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I INTRODUCTION

The purpose of this study is the exploration of the rheological
concept of the locking material. This concept has been introduced by
Prager(l). In the one dimensional case 1t can be represented by means of
the stress-strain diagram in Fig. 1. It 1s seen that at a given value of
the strain,€=§, the stress-strain curve becomes a straight line parallel
to the G -axis.

In another paper(e) Prager introduced the concept of the elasti
solid of limited compressibility. Such a solid is linearly elastic as
long as the mean pressure remains below a certain critical value. As the
critical pressure is exceeded, the mean compression remains at the level
associated with the critical pressure, while the ratio between correspond
ing components of the deviations of stress and strain continues to have
the elastic value 2G. This solld can be represented by means of the two
curves in Figs. 2a and 2b.

By a synthesis of the two concepts introduced by Prager previ-
ously, Phillips(3) introduced the concept of the ideal locking material
which 1s represented by means of the two curves in Figs. 3a and 3b. It
is seen that such a material may lock either by compression or by shear.

In this study the work of Prager and Phillips will be extended

by introducing the elastic-locking material represented by Figs. La and

kb, This material is an extension of the ideal locking material. This

(o4

(1) W. Prager: "On Ideal Locking Materials", Trarsactions of the Society of

Rheology, vol. I, (1957), pp. 169-175.

(2) W. Prager: "Elastic Solids of Limited Compressibility”, Proceedings
International Congress of Applied Mechanics, vol. 5, (1957), pp. 205

(3) A. Phillips: "A Theory of Ideal Locking Materials"”, Technical Report
to Office of Naval Research, Contract Nonr - 60912, February 1958.
appear in vol. III of the Transactions of the Society of Rheology.
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2.

extension, however, introduces considerable complications in the sblution of
problems.

The study of the elastic-locking material will give us information
about the correlation between locking in shear and locking in hydrostatic
compression, when the respective diagrams posses elastic regions. A pro-
cedure will be shown for solving boundary value problems for such a material.
This procedure differs in some respects from the procedures used in elasticity
or plasticity because of the possibility of locking either in shear or in
hydrostatic compression. This procedure will be explained by solving the
problem of the thick-walled hollow sphere under internal and external pressures.

In the rest of this paper the following notations will be used:
G, = (e, +5, +CS50)/3

€n = (6,,1‘56,*650)/3 y
£ -4 [lorad gty
° "3 R VR M

IT THE THICK-WALLED HOLLOW SPHERE

In this study we shall consider the problem of the thick-walled
hollow sphere under internal and external pressures. The material of this
sphere will be of the following type. It is assumed that for the change in
volume the material follows the law shown in Fig. 5. For the change ir shape,
it is assumed that there exists a locking condition, g = a; = k = constant,
so that for values X°<k the change in shape follows Hooke's law, whereas for
5;- k the change in shape follows the stress-strain relations:

G -6 = 3%

A T )

L v
o

(1)

;) - LD(X;;/Z)




where) is a proportionallty factor. Finally we can never have (Y') k.
According to the terminology introduced in the previous article

this is a locking material with limited compressibility. As this material

follows Hooke's law wnen it i1s not locked, we shall call it an elastic-

locking material.

In what follows the hollow sphere will have the internal radius
a and the external radius b. The external pressure will be denoted by _5’76
and the internal pressure by -6’,,0_ . The displacements of the particles
of the sphere will be radial and those of the internal surface will be
denoted by u, whereas those of the external surface will be denoted by Uy, -

We obviously have the following four cases:

g £m<&mand &(4 ; this means that the material follows
Hooke's law.

2, £m<&w and J.:k ; this means that the change in volume
is elastic while the change in shape occurs under conditions of distortional
locking.

%o éw\,:km and d/.<f< ; that is volumetric locking occurs while
the change in shape is elastic. :

L, ém,-_— kw a:nd &:*{( ;.there is simultaneous volumetric and
distortional locking. )

It should be remembered that at a given s.tate of loading only one
of these four cases can materialize at a given point of the sphere. However,
for the same .load but at two different points two different cases may be

eppropriate.

