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FOREWORD

The work covered by this report was done =z the System Dynamics Branch,
Acronautical Research Laboratory, under Pru.ect 7060, "Flight Dynamics
Research and Analysis Facility"., Mr. Paul W. Nosker is Project Engineer.
‘This study is part of a continuing program to L’ ermine optimum methods of
simulation 2nd analysis of the dynamics of ai= weapon systems. The general
subject of quaternions as applied to coordinats ronversions has been under

investigation for approximately two years, thxugh the bulk of the work reported
here was accomplished during the last six mamzns of 1957,

The author wishes to express his appreciation to Mr., Robert T. Harnett and
others of the Analog Computation Branch of this Aeronautical Research Laboratory
for assistance in the analog simnulation portiamm of the study,
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ABSTRACT

b

The thecry of the four -parameter method is developed with specific :
application to coordinate conversion in aircraft simulations. This method
is compared with the direction cosine method both in a theoretical ercor
analysis and in an example simulation on an analog computer, It is shown
that the quaternion metiod is no more sensitive to multiplier errors than
is the direction cosine method, and it raquires nearly 30 per cent less '
computing equipment. In addition, the multiplier bandpass reguirernent )
in the four-parameter method is only half as severe as for direction cosines.
By every important criterion, the quaternion method is no worse than, and
in most cases, better than the direction cosine method,
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SECTION I !
INTRODUCTION

The problem of motion of a rigid body and the associated one of coordinate .
copversion are very old ones in the field of classical dynamics, Significant
results, daring from the time of Euler (1776) thrcugh the introduction and
apolication of matrix methods by Cayley and Klein and others in the last half
of the nineteenth century, breought the matter to suchk 2 satisfactory state that
no significantly new inethods or approaches have been found necessary. The
develupmeant of modern computing machinery makes necessary a re-examination
of the varicus methods frem the standpoint of their utility in computational
devices. It is not necessarily true that methods which have proven their con-
venience in the largely anclytical manipulations of classical mechanics shouid

prove tc be best adapted for nuraerical or aialog computation. Quaternions fell

L —————

into disvse among physicists about the turn of the present centur: tecause matrix
and vector methods had proved more useful in the types of investigations then
boing conducted, The purpore of the present paper is to show that the quaternien
arproach to coordinate transformation does wffer 1eal advantages in the anaiog
simulation of rigid body motion. In recent times Deschamps and Sudduth* have
suggented an applicailion {or digital compatation, and Backus** has propesed them
{or analog cimulation, but in general quaternions are little known among those
engaged in simulation of aircraft motions, !
The coordinate conversion prnblem in aircraft and missile simulation is :
different at least in emphasis from that of classical dynamics. It might be well o
to state the problem which is of interest and to which the methods explained later
will be applied, A missile or aircraft mnay be considered as a moving coordinate !

system, Various vectors must be transformed into this coordinate sysiem or out

*Deschamps, 3. A, and W. B, Sudduth, Fed;;al Tclcco—xﬁrﬁ:mications i.aboratoriecs, '
Nutley, New Jersey, Case 26-10707, November 1955,

¥¥iackus, George, Rigid Body Equations - Euler Parameter s, Technicai Note 6,
Advisory Board on Simulation, University of Chicage, Novembear 1551,

Manus.ript released by author 15 January 1958 for publication as a WADC Technical
Report, ' , -
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of 1t inlo sume inertial system,

Integrating the cquations o motion of the air- '

frame can be made to yield the three components of the coordinate system's

angular velocity vector, From the X, Y and Z components (P, Q. R)of this

vector in the moving system, it is desired to keep track of the oricutation of

the coordinate system in such a way that vectors may be transiormed in either

direction. This means an integration of angular rate to detexinine angular

position,

Fundamental to this procedure is a consideration of how the orientation of

the coordinate system is to be specified, During the history of the subject,

varivus methods of doing this have bLeen put forward, All the most useful ones

fail into three categories: Euler angles, quaternions, and direction cosines. _ a
Of these, the first and last are probably the most fainiliar to mocern readers. ‘
In the Euler angle method, the orientation is expressed as the result of three

rotations about each of ti'ree axes, the rotaiions being made in a specific
sequence, The physical interpretation of a quatei1nion is a rotation through some
m .

angle about some specific fixed axis. The nine direction cosines are simply the

. ' i
cosines of the angles between each of the axes in the moving system with each

of the axes of the fixed system. Principal attention here will be given to the i

uaternion, or four-parameter system. It was first intraduced by Euler in 1776,
’ P Y )
esule uf spherical trigonometsry considelations,

A a
a2 A

-

The elegant quaternion

formulation was invented by Hamilton in 1843 as a new kind of algebraic inimal-
ism. A matrix formulation was devised by Klein for use in gyroscopic preblems
and, in this formulation, is usually known as the Cayley-Klein parametiers. FEach
<l these three different approaches to the four-paramater systemn has its own
advantages, It has been decided to present at least an outline of all three here, ‘
There are two reasons for this: first, there are sorne propositions which are mare

casily shown by ons development; second, it scems probable that when the reader

is offercd a Jhoice ol method, he will reach &n understanding sooner if he cou

sclect the method most neerly consonant with his own background,
It will become apparent that this subject presents something of an ¢xpositional )

problem. In order to rcach the desired ends, it has been deciued to asswume that

e e e AR baan e 4

the rcader has a knowledge of matrix mecthods, especially as applied te coordinate
conversion in three~dimensional space., As & compromise, 3 brief introduction

to the subject is given in Appendix A, though a more satisfactory treatiment iz

given by Goldstein®, In this 1c¢port the term "quaternion' has been used to

“Yutein, Herbert, Classical Mechanics, Addison-Wesley Press, Cambridge,
Mass,, 1950,

IO Lt
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represent the four-parameter method in general, In other cases, it is necessary
to usc the word to distinguish Humilton's develupment from the others. It is hoped
that confusion may be kept to a minimum,

There arc many different techn.ques used in present-day aircraft simulations to
solve the coordinate conversion problem, The technique is usually adapted to the
special requirements of the problem at hand. If most of the rotation takes place
zbout one axis, or if only the gravity vector is to be handled, or if the airframe's
rotation is otherwise restricted, valuable simplifica'tions may be effected in the
analog equipment required to represent the conversioa. It is not the present
purpose, however, to investigate all these possibilities, Consideration will be
given only to the most general and unrestricted case: that of several complete
revolutions about any c¢r all axes. This immediately excludes the Euler angles
becauss of the singular point. The advantages of Euler angles are such, and their
popularity is so pervasive, however, as to warrant keeping them in mind, Accordingly,
Appendix B gives a brief outliae of the Euler Angle system most commonly used in
aircraft work, angd at appropriate points, comparisons will be made of them with
quaternions and direction cosines. In making such comparisons, that form of Euler
angle instrumentation whuose capabilities most ncarly equal those of the quaternion
scheme will be assumed., This form has been discussed at some length by Howe*
and his figures and results will be used for comparison, in Howe's method, the
extent and direction of rotation is unresiricted except for the inevitable singular
orientation, and he shows that even this leads to less practical difficulties than one
might expect,

It is valuable to keap the Euler angles ir. mind, but the quaternion method must
really stond or fall on :its momparison with direction cosines. It has in common
with direction cosines the caj ability of handling completely unresiricted rotations,
Accordingly, considerable atteition has been devoied to the direction cosine method
in tkis report, Both a theoretical error analysis and a simulation program were done
for the cosines in order tc provide the most compleie possible basis of comparison,
They have heen dune before, buit it is difficult to compare results obtained by
diiferent investigators or diffe rent compu{ing cquipment.' An attempt was made here
to keep the corditions as nearly comparable as possible, Of all the material con-
tained hereir, no originality i1s claimed exrept for ihe quaternion error analysis
and simulation. Even here, no ne'w techniques were used, with the possible
excepiion of the method of handling multiplier ervors, It was felt nzcessary,
however, to include the remaining matarial in order to introduce and place in

context this probably unfamiliar subject.

— ———

*Howe, R, M, and E. G, Gilbeii, A New Resolving Method for Analog Computers,
WADC Technical Note 55-468, January 1956, ) !
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i SECTION 1I
L

THE EULER PARAMETERS

The earliest formulation of the four-parameter system was given by Euler

1776, thuugh rhe oldest treatment generally available today is probably that
of Whittakar*, It is an essentially geometrical development, but will not be
presented s such here, The principal results may be demonsirated with much
less labor by use of matrices,

Central to the developiment of these parameters, and indeed to the {four-

parameter methods in general, is the proposition known as Euler's theorem,
which may be stated as follows: any real rotation may be expressed as &

i rotation through some angle, about some fixed axis. In other words, regavd-

less of what the rotation history of a body is, once it reaches som.e orientation,
that orientation moy be specified in terms of a rotation through some angle (‘vhich

can be determined) cbout soine fixed axis.

TR PV AT R

The truth of this proposition is net intuitively obvious, but in aay case, it must
be shown, Consider a transformation matrix (A). No restrictions are rut an (A)
cther than those which exist for all orthogonal transformation matrices (see
Appendix A), Another way of stating Euler's theorem is to say that for every
muatrix (A) there exists some vector R whose components are the same before !

and after application of (A); in other words, there must be rome R sach that

(AR = R iy 3

R e b d PEL L Al ol Rt o el S S

for any (A). If the components of R are desigrated X, Y and Z, the slemonte f

of {A) by 3, 5+ then Equation (1) may be written

) | 1

i DU PR
221 22 423 \Y =Y. (
/ yA \z

fal}

s a. a a
\ 3! 32 33,/

1f this matrix equation is expanded in components, a set of linear homogenous

¥Whittaker, E, T. Analytical Dynamics, Fourth Edition, Dover Public;t‘igr_.\!;:
N, Y,, 1944, :
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cquations results:

(a), - DX +a,Y + 2,2 =0,
\ - .
a, X +(ay, - )Y + a,,Z = 0, (3)
ag Xt oag,Y + (333 -1)Z = 0.

A necessary and sufficient condition for exastence of a ron-trivial solution is
that the determinant of coefficients be zero, Therefore, it is necessary to show
that

ap -1 212 a3
a1 2, -1 a3 = 0. (4} :
a3) a3 azy -1

This may easily be done ymaking use of the properties of an orthugonal trans-

fosmetion matrix developed in Appendix A, If the above cquation is expanded,

(a)12,,233%8) 58,3831 +8,183,3) 3-83)8) 3375-3,)3) 5233-33,3, 38, -1)

z - a - a 5= (5
Hag ) -ap,233%a,3a3,)4a,,-a) 2y 343y gag) ) Hagg-a ay,48,)25,)= 0 (5}

The first term vanishes in consequence of the fact that the determinans of the
transformation matrix must equal unity {(Equation {158) j, and thc last lhree termns
vanish from the orthogonality conditiorns of Egquation (162). Thus, itis proved
that Equation {4) ic an identity for any orthogonal (A) and that there exisie some '
vector R which is unchanged by the transformation, This proves Luler's theorem,
Since it has been shown that it is possible to express any rotation ag a singie
rotation about some axis, it is possible to make use of the equivalent rotation te
speciiy orientation. Consider two soordinate systems XY Z and X'Y'2'. The
XYZ system is assumed to be fixed in inertial space, and X'Y'Z' is maoving ir
some arbitrary manner, though both cocrdirate systems have the same origin,
Assume that initially the two systerns are coincident, Then the X'Y'Z' system

is rotatad through an angle p about an axis which makes angles a, f}, y with the

WADC TR 58-17 5
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N, Y, Zoaxes respectively. To will be noted that this axis of rotation makes the
% samge angles a, B, ¥y ~ith the X', Y', 2" axes also. It is now necessary to express
the transformation matrix in terms of the quantities p, a, % and vy,
It urder to Jdo this, use is made of an additional coordinate system, Xryrzr’

which 1s fixed 1n the XYZ systemn. The Xr axis lies along the axis of rotation,

and the Yr axis is restricted to the XY plane, This would give rise to difficulty

12 the 72 axis is the axis of rotation, but in that case, the Yr axis ¢ould be confined
tw the XZ pliane or the YZ plane, and the final result would be unaltered. At any
r.te, with the choice indicated, the Yr axis is always perpendicular te the Z axas.,
Now the rotation through the angle p is a rotation through o about the Xr axis, so
the rotation is a very simple one in the Xrerr system, Accordingly, the rot-fion
o! *he N'Y'Z' system th-ough the angle p may be vicwed 55 the result of three
rotations: (1) rotation of the X'Y'Z' system into coincidence with the errzr
systeny (2) rutation through the angle g abe ¢ the X, axis; (3) the reverse of

(1) to restore the original separatioa of the X'V'Z! and X ¥ 7 systems, The

> . R . .
\‘ imatrix for ¢acl of these transformations will be developed, and then the three

inay be multiplied together to express the total transformation,

£irsy, the transformation into the XrYrZr system wil] be considered., a, 8,
ard vy oare the anples hetween the new N_ axis and the fized X, ¥ and Z axes.
r
Thus, it is scen from Equation {125) that a1 22 and a;, are immediately fixed.
-

Cne other cosine may be established, Recall that the Y _ axis is perpendicular to

e Z exts, This means that 3,3 = 0. Thus the matrix of the first rotation is

porticzily estavlished,

cos a cos P cos Yy
(A) = aZl (‘122 0 . (6)
a, a a,
\ 231 32 53/

Applying the orthogonality conditions, it is possible tu deduce tl.at the other

clements are
o ¢os a cos P COs Yy

(A) = +cosf zscy * cos a CsC Y 0 . (7)
T cns a cot y TcospP coty = siny

The ambiguities ‘n sign mnay be resolved by making use of the requirement that

v roansteix ahove must reduce to the identity matrix when a beccmes zero,

WADC TR %3-17 b
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The result is : S e —

cos a cos . cos Y
(A) ={-cosP cscy cosa cscy 0O . ~(8)
-cos a .cot y -cos Bcoty siny '

The second rotation, through the angle u, about the Xr axis is simply

S 0

(R)y = 1 0 : cos p ’ ~ singp . . (9)

0 " .sinp  cOS R

The last of the three rotations is the inverse of {A) or (A)'l. Thus, the general
transformation is the result of all three, called (B). Itis given by '

(B) = (AV(RNA).  (10)

This is a similarity transformation, and, among other things, the spur (sum of
the diagonal elements) of a matnx is invariant \mdcr a. sxmxlanty transfcrmatwn, :
i.e.,. ' : T ‘

bzz

so the angle’'of rotation may be obtained d1rect1y from the d1agonal elemerits of

bu +b33 = lt2cosp, (1;)

- T DR .-....‘._--,..._.__..._.

the transformation matrix. Carrying out the operations of Equation (10) nges -

2

1 .2 sinz-% sin“ a 2(sin2-g—' cosacos B 2(cos acosy sinz-%
PN B N e 3 < 2
T - -sin % cos -% cos y) -sin-%-cos }ZL cos B)
Z(Sinz-% cos a cos P 1-2 sinz-}éi sinzﬁ Z(sin‘Z E‘cos B cos vy
-sin-g- co_s-%'— cos Y) : -sin-}zicos—g— cos a) (12)

R o o —«..- ' . -~

' %{ ‘Z‘(Ecls’_a cos Y s1n2f& 2(sm ‘Z cos Bcosy 1-2 sin %smz Y

+- sm%cos Q08 ﬂ) ,_-Gin‘g cos-g:;:o;ef oo ‘1 ’ ”'“"'“‘“““ ]

If the followmg subst:tutmns are made.‘

.§~ _ cé# a sm% = cos B sm%, = cos y sm-g-, x = cos%, M (13)

PR

WADC TR 58-17 K



4

the matrix of 112} becomos

™ 2 2 .

