer of energy to

another, coupled, mode of oscillation.

The first type of damping can be described in terms of a damping

constant K characteristic of the particular cable used. The effect will

be to decrease the amplification of the incident wave by s factor exp(-KCI),

and to increase the damping of the reflected wave by the same factor.

Qualitatively, the amplitudes near the lower end will be reduced for any

set of conditions, while the resonant fluctuations of these amplitudes with

cable length will become less pronounced because of the decrease in re-

flected wave amplitude at the input point (the upper end) relative to the

incident wave.
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The quantitative effect may perhaps most easily be seen by rewriting

Eqs. (19) and (42a,b) to include this damping:

, nZ / cach [y sinh-1 I + KCI + ivZ] (19)

N I (a,T) (I + 0,3) (o + /jT -) - (42a)

N2 (Ov) - (1 + o,) (a + /17-.-'!) -  C -CO £(Tf-u) (42b)

The most important case of the second type is the coupling which is

certain to occur between the oscillations in the vertical plane and lateral

oscillations perpendicular to that plane. As pointed out in Sec. II-B,

the latter kind of motion experiences only slight aerodynamic amplification

or damping.

Lateral vibrations will arise in two ways. First, there will be

direct lateral inputs at the upper end of the wire and to a lesser extent

along the wire. Second, there will be the coupled energy from the in-

plane vibrations, as mentioned above. The total attenuation in a round

trip to the lower end of the cable and back to the input point is actually

less for these waves than the net attenuation for the in-plane waves.

However, because there is no amplification of the incident waves, their

contribution to the amplitude at the lower end will be small. Without

detailed knowledge of the coupling mechanism it is most difficult to

analyze this effect in a quantitative way, but qualitatively it can be

seen that the total amplitudes on the lower parts of the wire will be

reduced.

Both of the damping mechanisms described above will be more effective

for a stranded cable, in the one case because of the obvious increase in

internal friction, in the other because the helical form of individual

wire strands tends to rotate the plane of vibration of the wire, converting

an in-plane vibration to a lateral vibration.
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IV APPLICATION OF THE THEORY TO A PARTICULAR PROLEM

A. FLIGHT PARAMETERS AND CONSTANTS OF AN EXPERIMENTAL

TRAILING-WIRE ANTENNA

Computations have been made for an experimental trailing-wire antenna .
whose mechanical properties have been tested in flight at about 35,000 feet

altitude and speeds up to Mach 1.24. Results of these highly successful

flight tests will be presented as a part of the final report on another

SRI project.*

The cable, 1/16 inch in diameter, was tested at lengths up to 150 feet.

It is terminated in a 19-pound fin-stabilized weight of high fineness ratio,

attached at its center of gravity to the cable. Two systems of springing

were investigated, one an essentially rigid coupling, the other a pre-

stressed spring permitting approximately a ± 10-percent variation in cable

tension with a ± 1-inch travel in the vertical direction. The drag on the

add-weight in flight is quite small, so that the cable is eesentially ver-

tical at its lower end, and the static value of tension is very nearly

equal to the weight, or 19 pounds.

The accepted value of the drag coefficient for a circular cylinder of
infinite length, at moderate subsonic Mach numbers and subcritical Reynolds

numbers, is 1.20.11n As the Mach number is increased above 0.3, the coef-

ficient rises with some irregular variations to a maximum of 2. 13 just below
sonic speed. Beyond this maximum, a decline occurs toward an asymptotic

value of 1.33.11 Clearly, the value of drag coefficient for a trailing-wire

antenna will be a function of the speed of the aircraft, and also will vary
with position along the dable. However, the physically interesting case of

high wave amplification always implies large values of dimensionless cable

length 1, and therefore very small angles of attack over most of tke length

of the cable (see Fig. 2). As a result, even when the aircraft speed is

highly supersonic the transverse, airflow across most of the wire is

subsonic. It is possible to compute bothtthe cable shape and the total

amplification exactly in a given case by means of numerical integration.

!SRI Project 2484. "Investigation b an Excited Airframe al an Antea."
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However, it hzn been found that a constant value of CD * 1.25 givea the

correct value of amplificatian within about 5 percent over a very wide

range of flight conditions, and it has been adopted for the sake of com-

putational simplicity. On this basis, and with the additional information
that A, the cable mass per unit length, is 2,34 x 10 4 slug/ft, one finds

for Mach 1.24 at 35,000 feet altitude and a typical cable length of 100 feet.

y - 0.23

C - 5.25 feet

- 19.0

The cable shape for these conditions, on the other hand, corresponds more

nearly to C. a 1.44.

The weight of the wire at this length is only 1.13 pounds, and there-

fore the uniform-tension approximation of Sec. III-E is justified. Ref-

erence to Fig. 5 shows that the system parameters lie in Region I, where
the simplest form of solution holds if v is greater than about 0.88,

corresponding to an actual frequency of 7.6 cycles. The aerodynamic

amplification of the downwind wave is 8.2.