III THE FOUR DIFFERENT CASES

Case 1 - The material follows Hooke's Law:




The volumetric relation is:

G =3KE, (2)

where
" E
3K = ——1u
([—2V

The distortional relation follows as

S, =06, = ?—G(éi"ém) (3)
where

G = E/2(1+V)

From these equations we find

Gy =Gy = 2G(Er=Eg) (5)

The strain displacement relations for infinitesimal strains

are:

£, = clu,/oé r (6)

o = /T (7)

From eq. (4) we obtain
G = K <é, + 2_69 -l
o =7 v ) 7 O (8)

Substituting eq. (8) into eq. (5) we find

G, =46 (6, -¢) T K (&, +2¢) (9)




The equilibrium equation is:

dsy , 5 6;;% -0 (10)

dr

By substitution of egs. (5) and (9) into (10)

d.“r (11)

o(.é., oLé, dé, . oléy G
48 x(2 ) S e
Then by substitution of egs. (6) and (7) into (11)

OLzu, 2 OLu,
drz T dr "rl =0 =

The solution of eq. (12) is

w=AT+ B’Y‘_L

(13)
where A and B are integration constants. Then from eqs. (6) and (7)
we obtain
2B
E’r = A - 3 (1k)
=]
Ce = A+ -3 (15)
and from eqs. (8) and (9) we have
6, = 3RA 4G RT3 (16)
Gy = SKA + 26’5“»"-"> (17)

Equations (13) to (17) give the displacement, strains and stresses

in terms of the radius r and of the two integration constants A and B.

=




Case 2: The material is volumetrically elastic and distortion-

ally locked: ém,<4m and Ye= é .

The volumetric relation is
G, = 3KE,. (18)

The distortional relations are

do = % (19)

and
I
6 -6, = ) p (20)
o T 2 2. VZ_
o =—::[(éf¢p) "(Ce'éy)*’(éw'év)‘} (21)
Hence egs. (19) and (20) give
e =£3E- <6e—' ) = % (22)
from which
34
¢ &, = = 4

where k.L is a new material constant.

Using egs. (6) and (7), eq. (23) becomes

%—%1—k.:0 (211»)

The solution of this first order differential equation is

W = C,r—k,vfw"r (25)




then

or

because

Equation (25) gives the displacement. The strain components are

6T=Cl—kl(’ 4-6%'1’)

& = C| —‘{(, eVL’?"

The octahedral shearing strain can be written also as

.

Ve&—ém)

—

&

o [

A

& —¢

wme

Ky [(év— E,) + ‘(éo-ew)ﬂ (é‘r _ ém)’“] A

6',;—6” =

2

(3

(c,;—ém)

(26)

(27)

(28)

(29)

(30)

2 1k
[(&”—CM)L+(¢°-—£M) +(éT—fm)] =—éV§—k =\/—-§:‘k'/




Then from egs. (30) we obtain

Gy - q,v__(g (32)

From eqs. (31) and (32) we find

6, —G, = V;/\ (&= &) (33)

I
The volumetric relation G'W=3K§m can be written as

6, +26G, = 3K (& +2¢) (34)
From the last expression 60 is found to be
- 3 -5
G = & |<(£*+2_69) > S, (35)
Substituting eq. (35) into eq. (33) we obtain

2VZ A '
G, = T(C,-—éo) + K(é,,+ Zéo) (36)

Introducing eqs. (36) and (33) into the equilibrium equation

A Gy 67, - Se
+ .
dr G

S0 (37)

we obtain

2Vz d ) o
Y3 [(&*—ée);:’ "'/\O'L—T (év’ée)] + -
3




Using the strain-displacement relations (6) and (7) eq. (38)

becomes
d d A 2 o 2
O—L'f,u;r‘f—) (2 + Zr_* )(ow- t 20— —hOl (39)

Separating variables

3
+ «
A+ g kK
Y
dw 2du _ 2u
dyt T dr v <
T d (40)
r T dr

Substituting eq. (24) to the right side of eq. (4O) we obtain

= —3=_ (b1)
)‘+2VE %, K r

and from equation (4l) we find

‘6;1,()\-1-__& K\ —3€n~r+fnczd (42)

where 1n 02 is the integration constant.