£ o™ 23" x 2(gn + 1 x) 2(€5 - nx)

B}t 2(gn-3x) -§&+n"‘-cz+x"' 2(nL + £ x) . (14)

A8 +nx) - 2Ani -€x LI S

These four quantities are called the Euler parameters. It may be seen from

their definitions that they obey the relationship

§Z+qz+;z+x2=1, (15)

so they are not all independent. Also, none may lie outside the range %1,

If the quantities u, a, B, and y are known, it is a simple matter to compute
the Euler parameters and/or the transformation matrix by the method given above.
If, on the other hand, the transformation matrix is given, it is-also possible to
solve for the four parometers, though difficulties arise. A considoration of these
difficulties will shed further light on the nature of the Euler parameters. To begin
with, it should be stated that the quantities g, a, f, and y cannot be uniquely
determined from the transformation matrix. The reason for this is that even thougis
rotation through a certain angle, about a certain axis will produce a definite unam-
biguous orientation, the reverse is not true. If the orientation is given, there are
four separate ways in which it could have been obtained by rotation about a fixed
axis. Possibly an example will help to clarify this, Assume that the rotation being
considered is a rotation through an angle of + 30° about the + X axis, There are

three other ways to get to the same position: (1) a rotation through - 30° about the

- X axis; (2) a rotation through - 330° a'boutﬂthe + X axis; (3) a rotation through

o . : . .
+ 330" about the - X axis. A further illustration of the possibilities is given in
the table following,

X € n 14
Case 1 + coa-s— +cos a sind- +cos P :in% +cos y sin%

Case 2 +cost (- cos a)(- sin ) . .

2 i (- cos B)(- sin %) (- cos y)(.- sin%)
Case 3 - cos 5— +cosaf- .un%) +cos B (- sin%) +cos y{- sin ‘Z")
Case 4 - cos 5— (- cos a) nns- (- cos ) sin%’ (- cos y) glin %

The first two cases lead to the same Euler parameters, and the last two lead to
a different set which are the negative of the first, All four sets lead to the same
transformation matrix. ; )
WADC TR 58-17 8
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The relationship between Euler parameters and direction cusines may
B be derived by equating terms i Equation ‘14). The result is
2 .

1y = ;+a“+azz +a33,

48" = 1+ apy - A, - A3z (16)
2

Ant o= deay) tay, -z

4 Z 1 +a

o= -2y -3, tags.

These equations determine ihe Euler parameters except for sign, The sign must
be gotten in ancther way. From comparison of terms in the matrix it is possible

to show :hat
4xm,
1%L, (17)

fu
w
Ld
'

o
2

it

A
—r
o

]

s
[\ Y]
Lo

n

2,3 - a3 = 4x6.
Thus, if x is assumed to be always positive, the signs of the cthers may be
deduced from Equations (17) unless yx = 0. This is the special case of a 180°

rotation, There is an additional winibiyuily il e Lecause the direciion of ithe

e

xis of rotation and the direction of the rotition are cenpletely unrelated,

Either a positive or a negative rotation abcut either the positive or negative

r

:xis will give the same result. For this special case, another means would
have to be devised for defining the signs, but it hardly scems worthwhile to go

into it here. It is nct expected that this will lead to auny practical difficulties.

¢
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SECTION 1l
THE CAYLEY-KLEIN PARAMETERS

-

In this development of the four-parameter system, it is found that a

2x2 ¢onnlex initrix may be used to represent a real rotation, rather than a

2x3 real matrix, Consider such a matrix (H),

(H) = . (18)

ba1
The requircinent is placed on this matrix that it be unitary, that is tc say the

preduct of (1) and its adjoint must yield the unit matrix, The adjoint is the

complex conjugate of the transposed matrix, In addition, it is required that

the determinant of the mairix (I} huve the value +1. The unitary condition

allows %1 for the determinant, so this is an additional requirement.

The
unitary condition may be wrilten as
lh % n, h, b 10
117 P21 11 12 | k (19)
1 * !
Nt by b P2 ° 1
Fupending and equating components gives
. . )
by *hyy oy *hyp =L
o K % -
hyy "Ryt hgy thyp =0
tcv)
big *hyy * by *hyy =0,
* * =
Mz My T My TRy, =

The scceond and third equations arc the same, being merely complex conjugates

of cach other, The first and fourth equations have no-imaginary component,

whereas the second (or third) has both real and imaginary parts, Therefore, the

three independent equations contain four conditions,

h - 4 : it 51 ot ine cc 3
1 ]hzz - hal ) -~ = 1 m 'lke 1 pOS‘alblc to d(’..t(,l'l?]lnq.. certain
I'CIJ:&OHSHI‘I})S an‘;ong t:‘le f()llr ql!d“[it‘le.’: h

These, together with the deter«
minant requirement that h

nane It may be shown that h?.?, = h”*

-y »% 50 the natnix may be written as

and 1121 =

WAL TR 58-17 10
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. \
by By,

(1) = (21)
- * *
\ Pt by
The quantities hi hlZ' h22 are usually referred to as the Cayley-Klein
parameters, It will be noted that they are complex numbers. While it is
convenient to use them as such i~ analytical operations (and this is the
purpose for which Klein develcred them:) a physical computer must treat
complex numbers in terms of their real and imaginary parts. Thercfore,
it is convenient to introduce fou- other quantities defined as follows:
h = a, + ie

‘11 1 2’ X
hy, = e, + ie,, (22)
12 3 4

where the e's are all real numbers, and i is tue square root of -1. Using

these definitions, the matrix (H) may be writtea as

(H) = {23)

ey +ie2 €3 + '1e4 )
~eg +ie4 e, - ie, J

Now consider another complex matrix (P), which has the form

. z x - iy
(P) = ) , (24)

x + iy -z /

where x, y and z are real numbers, It will be noted that the matrix (¥) is ‘
equal to its own udjoint, and thus is said to be self-adjoint or Hermitian, Now

consider a transformation of (P} of the form

(P) = (m){p))t (25)

wnere (H)+ designates the adjoint of (H). Siuce (H) is unitary, (H)‘!. ="(H)"1,
so equation (25) is

(P) = )Pyt . (26)

This i a similarity transformation, Itis shown in Apperdix A that the deter-
minant of 2 matrix is invariant uader a similarily transformation, It can also

be shown that the Hermitian property and the spur are both invariant undeyx a
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similarity transformation, Therefore, the transformed matiix (P)' must

A have the Torm
o' x' -~ iy’
(P)' = bl (27)
’ x' +iy' A ‘
The ficr that the determinant ¢f () must equai the determinant of {)' gives
5 ;
x?' + yz +z° = x‘z + y‘z' + z'd. (28)
If x, y and s are viewed as components of a vector, then Equation (28) is the
requirement that the length of the vector remain unchraged. Izuation (26) may
be written
Z' 5 Pt . ‘l ” - i ! . i s \ e _i
x'-iy') ey tie, e3ile‘*\ (7 =iy (el ie, -eg-ie (29)
I BT | ol I A9 v - -1V - Z =1 ia °
o Ay % eytie, e) - .- \xh.y Z2j | Ey-iey Ll+1€‘z
If the operations of Eqguatica (29) ae carried out, it is {ound that
x‘:(nz-eznez'-bcz)x-z-'ee + eqe, )y * 2{e,e, - e, e)2
"1 2 3 4 A ) 374 274 1¥3/% ¢
o . ;o2 L Z 2 b e a At
y'm2legey s eqepx e T eyt G egT - e )y + 2epey teye)z (30)
. . 2 2 2 2,
S B 3 . 4 & - S - - - 3
2zt o= L.(cle.3 ¥ eae4)>. t2(e,eq g,ie.“})y + ((,.1 Fe, ¢g e, iz .
These eguations represent a linear transformation between the components of x, y
and z, and the components of x' y' and z'. The matrig for this transformation
1s
2 2 2, 2 5 \ :
€1 "% "% "% Zeyeptezey) 22,0 -0y e3)
2 2 2 2 ‘2
A - > o - e - 2 > - H
{AY = “(6304'(5182 ) 2 e, tegt ey (Pzej-r_e4cl} . 31
= 2.2 2 2
'Z(clcji-e&ezé) Z{e,e —eled) e tey -ey mey
It miay Le shown directly that this matrix satisfies tne orthogonality conditions,
but it is proved 2luw from Equation (28}, Eyuation {31) shows that the nine
dircction cosines may be expressed in tevms of the four e's. If Equations {22)
WANT TR §8.17 12
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ATe substiuted ntoe Eguatons {20) it 1s found that

2 2 .
€ Yo, +'32'&°‘Z x 1, (32

and therefore, only three ot the o's are {adupendent. The identity of thesc
four gquan.itics with the Euler parameters ir obvious, Comparicon of Equations
(31} and (14) gives

el F Xe ez = & “.3 = N . Q‘ = g. . (33)

An equivaience has been indicated betwaen the real (3x3) matrix (A) and the
complex (2x2) matzix (H). It raey be shown that this correspondence goos
further, Consider the real transfoxmaticn '

e X = (B)F, _ o (34)

ard iet the asscciated unitary complex matrix be lH)l. 80 that
(PY = (M) (RXH)] . (3%)
Nov cunsider a second tranaformation (A) with associated (H),.
o= (A,
(P)* = (H),(P)(R); , (36)

Subatituting (34) and (35) into (36) gives

i.xl = (Crf,
(P} = (),(H), (PHR)(R) . (37)

Thevefore, if (A} B) =.(C) and (“)Z(H}! = (H)3, ‘the above equations become

' = {C)TE,

(B)" = {H)(P)H)] , ' (38)

showing that

that multiplication of twe real 3x3 :Jatrices corrosponds to maltiplication
of the twu associated 2x2 complex matricus in the aame order. Two types of quan-

titioe which correspond in this manner are ¥aid to be isvmorphic,

»
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It 15 2180 possible to view thie procers of 1wo ¢uccessive rotations in tetms
of tiie e'w themsclvea, Conaider one rotation dofined by ULPT €q and €4
After this, another rotation is periormed whiclk in deucribag by el'. el’, e3'
and 64', Thers i¢ some get 6f e¢'s called el", '2”' erj“. cé" which dascribee
the final omentatior after the two rotaticas. This combined mal sany be found by
multiplying ithe (H) matrices of the two rotattpas in the corcoct ssquence, The

equation is
{el"ﬁez“ ef‘ﬁo;' ql'ﬁ-z“ 03'4104 elﬂez u3ﬂu1
(1) = . : . (39)
\:.as"ﬁc‘" ol"-iez" -a,’h’m" cl',-.icz' »eaﬁs‘ ©,~ie

Expanding thiv equation and equuting components gives t .

& mer'e) v o0y - oytey —ayley

" B .
0, we e e ey'e, + °3l“‘l -e ey \
e v o ley -0yl + ay'ep ¢+ ole, (+0)

c4" o °2'°3 + 01'04 + 04'01 o el'ez .

By use of these cquations, successive tranaformations may bo handled in terms of
the e's directly. »

This technigue may be used to determiny the relationship boetween the e¢'s and
the Euler angles given in Arpendix B, The (H) matrix corresponding to each of

the Eulmr angle rotations muy be detor.nined, and the three may bs multiplied in
Consider {irst the

in Aprendix B,

tho correct order to synthesize the complete tranaformation.

]
)
3
2
L
)
1
3

13

5

n

o

&

{P) matrix corresponding iv the Hrst B
F-om Equation (179) it is seen that the transformation equations are

ESIESS X1 R IR LIV
Yy v-xsiad +ycoay {41)

t' ==z,
Zquating coefficients of these equations with like coofficients in Equations {30)

gives the nine relations
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Carrying out the indicate

2 2 2 2 — .
cos Y = ¢ me, megT e, - sing = 2(030-}"01“&)' 0 = 4(e1c3+c2e4),
sin = Z(ele2~le3e4), cos Y = elz-ezz+c33-e44, n = Z(e&e3-elc!4), (42)
2 2 2 2
0= 2(eze,-ee;), 0 = 2(eyczteye)), 1=c)The, ey e,

These equatiuns cannot all be satisfied unless ey = ey = 0, 1f this is true, then
' 2 2 . Fa 2
cos g =e " e, sin ¢ = Ze,e,, ey ey = 1, (43)

Solving these equations for €y and e, gives

e = cos-%’- . e, = sin%—. (44)
so the (H) matrix corresponding to the ¥ rotation is
¥
cos%’- +3i sin%— 0 e'Z2 0
(H)q’ = = (45)
0 cos—‘,£ -1 smfzp- 0 e'i%
= \

By an exactly similar process, it may be shown that the other two matrices are

Icos‘g' sin%\ Icos%’- i siné,.i \
(1), = N : (46)
~sin-2- cos 5 isin-g— cos %

Therefore, the entire transforimation, which is the result of all three rotations,
is

e +ie2 eq + ie4
(H) = = (), () (), - (47)
\ "ty tity ey -l
“omponents gives
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SECTION 1V
QUATERNIONS

The most brilliant formulation of the four-parameter method was made by
Hamilton in 1843, He developed a new type of ehtity called a '"quaternion". It

is composed of four .parts,

q =S +ia + jb + ke, (49)
where S, a, band ¢ are real numbers, and the indices i, j and k are defined

by the following rules;

i¢ -1, ij = - ji =k,
3% = -1, ik = - kj =i, (50)
K=o, ki = - ik = j.
The conjugate of the q 'aternion q is
g* =S ~ia - jb - ke, (51)
Using the laws for the indices qucted above, it may be easily shown that
qq* = q*q = 5% +a% + v% + - (52)

which is called the length or norm of the quaternion. If this norm is unity, then
a special formm of quaternion results, a verbsor. It is possible to make use of
th2se to describe a coordinate transformation, The quantity S is called the real
or scalar part of the quaternion, and ia * jb + kc is called the imaginary or
vector part, Now assume we have a quaternion whoese scalar part is zero, We

call this a vector of components X, Y and Z,

V = iX + jY + kZ. " (53)
Liet us examine the operation
q¥Vq = V! : ' e (54)

where q 1s a versor, So far there is no particuiar reason to expect that V'

will be = vector, but this turns out to be the case. Egquation {S4) may be written

(S -ia - jb -ke) (iX +jY +kZ) (S +ia +jb +ke) = V', (55) - F

Wler this rquation is expanded making use of the rules for indices, the result is ,

oo -c®] + Y [2cs +2ab] + Z[2ac - 2sb] }
Lxl&aL‘-‘ZCS] + Y[+Sz-az-b2-cz] + Z [2as + 2cb] } (56)