The system described above is designed to simulate the aerodynamic
amplification of a hypothetical higher-speed system identical to it in all

respects except for the use of a 50-pound end-weight. On the basis of a

100-foot wire, the following are typical speed-altitude combinations for
the'hypothaticaI system which give the same theoretical amplification as the

experimental system does in the Mach 1.24 flight test:

Mach 2.0 - 35,000 feet

Mach 2.5 - 48,500 feet

Mach 3.0 - 59,000 feet,

It should be noted that, although the wave amplification is the same in

all the above cases, the cable shape differs from one case to another be-

cause each represents a different -,I combination.
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B. COMPUTATION OF THE u,(o') AND v*(09

The magnitudes of the two homogeneous solutions ul(o) and us(o)
(downwind and upwind waves, respectively) depend only upon y, and have
been shown in Fig. 7 for y - 0.23. The phases, of course, depend upon
position through the factors 6

The particular integral u 3(0') is a solution of Eq. (43), which is
here repeated for convenience:

U" + V2 f(a) u (1 + o,2) (3
2.5

2.0

C 1.5

0 Y - 0.23

a .

0

FIG. I

MAGNITUDES OF TRAVELING WAVE SOLUTIONS
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The solution, which is in general complex, will be written in the following

form:

u (o) - x(o) + i 2YV y(0) (55)

where x(o.) and y(o.) are real. If Eq. (55) is substituted into Eq. (43),

and real and imaginary parts of the resulting equation are written sepa-

rataly, one obtains the following:

X" + vI (X + 4y2(1 + a2)-% y] - (1 + 0.2) , (56a)

y"+v 2 y = (1+02)- x .256b)

This system of equations can be solved quite readily for x and y if

14Y' (1 + 0,)2 yj<<x1 (57)

A procedure for finding a particular integral of Eqs. (56a,b) under the

assumption that Eq. (57) holds is given in Appendix E. Resulting values

of u3 (0') are shown in Figs. 8(a), (b) for the experimental system at

several frequencies.

Detailed examination of a number of cases shows that at worst

(v 1, , = 0) the left side of Eq. (57) is about 13 percent of the right

side. Although this would seem to make the approximation rather marginal,

both lyixi and (1 + a2) -% decrease rapidly with 0., and ly/xi also decreases

with v. Thus the neglected term is nearly always much smaller than

13 percent of the leading term.

The longitvdinal wave functions vo(a) can readily be obtained from

the u.(.) through numerical evaluation of Eq. (46). The integral converges

very rapidly to a constant value v.XO) for 0- Z 5; These asymptotic values

are shown in Table I.

TABLE I

I 1 2 3 4 5

.81) /.1.4 0.586 I63.l °  0.414 / 7t 0. 0.305 L83.9 °  0.234 88.1

02( 8) 90 34.8 0.508 /-s 0.378 e .6 0.288 ZZ.o 0.227 /-82.0

V3(M) 0.652 /12.9 0.1915 9.1 0.0874 /.60 0.0493 5.10 0.0315 /A.2 °
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MAGNITUDE OF u3
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y =0.23

W

4

I.

o

II!

0 15 20

RA-2494-121

FIG. 8(b)

PHASE OFu 3

C. RIGID TERMINATION

If the lower end of the cable is attached directly to the center of
mass of a heavy, stable end-weight, practically no motion of that point
will take place. Mathematically, this condition is expressed as follows

in terms of the two mechanical coupling coefficients:

= 0 , 0 0 (58s,b)

Let us suppose that the vibrational input at the upper end of the wire is
purely transverse and of unit amplitude- i.e.,

v(Z) - 0 , () 1 /0- (59a,b)

Further let it be assumed that

Z 5 (60)
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Then the amplitudes of the incident and reflected waves, as well as

the resulting tension fluctuation, can be computed with the aid of

Eqs. (52), which may now be written as follows:

U() b1  + E
( :

( )) U2() 3(1) (

Solutions for b,, b2, and r may be obtained in the following form:

= B D i T 2 (62a)D

b2  D (62b)

D 
(62c)D

where

B1  W v 2 () u3(0) - V3 (0) (63a)

B2  -[vl(w) u3(0) - V3 (W)] (63b)

B3 - V1 (W) - v2 (W) (63c)

D - Biul( ) + BIu,(") + B3u3(1) (63d)

The absolute magnitudes of the solutions, Eqs. (62a,b,c,), pass through

maxima and minima as Y is varied, corresponding to resonances in the

standing wave on the wire. The principal factor controlling the location

and height of these maxima is the quantity IDI.

The complex factors B. are constant for these relatively large values

of 1. In descr.ibing the total transverse motion of the wire according to

Eq. (44), the term b1 U1(a) can be represented by a vector which increases

slowly in length with o while rotating counterclockwise at a rate of
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K
v radians per unit of or; the vector representation of b2 u1 (0) decreases

slowly with a while rotating clockwise at the same rate; and r u3 (O)

decreases quite rapidly with a, maintaining very nearly a constant angular

position.

