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I 

1. 

I  INTRODUCTION 

The purpose of this study is the exploration of the rheological 

concept of the locking material. This concept has been introduced by 

Präger^ . in the one dimensional case it can be represented by means of 

the stress-strain diagram in Fig. 1. It is seen that at a given value of 

the strain, £*£, the stress-strain curve becomes a straight line parallel 

to the C -axis. 

In another paper'2) Prager introduced the concept of the elastic 

solid of limited compressibility.  Such a solid is linearly elastic as 

long as the mean pressure remains below a certain critical value.  As the 

critical pressure is exceeded, the mean compression remains at the level 

associated with the critical pressure, while the ratio between correspond- 

ing components of the deviations of stress and strain continues to have 

the elastic value 2G.  This solid can be represented by means of the two 

curves in Figs. 2a and 2b. 

By a synthesis of the two concepts introduced by Prager previ- 

ously, Phillips{•>'  introduced the concept of the ideal locking material 

which is represented by means of the two curves in Figs. 3a and 3°.  It 

is seen that such a material may lock either by compression or by shear. 

In this study the work of Prager and Phillips will be extended 

by introducing the elastic-locking material represented by Figs. ka.  and 

Ub.  This material is an extension of the ideal locking material.  This 

(1) W. Prager: "On Ideal Locking Materials", Transactions of the Society of 
Rheology, vol. I, (1957), pp. 169-175- 

(2) W. Prager: "Elastic Solids of Limited Compressibility", Proceedings IX 
International Congress of Applied Mechanics, vol. 5, (1957), PP- 205-211. 

(3) A. Phillips: "A Theory of Ideal Locking Materials", Technical Report No. k 
to Office of Naval Research, Contract Nonr - 60912, February 1958-  To 
appear in vol. Ill of the Transactions of the Society of Rheology. 



extension, however, introduces considerable complications in the- solution of 

problems. 

The study of the elastic-locking material will give us information 

about the correlation between locking in shear and locking in hydrostatic 

compression, when the respective diagrams posses elastic regions.  A pro- 

cedure will be shown for solving boundary value problems for such a material. 

This procedure differs in some respects from the procedures used in elasticity 

or plasticity because of the possibility of locking either in shear or in 

hydrostatic compression.  This procedure will be explained by solving the 

problem of the thick-walled hollow sphere under internal and external pressures. 

In the rest of this paper the following notations will be used: 

72. 

/O-T(^-^^-0(V^T 

II THE THICK-WALLED HOLLOW SPHERE 

In this study we shall consider the problem of the thick-walled 

hollow sphere under internal and external pressures.  The material of this 

sphere will be of the following type.  It is assumed that for the change in 

volume the material follows the law shown in Fig. 5«  For the change in shape, 

it is assumed that there exists a locking condition, g = >*0  = k = constant, 

so that for values v^k the change in shape follows Hooke's law, whereas for 

V0"k the change in shape follows the stress-strain relations; 

(1) 



-■■• 

where p^ is a proportionality factor. Finally we can never have  v^S k. 

According to the terminology introduced in the previous article 

this is a locking material with limited compressibility.  As this material 

follows Hooke's law when it is not locked, we shall call it an elastic- 

locking material. 

In what follows the hollow sphere will have the internal radius 

a and the external radius b.  The external pressure will be denoted by — ^ryl 

and the internal pressure by -Oi^a •  The displacements of the particles 

of the sphere will be radial and those of the internal surface will be 

denoted by u whereas those of the external surface will be denoted by u_. 

We obviously have the following four cases; 

1. £ ^K^ and y. (K ;  this means that the material follows 

Hooke's law. 

2. £ Sfc     and y,-K >  this means that the change in volume 

is elastic while the change in shape occurs under conditions of distortional 

locking. 

3. diyu*'Kw< 
an<i /,^ K  '  that is volumetric locking occurs while 

the change in shape is elastic. 

k. f    —4/       and V-TC   >  there is simultaneous volumetric and 

distortional locking. 

It should be remembered that at a given state jof loading only one 

of these four cases can materialize at a given point of the sphere.  However, 

for the same load but at two different points two different cases may be 

appropriate. 