{x[2 o~: )] + Y[2bc - 2sa] +Z[sz-:~12--bZ +'c2] 3 ‘

3 TR 16 . | T o



v
ety RdAnled e e St soe i

i alrtalEELVCS
P

b

5
;
¥

L,

peng

This 1s simply a coordinate transformation wlese transformation matrice is

2 2 2 2

s +a% - b" - ¢ 2{cs + ab) 2(ac - sb)

2(ab - ¢s) s2 Sat . cZ 2{as + cb) . (57)

y 2

2{ac + sb) 2(bec - sa) WAt bt et l
The correlations with matrices derived in the two preceding sections are
evidently

e =X =8, ez'z!d-_-c, ey =1 =Db, ey =8 =a, (58)

The matter of two successive rotations may be handled quite easily., Assume
that first we transiorm a vector with the versor q)-
ql*vql =V, (59)
Next we apply the versor q,,
V' = q,*V'q, = q,%q*Vq,q,. (60)

9, = 93: and wish to find the relationship between

We define q, = qz*ql*. It may Vbe seecn that

We now define a new vector g

—

q; and qz*ql*.
qZ*qZ*ql* = Q,49 (61)

ard since q, is a versor, qzqz* = 1. Theretore, Eguation (01) reduces to

ql* =99 (62)
Now we apply q, on the iefx,
UYT T 999 T 17 d39. (63)
50 that Ay inust equal the conjugate of ;- This means that
Y= qs*Vq3 . {64)
Now observe that the equation q3 = q,q, may be written
e » - ’ . . . . q
Sy -iay - jby - key =S +ia +jby +kc1) (SZ +ia, +.Jb2. t ke,). (65)
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Expanding this equation and equating components gives

S3 = 85,5, -3)2, -byb, -cc,,

ay = Slaz + SZal + blc, - CIbZ ,
_ _ (66)
by =8;b, - ayc, + b5, 13,

€3 =51cp t )b, - b3, 6,5,
These equations are identical with Equations (40) which were developed in the
same connection by use of the Cayley-Klein parameters. Thus, the quaternion

method leads to the same result as the preceeding developments,



L]

SECTION V
-
INFINITESMAL TRANSFORMATIONS AND RATE OF ROTATION
The preceding sections have dealt with the four-paramter maothod of
specifying the orivntation of a coovdinate svstem, As was stated in Section
: however, the primary intercst is in determining the orientation {romm the rate
4 of rotation through a process of integration, Accordingly, it is necessary to
rclate the rates of change of the four parameters to the rates of rotaticn of
: the axis system,
1 .
) It was shewn in Section IIT that an orthogonal transformation may be
} . represcnted by a complex matrix having certain propearties. It is now of
: interest to investigate this matrix when an infinitesmal rotation is performed.
! Let us assume that this infinitesmal rotation consists of a rotation through the
angle A about a line which makes angles of a, p and y withthe X, Y and
)
Z axes respectively, Recall that the matrix (H) may be expressed
el+1eZ c:3+1¢534 \
g M) = . (67)
] - e.3 +1e4 Cl --1eZ
% Applying the geometrical interpretation of the e's gives
cosL +1i cos Ys'mi,ll cos B sink +1icos g sink
2 2 2 2
(H) = . ((:3)
- in B+ i in s B oL ; in £
cospsmz-fxcosusmz €OS 5 ~ 1 cos Y sin-y
From this, it is possible 10 see that the infinitesmal rotation mmay be represented
. by
1
R & 1!»1Z cos Y Zcobﬁ+12cosu
H 69)
: ()e -”-cosﬁ+i~g—"cosu 1-19-& cos y /. (
1 Zz 2 2
k-
A
E since cos%‘-‘- ~ 1, sin'% ~ %‘ .
1
' - It is expected that any matrix repre: 2nting an infinitesmal rotation will differ
only slightly from the identity matrix. This is true of the above mairix, and

¢
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“his mayv be shown more clearly by writing it as follows:

1 0 icos Yy cos P +icosa )
{12) +‘—3§- = (1) - (e). (70)

¢ 1 ~-cos P +icosa -i cos vy

Now assume that this infinitesmal rotation takes place during a small time interval
At. If (H) is the matrix at the beginning of the interval, and if (H)' is the matrix

at the end of the interval, then the time derivative of (H) may be written as

. . '
a%_ () = lim (H) - (H) (71)
%

The final matrix (H)' may 21so be viewed as the rcsult of two rotations, first (H)
and then (H)E . In other vords, (H)' = (r!)F (H). Putting this into the above
equation gives

d o limo (e) .

at ) = e - ) (72)

Since (H) is not affected by the time inciuviment, the limiting process refers only

{ .
to the quantity _\_:_3'
() o1 As { icos vy cos B +icosa (13)
At 2 At -cos f +ticosa -icos vy

Iiitne iimit, the quantity %is simply the scalar magnitude of the angular

velocity vector, If P, Q-and R are the components of this velocity vector

. . . du du
zleng the X, Y and Z axes, then evidently 5= cos ¢ = P, == cos vy = R,

Ay dt dt
—— cos $ = Q, so that
iR Q +iP
lim  (e) _ 1 |
e = (74)
At=0 At~ 7T | -Q+iP - iR \74
Thercfore, fromn Equation (72),
d 1 iR Q +iP
at (H) = 3 -0 +ip - iR (H). (75)
itis oo possitT o , a straightforward limiting process,-that the time

also a matrix whose elements are the time derivatives



of the elements of the original matrix, Therefore,

e, +ie, e3+ié4 1< iR Q +iP e, tie, ey +ie,
= . (76)
-3 + ie‘l ey - ieZ -Q +1iP - iR -es + ic4 e, -lie,

Expanding and equating like components gives

Zel =-e4P-e3Q-eZR,
2e, =-e,P+e,Q+e, R

2 3 4 1 (77)
Ze3=+ezP+elQ-e4R,

2e4 = + elp - eZQ + e3R.
These are the equations which would be used to compute the four parameters in

an actual simulation. Now if we multiply Equation (76) on the right by the adjoint
of (H) the result is

e tie, eytie \[e -ie, ey -ie, , iR Q -iP
= - .(78)
ey tie, e -ie, [\ e -ie, e, +ie, -Q -iP  -iR
Again expanding and equating components gives
P=2(-epe) - e3¢, +eye3 +ejey),
Q=2(- e3e.:l + e4¢‘32 + el?3 - eze‘r4), (79)
R=2(- e,e) teje, -esext e3e4).

Thus, if the four parameters and their rates of change are known, the angular

velocity may be computed.
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SECTION Vi
THEORETICAL ERROR ANALYSES

In the preceeding sections, the fundamental theory of the quaternion
method has been presented. Before proceeding to an application of the
method, it is of interest to study theoretically the errors to be expected.

Not only will this give a prediction of the results to be obtained in the ‘
simulation, but it will give a better understanding of just how the equations
must be instrumented in order to achieve the maximum accuracy of which
the computer equipment is capable,

As was mentioned earlier, both quaternion and diraction cosines will be
sirnulated, so errors for both were analyzed on rnuch the same basis, It is
felt that this is an imiportant part of the demonstration, because without a
theoretical error compari on, any differences found in the sirnulation would
be subject to the question o computer malfunction, If simulator results and
theoretical error analyses agrec with each other, the degrece of confidence in
the comparison will be much higher. ‘Theoretical error analysis is but little
used by analog computér operators, especizlly in non-linear problems such as
this, It turns out, however, that both quaiernions and dir«ction cosines lend
themselves readily to an analysis of errors and the results obtained agree with

observations.,

A, Direction Cosine Method

The fundamental equa{ions to be used in generating the direction éosine
transiormation are given in Appendix A, There are, however, many possible
viriations which will be discussed briefly. Possibly the most straightforward
way wculd he to solve the nine simultaneous equations and thus generate all nine
of ‘l1e direction cosines by integration. As the solution progresses, however,

o

17 is inevitable that errors will accumulate. Some of th

P I T -
ICDC CTLaUL D Wil v £

M

il
such nature as to cause the orthogonality conditions (Equations 130) not to be
satisiied after a time if, indeed, they were satisfied initially. This may be
thought of as a departure of the three axes of the moving system from mutual
orthngonality and distortion of the unit le=<th of these axes. Some of the errors
;rising in the solution will v~ conimbute to this, and these may be thought of as

wyvla: drifs - -¢ the coordinate system will drift as a whole, and
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in addition, the unit vectors will change their relative orientations and lengths.
These last two difficulties may be eliminated, as will be shown presently, but
it should be understood that this is of but little value unless some way can be
found for making the drift of the system as a whole tolerable. In an aircraft
simulation where a coordinate conversion is used, there generally exists some
feedback which will eliminate long-term drift in the coordinate system, As will
be shown later, the drift can be reduced to where it is much less than those drift-
producing elements in the physical system bcing simulated, such as airframe
misalignment, gyro drift and amplifier noise. If the errors due to rotational drift
cannot be corrected, there is not much additional penalty in accepting the errors
due to non-orthogonality. In any case, it is advisable to determine in advance how
much drift can be allowed in the given application, and to design the coordinate ‘
conversion to meet the requirements, using the techniques developed in this section.
The possibility of correcting orthogonality errors was f{irst suggested by
Corbett*, Possibly a description of the corrections in physical terms will be the
moest instructive, It may be seen from the material presented in Appendix A,
that a physical interpretation may be placed on the rows and columns of the trans-
formation matrix {A). The elements of the first row, for instance, may be consid-
ered as the three components of the unit vector 1’ along the three unprimed ({ixed)
axes. Similarly the elements of the first column may be viewed as the three com-
ponents of the unit vector T along the three primed (moving) axes. Both -1., -;,-l:
and -i.', .j.' . ' coordinate vectors are orthonormal sets. These facts may be
written as

-

7= T°7=0 FORFOIS| FORK I
75=1 7i=0 3= PO (80)
X°k=1 ki=o0 X k=1 k=0

These are vector equations, and may, therefore, be expanded in any coordinate

system. Expanding the first six in the primed system and the last six in the un-

*Unfortunate!.).", ‘this work has not been -g;nerally available, The first pubfféﬁ;d
document is WADC Technical Report 57-.425 Stabilizaticn of Computer Circuits,
November 1957, -
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a“Z+ale +a3lz = 1,
alzz+a222+a3zz =1,
3132;"' 3232 -i-a332 = 1,
a3, Y23y T 25525 = O
ajy313 + 25353 233233 = 0,
312313 Y 32,3 Y a3233 = O
(81)
a112+alzz+al3z =1,
%le + azzZ +a.z3Z = 1,
a31? + 3322 + 3333 = 1,

- - L o - E Y s - 0
211321 Y22 Y2133 = O
31123) T ay,33; t3)3333 =

21731 Y3335 T 353333 = O
The first six of these will be recognized as the orthogonality conditions given in
Appendix A, The last six may be seen to be the same conditions for the inatrix
(A)'l. All twelve cquations must be satisfied by any real orthogonal transform-
ation matrix,

The general procedure is to compute the direction cosines by iniegfation, take
the computed quantities and perform the operations of some of the Equations (81).
If the 2quations (81) are not satisfied, the error is used to modify the direction
cosines until they are. It appears to be necessary to compute at least six of the
direction cosines by integration, Severni schemes were tried for getting by with
Inss than six, but none of thes~ _re stable, Assume for instance that the three
Somnaents A7 ” .ued system, and the three components of 3. in the

pr! : -mputed. The three components of x may then be computed




P S LR

o

without integrations from the relationship that P3 =-i..{j’. If six direction cosines
are computed by integration, then three of Equations (81) must be used to
eliminate redundancy, If nine rosines are integrated, then six auxiliary equations
must be used, Both possibilities were proposed by Corbett¥, and an improved
version of the seccond by Howe**, - The first alternative (called the two-vectsr
method) was the one chosen for use here. It was selected because it uses less
simulation equipment, though the advantage over Howe's three-vector version
is not great. Beth require 36 multiplications, though the two-vector method
requires cnly six integrators rather than nine.

The two-vector method may be described as follows, The three components
of T in‘the primed system are computed by integration through use of the 5.“,
5121 and 531 differential equations. Then a normalizing circuit is added to keep
the length of the vector unity, In addition, the components of j in the primed
system are computed, These are 215 35, and az,. A correction is added to
keep this vector's iength equal to unity; another correction is added to keep this
vector normal to the first, Finally, the components of X are computed from

- - >

the equation k =1 xj, The complete set of equations to be solved is

&) =3,,R -2a3,Q-ka, (1 -i-i),
ayy =ay P -a;|R-ka,, (1 -1i°1),

@5y =a,,Q -2, P-kjay, (1 -i-i),

a.lz = a‘ZZR - 83ZQ - klalZ (1 ‘j .J) - kzalla.j)v
(82)
522 = a3ZP - alZR - klaZZ (1 -J .J) - kZaZI({.j)'
832 = 2129 - 2P - ka5, (1 -579) - ka5, ),
213 T *21%32 ~ 222231

3,3 = 23y,33) - 3)34,,

233 T 311322 - 212221

*Corbett, op. cit,

**Howe, R. M. Coordiniate Systems and Methods of Coordinate Transformations
for Dimensiona! Flight Fquations Proceedings of the First Flight Simula-
tion Symposium, November 56, WSPG Special Report 9, White Sands
Proving Grounc.
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where

- 2 2 2 -2 2 2
ifi=a) "ty tag J=a, ta,, tag,,
17 =a) 3y, +23;,3,; +a335,.

It will be observed that thers are six differential equations, and three algebraic
equations, so that six integrators will be required. The k1 terms are for

correction of the length of the vectors and the kz terms are to retain orthogon-
ality. The kl

It appears that the above method is a slight improvement on the version given by

and kz are arbitrary gain factors which will be discussed later.

Corbett in that the orthogonality correction is added to only one vector rather than
to both. The entire drift about the z axis, then, is determined by the drift of T
alone. If the correction were fed into both vectors, the total drift would be higher
in cases where the two vectors tend to drift in the same direction,

The above equatior s are idealizations. The computer which is used to instru-
ment them will be solvii., approximations of these equations. The differences give
rise to errors in the solutions which will now be considered, For convenience,
all errors are divided into two categories, static and dynamic. The dynamic errors
are associated with the fact that the actual cquations the computer is solving are of
higher order than the ideal, and the static errors arisc from z:rrors in resistance,
capacitance, pot settings, and the like, These two types of errors must be treated
by diiferent means, The dynamic errors will be considered first.

It is assumed that the only dynamic effect of importance is the bandpass of
the multiplier. Amplifiers and integrators should be at least one order of magnitude
better than multipliers in this respect, so the assumption appears sound. A simpli-
fied analysis will illustrate the important issues. Consider the equations for com-

—
penents of the vector i, with correction terms deleted.

e

11 = 2R -24,Q,

ay; = a31P - a“R, ‘ (83)
a3; =21,Q - a,,P.