Then

- C:Z
AE S ,@v“ %, I (43)
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Thus from eq. (36) we obtain

vz C
5, =—- = + 3C K = 3Kk, fav (1)
3 rs
and from eq. (35) we obtain
3 Kk, C
66 =3KCI —3K'{<|‘en\r_—z—"+3-ﬁ—;’:§ (45)

Case 3: The material is distortionally elastic and volumetric-

ally locked: ¢ = Lm R Y°<k :

The volumetric relation is

. -k

na, WA

The distortional equation is

As the material is volumetrically locked we obtain

- . (46)
b, + 2ty = 3K,
which with the help of egqs. (6) and (7) gives the differential equation
d
“’+z-——s4< (47)

The solution of this equation is
-2
= Cr "+ k. T (48)
Then from eqs. (6) and (7) we obtain

£ =¢<m—26v‘s (49)
Ee = 'km ""C’Y—s (50)




and as we have

8, -6y = 2G (&-¢,)

we obtain

-3
G;; ~Gg = — EGCr

With the help of the equation of equilibrium we find

-3
d&s 12 gy ? =20
dvy Y

Integrating we have

6, = C, —46C"

then from eq. (52) we find

fzs_ = C:o + 2.(;'C:'V-’3

Thus, we have the displacement u , strain components éw; 68
and stress components y
3 G;U 69
Case tt; Thé material is distortionally and volumetrically
locked :

=k
(s

It can be shown that this case can not occur.

Indeed, let us

compare the expressions for the displacements which follow from the two
equations:

(o2 -kw (58)
fo= K

(59)

, (56)
& .

(57)

11.

(51)

(52)

(53)

(54)

(55)
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They are
w=t v + Cvr* (60)
w= k- C,rénwr (61)
The right hand terms of the egs. (60) and (61) are not the same.

Therefore this case can not occur.

IV REGIONS OF LOCKING

For a very small load we have case 1 at every point of the

sphere. In this case
S &

b= £,+2é&= A

My

It is seen that ﬁy’ky= max at r = a and thaté”Eas the same value
at all points of the hollow sphere.

Suppose that in the process of loading éhpecomes equal to 4<wv
before {_o- t"v becomes equal to k. Then € = ’i<w at all points of the
sphere simultaneously. Hence, volumetric locking will occur at all points
at the same time, and consequently distortional locking cannot occur at
any place.

If on the other hand, during the loading process QQ_'é‘V becomes
equal to klat r = a, before Q“Pecomes equal to k)then we shall have distor-
tional locking at r= a, while the rest of the sphere is still elastic. By
increasing the load, the region of distortional locking will expand at the
expense of the elastic region, until either the entire cphere becomes dis-
tortionally locked or until for some value of the load the still remaining

elastic region becomes volumetrically locked.
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We shall consider now these possibilities analytically:
a) The entire sphere is elastic, then we have the case 1 over

the entire sphere. Therefore,

W= Ar+ BY_L

A-2py®

£

ée'-: A"’b\'f“s

= 3KA-4GBY S

6:1'
6, = 3KA +2GB7™?

b) The entire sphere is locked volumetrically, then we have

over the entire sphere the case 3. Hence

w= kvt Cvy*
é.r - 4<M_ ZC"V-'S
6, = C —4GCr~*

-3
6'9_ =2 CO + ZGC‘Y

c¢) The sphere is distortionally locked for r = a to r = t and
it is elastic for r =t tor = b. Then we have case 2 for a g'r §t and
C%elfwf,gréb.

Hence, for a,g r é it
(w), = C v -t vlnr
(€y),= C, =k (1 ~lnv)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(T4)

(75)




C, —kAnr

i

(&),

(6"7)0" = - -z—é—v——?ica'y‘s-k 3C' K - 5K%'4w"r

(GD)aL = 3KC» -BK'f('ZVLW =

and for t éréb

l

O"‘)e_ Ar+Br =
(&), = A-2By™"

Ce)e = A+ g~

(64)e = 3 KaA—-4GRy*

(66), = 3I<A+ 262773
with the continuity conditions

('G"')OL = (a/)c of r=tf

(U-)OL = (U«)e o,,{’ Y= L-

(%k—{éﬁc=&|c¢ T=t

d) The sphere is distortionally locked from r =a tor = t

and volumetrically locked fromr =1t tor = b.

at rétandcase3fort_£r§b.