Ill THE FOUR DIFFERENT CASES 

Case 1 - The material follows Hooke's Law: 
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The volumetric relation is: 

GL.. = 3 K I ITV 
where 

3K » 

The distortional relation follows as 

where 

G- = E/2 C / + v) 

From these equations we  find 

Gr + ZGi =3K(<5T^2.£e) 

The strain displacement relations for infinitesimal strains 

are: 

<fr =du/^r 

£© =■ u/r 

From eq. (k)  we obtain 

^=|-K(6r + ay-f^r 

Substituting eq. (8) into eq. (5) we find 

_ 4 G^JGG^-O + KC^-^) 

(2) 

(3) 

(M 

(5) 

(6) 

(7) 

(8) 

(9) 

/ 



5. 

The equilibrium equation is 

+ 2. dbSy     n    ^-°* = 0 

By substitution of eqs. (5) and (9) into (10) 

(10) 

£_,-( ciir      dt, dt-   „ dt. 
(11) 

Then by substitution of eqs. (6) and (7) into (11) 

du. ( a_ £^_p_Ji _Q 

The solution of eq. (12) is 

where A and B are integration constants.  Then from eqs. (6) and (7) 

we obtain 

£~ - A- 
2.6 
ry-3 

and from eqs. (8) and (9) we have 

6L =^ 3 KA -4(?e>T~3 

(12) 

(13) 

(14) 

(15) 

(16) 

<5^  c $K* + 2Gßr -^ 
(17) 

Equations (13) to (17) give the displacement, strains and stresses 

in terms of the radius r and of the two integration constants A and B. 



6. 

Case 2:  The material Is volumetrlcally elastic and dlstortion- 

ally locked: £ Ck    an<i /*- * • 
•       «A ^   MA   *  m,^ *v 

The volumetric relation is 

The distortional relations are 

and 
*•* 

sr-s^. ■ > 
H 

°* (tt - e-0 
Now 

». ■ f [(VJ'^-'^V«,-^] 
/«. 

Hence eqs. (19) and (20) give 

a*   3 
from which 

3* 

where k, is a new material constant. \ 

Using eqs. (6) and (7), eq. (23) becomes 

ctr Y   ' 

The solution of this first order differential equation is 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(2M 

(25) 



Equation (25) gives the displacement.  The strain components are 

^C,-^ lir (27) 

The octahedral shearing strain can be written also as 

t =JT [(^"^(«»-^OVy «V)*] 
then 

*) 

VT*»*) 

(28) 

fci--**u (29) 

*"!#- 

or 

because 

°"     [<«,-«■«/* (W-J^-'"0*] 

ar,-et-^-(«(-e»J (30 

[^-oMt.-uVv^] -■?* "l/H' 



Then from eqs.   (30) we obtain 

0^-61 = Fi* 
= —r— (%~ £*0 

^"^"T" ('i-1*») 

From eqs. (31) and (32) we find 

The volumetric relation S"^* ^ \d can be written as 

- 

From the last expression C is found to be 
9 

Substituting eq. (35) into eq. (33) we obtain 

Cy = Zjt—(£,-£,)  + K(X+££fi/) 

Introducing eqs.   (36)  and   (33)   into the  equilibrium equation 

+- ^_ ■  m. 0 

we obtain 

2. {I 
3*. '<«•-«£-\k<v-«.), 

(V^)^^^2^- 0 

(31) 

(32) 

(33) 

(3*0 

(35) 

(36) 

(37) 

(38) 



I. 

Using the strain-displacement relations (6) and (7) eq. (38) 

becomes 

. 3- 

Separating variables 

dy 

*+ iw^K 

d^   r dr 
2U, 
r-2- 

r      oLr 

d *? (i+o) 

Substituting eq. (2U) to the right side of eq. (kO)  we obtain 

■>+^-*'K 

3 Ü <U> 

and from equation (1+1) we find 

2. yir  ' 

where In CQ is the integration constant. 

Then 

(1*2) 

*" $-&*'* ™ 



10. 