A numerical evaluation of the various quantities in Eqs. (63) shows

that the third term in D is always considerably smaller than either of

the other terms. Thus, the magnitude of the resultant D will be a minimum-

i.e., the response will be a maximum-when the first two terms are very

nearly antiparallel. On the other hand, minimum responses (maximum JDI)
will occur when the two dominant terms are nearly in phase.

The angular po3ition of the third term is such that, in the minimum

response condition, it is nearly parallel or antiparallel to the resultant

of the first two terms. As a result, there are two classes of minima,

which alternate as I varies, one lying on a higher envelope than the other.

In the maximum response condition, however, the third term has practically

no effect on the magnitude of D.

Of the greatest physical interest is the "worst" case (maximum

response), which may be obtained by ignoring the third term in D entirely

and treating the first two terms as antiparallel. Values of b,, b, and

r have been computed in this way for various values of 2 and v, on the

assumption that each input point is a node in the standing wave, regardless

of the actual phase relationships at the point in question. The results

have been shown in Tables II and II. In addition, Fig. 9(a), (b), (c),

(d) shows the way in which the three waves combine at the origin.

TABLE II

TIUNATON " 62 r (O)

Fixed end 10 1 8.3 -l 12.86 /- 75-20 22 5 7.0 0
2 7.33 897 I-- 46.8 L " 0

______U__ 5 6588 .___ _ 105 03 7.05 7.87 655 0
2 . a 7.40 838

4 8. 6 77 6. 77 0 3%4U
3 6.77 6.77 0 3 11 LL.

Experimntal 10 1 77 10.9 " - 91: 20.5 474-20 2.5 1 /74.3
1se2 6.76 6.36 - 51.2 41"X 6.28 /?NJ-

3 6.22 L42- 4.60 - 61.6 /1,- 7.55 491.
"663 6.21 - 48.5 . 5.94 Lc
S 6.!0 T15 6.47 - 32.7 4.00 "
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TABLE III

TEIMINATION P1 b2 r Y(0)

Fixed end 5 3 4.90- 45 010 7.05 1-4B.- 7.87 4- U 65.5 0

15 /9'0 6 10 "a18 
84 .5 M . .0

Free end 5 3 4.60 4.60 0 0 3.47

10 6.77 6.77 0 5.11
15 8.73 8.73 0 6.59

Expriuental 5 3 0 2 9Z94 0 4:021

10)o 2.991 1- 0 90 420-
system 10 6.22 4.60 616 755

15 7.28 "22r 5.39 722 8.84

r u,(Q)

bi ul (o ,(.

2 (0)

ru3(o'

110 lo)

u310 b #a 1

u l °

)

(c) v 3 (d) v-5
RA-t4U.o 22+

FIG. 9
SUPERPOSITION OF THREE WAVES AT FIXED LOWER END
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V
D, TERMINATION WITH ZERO SPRING CONSTANT

If one postulates a cable termination consisting of a pro-stressed

spring giving the proper value of equilibrium tension, but permitting
longitudinal motion with a dynamic spring constant of zero, the boundary
conditions are expressed by 0 0, r - 0, v(1) = 0, and w(l) - 1XD.
Although the tension variation r is zero, the longitudinal motion of the
lower end of the cable, v(0) C - r], is finite. For this case, Eqs. (78)

may be written

2(2)) 

1 

(:
I(0) V2(0) -1 b 2 0 (64)

1 0/ V(0)

The first and third components of Eq. (64) can be solved independently of
the second, since Eq. (64) can also be written as follows:

(ui() u2(y) () ( 12

v(0) =b I ,(O) + b 2 V20) (65b)

The solution of Eqs. (65a,b) gives

1 u 1 (I) - u( ) (66a)

6 = - (66)
i() - U2()

V(0) = V1 Lul () u+(52 (66c)

It is seen that when the lower end of the wire is free to move longi-
tudinally, there results a simpler type of transverse motion than if it
is constrained, involving only ul and u2. Maximum and minimum responses
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in this case correspond exactly to nodes and antinodes in the standing

wave pattern formed by the incident and reflected waves. Numerical results,

again for the "worst" case, have been obtained and are shown for comparison
in Tables II and III. The two waves are always equal in magnitude and

1800 out of phase at the origin.

A clearer idea of what happens on the wire can be had by plotting
the transverse amplitude as a function of position along the wire. The
result, for I - 10, v - 1, and for both the fixed and free cases, is shown
in Fig. 10. The amplitude, for the free-end case, oscillates between

smooth upper and lower envelopes, given by

9(0) - 6.77 V +a' (Iul(01) + Iu2(')I) (67a)

w(0l. 6.77 V + a' ( u - Iu2( )I) (67b)

,4I I I 1 I I I I I

12 - F END AND NIGH * 0.23
%__ '-FREQUENCY ENVELOPE .. I

IO \
10

FIG. 10
VIBRATIONAL AMPLITUD AS A FUNCTION OF POSITION ON THE WIRE FOR U: 1
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At higher frequencies, the envelope remains the same, while the fluctuations

of amplitude with position become increasingly rapid. The first maximum

is always the highest, but can never exceed 13.54 times the input amplitude.

