AD NUMBER

AD235703

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution: Further dissemination only as directed by Ordnance Tank-Automotive Command Research Division, Land Locomotion Laboratory and July 1959 or higher DoD authority.

AUTHORITY

USAOTAC ltr 18 May 1967.
REPORT NO. 54

TITLE OF REPORT: Drag Coefficients of Locomotion over Viscous Soils
Part II

by

Dr. R. S. Rowe
Duke University

Ervin Hegedus
Land Locomotion Laboratory

This is a working paper presenting the considered results of a study by the staff of the Land Locomotion Laboratory, Research Division, Research and Engineering Directorate, Ordnance Tank-Automotive Command.

July 1959

TECHNICAL LIBRARY
REFERENCE COPY

DEPARTMENT OF THE ARMY
ORDNANCE TANK-AUTOMOTIVE COMMAND
RESEARCH DIVISION
LAND LOCOMOTION LABORATORY

Security Classification: UNCLASSIFIED
TITLE OF REPORT: Drag Coefficients of Locomotion over Viscous Soils
Part II

by
Dr. R. S. Rowe
Duke University
Ervin Hegedus
Land Locomotion Laboratory

This is a working paper presenting the considered results of a study by the staff of the Land Locomotion Laboratory, Research Division, Research and Engineering Directorate, Ordnance Tank-Automotive Command.

The findings and analysis are subject to revision, or may be required by new facts or modification of basic assumptions. Comments and criticisms of the content are requested. Remarks should be addressed to:

Commander
Ordnance Tank-Automotive Command
Center Line, Michigan
ATTENTION: ORDMC-RRL
Land Locomotion Laboratory

July 1959
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>General Theoretical Background</td>
<td>1</td>
</tr>
<tr>
<td>Fundamental Equations of Fluid Dynamics for Viscous Incompressible Fluids</td>
<td>3</td>
</tr>
<tr>
<td>Similitude and Dimensional Analysis</td>
<td>5</td>
</tr>
<tr>
<td>Test Procedures</td>
<td>9</td>
</tr>
<tr>
<td>Correlation Between Theory and Experiment</td>
<td>10</td>
</tr>
<tr>
<td>Conclusions</td>
<td>12</td>
</tr>
<tr>
<td>Recommendations</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>13</td>
</tr>
<tr>
<td>List of Publications</td>
<td>25</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Nomenclature</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1a</td>
<td>Viscous Drag, Viscous Field</td>
</tr>
<tr>
<td>1b</td>
<td>Viscous Drag, Viscous Field</td>
</tr>
<tr>
<td>2</td>
<td>Sketches Showing the Pressure Wave and Wake for Different Wheel Forms</td>
</tr>
<tr>
<td>3</td>
<td>Chart Showing Kinematic Viscosity as a Function of the Velocity Gradient with the Density of Volclay-Bentonite as the Parameter</td>
</tr>
<tr>
<td>4</td>
<td>Investigation of Wheel Drag in Viscous Soil. Test Apparatus</td>
</tr>
<tr>
<td>5</td>
<td>Chart Showing Total Drag as a Function of Velocity with Tire Shape as the Parameter</td>
</tr>
<tr>
<td>6a</td>
<td>Chart Showing Total Drag as a Function of Velocity with Tire Shape as Parameter; (\rho = 2.4 \text{ slugs/ft}^3).</td>
</tr>
<tr>
<td>6b</td>
<td>Chart Showing Total Drag as a Function of the Velocity for Different Wheel Shapes</td>
</tr>
<tr>
<td>7</td>
<td>Chart Showing Total Drag as a Function of the Velocity for Different Wheel Shapes</td>
</tr>
<tr>
<td>8</td>
<td>Chart Showing Drag Coefficients as a Function for Different Wheel Geometries, (\rho = 2.4 \text{ slugs/ft}^3).</td>
</tr>
</tbody>
</table>
ABSTRACT

A supersaturated viscous mud overlaying a hard bottom material is often critical to locomotion in many areas. To solve the problem of a wheel or track, the familiar concepts of hydro-dynamics pertaining to incompressible viscous fluids may be applied. A correlation between theory and experiment is indicated. The basic problem to be solved is one of viscous flow around a partially submerged object. The variation in pressure resulting from the friction drag causes a bulldozing effect in front of the wheel, and a resulting wake at the back part of the wheel. The pressure drag may be reduced by streamlining the wheel which reduces both the amplitude of the pressure wave and the width of the wake behind the wheel. A comparison between various wheel forms has been made and presented in chart form.