Thus from eq.   (36)  we  obtain 

crY * - -^- £i- + 3C, K - 3 K*>v (uo 

and from eq.   (35) we obtain 

3K^, 
5e  -3KC, .3 1^--- + ^ (1*5) 

Case 3:  The material is distortionally elastic and volumetric- 

ally locked L 6^-^> $<k  ■ 

The volumetric relation is 

The distortional equation is 

C-C»^Cr(^-^) 

As the material is volumetricaily locked we obtain 

which with the help of eqs. (6) and (7) gives the differential equation 

iüL+Z^-l^O (U7) 

The solution of this equation is 

u ■* Cr"ZfKr (1*8) 

Then from eqs. (6) and (7) we obtain 

fry 

L* *   *■*, *0'3 (50) 
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and as we have 

ey-69 - 2.G-(V*f) 

we obtain 

-3 
<rv-or8 ^   - ^G-Ct 

With the help of the equation of equilibrium we find 

Integrating we have 

6V -  C   -HCt 
- J 

then from eq. (52) we find 

-3 
C»'  C„ + 2.<?Cv 

Thus, we have the displacement u , strain components <*  £0 

and stress components ß^ £'  . 

Case U:  The material is distortionally and volumetrically 

locked: 

*».**<*, 

r« * 

(51) 

(52) 

(53) 

(5*0 

(55) 

(56) 

(57) 

It can be shown that this case can not occur. Indeed, let us 

compare the expressions for the displacements which follow from the two 

equations: 

tm  - k^ (58) 

f.  - * (59) 
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They are 

(60) 

(61) 

The right hand terms of the eqs. (6o) and (6l) are not the same. 

Therefore this case can not occur. 

IV REGIONS OF LOCKING 

For a very small load we have case 1 at every point of the 

sphere.  In this case 

-3 

It is seen that t.—fc = max at r - a and that^ has the same value 

at all points of the hollow sphere. 

Suppose that in the process of loading ^.becomes equal to /*CtkV 

before £ - fc  becomes equal to k.  Then fi^r ^ at all points of the 

sphere simultaneously.  Hence, volumetric locking will occur at all points 

at the same time, and consequently distortional locking cannot occur at 

any place. 

If on the other hand, during the loading process & — £ becomes 

equal to k at r = a, before ^becomes equal to k then we shall have distor- 

tional locking at r= a, while the rest of the sphere is still elastic. By 

increasing the load, the region of distortional locking will expand at the 

expense of the elastic region, until either the entire sphere becomes dis- 

tortionally locked or until for some value of the load the still remaining 

elastic region becomes volumetrically locked. 
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We shall consider now these possibilities analytically: 

a)  The entire sphere is elastic, then we have the case 1 over 

the entire sphere.  Therefore, 

H =^ AY+ BY" 

-3 

- * 

<^ = A - 2.6Y 

de - A+ &Y-i 

6"^=.   3KA + 2G-G>r 

h) The entire sphere is locked volumetrically, then we have 

over the entire sphere the case 3-  Hence 

Oy - C   -4GCV -j 

^ - C0 * ^&CY- 

(6U) 

(65) 

(66) 

(67) 

(68) 

(69) 

(TO) 

(71) 

(72) 

(73) 

c) The sphere is distortionally locked for r ■ a to r = t and 

it is elastic for r ■ t to r ■ h. Then we have case 2 for a ^ r ^t and 

case 1 for t = r tb, 

Hence, for a £ r s t 

(7>0 

(75) 



Ik. 

(BVk  -. .»jS(iT-V»C1K-sif*1^'r 

i^Ji « 3KC, -3 «.*>'" 

and for t £ r t b 

3^,  /T c Y-i 
—=— + -r-c2.T 

(6r)t - A-2&Y 
- I 

fo)t - 3 KA H-ZG-&Y 

-3 

-3 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

with the continuity conditions 

ts-,)^ = (6;)t     tit-   r=tr 

d)  The sphere is distortionally locked from r ■= a to r = t 

and volumetrically locked from r = t to r — b.  Then we have case 2 for 

a^ r t t and case 3 for t ~ r ^ b. 