With the rigid termination, the three solutions combine in a compli-

cated way in the lower part of the wire, yielding an amplitude pattern

which does not necessarily stay within the same two envelopes. The exact

nature of this pattern is dependent upon frequency, and it is possible for

the second maximum to be as high as about 20 times the input amplitude at

some frequencies. At points farther up along the cable, the standing wave

has much the same appearance as in the free-end case, except for a phase

shift of the maxima and minima relative to their former positions, and a

somewhat greater fluctuation in amplitude due to the presence of a larger

proportion of u2 than before. The effect of u3 decreases markedly at

higher frequencies, and the whole pattern approaches that which is obtained

for the free case.

It should be noted that, although the transverse amplitude patterns

in the two extreme cases are the same at high frequencies, the longitudinal

motion and tension fluctuation are quite different. In the free case the

tension, of course, remains constant, while there is considerable longi-

tudinal motion of the lower end of the cable, decreasing at the higher

frequencies; in the fixed case there is no motion of the lower end, but

the tension variation becomes progressively more severe with increasing

frequency.

E. OTHER TERHINATIONS

It is possible to consider many other theoretical terminations, in-

cluding viscous types capable of absorbing energy. Since two constants,

CN and t., are needed to describe the termination completely, it is

possible, at a given frequency and for a particular set of flight parameters,

to satisfy two independent conditions. It is not difficult to show that

P [ + - - (68)

1+ -
V2

In Eq. (68), G represents the acceleration of gravity in consistent

dimensionless units, and a 14 is a dimensionless coefficient of viscous
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K ,
friction in the N or P direction. These quantities are defined mathe-

matically as follows:

G --- (69)~U2

nu (70)

where p11 , is the coefficient of viscous friction in conventional units-

e.g., lb-sec/ft. The frequency Y'1 . is the (dimensionless) natural fre-

quency of the weight and its suspension, and a is the mass of the weight.

For the actual experimental system using a pre-stressed spring, the

flight-test conditions and the constants of the linkage are such that

G. 2.07 X 10-3  V1 CD

P .0.13 ap 0

These values lead to the following:

t 0 , 0.123 LO!

Numerical results in the computation of w(a) are shown for comparison in

Tables 1I and II. It is seen that this termination is very much like the

fixed case at low frequencies, and very much like the free case at high
frequencies. It is possible however, at certain frequencies, to have
either longitudinal amplitudes greater than in the free case or tension

fluctuations greater than in the fixed case.

The longitudinal amplitudes have been shown as functions of frequency

in Fig. 11 for a wire ofj - 10 and fixed input amplitude of l0- 3 in

dimensionless units, corresponding to 0.063 in. in this case. For some

purposes it is of greater interest to know the longitudinal response for

a fixed acceleration. This has been shown in Fig. 12 for a dimensionless

acceleration amplitude of 10- 2, corresponding to 4.82 g. The amplitudes

of the tension fluctuation, in percent, have been shown for the same con-

ditions in Figs. 13 and 14. It is worthy of note that, for amplitudes of

such size that the cable never goes slack, the motio, of the lower end of
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0 I61
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"

ErXPERIMENTAL. "
SYSTEM/

INPUT AMPLITUDE r0s
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0 3 4 8

RIA-I404-I14

FIG. 11

LONGITUDINAL AMPLITUDE AT LOWER END OF CABLE WITH FIXED INPUT AMPLITUDE

the cable due to the second-order effect described in Sec. II-G can be

neglected in comparison with the first-order effect.

It would be at least theoretically possible in this same system .under

a particular set of flight conditions, to eliminate both the return wave

a and the "tension wave" u3. First, the tension wave can be eliminated

by making Cp - o as already described. There are, however, considerable

practical difficulties attendant upon designing a springing arrangement

to give the correct static tension, to center properly, and still to be

much "softer" dynamically than that which is used in the experimental

system. Second, u2 way be eliminated by making

(y + iv)-1  (71)

leaving a pure traveling wave on the wire. Reference to Eq. (68) and con-

sideration of the magnitudes involved show that this may be achieved if

a , G (72a)

I , G(y+G) (72b)
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The result is independent of frequency, but the values of spring and

damping constants required in the suspension in order that Eq. (72a,b) be

satisfied depend upon airspeed and altitude. Such an arrangement is

therefore of rather doubtful utility. It should be remembered also that

the method of suspension described above fails entirely to eliminate the

longitudinal motion.

FREE END

34 -107
3 x IOcs

a2510 EXPERIMENTAL
SYSTEM

o

I x I0)"

4 x 4

35 x 16'0.23
E 210

INPUT ACCELERATION 10'ames
F.5

,I I I I I
0 I 2 3 4 5

V

FIG. 12A-494-5

LONGITUDINAL AMPLITUDE AT LOWER END OF CABLE WITH FIXED INPUT ACCELERATION

457



K

II
I:I

INPUT AMPLITUDE I03

,o0

0

C,6

II

P*&-t4ll- I ts

FIG. 13

TE.NSION FLUCTUATION IN CABLE WITH FIXED INPUT AMPLITUDE
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TENSION FLUCTUATION IN CABLE WITH FIXED INPUT ACCELERATION
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-T SIt T AWDCAMM1ICIIS

In summary it can be said that the aerodynamic characteristics of

trailing wires at both subsonic and supersonic speeds are well understood.