Now corsider a special ~2ue, “ere P=R =0 and Q is a constant. These

rjuatiore -
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a)) =23,Q°

331 =319 (84)

1]

o‘

If a3 is initially zero, it will remain 5o, and this equation may be deleted from
the set, If Q is constant, the remaining equations are linear. Taking the Laplace
transform of these equations, together with the initial conditions aj, = 1, azy = o,
and the result is

Sall 1 - a3IQp

(23)

Saj) =2a),Q

If it is assumed that the transfer function of the multipliers is G(S), then these
equations would be

Sa;, =1 - a3lQG(S),
(86)
Say, = a”QG(S).
It is possible to solve these equations for 31 and az),
. S
MM T T
» s° + Q°G(s)
(87)

acls)
s? + Q%G(s)

a3 =

Before pr‘o'ce;eding; fdrthéx:; it is n;céss)am; to make some ésshmi)ti(;n c‘onéern'iﬁg‘
G(S). It should be clear that for any reasonable result, this transfer function
should be only slightly different from unity. It must equal unity at very low
frequencies, (static errors assumed zero). A reasonable assumption is that its
linear, i.e,, in its power series representation the non-linear terms are negli-

gible in comparison to the Jinear term. We have assumed as reasonable

G(s)=1+ fls. (88)
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Substituting this into Equations (87) gives

S
a = »
L7 (s + 1@% +1Q)(s + 7Q° - iQ)
: TQ(S + ‘11")
231 % Z Z . (89)
(s + Q" +iQ) (S + vQ" - iQ)
Taking the inverse transform gives
ta 4 -
ag =e" (cos Qt - T Q sin Qt),
: 2 . (90)
-7Q°t (sinQt - T Qces Qt).
a3, = ¢
1hese may be combined .0 get the length of the vector,
2 2 -T'ta
L= Va“ t a; "= e (1 - +Q sin 2 Qt). (91)

Several ¢onclusions may be drawn from this, If T is positive (corresponding

to a lead in the transfer function) then the length will decrease. If T is negative
(corresponding to lag), then the length will diverge., The term 7 Q sin 2Qt repre-
sents an oscillatory error of prak magnitude TQ. It will be shown later that the
amplitude correction term must be kept as small as possible to avoid angular

drift. Therefore, it will probably not be possible to get the_correction g2in high
enough to cut down this oscillatory error term, The only way to keep it small

will k¢ to keep TQ small. Let us assume, for instance, that a computing accur-
acy of 0,1 per cent is desired, This means that TQ < 10'3. It may also be seen
that +Q is simply the phase lag (in radians) at the frequency Q. For the example
~givven, the phasehiag. at the frequéncj' of osciliation should be less thian one milli-
radian, or about 0,06 degrees. The correction circuit will be able to take care

of the long term exponential ircrease quite well, though if the bandpass requirement
stated above is met, this source of srowth of the vector will be negligible compared

with C s~ due to static arrc ~hich will be considzred next,

-
w
)

28



As a prelude to studying the effect of static errors, it will be useful to
consider o general symbolic diagram of the circuit required to solve the
equations, This is because the problein of errors is inseparabice from that of
scaling, so some sort of scaling must be assumed, Thig diagram iz given in
Figure 1, It may be scen that there are 36 multiplications, six of which are
independent, There are six integrators, six summing amplifiers, and in any
practical circuit, there would have to be a considerable number of inverting
and isolation amplifiers as well. As the nature and rdumber of these depends
on characteristics of the multipliers being used, they are deleted in this
figure, A practical circuit for accomglishing this transformation will be
considered later, It is convenient to introduce a special notation for errors
in these multipliers. The voltage error in the multiplier which multiplies 100all

and 100%— is designated € 1R’ It should be emphasized that this is the actual
m

error in volts, not a ratio or a percentage,
Now assume that the multipliers have infinite bandpass, but do have static

errors, It may be seen from the circuit of Figure 1 that the equations for compo-
—

nents of the vector i are actually

— E, E K. E
C 21R 310 . %1 B¢
ajy =2y R ~a3Q+K 2 (V-ini) + R 7557 - Q756 +_1— 100 *
) 3P 11r . %1 B¢
ay) =ay P-a ReKya, (L-i-0+P 5557 R Too tT, Too (92)
o E E K., E
. ] 110 ap ¥y Ej
a3p =231Q -2, P+Kja ) (1-i-0)+Q 55 - P 156+ = Too -

These are the equations which the machine will be solving. It is of interest to

investigate certain properties of the solutions to these equations, and to see how
they compare with the ideal,

-

First consider the effect on the length of the unit vector 5. Assume that K,= 0

so that no corrections are weing introduced, The equations become :
517 2R -a3Q + Rm—ETZ(")loB"‘ U ;Eféo“log
3,, ¥ ayP -a; R+ Prn. ”31—301—013' R L;loloR' (93)
a31 = 31Q -3y P+ Q il)éa " P Elzolop‘
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The length of 1 is gaven by ¢7 = a

0~

and, difterentiating this

2
31
cexpression with respect w time, :

+a + a

. . . .
24 = ~.a“:1“ + Za&l‘all +Z"‘31831 .

e kel

The length is close to unity for all cases of interest, so that, to the first order,

o= apa)) + 2,8, + azaq;. (94)

Substituting Equations (93) into this expression gives
1 =

E E E E
21R Esig Eap 11R .
3R T60 - 2119,,7700 T 221Fm 100 - 221%m 100 (95)

E E
11Q 21P
toa Qm too -~ 2 P

@ 31

It is now necessary to consider the nature of these errors, In the first place,
the error is viewed as a random variable. For a given multiplier, the error which
exists is some definite function of the two inputs, This function is more or less
Tepeatable, at least over a short time period, so in this sense it is not a random

variable, However, when one considers Cifferent waultipliers, the error existin

n &m

at certain valu=s of the inputs is now a function of which multiplier is used and i
thus a random variable. These variables are considered independent because
theie is no reason to expect that the ¢rror in one multiplier will influence the
error in another,

Two different types of error are considered in the subsequent analysis. In the
first type, called "uncorrelated", the error is assumed to be Gaussian and indepeud-:'-
ent of both inputs, In other words, the error existing at any given value of the inputs
iy assuwined to be drc}wn froim a normal distribution of zere mean and variance which
is independent of either i1nput and of the particuvlar multiplier teing used, This crrcz;.
distribtuion is intended to be consistent with electronic multipliers, though no propexi
statistical data are available on them. Usually clectronic multipliers are adjusted
so that the error when either of the inputs are zero is somewhat smaller than other-.'
wise, and there are no data tc¢ support using a normal distribution. Until such data

are available the above hyp  theses are as good as any and more convenient than mos
i
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The second type of error, called '"correlated" differs from the first in that
the variance of the errors is assumed proportional to one of the inputs and
independent of the other. This is intended to represent servomultipliers, and
the experimental justification here is somewhat better, Since this is the type of
multiplier used in the simulation described later, the error distribution was
measured. Results are given in Appendix C, and the normality of the distribution
is reasonably well verified, Propo;tionality of the variance to the voltage across
the potentiometer was not checked but it is an inevitable consequence of the nature
of servomultipliers.

The drift rate [ of Equatior (95) thus becomes a random variable. It is the
sum of six independent Gaussian variables, so its variance is the sum of the
variances of the individual terms. Thus the standard deviation or square roct of

the variance is given by

o
_ % 2, 2 2, 2 2 . 2 2, 2 2 271 .
® =700 211 R, ta, P "+a;°0 “+a, “R_| +ay, Pm];, (96)

! '
o, is the standard deviation of ! and o, is the standard deviation of multiplier
elrrors. It is not possible to evaluate this expression without knowledge of the

particular Pm' Qm and Rm involved, but it is possible to determine a conveni-

ent upper bound. The total maximum angular rate Wm is given by

o 2 2 2 ' .
wm-}fom+Pm+Rm. | f

Making use of this fact together with the normality relation a, 12 + ale + a3lz =1,

it may be seen that .

o < Je :
..——-fz'wm. (97)

™~ 100
In the foregoing, errors of the first, or uncorrelated type have been assumed.
The drift rate tends to be proportional to the full.scale velocity, regardless of
what velocity actually exists; - e e - B
This is not true with the second or correlated type of error, Observe that
each of the multipliers is used to multiply a direction cosine by one of the angular
velocity components, P, Q or R, Consider, for example the multiplier which
generates the first error term in equation (95); the one multiplying a;, by R, .
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I othe direction cosine 15 put onto the shaft of the servomultiplier, and R
is put avross the potentivineter, then the error standard deviation will be

uroportional to R as postulited carlier, This fact may be stated as

. R wher [
o = o Where o ;

>

m
is the standard deviation of ¢rrors at full-s<ale, i,e., when R = Rm' If the

other multiplications are treated similarly, then it may be scen that

o v2

=
; = 100

W ¢ (38)

eF °
This result is samewhat more favorable than that for the uncorrelated case,
The drift rate tends to be proportional to the existing rate of rotation rather than
the full-scale rate, There would be littie dificrence between the two if the rate
were necar the ma> mum most cf the time, but this is not usually the case, In
fact in many simuil. -lons, the rotation rate is small most of the time, the maximum
rates being required only once or a few times,

It is now of interect to investigate the effect of the correction scheme on this
first i!: case ol uncourreiated errors, If the complete

B

length drift. We consider

Equations {32} arc substituted in Equation {94), the result is

— - € € €
S - o _21R S19 3P
o= Ky -ei) ¢ {a) RoS557 3, Q0 oot 221Pm 100
€ € € .
IR 11Q > 2P 9
- AR o5 T 251 % 100 2P C1oes (99

Ky

* 1oocl[all‘nc M SRER P

a3 €50 ) -

—_
- - . . : . C L . 2 -
Consider the first term in this equation, Observe that i-1 is =zimply £, If it

is assuined that £ = 1,0 + Al, thcnf& = 1.0 + 2Al, so that the first termy becomes
- K.2Af%, The second term is the same as the length drift rate of Equation (95).

The last term is the drift raie due to the correction mechanism itself, For the

nreseat, it is assumed that CI is large enough that this last tern: 1s negligible

with respect to the firet two, We will return to this point later, With this

assumplion, then, Equation (99) becomes

. . €21R 319 “31p ‘1IR
-4 R o T 2119 160 T 221 P TToo " 221 R 100 .
‘11 1P

taQy 700 - 3174 Too
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Comabiving Fguations (102) and {103), the limits on K, are

1

o W C
VLI SN S S _m_1
00V 2 - =t
100V o’N

There are scveral differences for correlated errors, When P =Q =K =0,
then all errors will be zero, provided the velocity components have been put
across the multiplying potentiometers as suggested above, Under these circum-
stances, the drift is determined by integrator drift, and is at least an order of
miagnitude lower than the drifts normally arising from multiplier errors, If,
however the length tolerance is to be met urder the largest allowable rates of
rotation, then the lower bound on Kl is the sume as that of Equation (102).

The upper L. 'nd will disappear if the error signal is put across the potentio-
meter in the ¢ multiplications. In this case, the error arising in the multi-
plier would be o the order of ez rather than of the order of ¢, The gain would

not have an upper bound then, except for the fact that integrators tend to drift

her the

A
o [ 4
r

i

somewhat faster the hi a2ins

)

,.
"

ececeding them.

3

2

23

Next the angular drift rate will be considered, Even if the coordinate system
is Kept orthogonal, there is still the tendency o drift in orientation, which comes
principally from static errors in the multipliers, The components P, Q and R
express the ungular velocity in the moving system, If Po' Qo and Ro are the

components in the fixed system, it mu: © be shown that

Ry =212 ¥ 3132 Y 331320
SRy = A ,ay) Fa,,8,) Yag,ay

Py ay,n) b a0, tag,agg, (104)
-P = + 3.,

337, Y3032

tazzazy s

o 13%11 T Y23%21

;121az3 + :131333 .
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This is a first order differential equation for Al, the right-hand side or forcing
terin bemg a combmatwn of errors. As the errors change during the course of
202 Sollt . 08 < BIAAAR 1 deoiet id M g dlidhn ot trsin e [P TF WXSE WO TR

a run, then the length error Al wxll change also, but for simplicity consider a
static case. If the coordinate system is not rotating, then all direction cosines
are fixed, and the right side of Equation (100) becomes a constant. Let us call

it u. This constant will have different values depending on the set of multipliers
used, and in fact the standard deviation of the values it can assume is given by

Equation (97). In the steady-state, A! must be zero, and from Equation (100)

ZKl Al = u

The deviation in Al will then be given by

1 —Te
- - 101
K% K100V2 m (101)

T is fixed by the nature of the multipliers, \Vm by the scaling requirements, K,

may be chosen, however, to make Tpy 28 small as desired. Conversely, the
required value of Kl is

w 4
S m £

1002 “at
It was mentioned that the third term of Equation (99) should be negligible with

respect to the first two. The reason for this is not clear from what has been

presented thus far, but it will be seen later when angular drift is considered.

K

. (102)

Angular drift is determined by a similar equation, and it seems unreasonable to

allow the length correction circuit to contribute to the drift in angle when it can be
avoided, as will now be shown, by proper distribution of gains, The third term of
Equation (99) will have the standard deviation i(o]b—— c" ,» While the standard deviation

100C
o,
of the second is -ﬁm- Wm. If it is required that the‘ third term be less than one

quarter of the ~zcond, then

K,o oW
s L _m:
To0C, < 200 (103)

K w
1 m
"(':—l'<4

which determines Cl' once Kl is chosen., This establishes the upper limit on K,.
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Now substituting Equations (92) into the third of these gives

€ €
- ' _21R 3la
-R, = -a3P -a,,0 - a,,RH {2, R 160 - 212% 149
€ € [ €
3P 11R 1Q 1P
Y a,,P o0 - 222Rm T00 - - *32%m 100 - *32Pm 100 )
K

(105)

To—o%;[ 212 01e 222 %210 T 232 431
The first three terms represent the transformation of the velocity vecior into the
fixed axis system, In other words, they represent the '"correct" value of Ro. The
Temaining terms representi the error in RO, or the component of the drift velocity
vector along the unprimed Z axis, Combination of the errors is similar to that
for drift in length. If it is required that the last term of Equation (105} be negligible

with respect to the others, then the standard deviation of drift rate is given by

- =
e Ve
Tarn = W 700
[e}
g 5 106)
T Y2 (
ARS 2 YWgo

for the uncorrelated and correlated error cases respectively. Thus it appears that
the drift rate will be a constant fraction cf full scale, for uncorrelated errors, and
will be a constant fraction of the angular velocity for correlated errors, The

conditions on Kl and C, are the same as developed carlier, namely

(S i WP g § (107)
100 V7 A2 Wen 4

The drifts in P and Q are substantially the saume pruvided gains are chesen
such as to make the drift contribution of the correction circuits negligible, The
case of K, and C, is substantially the same as for K, and Cy» and they should be

chosen in the same way.
Analyses of drifts in P and Q are done is much the same way and lead to

similar results,
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B. Quaternion Error Analyeis 1

The quaternion simulation may be handled in much the same way. The
quaternion components are not all independent, and vve may make use of the

relationship, ’ l\.