For a ^ r ~  t 

feu- C, - *, 0 +4^ 

(8U) 

(85) 

(86) 

(87) 

(88) 

(89) 
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For  fr £ y * £ 

-3 

-3 

The continuity conditions are 

(90) 

(91) 

(92) 

(93) 

(9M 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

V THE BOUNDARY CONDITIONS 

The displacement of the inner and outer surfaces will he denoted 

hy u and u, ,   respectively.  The four quantities u , u. > 6"ra >®rY,  cannot 

he selected independently. 

Indeed in cases (a) and (b) there are two constants to be 

determined; C0 and C in case (b), and A and B in case (a). Hence only 
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two boundary conditions are required and are possible. Thus, the follow- 

ing six sets of boundary conditions are in order. 

at    r = a u   = u a 

u = ub 

u = u a 

r 
6 
ra 

u « ua 

r 
6 

rb 

u = % 

<3   = r 
6 
ra 

u = \ 
6   = r rb 

<5   = O 
r ra 

(5   = r rb 

at r = b 

at r = a 

at r = a 

at r = a 

at r = b 

at r = b 

at r = a 

at r = b 

at r =  b 

at r =  a 

at r = b 

,11 

,111 

,IV 

..V 

.VI 

Similarly in case (c) we have five constants to determine - 

i.e. C-,, C , A, B, t - and three continuity conditions at r = t are at our 

disposal.  Hence, only two boundary conditions are required and possible. 

It will be seen in the next section that case (d) is a limiting case of (c). 

It follows that for case (d) the six sets of boundary conditions are in 

order. 

VI THE SOLUTION OF THE PROBLEM 

Case (a) Elastic C8.se: 

In this case the constants A and B can be determined for any one 

of the above six sets of boundary conditions.  As an example we consider 
■ 
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the  set 

w = w., 

<Oy  =    Gy-(J 

9W 

«. 

(-     ye Ov 

t-     v=£ 

A and B are determined by using eqs.   (6k) and   (67)' 

Ik cc 
-   Act -t- SOJ 

-2. 

M = 3KA -4 <? ö€ 
-3 

(101) 

(102) 

from which 

A - 16 ££+«*< 
4G-£ + 3< 

(103) 

B » 
u 
cT5K  -6W a (IOU) 

Substituting A and B 
into eqs. (13), (16) and (17) we obtain the expressions 

— — 1- 6y| 

U, = r +- r^-^ 

6s 

-Q,V* U°5> 



£,= 

wfc <x 
^öTF  ***        ^3K-<rv? 

3K g* ^   L^ 

3K «» *   -G- 

18. 

 oV3 (106) 

^P+^ ^3K-^i 
€f = 2   ^     ""  a 7   (107) 

These expressions can be written in dimensionless form in 

terms of the variable (—,—) as follows: 

^   O? 
u *tfräT-p+r*f  ra+  £f^-^ (108) 
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(*)(-> 

^_ _ ^oTP "--ZT +   ^ ^   fr~   f.*)5 (110) 

3K feJ ZG- ^  b* 

Case (b):  The entire sphere is volumetrically locked. 

In this case the constants C and C can be determined for one 
o 

of the six sets of boundary conditions except set (l).  Indeed the 

expression of u , equation (69) includes only one constant and therefore 

either u or \i would be sufficient to define this constant. 

The volumetric locking will occur when the following condition 

is satisfied: 

As an example let us consider again set (iv) in which u = ua 

at r= a, and 0_ = «^ at r ■ b.  In this case 

(in) 
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from which substituting (ill) into (69) we obtain 

3,     „a. 
U, U„ 

Using eq. (72) we obtain 

6vg = Ce ~4&C /> 
-5 

and with the help of eq. (ill) 

is found.  Substituting C and C0 into eqs. (72) and (73) it follows 

8  ,■>* 

b*    r; 

Writing eqs. (113); (ll6) and (117) in dimensionless form we find 

5L_ 5«+ A'<V   *  I/0-'   £.') 