In particular, the factors leading to cable failure are known and have been

subjected to mathematical analysis. Investigation of various means for

control of the undesirable phenomena indicates a strong possibility that

trailing-wire antennas may be practical even for supersonic aircraft.

The static shape of a trailing cable can be described very closely

for all speed-altitude combinations by a single dimensionless expression.

The mechanical waves which can exist on the wire have also been described

in dimensionless form. The theory developed in this report expresses the

motion in terms of an amplified wave traveling downwind, a damped wave

traveling upwind, and a standing wave resulting from wire curvature and

existing primarily in regions where the curvature is large. On this same

highly curved portion of the cable there is a tendency for the transverse

oscillations to give rise to longitudinal oscillations. If the longitudinal

motion is restrained in any way, first-order fluctuations in tension

result.

The lower end of a trailing antenna can be stabilized through the use

of a heavy, aerodynamically stable end-weight of low drag. Under these

conditions, the most important vibratory inputs are those at or near the

upper end of the wire, and the crucial factor determining system instability

is the aerodynamic amplification experienced by the downwind wave. The

high value of cable tension limits the amplification to a relatively low

figure, but cannot eliminate it entirely at supersonic speeds without

exceeding the breaking stress of the cable.

The theory described in this report was applied to the design of an

experimental system which has been successfully flown at. speeds as high as

Mach 1.24. The theoretical amplification in the worst flight-test condition

was about 8, and the tension fluctuations were calculated to be of the order

of 20 percent for liberally assumed vibratory inputs. The tests showed

clearly that this degree of aerodynamic amplification is tolerable, as the

observed tension fluctuations attributable to the phenomena discussed in
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this report were relatively slight. Tension variations resulting from

other causes were observed, but none was of sufficient magnitude to bring

about failure of the antenna in flight. A practical antenna for use on

Mach 2 to Mach 3 aircraft would have maximum amplification of the same

order of magnitude as the experimental system. Although the indications

are favorable, the question of the stability of such a higher-speed

installation can be finally settled only through appropriate flight testing.

so
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I. APPENDIX A

EQUATIONS OF THE CABLE SHAPE IN TERMS OF THE
DIMENSIONLESS VARIABLES e, 7, o, AM} 4

FOR ZERO-DRAG END-WEIGHT

1
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APPENDIX A

EQUATIONS OF THE CABLE SAME IN TERMS OF THE

DIIENSIOMMEB VARIABLES 60,, 7, 0, AND
FOR ZERO-DRAG EIW-WEIGrr

VARIABLE IN TERMS OF IN TERS OF IN TERMS OF IN TERMS OF 46

_ _--- cosh ,- 1 n- -1 coe- 1

77 cosh
- 1 

(1 + .) sinh-
1 
or In cot (6/2)

Sf Binh, 7  cot 46

cc - 1 (I + ) COt' 1 (sinh i) cot Io
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j APPENDIX B

WAVE MDTIN IN TME1 CAKEA AT OEN ANGLE OF ATfACK

55



APPENDIX B

WAVE MTI(OJ IN TM CALE AT = AWE OF ATACK

1. THE NON-LINEAR EQUATION OF MOTION

The theory given in Sec. III for wave notion on a wire immersed in

an airatream is not applicable at very small angles between wind and wire.

The purpose of this Appendix is to develop an approximate theory which is
valid when the wind direction is exactly parallel to the cable. Before

proceeding, however, it is convenient to describe a mathematical develop-
meat 7hich will be needed.

Consider the function

y(z) - join Z* sin x (B-I)

shown in Fig. B-1. This function can be expanded in a Fourier series as

follows:

ylx) = a. sin kx (B-2)

k-i

-: '1

0 7r 27

| I ~A-2s4g4- 4Z

FIG. B-1

THE FUNCTION y(x)= sin x sin x
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Only odd harmonics are present, and their coefficients are given by

Sk W 4 (B-3)

Numerically,

8 8 8
a01'' 37T 157 1057T

The coefficients of the higher harmonics decrease approximately as the

inverse cube of k.

Now, for slope angles 0 in the neighborhooe of q0 - 0, the second

term of Eq. (22) cannot be neglected in comparison with the first, and

the approximation of Eq. (23) does not hold. The angle 4k, however, may
be approximated as follows:

Bn
4) * in 0 - tan * -0 - (B-5)

The aerodynamic force on an element of cable is proportional in magnitude

to V2 and has the same algebraic sign as V.. -It may be written in the

following form:

dF - f(s,t) T ds (B-6)

where

fAs't) V . (B-7)

Substitution into Eq. (24) gives for the equation of transverse motion

B2n 1 2n

B + f(s,t) - 0 (B-8)

To obtain an approximate solution of (B-8) in a particular case where

damping is known to be small, an undamped solution is used to evaluate

V., and thence the small term f(s,t). The damped solution is then computed

from the resulting equation.
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2. TRAVELING WAVES