elz+ezz+e3z+e44 =1, (32) B ;1;
;
. 2 2 2 o i
in the same way that 3y ta, " ftaj " =1 was used to maintain the length i ‘
of the unit vector, The equations tu be solved are jf
i ;
Z.el =-e4P-e3Q-e3R +K¢>e1 . L j
i 3
26, = - ;P + e, Q + ¢ R + Ko, ,
: g
2ey = e,P 7€ Q- e,R t Kooy, (108) 1
_ i |
leg = e F -e,0+e;R +Koey, i i
2 2 2 2 iq ”
¢ = b e meyt it |
, ;
The bandpass sequirernnt of this mewnsd 1s Oniy one adil ds vevoere as hal ioF i
- |
direction cosines. This may be seen in several ways. Consider the equations :i "3
above with Q constant and ¥ = R = K = 0. '

™
-
(1]
]
[
[*Y)

] i
. (10‘:’} g‘
e; =+ &) Q, '
2 ;1

. i i

¥or initial conditions we 31T e, = €, T e. = ¢ ‘ ]
k assunie = = = i
] 1c 1 li 2 3 7 4 O. Undcr [))CSE ‘ !

conditio é s LWl 2roral D i
d ns, e, ari 4 will recoain zero and the equations become !

o
"
1
]
-
R P s A s
At i

(11v)
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These are identical with those treated in the bandpass study of tha preceeding
section except that the irequancy is reduced by one half, The same conclusion
can bo seen from the definition of e,, ¥rom Equation (33), e, = cos /2, 8o
while u is completing a full rotation, p/2 only moves through 180°. This means
that the servos which axe driven by the e's only move with half the aspeed of those
driven by the a's, for a given rate of rotation of the coordinate syatem. Conse-
quently, for a giver accuracy, twice as much phase shift may be allowed,

In order to analyze the effect of static multiplier errors, it is again necessary
to postulate some particular scaling, The simplified diagram is shown in Figure 2,
The equipment necessary for determining the direction cosines has been included,
as they will always be needed, The basic quaternion component computation requires
20 multipliers and four integrators, Conversion to direction cosines requires
anothe: six multipliers, for a total of 26 multipliers and 4 integrators, against 36
multipliers and 6 integrators for direction cosines, Notation for individual multi-
plier errors is similar to that applied earlier, The voltage error in the multiplier
which multiplies R and ) for inetance, is called SR and 8o on. From this

figure, it may be seen that the equations being solved are:

P « e €
-t *u L o~ - O &L - - ----—-—-.rn 3 R K
Ze) = - 4P - 630 - &R £ K2} - 44pT50 - Uy To6 " Rea 700 * ¢ 100
2e, _ ‘3p ‘40 K _%2¢
Z=-e3Pt+e,Q+eR+Koe, - P 55+Q,, 100+Rm100+c100
(111)
[ ¢
. 2P ‘19 ‘4R , K ‘ic
Zey=te,PteQ-ecR+Koe, +P TH5+Q 555 Ry, Toot e 100
. “p ‘20 IR . K Y4c¢
Zey =t e P -e,QteREKbe, + P 165 - Q760 * RenT00 te T00

Congider first the effect of errors on the length of the quaternion, The length
is given by ‘Z e‘z + ezz + 03" + '.54z . Differentiating with respect to time gives
9. = °1 1 + eze + eJ 3 + c4eﬁ Since the length is not to be allowed to vary much '
from unity, the drift rate may be approximated by 1= elel + az 2t e3 3t e4 4
Substituting Equations (111) into this relation and performing the appropriate

reductions gives: -
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1.
Ko+ g5 -0 Peap - €19 90 ° ©1Rm %R - ©2Pm “ip

te, Q4 2Rnar t 3P, p 239, 4 1q

-e3Rqpte P -eQ 6,0 te R e}

K
* Tooc {el‘lc te,b,  teje tey, ‘4c} . (112)

If £=1 4+ Al, then the first term is simply - 2KAf, Thus Equation {112) becomes

L] 1 -
At + KAl =-—0—-{ ~€; Pm(4p - elQm '3Q - elRm “R - eme 4p

te, Qa2 Rm R P e3FPm r Y939 Yia

~eaR Gr t P p e ot osRy 3r}

K N
+ZOOC{e1 Qetepoteay ey ‘4c} (113) .

which is analogous with Equation (100),

Ag in the preceeding section, we assume the second term on the right of

Equation (113) to be negligible with respect to the first,

The variance of the
{first term is

c .
— W i
200 m ° ‘
Thus, for the steady-state, . W '
N (114) -
Lt T 200 K
N % m
Ka— )
AL 200

‘

where TAl is the standard deviation in the length erro: which will be allowed,

The standard deviation of the second terms of Equation (113) is

K
300C e The
requirement that the second term be no more than one quarter the first gives

W
K<*-4m-c
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Cembining the two gives almost the same conditions on K as were obtained

{of the direction cosine method.

S v <x <——c - . _(115)

The foregoing is for uncorrelated errors. The changes in the correlated error
casc would be the same as in the direction cosine analysis: the upper bound on
K disappears and the lower bound is the same as in the uncorrelated case,

Next the effect of muitiplier errors on the angular drift must be evaluated,
Equation (79) gives the rotation rate components P, Q, and R in terms of the
rates of change of the quaternion components. The apparent value of P, which we
we call P, is, the P, =2(-e.8, - 658, + e, + ejo,). If Equations (111) ave
substituted into this cxpresosion, the result is '

2 2 2 2 1 ,
Paz(el te,” te, '~e4)P+m{e4(Pm¢4p+Qm030+Rm(ZR)

+ e3P 43p - Oy 44 = Ry ) + (P p +Qy 4 q - Bm 4r) (116

K
te) (P p-Q 6o +R o)} +ygoe{-eg g, -3 +e, 5 +eye, .
The first term is equivalent to ( 1 + 2Al)Pso the error in P, (Pa‘ P) is

] 1 |
apP = pa-p = Z0MP + 10‘0{34(Pm'4p + Qm ‘30 + Rl'n ‘ZR, (117)
[ 4

. . . .
tey(Pre3p - Qn Gq-Ry qR) +ep (P p + Q6o - R e4p)
+e,(P_¢ -ch V+R ¢ )}+—I-<—-{-o¢ - e, '+e¢ + }

1¥Y'mYp 20 ¥ ®m 3R T00C1"%4%1c™ ®3%2¢ 7 2%3¢ 7 ©1 “4cf-

¢Af is related to the choice of K, From E%uation {114) it may be scen that the

standard deviation in Al is given by 'A! 300K Wm. As before, we require the °
last term of Equation (117) to be negligible. It remains to determine the variance
of the second term, By taking thé sum of variances of the individual terms, it is

possible to show that the standard deviation of the second term is 755 “lm Wm LA

< 58-17 36a
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Thus the standard deviation in AP is

a't ], PZ
O'Ap =--——-10o Wm | 1+

VZ KA

This is comparable to the value obtained for direction cosines if K is made

reasonably large.

Exactly analogous results are obtained for errors in the other two axes,
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SECTION VI
SIMULATOR RESULTS

The next step in investigation of gquaternion coordinate conversion was
solution of the equations on an analog computer, The direction cosine method
was similarly investigated, and an attempt was made to make the conditions of
the two simulations as nearly alike as their inherent differences would permit, '
Both were done on REAC Series 100 equipment. Servoraultipliers equipped with
potentiometers of 0. 05 percent linearity were used throughout. The multipliers
were not specially calibrated for these simulatiens, so their adjustment was v
consistent with normal practice in the Analog Tomputation Branch, Aeronautical
Research Laboratory. Of course, correct pot loading was used in all cases, In
both simulations, a maximum rotational velocity of 0,5 radians/sec was employed
though scaling was such that Pm = Qm = Rm = 1,0 and both directions cosines
and the quaterrnion components were scaled 30 that 50 volts (out of 100 full scale)
represented the extreme possille excursion of the variable, This was done to get
away from possible end cffects on servomuitiplier potentiorneters,

Adequate checking of a coordinate conversion is a problem in itself, and while
it is not claimed that ithe mmethod adopted here meeis 11 requiremnents, it scems
sufficient, and no better method presented itself. With the types of coordinate
conversicn considered here, there are two things principally to be checked: the
action of the “orthogonalization" or correction mechanisms, a-d the rctation drift
rate, The first may be checked siimply by mionitoring the error quantities which
are used for correction, The drift rate is not so easily checked. In most cases
the drift rate will be very small compared with the rate of rotation. An exception
to this i the case when an angular velocity of zero is desired. Any shift which
takes place under these conditions is readily detected. To cbeck the drift while
rotiting, the following procedure was adopted: a single input of F = 0,500 rad/secc
(O and R zero) was applied to the egunations for a period of approximately 125, é6 .
seconds, This is enough time for ten complete revolutions at this frequency, The
transf{ormation matrix should te the same at the end of this period as it was at the
beginning, except for drift, At the start of cach run, the transformation was the
identity transforrnation, so the matrix existing at the end of the run has a simple
inierpretation, Because of the difficulty of controlling the length of run with ¢

sufficient accuracy, several runs were made using the same conditions, and the
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time of each run was recorded. It was then possibic to plot the rotation angle

I IRTEN Y

tunction of run nate, and by interpolation, to deterinine the drift angle
extetag at exactly 125,66 secounds, The same process was repeated for
P=R=0¢ Q=0.5and P=Q=0, R=0.5, thus giving rotation about each of
the threc axes singly.

A, ‘Lhe Quaternion Method

It was mentioned earlier that the problem was scaled for 50 volts maximum

on the e's rather than 100 volts. For this case, Equation (118) becomes

T, pZ
“ap = 56 Vo l+f‘z‘xz . (119)

The value of P was 0.5, K was 2,0, and servemultipliers were used, so for

correlated errors, this expression becomes

o-l
€
L 120
It ie shown in Appendix C that 0"( is 0.05 volts, Therefore, the standard
A
deviation in ¥ iz §, 15 1077 rad:’arts/saco;:d. I 125 seconds, this would

amount to 0, 0644 radians or about 3,7 degrees. The standard deviation of the
drift angle after 125 seconds, then should be about 3.7 degrees. The drift angle
was determined only three times, oace each fer P, Q, and R inputs. Three

ool

ts constitute an insufficient number of samples for statistical significance,
In order to get the number of results required, 1t would be necessary to do the
cutire geiup many times using different pots in different permutations. It was
not fielt that the improved confidence in the error analysis would justify the
inanience labor of this procedure. The results of the three determinations which
vere mrade are not inconsistent with the theoretical errors found,

At the end of each run, the transformation nm:atrix existing is very near'y
the identity transforrmation. -In order to interpret this final muatrix, it is conven-

ient 12 make use of Eguation(16dof Appendix A,

1 0 0 0 Ni cos vy -ty cos P
(A\) = 1 ¢ +1 N e N 0 N cos a ¢ (121)
[ I O i tos B -N cos a 0

dvift angle, and a, B, and y are the angles betwecn the drift

et e it A APt L b 4 B e R
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3

axis and the x, y, and 2z axes respectively, Thus, after the run, a2z

and Ay, should be unity, All the other dircction cosines should be small, but

may differ from zero,

hold:

If they are smiall, the following relationships should

A2 T T p3 = "3 F23 7 T30

The procedure was as follows, At the start of each run, initial conditions

of the four integrators were set to correspond to the identity transformation,

that is ey = 1, e, = 0, ey = o, ey = 0. Then the computer was put into the

"Operate' condition. This switching also started a timer driven by a synchro-

nous motor from the 60 cycle line voltage. An integrator and biased relay were

used to terminate the run, and this termination stopped the timer, The time of

the run could then be read directly. At termination, the computer was put into
"Hold" and voltages corresnonding to the nine direction cosines were read to
the near2st 10 millivolts with a digital voltmeter,

included in Tabie 1.

The results obtained are
In this table also are included the drift angle, and direction
cosines of the drift axes for each run made,
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The first five runs, those made with P 20,5, Q = R = 0, may be used
1o illustrate several points of interest, In all cases, the drift angle will
be small, corresponding to an .ufinitesmal rotation, Since an infini' zmal
rotation may be treated as a vector, we may take components cf this vector
along the three axes of the moving system; these components are simply
the 4,3, A3 and ay, of the final matrix. These are plotted as funciiors of
timz in Figure 3, For this case, perfuct performance would dictate thac the
y and z components remain zero, and the x component increases at a rate
of 28,65 deg/sec (C.5 rad/sec), passing through zcro at 125,66 seconds,

This latter is shown as the heavy solid curve of Figure 3. It may readily be
scen how the results achieved vary frem this simplification, The z error
is about 0,2°, the y error is about 0.6° and the x error is about 5, 35°,
This illustrates the result that in every case the major portion of the drift is
in the direction of rotation., This is to be expected when servomultipliers
ar used,

Figure 4 shows the total drift angle as a function of time for all three
cases, Again the ideal curve is the heavy line. The P, Q and R cases show
5.2, 7,0 and 2,4 degrees respectively, It appears also, that all three curves
lie significantly below the ideal. This was not predicted in the error analysis,
The bias appeared in the direction cosine simulation as well, and a more de-

am ~J7

tailed consideration will be given to it in the next part, For the present, it

will simply be said that it was traced 1o the fact that the gains of the inverting
amplifiers in the REAC are consistently slightly less than the indicated value,
Aside from the bias, it seems that the dispersion agreces relatively well with '
the predicted standard deviation of 3. 7 degrees, This does not mean rnuch,
however, in the presence of the bias, There is no reason to expect that the
bias will he exactly the saime in all three cases, so it cannot be determined
what part of the dispersion 15 due to multiplier inaccuracy, and what is due to
amplifier g~in variations.

It was found possible irn the direction ccsine method to reduce the bias
markedly by trimmi.g the amplifier gains to exactly the desired value.- I is
felt, however, that the results should be presented as originally oabtained, .
however, because of the avowed objective of showing what might be ¢btained {
in a practical simulation program, If it is desired, the drift could no doubt be

reduced by detailed calibration and adjustment to about one terth oi that shown
in Figure 4,

{
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Figure 5 shows the action of the correction circuit as it eliminates an

iv:tial error.

Figure 5, Correction Circuit Effect

Figure 6 shows a *‘ime history of part of one of the runs. It shows how the
correction circuit main 1ins the length during a run, The indicated A! is less
than 0,1 per cent most ot the time, This, of course, is merely the amplitude
of the error signal. It does not nccessarily mean that £ is actually being held
to this absolute precision, but rather that it is being held to the value of ¢
which the computer shows to be unity,

The drift when P = Q = R = 0 is of considerable interest. In many simu-
lations which make use of a coordinate conversion, the rate of rotation is small
most of the time, reaching the peak values only occasionally. In such cases,
the tendency to drift when the coordinate system should be standing still is of
prime importance. For uncorrelated errors, there is no reason to expect that
the drift will be much smaller in this condition than otherwise, It is true that
the errors in electronic multipliers are somewhat smaller near zero than else-
where, but the difference is not dramatic. This is particularly true when one
of the inputs is large and the other is zero. This case will arise since, regard-
iess of the orientation of the coordinate system, some of the e's will be large.
For servomultipliers, on the other hand, the error tends to zero as the voltage
across the multiplying pot goes to zero. This would seem to show that the '
drift would be exactly zero with no input rate, This is not correct, of course,
because integrator drift is still present, Ruts 18 thréugh 27 of Table 1 were
made under these conditions. Kunc 13 through 20 were '~ .e on one day,

2
and a drift rate of 7. %% » 1077 Leg/sec was observe’. this amounts to about
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0.0128 per cent of full scale (1 rad/sec). Rung 21 through 26 were made
aboii a weck after the preceeding set, after another problem had been on

the computer in the meantime., From this second set, a drift rate of about
2.5 x 10'3 deg/sec was determined, an improvement by about the factor 3,
Integrators had been'balanced in both cases, so the only conclusion possible
is that the zero-input drift is somewhat variable. It was found that the zero-
input drift was proportional to the maximum rate for which the computer is
scaled. The above results were taken for 1 rad/sec full scale, but some
runs were made with 5 rad/sec full scale, and the drift was almost exactly
five times as great, .