A study of the correlation between the boundary layer theory and wheels in viscous fluids is suggested. Contrary to accepted practice the usual boundary layer theory seems to apply to a viscous fluid flowing around a partially submerged object when a turbulent wake is formed. It is further suggested that a series of tests be made with muds of various viscosities and wheel forms to correlate the boundary layer thickness and the pressure distribution in the flow field surrounding the wheel as well as an attempt to solve the Navier-Stokes equations.
General Theoretical Background

It is often necessary for a vehicle to cross a terrain composed of a supersaturated viscous soil overlaying a hard bottom. At present the influence of viscosity, as it relates to the drag resistance of vehicles, is not included in the accepted theory of soil mechanics. However, if a rational basis for vehicle design is to be developed, the effects of viscosity and density should be considered. (1) Results from experiment and analysis indicate that the theory of fluid dynamics of viscous incompressible fluids is applicable for the determination of the drag resistance of wheels in viscous mud. (2)

The basic problem to be solved is one of viscous flow around a partially submerged object, see Figure 1. In all cases the velocity is small and the velocity pressure is negligible. Variation in pressure resulting from the friction drag causes a bulldozing effect in front of the wheel and a resulting wake behind the wheel. It should be expected that the pressure drag may be reduced by streamlining the wheel which reduces the amplitude of the pressure wave and which decreases the thickness of the wake behind the wheel. A comparison of various wheel forms, as illustrated in Figure 2, shows that a streamline wheel has a smaller wake and pressure wave than a tire of rectangular shaped wheel, and thus offers much less resistance to motion.

The fundamental equations pertaining to the fluid dynamics of incompressible fluids are the Navier-Stokes equations. At present there is no general method for the solution of these equations because they are non-linear. There are only a few special cases, however, that can be solved exactly. In every case, assumptions must be made as to the state of the fluid and as to the configuration of the flow pattern.

The main mathematical difficulties involved in the solution of the Navier-Stokes equations are due to the fact that the inertia terms are non-linear. Some solutions are possible by assuming that we have incom-
pressible fluids with constant velocity. Additional solutions may be obtained by linearizing the equations, by considering very large viscosities, or by assuming very slow motion.

Because of the mathematical difficulties encountered in the solution of the general differential equations, a major portion of the effort has been directed along experimental lines with the development of empirical equations. Much use has been made of the laws of similitude and dimensional analysis to extend the results of small scale tests to the prototype.

The equations of the boundary layer are approximate and seem to apply to viscous mud even though a turbulent wake is formed behind the wheel as it moves through the viscous fluid. The thickness of the wake depends upon the geometry of the wheel and is reduced by streamlining the wheel, see Figure 2.

The classical theory of hydro-dynamics pertaining to ideal fluids has been extensively investigated in the past. (3) Nevertheless, the classical theory fails to explain some of the phenomena associated with real fluids. The ideal fluid is assumed to be frictionless and incompressible. In order to explain such characteristics as skin friction and form drag on a body, a theory of real fluids is necessary. (4) Viscosity is known as internal friction and is defined as that characteristic of a real fluid which exhibits resistance to any alternative of its form. Viscosity is the coefficient which relates shearing stress with the velocity gradient in the following way:

\[\tau = \mu \frac{dU}{dx} \]

where \(\tau \) is the shearing stress between two layers of the fluid
\(\frac{dU}{dx} \) is the velocity gradient
\(\mu \) is the coefficient of viscosity

From the above equation, we see that the tangential force per unit area here defined as the shearing stress \(\tau \) is proportional to the slope of the velocity curve, \(\frac{dU}{dx} \), where the constant of proportionality is the
viscosity μ.

Thus, one may determine the dimensions of the coefficients of viscosity as follows:

$$\mu = \frac{\text{shearing stress}}{\text{velocity gradient}} = \frac{mL}{t^2 L^2} + \frac{L}{tL} = \frac{m}{tL}$$

where m is the mass

t is the time

L is the length

A viscous soil such as a supersaturated mud is in general a non-Newtonian fluid as the coefficient of viscosity varies with the rate of deformation.