Suppose that the solution desired is that of a traveling wave in the

downwind direction, excited sinusoidally at the origin. The dependence

on time must be harmonic, and a solution of the form

n - u(s) sin w t (B-9)

is assumed, where u(*) is real and slowly-varying. Then

v• n 1 n(Bb
-'. a 'an 'an (B- 10)
O S YO 'at

or, if the term in the derivative of u is neglected,

V, 4M
1- y) sin t + (B-li)

0 I
Also,

f(s,t) -( -- 7)2 Y t + + (B-12)

which, by Eqs. (B-2) and (B-3), is seen to consist of a Fourier series

whose fundamental leads the displacement by 90 degrees.

With this linearization, Eq. (B-8) can now be treated more con-

veniently with complex numbers. Since the complete solution must also be

periodic in time, although higher harmonics may be present, it will be

taken to be of the form

n U60 )  ik +/u)(B-13)

The boundary condition at the origin is

n(O,t) - no et (B-14)
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and therefore

*() • no  (k - 1) (B-1Sa)

u&(O) a 0 (k 1) (B-1Sb)

Equation (B-8) can now be written as

Vn 12~ (y 2

*2  U2 ;"t2 - - a,
odd

(B-16)
or

B2n lVn 
-.t (1 Y

-- - - I(I+1U

, : 2 i ( . (- 1 )3 ; fh*I) eJ. ,uu2 t C a.h=1
odd

(B- 17)
where the ak are given by Eq. (B-3). When (B-13) is substituted in (B-17),the resulting equation must be satisfied component by component, and we
have

d'uh+ i 2k 4 (1 y (_.4 (.
d,2 ' L d C -)

(B-18)
The amplitudes u. will be assumed to be sufficiently slowly-varying that

42u C dub
d 2k U d# 

(B-19)

Then Eq. (B-18) can be rewritten to give the following set of equations:

du, " (_1).%;(.b+) W(1 - .) 2.2
a2kCU u (B-20)
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In particular, for k - 1, Eq (8-20) becomes

d a l ,,( J - ) ( -21)
- of.

which coo be integrated directly to give

usIs + 4 )'n (B- 22)
[1 37PCLI

If the foregoing is substituted in Eq. (W-20), the amplitudes for k 91
can be found-

Ma k2(k2 - 4) 113wCU
(8-23)

In dimensionless units the complete solution can be written:

-1+ 4(1- Y)2 Wiv(*)

NoL 31 7 _ .. 1 )(h)

(B-24)

Equation (8-24) shows that the fundamental component of the wave is

amplified, although not exponentially, with distance along the wire, while

small amounts of higher harmonics are created. A similar investigation

of an upwind wave gives, under the same conditions,

Mo,,T) I +] Y
No 3y7

{ 1I [ + (1+ Y),
3"t k2(k2 4)

odd

from which it can be seen that this wave is attenuated with distance.



3. STANDING WAVE

Because of the nonlinearity of Eq. (B-8), it is not possible to

superpose the traveling-wave solutions given in Eqs. (B-24) and (B-25) to

obtain a standing-wave solution. Let the case where complete reflection

at the origin occurs be considered. The initial solution will be taken U

to be

= sin - sin Wt (B-26)

where n. is real, positivV and constant.

Using Eq. (B-10), one finds

- .. 2 co - +9 s $in" sin (Wt - /) (B-27)

where

In this case th tan -~](B-28)

In this case the fundamental component of f(s,t) lags the displacement

by the angle v, and we can write

n CO0co-v 
1y wt

fPs't) Ne C0[2o2 +9 ysi.2  -(,

'(B-29)

The complete solution will be taken to be, in complex notation,

n - [ sin ky-) + us(s) Cos od di.. B-30)

aodd

If the system is excited sinusoidally at the point s = S-that is, if

n(S,t) a n f t , (B-31)

the boundary conditions become

u"(O) 0 (B-32a)
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bk -f n (k = 1) (B-32b)

uk(S)cot 'A-' (k 1 1) (B-32c)

nf sin - + u,(S)Cos no (B-32d)

With the use of Eq. (B-29), Eq. (B-8) can be written

-I*Wn 1 1t 102 + ,2 sin2-21 a EikwJt C-ih

~8 I IC CuI b U U
odd

(B-33)

As in the case of the traveling wave, substitution of Eq. (B-30) into

(B-33) leads to a set of equations for the individual components:

d2uk d

ost  (A ~)2k sin k&~

C ( ossZ - + y sin2  
.ib (B-34)

Let the function v,(s) be defined as follows:

duklw_.

vk(S) - V,r() + i vk i(a) - d Cos 2 (k (B-35)

ds

Then Eq. (B-34) can be written

0.2 !L + y2 si.2 [cos k - i sin ko# cos(k-2) .
dU IC U I

(B-36)

Since v (77U/2co) must be zero, the real and imaginary parts of v, are

- 0 -oas -- - + 1 sin 2  cos k !cos kVi ds
(B-37a)
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6, jnp.) aos +'2sn It)sin k4, ds
U **h (jf '- + _ 0 sin.] co_)fl h0 9 k--!d