While it does not appear ﬁtile to give the complete computer diagram,
some remarks concerning the setup are in order. In order to accomplish the
functions indicated in Figure 2, it was found necessary to use 36 summing
and inverting amplifiers, 4 integrators, and 8 multiplying serves, each with
three multiplying pots. On2 summing amplifier was used ahead of each inte-
grator to do the summing. .° now appears that this was not wise, because
wHile the integrator gains proved quite accurate, the summing amplifier gains
were less so, and introduced an error in angular rate. The simulation was
not found to be critical or sensitive in any way, except that the zero-input
drift varies somewhat from day to day. In all cases, however, it was quite

2cceptable,

P. The Diraction Cosine Method

The direction cosine simulation was done under as nearly the same conditions
as pcssible. The same rate of rotation {0. 5 rad/sec) and thz same full-scale
rate were made and the same length of time was used. It was found necessary
to lime the runs with a Berkley counter, rather than the syncrhonous clock used:
in the quaternion case because of the failure of the latter unit at the start of the
CUsine Tuns, Such checks as could be made showed no significant difference
in the timers. To do the operations of Figure 1, 31 inverting and summing
~raplifiers, 6 integrators and 12 seriromuitipliers were required. Table 2 shows
the results obtained from reading the direction cosines at the end of each run.
Again the rotation angle was plotted against time for each of the three inputs.
These plots are given in Figure 7. Ag-in it appears that the three curves show

something like the predict~ disr~ .:sion, but a large bias also. The bias in this
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case is nearly twice that found for the quaternions, The cause proved some-
what difficult to loéate, and it is constructive to consider some of the checks
that were made in the process cf locking for it,

This bias amounts to an erroneous rate of rotation. The coordinate system
is rotating a trifle too slowly, In the example considered here, the system has
completed about 10 revolutions, turning through a total angle of nearly 3600
degrees., At the end of this time, it is in error by some 10 degrees or so. This
is one part of 360, surely not a large error, yet it is the predominant one, being
nearly three times as large as the error due to multiplier static errors. This
same bias, thougﬁ smaller in size was observed in the quatermion simulation,
This leads to a strong suspicion that it is due to some characteristic of the
computing equipment itself, rather than some outright mistake in the setup.

To be sure, the setup was checked most carefully, many components were
interchanged and all the usual checking methods were applied with no result
other than to reaffirm that the equipment was correctly wired in accordance
both with the circuit diagram and the equations. Then checking of the counter
characteristics was started., It was thought that possibly the time base of the
computer (i, e, the time constant of the integrators) was not exactly the same
as that of the counter. To check this a linear 0.5 rad/sec uscillator of 50 volt
amplitude was set up using only two integrators, two hand-set potentiometers
and one inverting amplifier. This oscillator was then allowed to run for 125,66
seconds, and the result measured. The oscillator agreed precisely with the
timer., The output of the oscillator integrator which had a zero initial condition
(the other one had a 50 volt initial condition) went through zero within 10 milli-
seconds of 125,66, and the time error we are looking for is more in the nature
of 300 milliseconds., This is a surprisingly good check.

Next it was thought that it might be a phase lag effect. This was ruled out
by two experiments, First, a run was made so as to allow only five complete
rotations of the system rather than 10, It was found that the bias was very
nearly one half that of Figure 7. If it had been a phase lag effect, it would have
been more nearly constant with tim&. Furthermore," the phase lag-of a multi= -
plier was measured directly at this frequency, and was found to be about 0, 6
milliradians. The phase shift required to explain this bias would be more in
the order of 0.1 radians, |

By setting up a separate oscillator using two integrators and two servos,

the difficulty was finally traced to the fact that the summing and inverting
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amplifier gains are consistently low, The gains were carefully adjusted in this
«.sarate oscillator, and most of the bias was removed. It was not considered
vorthwhile to similarly trim all the summers and inverters in the entire simu-
lation,

After all, the aim of this program was to show typical simulator results.
Still, if the ultimate accuracy of which the servos are capable is to be attained,
something of this pature should be done, It should be-mentioned that not all of
the amplifiers would have to be trimmed., Only those amplifiers which are
between the P, Q, and R multiplications and integrator inputs are critical,
None of those in the correction loops can give trouble, This is true of both
metheds, It is rather surprising to find that servos, generally viewed with
suspicion and avoided when possible, should not prove to be the major source -
of error in these simulations, Amplifiers, rather, have proved to be the
limiting factor,

It may also be show: from the data of Table 2, that the zero-input drift of
this method, at least on t, = day the runs were made, was about 3 x 10"3 deg/sec.

This is comparable with the better set of results obtained with quafernions.
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SECTION VI

SUMMARY AND CONCLUSIONS '

4

Having investigated both quaternion and direction cosine coordinate
conversions, it is now in order to compare the strengths and weaknessesg
of the two methods. For comparison purpuses, the Euler angle method
will be included, though, as r.entioned eariier, it is not strictly comparable
with the other two in capability, Before praceeding with this comparisen, it
is well to outline the criteria. It seems that there are two main arcas of
comparison. Listed in order of their importance they are (1) minimum
equipment requirement (both qualitative and quantitative) and (2) ease of
programming, reliability and comprehensibility,

As far as qualitative requirements on equipment is concerned, it has
been shown that both direction cosine and quaternion methods a: e equally
sensitive to multiplier errors, It further seems clear that since the Euler
angle system (zs proposed by Howe and Gilbert)* makes use of the same
type of computing oscillator, it will be about the same as the cther two in
this respect sc long 2s the oricntation ig well away from the singular poiut,
The dependence on error increascs as the singular point is approached,
however, until multiplier errors dominate the solution,

The fact that the multipliers oscillate only half as fast in the quaternion
method is of the first importance. There is no limit to the speed at which
the servos may be required to run in the Euler angle methed, though Howe
and Gilbert* show surprisingly good results when servos are slewing,

It should be observed that the bandpass of even the rather old servos
used in this simulation is so good that it contributes nothing to the errors,

he sei1vus arc operating linearly, The rcal problem in servos

n
s

o long as

o

is rate and acceleration limiting, it is on this point, then, that the lower

serve frequency of the quaternion method shows its real advantage,

* Howe and Gilbert, op.cit,
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As to the amount of computing equipment required, the table below

will serve as a useful means of comparison,

Method . Basic Equipment = | First| Each
. _ |Amplifiers |integrators [Multiplications | Y *°*°T [ASfIERR
Quaternion 36 4 26 9 indep | 9 dep
Dir. Cosine 31 6 *_:‘3.6‘:_ 9-?d.-¢;p .9 dep
Euler Angle 16 6 24 2dep | 12dep.

The figures for Euler angles were taken from Howe and Gilbert with addition
of another loop to compute siny and cos {, which would be necessary if
complete vector tra: sformations were to be made. It may be seen that in
amount of equipment, the advantage lies with Euler angles, with the quater-
nion method second, well ahead of direction cosines. The last two colums
give the number and type of additional multiplications required to transfer
the first vector, and each additional vector, In the all-important area of
multiplications, it is seen that the quaternion method is nearly as good as
direction cosines and will be better if a large number of vectors are to be
transformed.

In ease of programming and reliability there is not much to choose betwean
cuaternions and direction cosines, except that the latter takes somewhat more
equipment. In the Euler angle system, some thought must be given to keeping
the inevitable division circuit stable and possibly protecting the associated
amplifiers, but this is not serious. The high card of Euler angles is that they
dare s0 easy 10 interpret. After all, a prime function of a simulator is to tell
the orerator or engineer what the simulated system is doing, and for ready
interpretation, there is nothing like the Euler angle system. In the first place, .
most people in the aircraft.field know what Upitch", "roll", and "bank'" mean
whether they know differential equations or not. Cockpit presentaticns of
attitudes are given in terms of gimbal angles, which are nothing but Euler
angles. There is a tendency to overrate the advantage, however, It isa
matter of experience, and on.h -.n learn to interpret a transformation matrix

witl, only 2 - > - ..of effort. Similarly one can learn to interpret the
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Finally, then, a simple statement of the comparison is this: FEuler
angles are convenient for interpretiation, but for accuracy, they cannot
compete with cither direction cosines or quaternions, On all significant
bases of comparison, the quaternion method appears superior to direction
cosines. Of course, it sheuld be kept in mind that we are considering only
coourdinate transformations capable of unrestricted rotatien about any axis.

1t might not be out of place at this point to interject a few remarks about
the general use of three.dimensional ¢oordinate conversions of the type
considered here. It goes almost without saying, that such a coordinate
conversion would not be used except in a very large and involved simulation,
Another way of putting it is that in order to make this type of coordinate
conversion useful, other parts of the problem must receive a similarly
general and unrestricted treatment. This is very rarely done, The resason
is that the amount of labor involved is such as to be justifiable by only the
most overwhelming technical recasons. Computer capacity is not the limiting
factor. There are many computer installations in the country whose capacity
is equal to the largest simulations vet attempted, The problem aprpears to lie
in the tremendous amount of painstaking detail involved to set up the problem,
check it out and keep it working, 7Yhe conly rcasonable answer to this is a
policy of programming problems in larger pieces. This is comparable to use
of subroutines on a digital machine. Without going into the matter at length,
it 5cems clear that coordinate conversion lends itself to this technique probably
better than any other part of the problemn. Consider for cxample, the quater-
nion method of Figure Z, The inputs to the coordinate conversion are the three
voltages P, Q, and R, and the outputs are the ninc direction cosines. There
are only twelve gains which would have to be changed from one prcblem to the
next, and these are the P, Q, and R product inputs to the four integrators.
These serve to establish the maximwn allowable rate of rotation and the scale
factor on the inputs P, Q, and R, Nothing else in the entire circuit would have
to bhe chan . The vumpuierl operator wouid nui ¢ven nave to know how the
coordinate conversion woxrked. It would be converted into that "black box".of
which we are all so fond, By using this sort of technique throughout the problern,
the amount of labor involved in large simulations could be cut by the factor ten.
This would simplify things oither than the setap procedure. The engincer would
no longer have to spend so much time deciding what is negligible. He could
start everything in ani find what is negligible by throwing it out and seceing if

it changes the result, which, of course is in the best mathematical tradition,
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APPENDIX A

ORTHOGOWNAL TRANSFORMATIONS

1 The Independent Coordinates of a Rigid Body

Fundamental 1o the study of rigid body motions is the determination of
how many degrees of freedom it has, Putting it another way, the problem
is to determine how many numters one must specify in order to describe
the orientation of the body. In order to do this, it will also be necessary
to give a more exact definition to the term "rigid",

Assume that a body is composed of a large number of elementary
particles. If the distance between the 1 th particle and the j th particle
r.. is constant of 1l particles i and j, then the body is said to be rigid,

If all the N partic. »s were independent of ecach other, it would require 3N
coordinates to specii. them all, (Three cartesian coordinates are required

to specify the position of a point,) The particles 2re not all independent,

however. In fact the position of any particle in the body may be specified by

the distances to any three non-collinear points in the bogdy.

Y .
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The points 1, 2 and 3 in Figure 8 have been chosen at random, the only
conditicn buing that they do not lie aloag the same line. By the rigid

body condition that Xy e T2 and r,y are constant, the position. ¢f the i th
particle is fixed once the positions of the particles i, it follows that the
position of every particie in the body is specified once the three poincs are
specitied. In other words, the position of the hody is specified by the positions
of these three points, Specifying three points would require nine coordinates
if all the points were independent,

There are three conditions to be fulfilled by these coordinatas, however,
namely the prescribed values of Tioe T3 and T3 Thus six coordinates are
required to specify the position of the rigid body, Another way of saying this
is to say that the rigid body has six degrees of freedom. These are frequently
divided into two groups called translational and rotational degreecs of frpedom.
The thrce coordinates used to specify the orientation of some point in the body
{say the point 1 in Figure 8) in the xyz coordinate system, may be caliad the
translational coordinates, while the three ccordinates required to specify the
relative erientatiaon of the other two points could be called the rotational
coordinates, The translational coordinates, then, are associated with the
motion of the body as a whele, while the rotational coordinates are assocgiated
with the orientation o

1. .- L -
ine voay.

2., Orthocanal Transformations

- - —- . .
Consider a vector r which has components x,y and 2z in the XYZ
coordinate system, If the unit vectors along the X, Y and Z axes are
- — —
called i, j and k, then it is possible tu write r as follows:

-

— — —
r = ix ¥+ jy + kz {122}

[3Y

Now assume somne oarcinate system X'Y'Z' which has the same origin as

t - =i T . A I Y R L TR B A T Iy Y PR - . ™ e R TEI RR
the XY Z systelns Dyl an arbitrary iotation waith respect to it. The components

- o T, 3 -

r in this systemn are x' y' and 2' and the unit vectors along the three
- -

axes are i', j' and X'. The vector T may also be written

- - -t

r=i'x'+j'y' +k'z'. (123)

The problem is to determine the components x', y' and 2' in terms of x,y and z
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and the relative orientation of the two coordinate systems., This process
i# called an orthogonal iransformation.
-

It is possible to write the unit vector i' in terms of its components in
the XYZ system,

- - -— b LY
o e o+ @) + (KK, (124)
Since all these vectors have unit magnitude, the dot product of two is simply

the cosine of the angle between them.

7.7 = cos [-1.'.—1. = a .
i.J = cos L-f'-; = a5 (125}
7'k = cos [_-1.'--1: = a5

- -l
The same process may he applied in obtaining j' and k',

F e GIE e 64T ¢ O4RR,

I R A

so the entire set of relationships may be written:

i > -+ PY

i' = 3111 + ay.) + ay 3K,

it = aZlib toay,) + a,gk, (126)
k' = ag i+ ag,j + a33k .

It is possible to apply an exactly similar process in expressing the unit vectors
- .

-
i, j and k in terms of their components in the X'Y'Z' system.

—i. =z a —i.' + a L + a -k.'