Si - 
Volumetric locking will occur when in the previous case 

A = kjjj.     That is when 

*. = 
a   b5 

^lG--^- +3K 

This gives a relation between 1^ and 6^.  For a given Ug_ there 

corresponds a value of 6^ for which volumetric locking over the 

entire sphere will occur. 

(113) 

(ilk) 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 
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Case (c):  The sphere is distortionally locked at a x*r s t 

and elastic t^rf b. 

We shall restrict our considerations to the case where at r«a, 

we have u=u and at r=b, we have ö" = &.•     Eq. (7*0 gives 

U^- C.o, -^^ (122) 

From eq.(82) we obtain 

s^ «3KA- "j&ßß~J (iss) 

Using the continuity conditions at r»t, that is eqs. (84), (85) and 

(86) we obtain 

_.^Ir fJ
+K,K-3K^^(- -- 3>KA  -4*3 *'* 

e>e>rJ=*. (126) 

The four unknowns C-^, C , A and B are determined from eqs. 

(122), (123), (124), (125) and (126) in terms of ua, 6"  and t. 

A - ^ , I iri£-      *< (127) 

& = £LI (128) 

c, * £ + *A*< (129) 

(130) 
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The value of t will "be determined from the following equation 

(131) 

Substituting eqs.   (127),   (128),   (129)  and   (130)   into eqs.   (7k),   (77), 

(78);   (79),   (82)  and   (83)  the  following expressions are obtained. 

For a  =. r =  t 

£.   „lift  +****,*) 
w*     a (132) 

(133) 

<% 

For t 4. r ^" b 

K ^\Lr   (13M 3l(£+*,<^-£>*.(£*» 

£-0*£^FX£W&*.£('-0 K*, 
(135) 

Distortional locking starts at r=a when t=a. Eq. (131) gives 

the relationship between u and 6"for which distortional locking will 

start: 

(136) 

(137) 

(138) 
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Volumetrie locking over the entire sphere can not occur when 

distortional locking has already occured over part of the sphere.  Hence, 

whether volumetric locking will occur over the entire sphere first or 

distortional locking will occur at rsa first depends en which of the eqs. 

(121) or (138) will be valid first.  Calculating £m for t frf b in case (c) 

one obtains the following relation: 

t&+-ZtV (^ .       a L (no) 

*** -- —3— r %r¥ ^nrrsA 

Hence,    Lls constant in the  region t   = r = b.     In the region a= r =  t we 

obtain 

^ ~  ~   + 1C'VkVV        - (140) 

Case (d):  The sphere is distortionally locked for a 5 r 7 t 

and volumetrically locked for t = r T b. 

Again we restrict our considerations to the boundary conditions 

r =a, u=ua, and r =b, ß'y = ö'yg . This case follows from case (c) by 

= k for t=r=b.  We obtain mm 

Expressions (I32) to (137) continue to remain valid.  Equation (lUl) is 

the condition under which case (d) is valid. 

VII DISCUSSION 

In Figure 6 we introduce the system of rectangular cartesian 

coordinates u/u ,  K^{ / &    . The plane u/u&,Gyf/r can be divided in 

regions according to the type of behavior of the hollow sphere.  We shall 

have four regions in the plane corresponding to the cases (a), (b), (c), 

and (d).  Our problem will be to determine these regions.  Although the 

discussion refers to any values of the quantities K / G, a/ b, 
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k ^0, and k,^0, the regions shown in Figure 6 are calculated for 

the specific numerical values K/G= 2,  a/b=0.50, ^=-0.2, k,» 1. 

For Volumetric locking to occur over the entire sphere we 

must have 

which follows from condition (121). 

Condition (1^2) represents a straight line the slope of which is given 

by the ratio -ha  /b •  Therefore, it is seen that the slope of this 

straight line is always negative and depends on the ratio a/b only. 

The intersections of this straight line with the two axes have the co- 

ordinates 

6"vf •M^^g-; 
f,   ff.o 

(1U2) 

(1^3) 

It is seen that this line intersects the two axes at negative values 

of the variables. 

For the specific numerical values considered line (1^2) has 

the equation 

Cv,       Gr 
as is shown in Fig. 6 as line FC. 