The coefficient of kinematic viscosity is often denoted by the symbol, v, and may be determined as follows:

$$v = \frac{\mu}{\rho} = \frac{m}{tL} + \frac{m^3}{L^3} = \frac{L^2}{t}$$

The kinematic viscosity, v, is important where forces are due mainly to viscous and inertia effects.

For ready reference, some of the typical values for coefficient of viscosity, density, and kinematic viscosity for various materials are tabulated below.

<table>
<thead>
<tr>
<th>Density ρ, lb sec2 ft$^{-4}$</th>
<th>Viscosity μ, slugs ft-sec</th>
<th>Kinematic viscosity v, ft2 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.00236</td>
<td>0.0377×10^{-5}</td>
</tr>
<tr>
<td>Water</td>
<td>1.97</td>
<td>2.13×10^{-5}</td>
</tr>
<tr>
<td>Mud (typical)</td>
<td>2.4</td>
<td>14.400×10^{-5}</td>
</tr>
</tbody>
</table>

Fundamental Equations of Fluid Dynamics for Viscous Incompressible Fluids

The fundamental equations of fluid dynamics for viscous incompressible fluids are those known as the Navier-Stokes equations. For an
incompressible fluid with constant density, the Navier-Stokes equations relate the five unknowns: 3 components of velocity \(u, v, w \); the temperature, \(T \); and the pressure, \(P \), with the independent variables \(X, Y, Z \); and time, \(t \). The unknown may be determined by considering the equations of state, continuity, and motion. The proper solution of the five equations must satisfy the initial and the boundary conditions which are usually stated or assumed. By substituting the stress-strain relations into the equations of motion which satisfy the equations of compatibility, the following Navier-Stokes equations of motion for incompressible viscous fluids may be derived and presented herein for ready reference.

\[
\begin{align*}
\frac{\partial u}{\partial t} &= X - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\
\frac{\partial v}{\partial t} &= Y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \\
\frac{\partial w}{\partial t} &= Z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)
\end{align*}
\]

where

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

Basically, it is extremely difficult to solve exactly the above Navier-Stokes equations of motion because of the non-linear terms. However, it is possible to obtain a number of approximate solutions for special cases if one is willing to make assumptions concerning the state of the fluid and also by considering a very simple configuration of the flow pattern. Nevertheless, if one is to determine mathematically the three components of velocity in space and the pressure distribution of the fluid, the solution of the Navier-Stokes equations must be obtained.
The problem for which we desire a solution is represented in Figure 1, which shows a partially submerged wheel moving through a viscous fluid with a velocity, \(U \). The major portion of the flow is laminar with a boundary layer resulting from the viscous forces. A bulldozing effect results from the inertia forces and frictional drag producing an additional pressure drag.

Even for fluids with large viscosities and very slow motion, the exact solution of the Navier-Stokes equations is difficult. For incompressible fluids with slow motion, the non-linear terms of the inertia forces may be neglected, then the Navier-Stokes equations reduce to the following simple form.

\[
\frac{\partial u}{\partial t} + \frac{1}{\gamma} \frac{\partial p}{\partial x} = \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\]

\[
\frac{\partial v}{\partial t} + \frac{1}{\gamma} \frac{\partial p}{\partial y} = \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)
\]

\[
\frac{\partial w}{\partial t} + \frac{1}{\gamma} \frac{\partial p}{\partial z} = \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

The solution of these equations gives results that are approximate and the accuracy may be improved by considering the effect of the non-linear terms.

Similitude and Dimensional Analysis

Since it is extremely difficult and frequently impossible to solve the Navier-Stokes equations for viscous fluids, it is often convenient to determine a series of relations that exist between various conditions by using other techniques such as the law of similitude and dimensional analysis. The major effort in fluid dynamics has been along experimental
investigations to determine the coefficients that permit one to compute the desired relations by use of empirical equations.

It was first determined by Osbourne Reynolds that dynamic similarity will exist when alterations of the units of length, time and mass transform the differential equations and the boundary conditions in one case into those of another case so that the equations completely coincide. By equating the coefficients of the similar differential equation, various nondimensional parameters pertaining to identical flow fields may be obtained.