= a4 217 31°¢
—_F - -l - . 7 - )
Jo= oap,it Foay,it +oagk!t, (127)
_1: = a T' + a 7 + -l:'

= 453 23 233%

Figure 9 shews the two coordinate systems and the unit vectors.
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. - — -
It is now possible to determine the components of the vector r in the X'Y'Z!

cocrdinate systerrn,

x' =_1?—1" = a,,x ¥+ a,,y + a,.z.
1§ 1(-' 13
y' = .x"--—j.' T a,.x + a,,y + d4,,.2
21 22 237
! 1 —1:'
' z'! = r. = aalx + aSZY + a33z.

The nine guantities a,, -

- 433

are called the direction vosines, They provide

the means of transforming a vector from one coordinate system to another and

therefcre they specify the orientation of the X'Y'Z! system with respect to the

XYZ system,

relating the direction cosines to each other. It will be noted that regardless -

It was developed eczrlicr that oaly three palaimneiers were necessary

\o spccify the orientation of a rigid body, Therefore there must be six equations

of what rotation is applied to the coordinate systern, the length of any vector

must remain unchanged.

This means that

L ) L P L ' - (129)
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Substitution of the Equations (128) into this equation shows that if Equation
.. .:%) is to hold identically for all values of x, y and z, then the following

conditions must obtaine

2 2 2

a!'l +321 -l-a3l =1,
2 2 2
alZ +a“,_Z +a32 =1,
2 2 2
ay3 ta,y tazy =1,
(130)
a2z * a3 2323 < 0
aj12)3 + 353,53 + 33333 = 0,
aj,3)3 + 353,53 + aj,a3, = 0.

These six equations are 1lled the orthogonality conditions. The entire set of

equations may be written in condensed form as
Z a3 = 6jk . (131)
i

where 6jk :s the Kronecker &-symbol which is defined by

6Jk 1, (j =k)
. (132)
6jk =

0, (#Kk)

'
It will be noted that the nine direction cosines, restrained by the six orthogon-
ality equations give the three indcpendent parameters necessary to define the
orizutation of a rigid body. The nine direction cosines may be written in an

array called a matrix,

11 %12 %13
ay; 3,5 33 = (A). (133)
232 233
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Matrices are a type of mathematical entity which may be conveniently
applied to the problem of rigid body rotations. The rules for manipulating

these quantities will now be reviewed.

3. Properties of Matrices

The multiplication of a matrix by a vector is the first operation of

interest, Symbolically, this is represented by

-

T = (A)r. | (134)

-l
For convenience, the x, y and z components of r are denoted by X, %, and

X3e Note that a vector T may be viewed as a matrix of only one column,
!

The equation might be written i
H
*) 311 %12 213 X
x,' 1 ={25 35 2,3 x | . (135)
x3'| \a3) 333 333/ \ %3

The rule for performing this operation is

3 ) -
x' = z a;5%; - (136)
i=1

If these operations are carried out, a set of three equations is obtained which
is identical with the set of Equations (128). This means that multiplication of
a vector by matrix using the multiplica:tion rule above represents a transfor-
mation of that vector from onc coordinate system to another. For this reason,
the matrix (A) may be called the transformation matrix,
The case of two successive rotations is an important one. Let the first

rotation.-be-represented by a matrix (B).- Then the components of a-vector -
after this rotation will be given by

X' = 2 by - (137)
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If the sccond rotation is vepresented by the matrix (A), taen th: components

of the vector after this second rotation would be
N
. LI B 1 1
X. PR (138)

Substituting (137) into (138) gives

5 ) ) By
k ]
(E 11\ kj

Note that this can be »ut in the form os Equation 136,

o s Z N (139)
b}

"

where

ij aikbkj . © (140)

(¢}
|
LN

Thus the two rotations may be replaced by a single rotation (C), the elements

of which may be computed {rom (140). Symbolically,

(€) = (a) (B). (141)

It can be secn by the rule of Equaticn (140) that

(A) (B) = (B)(A),

s0 the process of matrix multiplication is not ccmmutative. The process of

matrix multiplicatinn is associative.

(A) [(B)(C)] = [(a} (B3] (C).

- —
The matrix (A) was used to transforin the vector 1 into the vector r',

It is of interest now to investigate the propertics of the matrix (A)™

-

L g . 3 - -
which transfnrms ' iri0 r, The elemunts of this inverse matrix are desig-

- v . a . Phe inverse matrix is defined by the fellowing egration,
(A ar =T, (142)
WADC TR Yig-1: 62
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Doing the first operation, the result is

X! = z 2%, - _ (143)

Tt - ] ]
*k - 2 A %o
-1

i
- N
x’k” - h_ / i ij x)'
3 i

Now according to the requirement that this must give back the original vector,
xk" = x,. This will be true only if

S ' 25 = i

(144)
s
1
This shows that the product of the two matrices {A) and (A)'1 will be
/1 o 0
(At =lo 1 ol =0 (145)
0 0 1

This matrix (I} is callsd the identity matrix. It ma' pe easily shown from the

rules of matrix multiplication that fcr any matrix (Q},

(D Q) = (V) (1) = (O) (146)

Now since (A—)'1 ‘corresponds-io some physical rotation; there must exist some”’

matrix (R) which i« the inverse of (A)-l. In other words, there raust be an
(R) such that

)y (A = (.

{(147)
Mow if (R) is appl ed to both sides of Equation (145}, the result is
() (&) (A) = (R) (1) = (R). (118)
WADC TR 58-17 63
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Since matrix multiplication is associative, Equation (147) may be substitited

into Equation (148) to give

(1) (A) = (R),
(A) = (R).
This means that .
(At (a) = ()@=, (149)
so that (A) and (A)'1 commute,
Now consider the double sum,
2 a3 ' - (150)

k,i

This sum may be written two ways, depending on the order of summation,

Z (z %' 25 % T z (kz 21 ’ki') ay; - (151)

Applying Equation (144) to the quantity in parentheses on the left hand side,
and applying the orthogonality condition of Equation (131) to the quantity in
parentheses on the right hand side, the resultis

by ' = z b a5 0 | (152)
i
ajl' = alj .

This is the important result, To form the inverse of an orthogonal matrix,

the rows and columns are simply interchanged. Note that this conclusion

holds true only for orthogonal imatrices, This is because the orthogonality
conditions were used to prove Equation (152). In general, the matrix formed

by inte-rché.ngi‘ng rows and columns is called the transposed matrix and is desig-
nated by (K‘). The complex conjugate of this transposed matrix is called the
adjoint matrix and is indicated by (A)+ = (;)* A matrix is said to be unitary

if it satisfies the condition, 4
(A (a) = (1) (153)

Of course theze 1a 1--- definitions are relatively meaningless in the case of
real mi i~ -es. However, use is sometimes made of matrices, the elements

of . are complex numbers,
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It is of interest to investigate the characteristics of the determinant
formed by the element of a matrix, Tie determinant of the matrix (A)
will be written as [A]. It will be roted that the law of matrix multiplication

is the same as the taw for multiplication of determipnants. Therefore,
[aB] = [A] [B]. (154)

Evidently the determinant of the identity matrix has the value unity,

therefore, from Equation (1453) it 1nay be seen that
[a7'] [Al= 1, (155)

provided that (A) is orthogonal. Since interchanging rows and columns does

not alter the value of a determinant, [.A-l] = [A] and, from Equation (155),
[A)® = 1. (156)

This means that the determinant of the transformation matrix can have only

the values plus or minus one, If the rotation is a real one, it may be shown

that +1 is the only allowable value, There is a certain type of matrix opera-

tion which is called a similarity transformation., It is defined by

(A) = (B) (a) (B)"L. | (157)

Jt can easily be shown that the determinant of (A) is the same as the deteirminant
of (A}, that is to say, the value of the determinant of a matrix is invariant under

2 similarity transformation of that matrix, This may be shown by simply apply-

ing both sides of (157) to the matrix (B).
(4)' (D) = (B) (A) (B)"! (B) = (B) (). (158)
From this it is seen that
[a][8] = (B][A)- - - - - (159)

Since [B] is a number and not zero, it is possible to divide both sides by it

and obtain the result

(A]=[»]. | (160)

which demonstrates the proposition,
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Therc is another set of relationships among the direc'ion cosines which
will prove to be of interest, Consider the set of Equations (126). If the
-57,-3"’ and X' vectors are mufually perpendicular, then tue following relation-
ships apply: .

- -

! 3t —.l -’7 o ™
i' x = k',

Txk =T, K x1 =73. (161)

If these vector equations are expanded in the unprimed system, and their

components equated, the result is
211 T 2222337223232
221 T 213%327%12%33
331 T 2122237%13%22
212 T %232317%11%23
a2 = 211%33721333) » (162)
232 T 2132217%)1%23 1

213 T 2212327322231

11

2122317211232

11322°%12%2)

These nine equations are really consequences of the orthogonality conditions.

They present a means for solving for any direction cosine in terms of the others.’

4, Infinitesmal Rotzations

\
rculd be 2 great advantage if a vector could be associated with a finite
rotation, but it turns out that this is not possible., For one thing, finite rotations
are not commutative; nor even anti-commutative. That is to say the order of
the operations must be preserved. While this is true of a finite rotation, it will
be shown that a vector may be associated with an infinitesmal rotation and that
therefore, the known characteristics of vectors may be used in the treatment of
such rotations. Consider the matrix that describes a rotation thru the angle

2

A > 2 1v > which makes the angles a;, B, and vy, with the X, Y and 2
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axes vespectively. This matrix may be potten by substituting

Ay Ay Ay

zo® Tz cov =0

sin

into the matrix (12) and dropping higher order terms. The result is

i Apl cos vy, - A,p.l cos [51
(A)1 = - &) cos vy 1 By cos a) . (163)
I_\pl cos 131 - Apl cos a, 1

This matrix differs only slightly from the identity matrix. This may be

seen more clearly by writing it in the following form:

1 00 0 Ap.l cos Yy - Ap.l cos ﬂl
(A), = 010 + 1 - By cos y 0 Hy cosay f. (164)
001/ Ap.l ccs [31 - A‘“l cos ay 0

This latter matrix is anti-symumetric or skew-symmetric, Notice that this
matrix has only three independent el2ments, A,-;l cos ay ; A;ll cos [31 :
Ap.] cos y, and that they are simply the three components of a vecior of

magnitude Ap which is oriented along the axis of rotation. It will be shown

that this is thi: vector which may be associated with iafintesmal rotation, Let

these three components be called Ql, 572, Q3 s¢ that (101) may be written

0 Q, - QZ\
(A), = (0 + |- 94 0 -9 \ . (165)
' A /

Now if the infinitesmal rotation (A')l is followed by another infinitesrnal rotation

A), , of ihe form
i

0 Qy -9,
(A)fl ={(I) + |- 'y 0 o , (166)
Q, -2 0
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then the combined roration (:’\)'1 (.»\)l is seen to bie the following, if higher

order infinitesmals are droppeds

O Qll - QV;

3 2
(\)1' = (A)l' (A) = (1) + - SZ‘_,‘, 0 Ql s ' (1€7)
QHZ - Q'i 0
where
Q'B = Q‘_,’ + 93 : Q"Z = Q;‘. + QZ, 5 Q"l = Q‘l + Ql .

Since the se¢cond order infinitesmals were dropped, the crder or sequence of
the infinitesmal rotations is unirnportant, This is one condition which is neces-
sary if these rotations are to be represented by vectors., From the makeup of
), 2, Q‘g , it is sean that the vector representing the combined rotation is
simply the sum of the {wn vectors tur the single rotations,

A more conclusive demonstration of the fact that the quantities 5'21, QZ’ 93
are the components of a vector asscciated with the infinitesmal transformation
is the demonstration that the matrix components transform like components of
a vactor under a coordinate transfar-mation, Consider o matrix {A) which oper-

ates on a vectoer R to produce a vector R,
R' = (A)R. (165)

Now if an additional iaatrix (B) is applied to this equation,

—-
A\
J

an

12)
~

~~

ey

-1 - (1()9)
B) (A) (B) " (9)R.

=
=
H

This equation is simply Equation (168) when seen iu a different coordinate
syolent, and {D) {(A) {B)7 is the matrix {A) when viewed fron: the different
coordinate system. This is the similarity transfermation, which has been
introduced before, If a similarity transformation is applied to the 'matrix of

Equation {165), the resull is

0 Q'B - Q"a
(1) {A), R (A = (@ + [y o o | . (170)
QE’, - 3"(’.'1 0
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Expanding and equating components,

Q) = by 9y 4 by, 2+ by 2,

Q, = b, Y + by, N, + by Dy, (171)
5 - k)

93 = l:o31 S?l + b32 2, + b33 93.

Thus, the infinitesmal transformation, when viewed from the other coordinate
system defined by {B) is still nearly the identity transformation, and the vector
which represents the vector associated with the infinesmal transformation in
this new system is simply the transform of the vector representing the infini-
tesmal transformation in the other coordinate system, ‘This shows the vector
character of the set of elements Ql’ QZ’ 930

By using this infinitesmal transformation, the rate of change of the trans-

favmation matrix (A) may be found in much the same way that the derivative of

the matrix (H) was established in Section I1I. If (A) is the muatrix at the begin-

ning of time interval, and (A) is the matrix at the end of time At, then the
derivative of {(A) is given by

d 4. . )y - (A -
_a_t_(n) - ;}:‘()‘[_(LAt( )} (172)

(A)' may be viewed as the rotation (A) followed by the infinitesmal transform-
ation going frorn (A) to (A)'., In other words

(A) = [(D + ()] (A)

where
0 cuos y =-cosf
(¢) = Mu[-cos y 0 -cosal , (173)
i cus B -cosa O !
Thus the derivative becomes o :
/ 0 cos Yy -cos fB
g (A} = lim {e) (A) = tm 2 [l cos ¥ ¢ cos ¢ . (174)
dt M A oy O
&0 &0
cos p -cosa o

Again, in the limit%:— is simply the rate of rutation, and —C%{i cos a

= P,
-gjtf— cos P = () —g—t‘i cos y = R, so the equation becomes
WADC TR 58-17 69
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-Q a
P 221
0 :-131

Expanding, and equating components gives

These are the rates of change of the direction cosines in terms of the angular

velocity. Now if Equation (175) be multiplied on the right by the transpose of

(A), the result is

Expandiﬁg and equating components gives the following relationships: =

P =25
P =3y
Q= ap,
-Q s agy
R = a5
-R = 2,

WADC TR 58-17
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a1*\ /ali a1 2

a3

.
a

33

221
a3

412 222 23 =

)|

- 339,
- a32Q ”
- 3330 1 ]

- 3R,

- 2;,R,

- 23R,
P,
- 3P,

- a23P .

31

213 223 233

222t %33
33, * ;"“23
a3, + Tayy
3, t+ s

323 .

(175)

(176)

(177)

~ .