For a%r .ft

(u)y = Cr =%k, rinr
(&)= C =%, (1+4n)
(€)= C — 4, bnr

Then we have case 2 for

(76)

(17)

(78)

(79)

(80)

(1)

| (82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)



Lo

(6)a = — 2 C,v w30 K = 3Kk, eny o
(Gp)y, = 3KC, ~3K% tnr - 3K{( V_C . (91)
For tSvy £4
(u), = A+ Cr7° (92)
(&), = &, ~2Cr™° _—
(Ce)v = {<M+ Cvy™? (o)
(,), = G-4GCy™> .
(S,), = C,+2GC = (96)
The continuity conditions are
w)y =(w), ot w=t (97)
(6,)y = (&) ot vzt (98)
(&), = (&), = kol 7=l (99)
2 (Egly+ (&) = 3k af 7=t (100)

VvV THE BOUNDARY CONDITIONS

The displacement of the inner and outer surfaces will be denoted

by u, and Uy, respectively. The four quantities U, ub,CT 6;b cannot

ra ’
be selected independently.
Indeed in cases (a) and (b) there are two constants to be

determined; C, and C in case (b), and A and B in case (a). Hence only
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two boundary conditions are required and are possible. Thus, the follow-

ing six sets of boundary conditions are in order.

u =u at r= a
a
u=ub at r=>=o 000 adt
u=u at r=a
a
G _6 _
" ra at r=a 00 0 o dblt
u= u, at r =38
G - G =
. b at r b 00 0 0 dhabdl
u= u, at r=>=»
= 6 -
Cir e at r = a 00 0o dV
u = u.b at r=>=,
c - © at r=>= celV
r rb
g =0 at T = a
i3 ra
=0 at r=>% ee. W VI
r rb

Similarly in case (c) we have five constants to determine -
i.e. Cl, C2, A, B, t - and three continuity conditions at r = t are at our
disposal. Hence, only two boundary conditions are required and possible.
It will be seen in the next section that case (d) is a limiting case of (c).
It follows that for case (d) the six sets of boundary conditions are in

order.

VI THE SOLUTION OF THE PROBLEM

Case (a) Elastic Case:

In this case the constants A and B can be determined for any one

of the above six sets of boundary conditions. As an example we consider
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the set
w= W, VVf 7 &

GY= GY" Wt' Y’;g

A and B are determined by using eqs. (64) and (AT):

W, = Ao + 60:2' (101)

-3
Gy s3kA —4GBHE (102)

from which
3
Ug

qG?{% +6’r€

A = (103)

W,
R = SOl - 6y¢ 3
4G 2 43K & (104)
€;3

Substituting A and B into egs. (13), (16) and (17) we obtain the expressions




AG g g Teve a3k - 6
~ 4 @ " TS
3K 6 6> 4G
o O
= 46 2 5% + 6ug = 30c — Gy
) 4G 0u1 * g‘fkj 3
16 & D+ =
3K § 6* 26

18,

ooy~ (206)

3
a7 (107)

These expressions can be written in dimensionless form in

terms of the variable ( ? ) as follows:

Yo
a

3K — 6o

4G

3
gf +3K

.
& & (108)
[
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3
Uy O Gy K 4o _ B
S _ Az m * & _ Sy & o),
G iG a” 3K ol v
e = —
5K b 4 b
Li_l'f_“'g‘s 6v¢ S‘i&— ﬁi 3
3 1 r
<5 4 & fai + ) EE.EE: + EL.fEL
3 . 2 [

Case (b): The entire sphere is volumetrically locked.

In this case the constants Co and C can be determined for one
of the six sets of boundary conditions except set (1). Indeed the
expression of u, equation (69) includes only one constant and therefore
either ug or u would be sufficient to define this constant.

The volumetric locking will occur when the following condition

is satisfied:

év*aae =3kW\¢

As an example let us consider again set (IV) in which u = ug,

at r= a, and 6;:§b at r= b. In this case

-2
U, = .o+ Ca (111)




from which substituting (111) into (69) we obtain

3 2
w ='{<hv (l —-é%% )Lr +—.§;2 Ua

Using eq. (72) we obtain
-3
fs7g = C:o et Ai (;'(: t)

and with the help of eq. (111)

o 3
G =Gt "6(% -‘{?w)(T,—)

is found. Substituting C and C, into egs. (72) and (73) it follows

6, = Gg t46G (’zt' - h~)(:.- ._.__.

o r20( A

Writing eqs. (113), (116) and (117) in dimensionless form we find

= %, (1 - %)(Et/(i) e

3 3
S CRSCEE

Cﬂ

3
St ro (g - w)(ab, E

Volumetric locking will occur when in the previous case

Y EE

A = kp,. That is when
U, OL°

46z 57 + 6
y . o=
49 C}-I;y +3K

This gives a relation between u, adeS;b. For a given u, there
corresponds a value of fs;b for which volumetric locking over the

entire sphere will occur.