Another important method of determining the relationship between the model and the prototype similar to the laws of dynamic similitude is to apply dimensional analysis which indicates that the physical content of any theory must not depend on the units that are chosen for calculations. Thus, it is possible to use this technique to obtain parameters characterizing the flow without even considering the differential equations which govern the problem in question. The \(\pi\)-theorem is the basic theorem upon which applications of dimensional analysis are based. By use of the \(\pi\)-theorem, the dimensionless quantities which characterize the viscous flow may be obtained.

In viscous laminar incompressible flow there are five important variables: length, velocity, density, force and viscosity. There are three fundamental units: length, time and mass. It is thus possible to derive two non-dimensional quantities, called \(\pi\)-groups, in terms of the fundamental units. The first non-dimensional \(\pi\)-group is the drag coefficient \(C_F\) which is used for most engineering problems, where:

\[
\pi_1 = C_F = \frac{F}{\rho u^2 L^2}
\]

where \(F\) is a force indicating lift, drag, thrust, or skin friction
\(\rho\) is the density
\(U\) is the velocity
\(L\) is the characteristic length
The second non-dimensional π-group pertaining to viscous drag is equal to the reciprocal of the Reynolds number and is indicated by the following equation:

$$\pi_2 = \frac{\mu}{\rho \, U \, L} = \frac{1}{R_N}$$

where μ is the coefficient of viscosity

R_N is the Reynolds number.

The Reynolds number is the most important parameter in fluid dynamics of viscous flow and represents the ratio of inertia force to viscous force. When the Reynolds number is small, the viscous force is predominant and the effect of viscosity is important only in the narrow region of the boundary layer. The first dimensionless quantity is a function of the second dimensionless quantity, $\pi_1 = f(\pi_2)$, that is, the force coefficient is a function of the Reynolds number and is indicated by the following equation:

$$C_F = \frac{F}{\rho \, U^2 \, L^2} = C_F' \frac{\mu}{U \, L} = C_F' \frac{R_N}{R_N}$$

or

$$C_F' = \frac{F}{\mu \, U \, L} = \frac{F}{\rho \, U^2 \, L^2} \frac{R_N}{R_N}$$

where C_F' is a force coefficient used for small Reynolds numbers and slow motion. The viscosity μ of the fluid offers resistance to any change in motion. This shearing resistance causes a pressure differential to exist between the front and back part of the wheel as it moved through the viscous fluid, as shown in Figure 2. The total drag acting on an immersed body is the sum of the pressure drag and the friction drag. The pressure p_s, resulting from a difference in fluid elevation ahead of and behind the wheel. The friction drag results from the shear stress on the wetted surface.

The pressure drag may be obtained by use of the following equation:
\[D = \int_S (p_s + \frac{1}{2} \rho U^2) \, dA \]

where \(A \) is the projected area in the direction of motion.

The effect of viscosity which produces resistance to the sliding of fluid layers is called a friction drag \(D_f \) and is equal to the following equation:

\[D_f = \int_S \tau' \, dA = C_F \frac{U^2}{2} A \]

where \(\rho \) is the density of the fluid

\(U \) is the velocity

\(A \) is the wetted area

\(C_F \) is the force coefficient

The total drag on a body is the sum of the friction drag and pressure drag and may be computed by the following equation:

\[D = D_f + D_p = \int_S \tau' \, dA + \int_S (p_s + \frac{1}{2} \rho U^2) \, dA \]

which may be reduced to the following approximate equation:

\[D = \bar{\tau} A_2 + \gamma' \left(\frac{h_1^2}{2} - \frac{h_2^2}{2} \right) b + \frac{1}{2} \rho U^2 A_1 \]

\[D = \frac{2 \mu U}{\delta} A_2 + \gamma' \left(h_1^2 - h_2^2 \right) b + \frac{1}{2} \rho U^2 A_1 \]

where \(\delta \) is the boundary layer thickness

\(A_2 \) is the wetted surface

\(\gamma' \) is the specific weight

\(h_1 \) is the elevation ahead of the wheel

\(h_2 \) is the elevation behind the wheel

\(b \) is the characteristic width of the wheel

The above equation is useful for computing the total drag when all necessary quantities have been measured.