(B-37b)

Now, from Eq. (B-32a) uh(O) must be zero, and therefore Eq. (B-35) can be

integrated to give j
Ut(S) a f (s) sec2 (k "') da (B-38)

The evaluation of us(S) in the general case requires two successive

numerical integrations for each value of y which is of interest. However,

there is one important special case for which the problem is greatly

simplified. Since the integrands of Eqs. (B-37a) and (B-37b) have symmetry

and antisymmetry, respectively, about the point s w 7rl/2w, the corresponding

integrals have the reverse properties. Consequently, when the cable length

S is equal to an integral number of half-wavelengths the real part of

uk(S) vanishes in the integration of Eq. (B-38). The imaginary part of

vk(s), unlike the real part, can be found analytically, and uh for any

value of y is computed by means of a single numerical integration.

The amplitude of harmonics other than the first cannot be found in

this special case by the method under discussion, because of the appearance

of cot 7T in Eq. (B-32c). (In principle, the inclusion of higher order

terms in Eq. (B-33) would have yielded this information.) Results for the

fundamental, however, are obtainable and will be given here. Integration

of Eq. (B-37b) for k - 1 gives

v z Y -" ' - 2z -s co+ ' 2 ai
Cox ) 2 ±Ls (B-39)

and, taking into account the fact that the positive 3/2-power must always

be used, Eq. (B-38) reduces to

n2

u1 (S) - - i p - q(y)' (B-40)
C
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The index p gives the number of half-wave loops, and q(y) is. defined by

q(y) 16 [(cos 2 e + y 2 sin2 9)32 - y3) sec 2 8 dO9(r) " 1 - Y ) J

(B-41)

Numerical values of q(y) are shown graphically in Fig. B-2.

The information of greatest interest from the point of view of design

is the relationship between the excitation n, and the first-harmonic

response n.. In the case of half-wave resonance, Eq. (B-32d) shows that

no W u,(S), and we can write

n q(') • c. (B-42)

The standing wave amplitude is seen to be proportional to the square root

of the input amplitude.
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APPENDIX C

VARIATION OF WIRE LI DUE TO STAMING WAVE

If the first-order wave on the wire is known, it is possible to
obtain an approximate expression for the variation of over-all wire length

with time. Let ds 0 be the length of an element of the distorted wire,

n its displacement normal to its equilibrium direction, and ds its pro-

jection on that same direction. Then

ds + ds o  (C-)

Note that n here represents the actual instantaneous value of the dis-placement, not its complex value, which is meaningful only in the first-

order theory. For moderate amplitudes, Eq. (C-i) can be expanded as

follows:

- 1 2 doI (C-2)

For a single cycle of a sinusoid of amplitude a and wavelength X on a
straight wire, it is easy to show by integration of the above that

S .1  Ta (C-3) I

Now the instantaneous transverse displacement along the curved wire is

given by the real part of Eq. (17). If the time origin is chosen to make

al real, and total reflection is assumed, the result is

Boca] a A9 cos w + - A- Cos -)]0

' 1 U(C



This equation'can be rewritten as follows:

Rein] * a(0 3 ,t) cos + U ) (C-5)

where
4a ,) a, [A- 2 + A;2 - 2)1_ A- cos 2wtI% (C-6)

and

2' 1

o(0t = ta - A1" tan~t . (C-?)

At any given instant of time, Eq. (C-5) represents a sinusoid with ampli-

tude and phase varying along the cable. For waves of sufficiently short

wavelength, this variation will be negligible over one wavelength, and the

contraction of the wire can be considered as the sum of a number of small

contractions in which the local length decreases by the factor given in

Eq. (C-3). Then it is possible to write

Y0

= f[i 21d~ccro ,(C-8)

or

?7a 2 r2 0

o 9) J (A-2 + A;- 2A- 1 A- co 2-wt] do0  .(C-9)

The first two terms in the integral, which can be evaluated numerically

in a particular case if desired, are not of any physical interest, as they

represent only a static change in the equilibrium length. It is the third,

or time-dependent, term which gives the amplitude of the fluctuation.

This amplitude is easily seen to be

-7
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7T 2I ) tan1 X (C-li1)
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APPENDIX D

VALIDITY OF EQUATION (41) AND ANALYTIC EXPRESSIONS
FOR THE HOMOGENEOUS SOLUFIONS

The purpose of this Appendix is to determine the range of conditions

under which Eq. (41) is a good approximation, and then to find an analytic

representation of the integral.

Differentiation of Eq. (41) gives

2= - if - i (D-l)

The condition that Eq. (41) be a good solution is evidently that
ff

3- 21<< 1 (D-2)

or say

2vf < 10-1 "(D-3)

The quantity on the left-hand side of Eq. (D-3) alwaya'has a maximum for

some value of a-. If this maximum is less than 10-1, then the approximate

solution is valid for all values of 0. Based on this fact, it is possible

to find for any value of y a critical value of v below which the approxi-

mation of Eq. (41) fails. The resulting curve is shown in Fig. (D-1), and

will be referred to as Criterion A.