20.

(113)

(114)

(115)

(116)

117)

(118)

(119)

(120)

(121)
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Case (c): The sphere is distortionally locked at a Lrg t

=

and elastic t é r fb.

We shall restrict our considerations to the case where at r=a,

we have u=u, and at r=b, we have 6r=?‘:)' Eq. (T4) gives
u,= C,a — % odno

From eq. (82) we obtain

64 = 31<A — 4606

Using the continuity conditions at r=t, that is egs. (84), (85) and

(86) we obtain

Ct-ktint=At+Bt =

2V T30k - 3Rk It = 3KA _uert
3Bt = %,

The four unknowns Cl’ C2’ A and B are determined from egs.

(122), (123), (124), (125) and (126) in terms of u,, O'r

band Vo

%«

|

= Y I
A"c«,*%'fnt- EX

)

d
IR

+

AR~

3

S

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)
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The value of t will be determined from the following equation

WU, a ’{<, 4 é"s
S p = SK(a - K, 4”'[’_— = —3—) - TGf"?

Substituting egs. (127), (128), (129) and (130) into egs. (74), (77),

(78), (79), (82) and (83) the following expressions are obtained.

For a —fr

"

£ (ohzes)

3

e -(E et hpr s (i)
2 e
5 SE(rkted &) 9E
o

Yoo (g R b E)(L)- L &k _»:(,_t'_‘
U L MENT) TR i U T
6. K [ Ua 3 ¢

2 esg(gentg-b)-44 G

6q K k). 2 3
‘c?=3a‘(%?‘*4'e”%’T o=

Distortional locking starts at r=a when t=a.

Eq. (131) gives

the relationship between u, and Grb for which distortional locking will

start:

4e
R

5 =3r(2-%) - s

3
3

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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Volumetric locking over the entire sphere can not occur when
distortional locking has already occured over part of the sphere. Hence,
whether volumetric locking will occur over the entire sphere first or
distortional locking will occur at rza first depends on which of the egs.
(121) or (138) will be valid first. Calculating€&, for t £r b in case

one obtalns the following relation:

b +2¢
é =2 V:-(i"wl/ﬁnﬁ-éf.:/\

o 3 o e
Hence, ¢ 1is constant in the region t 5r £v In the region a® €t we
» G =r £b. g =r =
obtain
é = —%& + '{(, en&- -
m o Y KY
Case (d): The sphere is distortionally locked for a < r & <

and volumetrically locked for t ér <o,

Again we restrict our considerations to the boundary conditions
r =a, u=uy, and r="h, 6y= 6;6 . This case follows from case (c) by

putting € =k for t €révb. Ve obtain

Wa o .
—07"4‘4'/@“/?-'3—' 4w

Expressions (132) to (137) continue to remain valid. Equation (14l) is

the condition under which case (d) is valid.

VII DISCUSSION

In Figure 6 we introduce the system of rectangular cartesian
coordinates u/ua, 6-:,; /6 . The plane u/ua, 57,(/6‘ can be divided in
reglons according to the type of behavior of the hollow sphere. We shall
have four regions in the plane corresponding to the cases (a), (b), (c),
and (d). Our problem will be to determine these regions. Although the

discussion refers to any values of the quantities K /G, a/b,

(c)

(139)

(140)

(141)




2k,
km<:0, and kl;>0, the regions shown in Figure 6 are calculated for
the specific numerical values K/G=2, a/b=0.50, k =-0.2, k)= 1.

For volumetric locking to occur over the entire sphere we

must have
3
& U €t Q,J I< 142
?I“’gf“’l‘w("p’+3; =0 o

which follows from condition (121).

Condition (142) represents a straight line the slope of which is given
by the ratio —ha3/b3. Therefore, it is seen that the slope of this
straight line is always negative and depends on the ratio a/b only.

The intersections of this straight line with the two axes have the co-

ordinates
We. 3k 4°
51( = a} ‘( (/(fo._,
_G_'_—-'{(M(",é-r'f'sg) fO'V E:O

It is seen that this line intersects the two axes at negative values

of the variables.

For the specific numerical values considered line (142) has

the equation

o, Gy (1)
—— 2_ — 7 =
o / T + 2,60 0

as is shown in Fig. 6 as line FC.
Foir distortional locking to occur over the region a,f'r f‘t

of the hollow sphere it is necessary that the condition

.