The total drag, \(D \), is usually obtained from experiment, and the
drag coefficient determined as a function of the Reynolds number, R_N, as follows:

$$C_D = \frac{D}{\rho \frac{U^2}{2} A_A}$$

The measured values may be plotted and used at future times for the solution of dynamically and geometrically similar problems.

Test Procedures

The test material consisted of a mixture of volclay and water. Volclay is a special kind of bentonite clay and may be obtained in either powder or granular form. A volclay water mixture is a non-Newtonian pseudo-plastic material. The graph of Figure 3 shows kinematic viscosity in $\text{ft}^2/\text{sec.}$ as a function of the velocity gradient in RPM with density in slugs/ft^3 as the parameter.

The tests performed with this material were run at values of Reynolds numbers between 0.1 and 1.7. Figure 1 shows the deformation of the fluid surface ahead of and behind the rolling wheel. In order to investigate the wheel drag in viscous soils, a special preliminary apparatus was built, Figure 4, which recorded the total drag of the wheel as it moved through the viscous fluid. The mechanical function of the apparatus was as follows.

The wheel (1) being tested rolled on the bottom of the soil bin (2) which measured 12 ft. long, 15 in. wide and 15 in. deep by movement of the carriage (3) on the rail (4). The carriage had a strain gage (5) electrically connected to a Brush magnetic recorder with automatically recorded the motion resistance. The carriage was moved by a drive mechanism (6) which had a variable transmission from 0-15 ft. per minute. At the end of the soil bin the limit switch (7) stopped further movement of the wheel. Tests were performed on wheels with different diameters and different widths.
Results

The results are presented in chart form and show the drag of various wheels in the viscous mud as a function of velocity or Reynolds number. Figure 6 is a typical graph showing the total drag in pounds as a function of the velocity in feet per minute for the different wheel types. Figure 8 shows the coefficient of drag as a function of the Reynolds number with the different tire shapes as the parameters. A comparison of the total drag of the various wheel types shows that the tire shape wheel has about 30% less drag than the rectangular wheel and that the parabolic wheel has about 60% less drag than the rectangular wheel.

The decrease in drag is due to the streamlining and the shortening of the thickness of the wake behind the wheel. A comparison of the flow field with the thickness of the wake for the various wheels is shown in Figure 2.

By use of the measured values of the total drag, the coefficient of total drag, C_D, was determined as a function of the Reynolds number by use of the following equation:

$$C_D = \frac{D}{\int \frac{U^2}{2A} \, d}$$

where $C_D = \frac{C}{R_N}$

Empirical equations of this type are predominant in hydrodynamics and permit the evaluation of drag in geometrically similar flow fields.

Correlation Between Theory and Experiment

In order to illustrate the agreement between theory and experiment a typical test was run under controlled conditions with accurate measurements of all parameters.

Figure 1 shows a typical test with a grid system superimposed on the surface of the fluid so that the boundary layer thickness, δ, could be
measured. The elevation of the pressure wave ahead of the wheel \(h_1 \) and behind the wheel \(h_2 \) was also measured and recorded in Figure 2.

Measured values were submitted into equation 16 and are duplicated here for reference:

\[
U = 4 \text{ ft/min}; \quad d = 5'' \text{, } b = 3'' \text{, } A_1 = 0.107 \text{ ft}^2
\]

\[
A_2 = 1.11 \text{ ft}^2 \text{, } \mu = 0.57 \text{ lb sec/ft}^2 \text{, } \frac{\rho}{2} = 2.4 \text{ slugs/ft}^3
\]

\[
h_1 = 5.75 \text{ in, } h_2 = 3.5 \text{ in.}
\]

\[
D = \frac{2\mu U A_2}{d} + \frac{\rho}{2} \left(h_1^2 - h_2^2 \right) + \frac{\rho}{2} U^2 A_1
\]

\[
D = \frac{2(0.57)}{3.0} (4 \frac{4}{60}) 1.11(12) \text{ lb} + 2.4 \times 32.2 \frac{(5.75^2 - 3.5^2)}{2(1728)} \text{ lb}
\]

\[
+ \frac{\rho}{2} (2.4) (4 \frac{4}{60})^2 (0.107) \text{ lb}
\]

\[
D = 0.33 \text{ lb Friction} + 1.41 \text{ lb Static Pressure} + 0.00057 \text{ lb Velocity Pressure}
\]

\[
D = 1.74 \text{ lb Computed}
\]

The total measured drag for the rectangular wheel amounted to 1.74 pounds and was composed of three factors: the static pressure drag was the most important and amounted to about 75% of the total drag; the friction drag amounted to 15% of the total drag with the velocity pressure drag and friction drag were about equal.