The evaluation of the integral appearing in Eq. (41) is greatly
simplified if [I1 2i (,y/v)(l + o-2)-%]% can be expanded in powers of
2(y/i)'(1 + e2)-%. The first few terms in the expansion are

v1i Iid- i(y/v)(l + ,)- + - i e of

+-i(y/V) 3 (1 + -2)3/ --5 (y/V)4 (1 + aI) 2 + .
2 8

(D-4)
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Careful testing of the real and imaginary parts of this series yields the

result that for convergence at the worst point (o- - 0) one must have

J

V. > 2Y (Criterion B) (D-5)

This criterion may be seen from Fig. (D-l) to be less restrictive than

Criterion. A.for values of y less than 0.67, and more restrictive for

Y > 0.67.

The imaginary part of (D-4), when integrated, leads to multiplicative

factors in the amplitude of the wave, while the real part leads to additive

terms in the phase. To ascertain how many terms of Eq. D-4 are needed,

the integral must be evaluated term by term. The result is

.(e d' = i + tan -o, + tan +

(D-6)

The two independent homogeneous solutions of Eq. (39) thus become

u1 (o") - 'a- + V F 1' " [g(a') e l (D-7a)

u2 (o") = - / =TY +v ae-ACO)/g(o')] (D-7b)

where

g(a) a exp - + (D-8a)

.,5 > ' ( a -)I h(o) - 2 tan-I a 1 - 4 - +- + tan-' o) + . (D-8b)

Now for certain ranges of y and v it will be possible to approximate

the two functions of Eqs. (D-8a,b) by unity and zero respectively. The

* deviations will be worst for large a, and in fact g(o) and h(o-) approach

limiting values as a- becomes infinite:
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g(0) exp + (D-9a)
2v 2

h(oc) = -' ( 21t) -- (/V) 2 + .. (D-9b)

The factor g(a) will be considered approximately unity if the exponent in

Eq. (D-9a) is less than 0.1 or, equivalently,

v > 2.24 /3/2 (Criterion C) (D-10)

On the other hand, a term in h(o) will be neglected if it is less than

0.1 radian. This condition, applied to the two terms of (D-9b) respec-

tively, yields

v > 15.7 y2  (Criterion D) (D-11)

v > 1.70 -4/3 (Criterion E) (D-12)

Criteria C and E lare seen from Fig. D-1 to be less restrictive than

Criterion A for values of 7 which are of physical interest, while

Criterion D is more restrictive only for y > 0.24. Thus, we have for all

cases of interest where the approximate solution is at all valid

g(o-) - 1 (D-13a)

h(a) - (y 2 /2v) tan-lr , (D-13b)

and

u,(,a) . Cr + / + -- 2)y exp( iv +-1 (v//v) 2 tan- ' (D-14a)

u2 (a-) = a + /1 + 2-'Y exp -i/ + (IV) 2 tan -  
. (D-14b)
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APPENDIX E

APPiROXIMATE METlOD FOR THE COMPUTATION OF u3 (a')

FOR TlEE EXPERIENTAL SYSTEM

The computation of u3 (o) depends upon the finding of a particular

integral of Eqs. (56a,b). If the inequality of Eq. (57) holds, then this

system of equations can be written as follows:

X" + V21  . (1 + a2 )-l, (E-la)

+ V1 y a (I + c2)-lAX (E-lb)

Over the range of values of a which are of interest in the current problem-

i.e., 0 < a< 19, the right-handside of (E-la) can be represented quite well

by the following exponential function:

(1 + 2)-IA . 0.708 e-0.6 2 2 0 + 0.292 E-0.s1135a + 0.440 6 E-l.ss89a .

(E-2)

Figure (E-1) shows the original function and the approximation of Eq. (E-2)

for purposes of comparison. It is seen that the approximation is very

good in the most important region, near the lower end of the wire, while

it deteriorates somewhat for values of a above about 10.

Use of Eq. (E-2) in Eq. (E-la) leads to the following:

0. 708 0..6292

z(,O) = C-0.622o" + 0-0. 113 5a

0.3865 + i' 0.01289 + v

+ 0.440 ( 3.80 + 1.l8' oo

3.60 + 1 3.60 + . (E-3)
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EXPONENTIAL APPROXIMATION
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FIG. E-1

EXPONENTIAL APPROXIMATION FOR U + 1r2)-12

It is then possible, for each value of v, to obtain graphically an approxi-

mate expression for (1 + a2)-I/x(a). For the case at hand, an expression

of the form

(1 +o2)-1z X(.a) - a(v)e - 6(v) (E-4)

yields sufficiently good results. Substitution of Eq. (E-4) into

Eq. (E-lb) leads to the following expression for y(o):

y(a) a(v) .EA
(V )  (E-5)

The complete solution U3 (a) is then easily obtained from Eq. (55).

Results for v 1 1, 2, 3 are shown in Fig. 8 of the main body of this

reort.
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