Foi distortional locking to occur over the region a = r = t 

of the hollow sphere it is necessary that the condition 

5&*     G^V^F"'   T*lV 

(ihk) 

(1*5) 
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will be satisfied.  This condition follows from equation (131).  It 

represents a straight line of slope 3 K/G.  The position of this line 

depends on the value of t.  For t=a we have 

while for t = b we obtain 

&  a        5- & g       &-        J    ' 
These are the two limiting positions of line (1U5).  The one position 

corresponds to incipiant distortional locking, while the other position 

corresponds to complete distortional locking.  By changing the value of t 

line (1^5) moves parallel to itself. 

For the specific numerical values considered line (lh.5) has 

the equation 

The two limiting positions of line (1U5) have the equations 

and 

and are shown in Fig. 6 as lines BC and ED. 

For a given t the elastic region will lock volumetrically when 

(1W) 

(1U7) 

(1U8) 

(11+9) 

(150) 

(151) 
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Hence,   equations   (1^5)  and   (ihS)  give 

s   ■'&   "-    J   'gi 
Equations (151) and (152) are the parametric equations of the line 

representing distortional locking for r = t and volumetric locking for 

r = t. For t=a this curve passes by the intersection of the lines (lU6) 

3 3 
and (1^2).  The slope of this line is given by-Vt /b .  It is seen that 

this line is tangent to the line (1^2) at t s a and has a slope equal to -k 

at t = b. 

For the specific numerical values considered line (151), (152) 

has the equations 

(153) 

U t     0* 

S •>  b' 

and is shown in Fig. 6 as line CD. 

In this discussion we assume k, \ 0 and k /0.  The second 
1'      m ^ 

assumption does not need any justification in view of the fact that we 

consider volumetric locking to occur only when the decrease in volume 

per unit volume reaches a certain limiting value.  On the other hand it 

is necessary to prove that k-, is indeed positive for the type of boundary 

conditions selected in this problem.  This can be shown by considering the 

elastic range.  Equations (65) and (66) give 

6 - b   - ^t t1^ 

which together with equations (1C4) and (23) show that when distortional 

locking occurs 

*,-»(*«-*)£/>'#-I"1«) (155) 



27. 

Therefore,   when 

U^\Sj (156) 
57 '  3K 

we have k/>0.     Condition     (156)   is always    valid when    (j',   <0    and 

ua>°- 
In Figure 6the region CfCD represents the values of the load 

for which the hollow sphere is completely elastic (restricting ourselves to the 

'•ase ua/a^O Cgyv^o). Line FC represents the values of the load for 

which the entire sphere is volumetrically locked.  Line CB represents 

the condition of incipiant distortionai locking.  Line ED represents the con- 

dition, of complete distortional locking of the sphere.  Line CD represents 

the condition of complete locking -- partly distortional, partly volumetric. 

Region BCDE represents the values of the load for which the hollow sphere 

is partly distortionally locked and partly elastic.  Finally line AG 

represents the condition for which the portion &£  r =    —— of the sphere 

is distortionally locked whereas the remainder of the sphere is elastic. Of 

course the point G represents the case when the above mentioned elastic 

portion of the sphere becomes volumetrically locked. 

It is interesting to see that when the loading condition of the 

sphere is represented by a point of the line FCD an increase of u/a without 

an appropriate increase in Q^g/^will revert the sphere, at least partly, 

d ( u^ /<XJ ) 
to the elastic condition.  The ratio  '-  necessary for keeping the 

sphere volumetrically locked is constant along the line FC and it depends 

on the ratio a/b only.  The above ratio for keeping the sphere locked - 

partly distortionally and partly volumetrically - is variable along the 

line CD; it decreases from the previous constant value to -k. 



The question arises of what happens when the ratio 

28. 

d (<rvt/G-) 
is such that the loading condition of the sphere tends to move below 

the line FCD or to the right or below the line DE.  In these two cases 

the boundary value problem changes because when the sphere is completely 

locked as is on the lines FCD and DE both values u and ii are fixed and 

the problem becomes one of finding the stress distribution for given 

values of u and u .  This problem will not be discussed in this report. 
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