The total drag measured experimentally may be obtained from Figure 6b and has the following magnitude:

\[
D(\text{Experimental}) = 1.82 \text{ lb.}
\]

Thus, the experimental value of 1.82 lb compares closely with the computed value of 1.74 lb.
The following data pertains to the tire shaped wheel:

\[
D = 2\mu U A_2 + \frac{\partial}{2} (h_1^2 - h_2^2) b^1 + \frac{1}{2} f U^2 A_1
\]

\[
D = 2(0.57) \frac{4}{3.0} (0.9)(12) + 2.4(32.2)(5.75^2 - 4.00)(2.74) \\
+ \frac{126.4}{2} \left(\frac{4}{60} \right)^2 0.097
\]

\[
D = 0.274 + 1.04 + 0.00015
\]

\[
D = 1.31 \text{ computed}
\]

\[
D = 1.25 \text{ measured}
\]

The following data pertains to the parabolic wheel:

\[
D = 2\mu U A_2 + \frac{\partial}{2} (h_1^2 - h_2^2) b^1 + \frac{1}{2} f U^2 A_1
\]

\[
D = 2(0.57) \frac{4}{3.0} 0.76 (12) + 2.4 \times 32.2(5.5^2 - 4.25^2)(2.1) \\
+ \frac{1}{2}(2.4) \left(\frac{4}{60} \right)^2 (0.073)
\]

\[
D = 0.231 + 0.56 + 0.00039
\]

\[
D = 0.791 \text{ computed}
\]

\[
D = 0.75 \text{ measured}
\]

The above agreement is excellent and shows the relative influence of the parameter on the total drag of the various wheel types.

Conclusions

1. From the results of the work conducted to date, it can be deduced that the laws of fluid dynamics are applicable in the determination of the drag in extremely loose supersaturated soil, and that viscosity is a convenient factor in the characteristics of such soils.
2. In order to correlate theory with experiment, it is necessary to measure the fluid profile in front of and behind a moving wheel. This is necessary in order to be able to compute the pressure drag. The effect of the velocity pressure is very small for the viscous fluids with very slow motion and may be neglected.

3. Variations in tire form which result in the decreased thickness of the wake trailing a wheel reduce the drag proportionately. A parabolic wheel offers less drag resistance than a tire-shaped wheel, and both offer less resistance than a rectangular wheel.

4. In extremely loose supersaturated soils, it is necessary to measure the viscosity in order to determine the drag resistance.

5. In any soil value system the effects of viscosity should be included in the theory for both design and analysis.

Recommendations

1. It is recommended that further study be continued to determine the influence of the boundary layer on the drag coefficient of viscous fluids.

2. It is recommended that further study be made to correlate theory with experiment by measuring all parameters pertaining to the problem including pressure wave, wake, width and boundary layer thickness.

3. It is recommended that theoretical work continue in order to obtain solutions of the Navier-Stokes equations as they pertain to viscous flow around partially submerged objects.

4. It is recommended that a new type portable viscometer be developed to measure the viscosity of fluids in the field.

References

Figure 1b - Viscous Drag, Viscous Field
Fig. 2 Sketches showing the Pressure Wave and Wake for Different Wheel Forms
Fig. 3. Chart Showing Kinematic Viscosity as a Function of the Velocity Gradient with the Density of Volclay-Bentonite as the Parameter.
Figure 4 - Investigation of wheel drag in viscous soil. Test apparatus.
Fig. 5. Chart Showing Total Drag as a Function of Velocity with Tire Shape as the Parameter.
Fig. 6b. Chart Showing Total Drag as a Function of the Velocity for Different Wheel Shapes.
Fig. 7. Chart Showing Total Drag as a Function of the Velocity for Different Wheel Shapes.
Fig. 8. Chart Showing Drag Coefficients as a Function of the Reynolds Number for Different Wheel Geometries. $\beta=2.4 \text{ slugs/ft}^3$.
 LIST OF PUBLICATIONS OF THE LAND LOCOMOTION LABORATORY, RESEARCH DIVISION, OTAC DETROIT ARSENAL, CENTER LINE, MICHIGAN

NOTE: Reports marked with an asterisk (*) are working papers, published in a small number of copies for limited distribution.

A. REPORTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Minutes of the First Meeting of the Scientific Advisory Committee (Tech Memo M-01)</td>
</tr>
<tr>
<td>2.</td>
<td>Preliminary Study of Snow Values Related to Vehicle Performance (Tech Memo M-02)</td>
</tr>
<tr>
<td>3.</td>
<td>An Investigation of Spades for Recovery Vehicles (Tech Memo M-03)</td>
</tr>
<tr>
<td>4.</td>
<td>Techniques for the Evaluation of Track and Road-Wheel Design (Tech Memo M-04)</td>
</tr>
<tr>
<td>5. *</td>
<td>A Definition of the Engineering Concept of Mobility (Tech Memo M-05)</td>
</tr>
<tr>
<td>7. *</td>
<td>Variable Pitch Hydrofoil Wheel (Tech Note M-07)</td>
</tr>
<tr>
<td>8. *</td>
<td>A Study of Air Flow Effect on the Holding Power of Vacuum Devices (Tech Note M-08)</td>
</tr>
<tr>
<td>9. *</td>
<td>Goals, Methods and Activities of the Land Locomotion Research Laboratory (Tech Note M-09)</td>
</tr>
<tr>
<td>10. *</td>
<td>Shear and Sinkage Tests in Local Snows (Tech Note M-10)</td>
</tr>
<tr>
<td>11. *</td>
<td>Soil Measurement at the Ordnance Depot, Port Clinton, Ohio (Tech Note M-11)</td>
</tr>
<tr>
<td>12. *</td>
<td>Preliminary Study of Synthetic Soils for Vehicle Mobility Investigation (Tech Note M-12)</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>13.</td>
<td>Terrain Evaluation in Automotive Off-the-Road Operations</td>
</tr>
<tr>
<td>14.</td>
<td>Application of a Variable Pitch Propeller as a Booster of Lift and Thrust for Amphibian Vehicles</td>
</tr>
<tr>
<td>15.</td>
<td>Mobility on Land; Challenge and Invitation</td>
</tr>
<tr>
<td>16.</td>
<td>Minutes of the Second Meeting of the Scientific Advisory Committee</td>
</tr>
<tr>
<td>17*</td>
<td>Preliminary Evaluation of Mobility Aspects of the GOER</td>
</tr>
<tr>
<td>19.</td>
<td>An Investigation of Gun Anchoring Spades Under the Action of Impact Loads</td>
</tr>
<tr>
<td>20.</td>
<td>Artificial Soils for Laboratory Studies in Land Locomotion</td>
</tr>
<tr>
<td>21.*</td>
<td>Power Spectrum of Terrain</td>
</tr>
<tr>
<td>22.</td>
<td>An Introduction to Research on Vehicle Mobility</td>
</tr>
<tr>
<td>23.</td>
<td>Study of Snow Values Related to Vehicle Performance</td>
</tr>
<tr>
<td>25.</td>
<td>Drag Coefficients in Locomotion over Viscous Soils, Part I</td>
</tr>
<tr>
<td>26.</td>
<td>Evaluation of Tires for the XM410 8x8, 2-1/2 Ton Truck</td>
</tr>
<tr>
<td>27.*</td>
<td>Effect of Water Content on "B" Values of Soil</td>
</tr>
<tr>
<td>28.</td>
<td>Effect of Impenetrable Obstacles On Vehicle Operational Speed</td>
</tr>
<tr>
<td>29.</td>
<td>Obstacle Performance of Wheeled Vehicles</td>
</tr>
<tr>
<td>30.*</td>
<td>Role of Land Locomotion Research in the Development of Motor Vehicles</td>
</tr>
<tr>
<td>31.</td>
<td>Performance and Design of Crawler Tractors</td>
</tr>
<tr>
<td>32.</td>
<td>A New Booster of Lift and Thrust for Amphibian Vehicles</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>33.</td>
<td>Determination of Soil Sinkage Parameters by Means of Rigid Wheels Part I</td>
</tr>
<tr>
<td>34.*</td>
<td>A Concept of an Open Track, and the Evaluation of Its Performance</td>
</tr>
<tr>
<td>35</td>
<td>Estimation of Sinkage in Off-the-Road Locomotion</td>
</tr>
<tr>
<td>36</td>
<td>Methods of Obtaining LL Soil Values</td>
</tr>
<tr>
<td>37*</td>
<td>Compression of a Plastic Soil Between Two Plates</td>
</tr>
<tr>
<td>38.*</td>
<td>Comparison of Low and High Profile Tire Performance</td>
</tr>
<tr>
<td>39.*</td>
<td>Soil Testing at Ft. Knox</td>
</tr>
<tr>
<td>40</td>
<td>Operational Definition of Mechanical Mobility of Motor Vehicles</td>
</tr>
<tr>
<td>42.*</td>
<td>Stress-Strain Analysis of the Rim of a New Wheel Type</td>
</tr>
<tr>
<td>43</td>
<td>Study on Cross Country Locomotion</td>
</tr>
<tr>
<td>44.*</td>
<td>Evaluation of Tracked Vehicle "X" as Compared with the Standard M48 Tank</td>
</tr>
<tr>
<td>45.*</td>
<td>A Brief Introduction to the Scale Model Testing of Vehicles by Means of the New Soil-Water Basin</td>
</tr>
<tr>
<td>46</td>
<td>Prediction of "WES Cone Index" by Means of a Stress-Strain Function of Soils</td>
</tr>
<tr>
<td>47.*</td>
<td>Mobility Study for ASD (R & E) Group on Ground Handling Equipment for Guided Missiles</td>
</tr>
<tr>
<td>48</td>
<td>Behavior of a Linear One Degree of Freedom Vehicle Moving with Constant Velocity on a Stationary Gaussian Random Track</td>
</tr>
<tr>
<td>49.*</td>
<td>Scale Model Testing for the Soil-Water Basin in Land Locomotion Laboratory</td>
</tr>
<tr>
<td>50</td>
<td>Stress-Strain Analysis in Soil Under the Action of Multi-Loads</td>
</tr>
<tr>
<td>51.*</td>
<td>The Inadequacy of Proving Grounds and Test Methods</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>52. *</td>
<td>Mobility Study for Drone Carriers</td>
</tr>
<tr>
<td>53. *</td>
<td>Mud Mobility Tests of Tanks, APG 3-7 November 1958</td>
</tr>
<tr>
<td>54.</td>
<td>Drag Coefficients of Locomotion over Viscous Soils, Part II</td>
</tr>
</tbody>
</table>