K & <K G S =l X
e T g rig i gt hipe &2
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will be satisfied. This condition follows from equation (131). It
represents a straight line of slope 3 K/G. The position of this line
depends on the value of t, For t =a we have
3
3.K_(f.2-.-—_€.;£_ Ek-.‘l/f(.oi;o (1L6)
- & & - v 3 gl
while for t=b we obtain
35%_‘&(4_3&%&»&—1‘(?'—[’% =0 (147)
G o G G ¢ ¢ 37
These are the two limiting positions of line (145). The one position
corresponds to incipiant distortional locking, while the other position
corresponds to complete distortional locking. By changing the value of t
line (145) moves parallel to itself.
For the specific numerical values considered line (145) has

the equation

3

Wo _ 6bv¢ a _4 &

6 == = +6'€M4—F- T (148)
The two limiting positions of line (1L5) have the equations

Ue _ 6 - 149

z — = —2.166=0 (149)
and

w Cvg

a‘\'——G’——7L{88Q =0 (150)

and are shown in Fig. 6 as lines BC and ED.

For a given t the elastic region will lock volumetrically when

i\.‘.:ﬁ‘w"’ "(—'.—&l’ehi (151)
o 3 =
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Hence, equations (145) and (148) give
3
%g- :Sgk,w— %k%! (152)

Equations (151) and (152) are the parametric equations of the line
representing distortional locking for r é.'t and volumetric locking for
r 2t. For t=a this curve passes by the intersection of the lines (146)
and (1L2). The slope of this line is given by-h‘t3/b3 . Tt is seen that
this line is tangent to the line (142) at t=a and has a slope equal to -k
at t="b.

For the specific numerical values considered line (151), (152)

has the equations

g&. = 0,1%% - dn
o &
(153)
St . _p-4b
G b
and is shown in Fig. 6 as line CD.
In this discussion we assume kl>O and km <O. The second
assumption does not need any Jjustification in view of the fact that we
consider volumetric locking to occur only when the decrease in volume
per unit volume reaches a certain limiting value. On the other hand it
is necessary to prove that kl is indeed positive for the type of boundary
conditions selected in this problem. This can be shown by considering the
elastic range. Equations (65) and (66) gilve
3B (154)

ée_ t'v T g3
which together with equations (104k) and (23) show that when distortional

locking occurs

O ! as
k = 3(F3K -Gye),%/("‘*p +3K) (155)
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Therefore, when

o > Sut (156)

7y 3K
we have kl> 0. (Condition (156) is always valid when (;:’c <O and
ua>0.

In Figure 6the region OFCD represents the values of the load
for which the hollow sphere is completely elastic (restricting ourselves to the
ra.se Ua/a)O)qslt@). Line FC represents the values of the load for
which the entire sphere is volumetrically locked. Line CB represents
the condition of incipiant distortiona! locking. Line ED represegts the con-
dition. of complete distortional locking of the sphere. Line CD represents
the condition of complete locking -- partly distortional, partly volumetric:
Region BCDE represents the values of the load for which the hollow sphere
is partly distortionally locked and partly elastic. Finally line AG

represents the condition for which the portion afr é- 2 a of the sphere

it 2
is distortionally locked whereas the remainder of the sphere is elastic. Of
course the point G represents the case when the above mentioned elastic
portion of the sphere becomes volumetrically locked.
It is interesting to see that when the loading condition of the

sphere is represented by a point of the line FCD an increase of ua/a without

an appropriate increase in Ggg/é}will revert the sphere, at least partly,
d (wn/a)

d (G‘y‘/G)
sphere volumetrically locked is constant along the line FC and it depends

to the elastic condition. The ratio necessary for keeping the
on the ratio a/b only. The above ratio for keeping the sphere locked -
partly distortionally and partly volumetrically - is variable along the

line CD; it decreases from the previous constant value to -U.




28.

d (o /r)

d (6,¢/&)
is such that the loading condition of the sphere tends to move below

The question arises of what happens when the ratio

the line FCD or to the right or below the line DE. In these two cases
the boundary value problem changes because when the sphere is completely
locked as is on the lines FCD and DE both values u and w, are fixed and
the problem becomes one of finding the stress distribution for given

values of u, and Uy - This problem will not be discussed in this report.
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