(178)



It is interesting that two different expressions arc obtained for each of the
velocity components. This is a consecquence of the great amount of redundancy

in the direction cosines. The equivalence of the twc expressions for any one of -,

the components may be shown by making use of Equation (162).
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APPENDIX B
THE EULER ANGLES

It was demonstrated in Appendix A that three parame‘ers were required
to fix the orientation of a rigid body and hence of a coordinate system, The nine
direction cosines do not lend themselves to a reduction to three simple para-
meters, nor do they give a very lively picture of the orientation of the body,
Both these difficulties are overcome by use of Euler angles, the only three-para-
meter system in common use, In this method, a rotation is represented by three
individual rotations taken in a specified sequence about certain specific axes., In
the literature, there is no agreement whatever on the order of rotations, the axes
about which the rotations are made, or notation, These are varied to suit the
needs of the problem and/or the author's whim, Texts on classical mechanics
give sets of angles defined so as to facilitate solution of the spinning top problem,
The system presented here is the mnst common, though by no means the only one
used in aircraft work,

Consider two cocrdinate systems initially coincident, One set of coordinates,
the x, y, z, will be referred to as the fixed system, and the other will move with
respect to it, The first rotation is through the angle Y about the z' axis, This

is shown in Figure 10,
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AND ROTATION-PITCH ANGLE ©

Figure il




THIRD ROTATION - ROLL ANGLE @

Figure 12
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The scoond rutation is through the angle 0 and is done ibout the Y' axis and
the resulting axis systern is called X", Y", 2', This rotation is shown in
Figure 11, 0 is commoenly called the pitch angle. Tte final rotation is done
about the X" axis through the annle é. This is called the roll angle and all
three rotations are shown in Figure 12, Note that all three of these rotations
are in the positive sense, That is to say if the thumb of the right hand is placed

along the axis of rotation, the direction of rotation is tuai direction in which the

curied fingers point,
It is now ne¢cessary to determine the 1-ansformation matrix in terms of these
Fuler angles. It was shown earlier that successive rotations could be represented
by a matrix which is a product of th: matrices of the individual rotations, It is
nc¢cessary then, only to compute the matrix corresponding to each of the Euler
angle rotatioas and ‘o multiply them tugether in the appropriate order, Note that
z2ch of the rotations is simply a two-dimens;onal transformation because in each
case the rotation is about one of the moving axes and henc2 componrents along that
axis are urchanged,
Consider firs', the vetaiion through the angle which is shown in Figure 190,
If this is viewed from abo », the transiormation of some arbitrary vector R weculd

appecar as shown in Figure 13

Jagure 13
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1t can be scen from the geometry of Figure 13 that the new x' and y! {
3 components are related to the old by the ecuations L
iy
lj
x' = xcosy + ysing, 4
. 17 1
' zex sinyg 4 ycos b, (179) 3
Since the rotation was about the z axis, any z component of R would remain
unchanged. In other words, 2 = Z'. This fact, together with the Equation (179)
i
shows that the matrix {for the rotation is 1
Bl
1
fcos ¢ sinyg 0O i

_siny cas ¢ 0 (180)
0 0 1 -

Now the rotation of Figure 11 may he viewed irom the {ront along the Y' axis,
p and Figure 14 is obtained. :
f
i
!
;
: |
z |
: §
!
1
!
d
1
i
y
:
. ’ .
7z
¢
Figure 14 5
From the gecmetry of the above figure, it may be seen that

!
x" = .x'cos O - z'sin0, %
2" = -x'sin 0 4 z'cos ©- (181) 3
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In this retation, the Y components remnain unchanged so that Y = Y',
Therefore, the matrix for this rotation is

cos B 0 -sin
L}
0 1 0 {(182)
sin 6 0 cos @
The final rotation may be viewed from the front, looking ilong the X" axis of
Figuie 12,
-
Fipure 15
Frorn the geometry of this figure it is scen that
y"t o=y cosdh + oz sin g,
AR ,\’r" sinn g+ z'! cos &, (183)
In this rotation, the X components remain unchanged so that X' = X't
Therefore, the wransformation matrix {or this rctation is
. {
1 G 0 b
0 cos ¢ sin ¢ . (184)
0 -5in ¢ cos ¢
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In order to get the total transformation matrix which results frem these three '
rotations, it is only necessary to multiply tie three individual matrices in the

correct order,

1 0. 0 . cos 6 0 -sin O cos Y sin ¢ 0
0 cos ¢ sin ¢ 0 L 0 -sin{y cos ¢ 0 =
0 -sin¢ cos ¢ sin 9 0 cos 6 \ o 0 1

cos 0 cos ¢ cos 0 sin Y -sin 6 ;
- sin Y cos ¢ cos Yycos ¢ ;
+ sin ¢ sin O cos ¢ + sin ¢ sin 0 sin Y sin ¢ cos @ . (185) .
.+ sin ¢ sin Y -sin ¢ cos ¢

+ cos ¢ sin 6 cos Y + cos ¢ sin B sin Y cos 6 cos ¢

By comparison of this matrix with the matrix (A) it may be seen that all of the co
direction cosines and hence the complete transformation, can be expressed in

terms of the three independent parameters ¢, 0, ¢.

angles, the rate of rotation of that coordinate system must be related to the rates
of change of the Euler angles. We now investigate this relationship,

It is shown in Appendix A that a vector could be associated with a rate of
rotation, This vector is along the instantaneous axis of rotation and is equal in
magnitude to the rate of rotation. Thus, each of the Euler angle rates may be
associated with a vector along the axis of rotation. Observe that the vector
associated with the { rotation of Figure 10 is directed along the Z axis and
points downward if t',b is positive. Similarly, the rate of rotation due to the 8
rotation of Figure 11 is a vector along the Y' axis, aad if 6 is increasing, the
vector is in the positive y' direction. Finally, a positive roll rotation is a vector
-directed along the X'"" axis-of Figure 12, The three vectors representing the three
individual Euler angles rates must be added together in order to get tke entire rate
of rotation of the system. Recall that these vectors are ~dded according to the usual
vector rule. The situation is shown in Figure 16 where all the Euler angle rates are
assumed positive. Note that these three vectors are not mutually orthogonal., The
:l.a vector is normal to the vector, and the e vector is normal to the ¢ vec’on-",

but the :t vector is not normal to the ¢ vector. In any case, the three may be
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transformed into the X'"' Y'"'' Z''"* and added to give the entire velocity vector.

-—
the § vector has the components 0, 0, ¢ in the XYZ system, so to transform
this into the X''' Y''! Z'"t gystem, it is necessary to apply the full transformation

matrix (185) to this vector. If this is done, the result is

:p"' = e ¥ sin 6 +.j."' ¥ sin d cos 8 + PO l.lJcose cos & . (186)

| g . .
Now the vector 8 has the components 0, 8, 0 in the X" Y'' Z'' coordinate system.
In order to get this into the X''' Y''' Z!''' system, it is only necessary to transform
through the last of the Euler angle rotations which is defined by the matrix (184). If

this is done, the result is

-

g1 = ' 8 cos ¢ - K" ® sin . (187)
The vector &, of course. is already in the X'' Y'"' Z''! system, being defined by
=1 . (188)

in order to get the entire velocity vector, it is only necessary to add the last three
equations, If this is done, and if the total angular velocity vector is defined as
W =T P+ @+ BR, then,
P =6 - { sin®, | _
Q = cos & + ¢ sin é cos O, (189)
R = Cp cos B cosd - bsincb.

De O

These three equations may be solved for 'fp, é, 4) giving .

cos ¢ +Q sin

|
Y cos 8 cos 8 °*

8 = Q cos¢ - Rsind , -~ - - - - : : (190)
;1>=P+Qtan9 sin$¢ + R tan 0 cos ¢ .,

From these ecquations, it is easier t~ sce the difficuliies which arises, when 6
o . . . P A .
approaches 907, For this v~'_cof 0, both y and ¢ are infinite. It is interesting

to note > ~ .ve of O itself has no such anomalies.
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APPENDIX C

SERVOMULTIPLIER ERRORS

In the past, it has evidently not been the practice to treat analog multiplier
errors with much care in error analyses. The usual procedure has been to
assume some voper bound for the error and to consider the error constant at that
value. This, of course, gives a pessimistic view of ihe results to be expected,

though in many cases this is not undesirable, and it certainly gives an estimate of

*

he crder of magnitude of the resuitant error. Possibly the principal reason that
errors are not treated with more care is that little is known about their detailed
character. No two multipliers are the same, a given multiplier will change with
time, and it is a great bother to measure the errors anyhow. It would appear,
then, that a statistic.al approach is indicated. If the statistical distribution of
errors can be establi. hed, then it can be used to predict the distribution of errors
in the problem result. This will not give a measure of the error in any particular
run, but it is not practical to do this in any event. It would appear that if we know
the distribution of errors in the solutien, it is fair to say that we know all that is
necessary about those errors,

It will become clear that the statistical procedures applied in this work are of

.the very simplest sort, Many more things could have been dcine, even with the data

which were taken, but it was not felt to be worthwhile, The prinicpal reason for this
is that, as was pointed out earlier, multiplier errors did not turn out to be the
principal source of drift in the coordinate conversion simulation, Therefore, it was
not possible to check the predicted error distribution against the observed distribu-
tion, even to the extent permitted by the small number of samples available.
Generally speaking, the procedure was to take an average of all errors of all
multipliers over their entire range; taking the average in a manner generally
consisient with the way the multipliers are used in the coordinate conversion simu-
lation, It was assumed that the error voltage was directly proportional to the voltage
across the multiplying petentiometer, and this was kept at * 100 volts throughout
the measurements, Once the error distribution is establisiied for this case, it is
possible to get the distribution for ~ny other pot voltage by simply multiplying the
+ 100 volt distribution by V/.¢0, where V is the pot voltage.
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T.ao type of measurements made can perhaps Lest be Dlusirated by
cons.cevation of the schematic of Figure 17, This shows the circuit used

10 test one serve with all its pots.

[ %
IC.= -95v
100N
400N
RoN ¥ A A% < o]
-0 W
| SERYO = : L > 3.
B § é
T . b
\oov 100y
0 {0
‘o [Ta)
0 1o 10 0
- [
REC | REC2 RC % REC4
___yeiy
Figure 17

+ 100 volts are applied across all pots, The wipers are swept linearly from one

end to the nther by use of the integrator, It starts at -95 volts and goces te +95

- - - - - 3 ? > vy .t -
volts at the rate of approximately 5 voits/second. The eniire swecep requires
about 30 seconds. At this slow speed, the servo tracking error is essentially zero,

It is approximately three times smaller than the pot errors. During the sweep, the

voltage on each of the multiplying pots is being compared with that on the feedback

pot, and the difference is recorded. Ali pots are loaded with 0,1 megehms, 1t

might zppear somewhat more logical to compare ithe multiplier rot voitage with the
input rather than with the feedback pot voltage, Comparison with the input would

include the¢ tracking error, Even aside from the fact that the tracking error is
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small, it is actually desirable to exclude it, The point at issue here is the
static accuracy of the multipliers. The tracking error is asrocizted with the
‘dynamic performance, which is ireated by different mcthods. In the steady
state, there will be little or no tracking error, and the only error remaining
will be the difference between the feedback pot and the multiplying pot. This
is exactly what is being measured by the circuit indicated. .

A sample record taken in this way is shown in Figure 18, This is the one
for Servo 1, and shows many features typical of the others as well. Observe
that, especially on Pot A a periodicity may be seen. There are ten cycles of
the oscillation, so it is evidently associated with the ten turns of the pots used
in the multiplier. Not all records show this, but many do. It may also be seen
that there is a rough correlation of all four traces, that is, they all tend to have
the same sign at the same point, and the peaks on all traces are nearly coincident.
This is probably due to the fact that, for this servo, the feedback pot is more
nonlinear than the multipli~r pots, On many of the records this correlation was
not observed, indicating tha. the feedback pot was the more accurate, Also, it
is seen that there are some poor contact areas on Pot A, though this was en-
countered in only a few cases. It shouldrbe mentioned that records of the type
of Figure 18 are taken for all servos periodically by the Analog Computation Brancn,
Acronavtical Research Laboratory. The principal purpose of this is to check align-
ment cf the pots, and check for noisy spots such as appear on Pot A of Figure i8,
In this connection it should be pointed out again that no special adjustment of the
multipliers was made for this siinulation. The error records used, of which
Figure 18 is an example, were not made especially for this study, but were made
about twe months earlier, as part of normal maintenance of the eguipment, Thus
the results may be considered typical of vhat may be obtained on this type of
equipment in normal use. Especially in view of this, the multiplier accuracy does
seem to be quite good,

On each of the error recordings, approximately 45 equally spaced readings
were made. For each reading, the value of the error trace was sorted into class
intervals, rather than being recad as a number. This was done to simplify the
reading process, since it was felt that all desired resuits could be obtained by
dcaling with frequencies in class intervals, All intervals were of equal width
(0.02 volts), Table 3 gives the results ~tiained, The error voltage indicated at

the tcp of each column is the cer* o of the class interval,
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The frequencies for all pots of all servos were combined into 2 single
distribution with equal weight, This process could be justified by either of two
assumptions: the error voltage is completely uricorrelated with shaft position,
or all shaft positions are equally probable. The first of these has to do with the
nature of the servo, and the second with the nature of the problem being solved,

It would appear that both assumptions hold in the present case, As to the first,
the error appears to be uncorrélated with shaft position so long as the padding
resistors are correctly adjusted, From the records taken, it appears that they
were so adjusted for the servos used. Any remaining correlation would have to
be repeatable characteristic of the pot winding machine, and no such character-
istic appears on cursory examination of the records. Of course, the 10-cycle
periodiciiy appears on some, but not on others, so it was concluded that there
was no important correlation between shaft position and error voltage., Matters
of this kind should, of course, be examined by application of statistical techniques
to the data, and in fact a start was made in this direction. For the reason cited
ecarlier, however, it wa. decided that the simple procedure described would be
adequate, '

As regards the second assumption above, that all shaft positions are equaily
probable, this appears to be true in a general way for the coordinate conversion
simulation, For other applications, of course, the situation might be different,

In either the quaternion or dircction cosine method it is true that, regardless of

the orientation, some of the quantities will be large and others small. A complete
rotation of the coordinate system causes certain of the multipliers to sweep through
their entire range, From such considerations, the hypothesis that all shaft positions
are equally likely appears reasonably sound.

All the data of Table 3 were combined into a single cumulative distribution
which is shown as the solid curve of Figure 19. This has been plotted on cumula-
tive probab:lity paper so that a normal distribution would appear as a straight line.
It may be seen that this curve does not pass through the 50 per cent point at zero
error (its mean is not zerc) and that it departs from linearity-for positive errors. - --
This suggests a bias in the data, An examination of the data of Tabie 3 shows that
Servo 2 has something wrong with it. All the pots havc a large positive bias, and,
especially Pot A has an unusu~lly large dispersion, If the data for this servo are
delected, the dashed curve of Figure 1¢ is obtained. It may be seen that now the

curve passes through the 50 vr: cent point at zero error, and it is much more
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nearly a straight line. There is still some deviation from linearity, and this
is rno doubt due to bias in some of the pots, but it appears that the errors may
be represented reasonably well by a tormal distribution, The standard devia-
tion may be determined from the value at which the curve crosses the 84,15 per
cent line, This turns out to be 0, 053 volts, -

In the error analysis, then, it may be assumed that the multiplier errors are
normally distributed, with a standard deviation of 0. 053 volts, when the voltage
across the multiplying pot is = 100 V, It would be proportionately less for smaller

pot voltages,