B. GENERAL PUBLICATIONS

a) Research Report No. 1
b) Research Report No. 2
c) Research Report No. 3
d) Research Report No. 4
e) Research Report No. 5
g) Interservice Vehicle Mobility Symposium, held at Stevens Institute of Technology, Hoboken, New Jersey, 18-20 April 1955

Volume I Minutes, Abstracts and Discussions
Volume II Papers
Locomotion over supersaturated extremely loose soils cannot be studied by means of the methods developed for a study of granular masses. Yet muds of the discussed type are most critical to locomotion in many areas.

Preliminary work described in this report indicates, that such problems as wheel resistance in a fluid mud may be conveniently expressed, when using basic principles of hydrodynamics, and that measurement of viscosity and density must be added to previously developed soil value system. A study of the problem with the purpose of minimizing vehicle drag in viscous soils has been suggested.
Locomotion over supersaturated extremely loose soils cannot be studied by means of the methods developed for a study of granular masses. Yet muds of the discussed type are most critical to locomotion in many areas.

Preliminary work described in this report indicates, that such problems as wheel resistance in a fluid mud may be conveniently expressed, when using basic principles of hydrodynamics, and that measurement of viscosity and density must be added to previously developed soil value system. A study of the problem with the purpose of minimizing vehicle drag in viscous soils has been suggested.