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PREFACE

This manual was prepared at the request of Code 375 of the Applied Science Branch,
Bureau of Ships, in order to provide guidance to design agencies for the selection and appli-
cation of resilient mountings to shipboard equipment. All the mounting arrangements expected
to be encountered in practical installations have been treated. For the more commonly en-
countered arrangements, the computations were simplified and svstematized as much as nossi-
hle, and charts were used to reduce further the computational work.

Natural frequencies and normal modes of resiliently mounted equipment can now be
calculated by means of high-speed computers, The David Tavior Model Basin has coded one
veperal form of the nroblem for the UNIVAC. Guidance on the data needed for UNIVAC cal-
culation is given in BUSHIPS Notice 10462 dated 6 Julv 1956, The Klectric Boat Division
of the General Dvnamics Corporatior also has coded a general form of the problem, in this in-
stance for IBM machines. This code has been made available to the Portsmouth and Phila-
delphia Naval Shipvards,

Numerois individuals of many groups contributed substantially to the compilation of
this manual by many concrete suggestions on the scone of the manual, on information required
for calculating natural [requencies, and on considerations and precautions in the selection
and application >f mountings. Further supgestions were made in comments on the several
preliminary drafts of this manual. Those who should be specially mentioned include Messrs.
W.W. Jackson and C.M. Banfield of the Portsmouth Naval Shipyard, CAPT P.G. Schultz, USN,
Me. A.C. McClute of the General Dyvnamics Corporation, Rlectric Boat Division, and Messrs.
P.J. Shovestul and F. Schloss of the Engineering Experiment Station. Comments on drafts of
the manual were also made by personnel of the Naval Research Laboratory, the Mare Island
Naval Shipyard, the San Francisco Naval Shinvard, and Codes 371, 436, 503B, and 525 of the
Bureau of Ships. Mr. Roy Henderson of Code 375 of the Bureau of Ships contributed greatly
by suggesting sources of information, correlating the contents to Burcau of Ships develop-
ments, specifications, and instructions, and by suggesting changes in the arrangement of the
manual,

Contrihutions of Tavior Model Basin personnel were as follows: Section A5.1 of
Appendix 5 was prepared by Mr. R.T. McGoldrick and the remaining sections of Appendix 5
ard Appendix 6§ were prepated by Dr. K., Kennard, Dr. K.H. Bareiss developed a chart for
the solution of cubic equations, and Mr. R.D. Ruggles suggested a combined procedure for
determiming centers of pravity and moments of inertia. Dr. Mark Harrison and Mr., Harey Zich
were consultants on noise and shock., Messrs. W.D. Schutt, .. Wagner, and R,R. Milam

helped w prepare and checked the illustrative problems, charts, and figures,
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NOTATION

Coefficients in the cubic equations for solution of natural
frequencies of mounted assemblies with one plane of symmetry

Clearance around resiliently mounted equipment, inches

Numerical factor or ratio; also used as viscous damping
constant

Maximum expected deflection of the mounting in its axial
direction in a base mounting arrangement, inches; also used
as a constant in derivation of equations for frequencies of
assemblies with symmetry

For four mountings with mirror symmetry of equipment with
two planes of vibrational symmatry, Dy, /), ), are eaual,

respectively, to the absolute values of the coordinates of

the effective points of attachment or X, ¥, Z, inches.

For other cases Dy, Dy, D , are equal to the absolute values of
X, Y, Z for four equivalent inountings, and expressions are
given for Dy, D ys DU 7 of these equivalent mountings under

the different cases of mounting arrangemments, inches

Perpendicular distance between parallel axes, inches

Maximum expected deflection of a mounting in the radial
direction, inches

A function; or a force; or amplitude of a sinusoidal force

Forces in the z, y, and 2z directions, respectively, due to
displacements of the effective point of attachment of a
mounting

Natural frequency of vibration of a resiliently mountod
asseribly, cycles per second

Natural frequency of vibration of a resiliently mounted
agsembly in the higher rocking mode in a plane of
symmetry, cycles per second

Natural frequency of vibration of a resiliently mounted
assembly in the lewer rocking mode in the same plane
of symmetry, cycles per second

Natural frequency of vibration of a resiliently mounted
assembly in a rotational mode, cycles per second

Natural frequency of vibration of a resiliently mounted
assembly in a translational mode, cycles per second

Static load on each base mounting in a braced mounting
arrangement, pounds




g Acceleration of gravity, 386 inches per second squared
gy (Zk,Y)?
iy (SkyZ)?

H Perpendicular distance from the plane of the mountings®*
to a point on the equipment in a base mounting arrange-
ment, inches

h Height of equipment, inches

*In more precise terms,this would be the effective point of attachment and may differ among various types of
mountings from the geometrical center of a mounting, especially in the Z direction. To determine this point
requires judgment on the part of the design engineer, Iflustrative examples are given as follows for various

cdesigns of mountings:

Approximate effective point and XY plane of attach-
ment for BST (15 cps) mounting. Point is about mid-
height of mounting on Z axis neglecting small de-

flection under load.

Approximate effective point and X} plane of
attachment for CES type A6L (6 ¢ps) mount-

ing. Due to design of mounting, poud on
Z axis is about midheight of the rubber on
the compressed side ¢l the mounting under

load. llere the large static deflection un-

der load must Le considered.

viti




! \Mass moment of inertia of equipment,
pound-inch-<econds squared

Iyilyod, Mass moment of inertia of a mounted assembly about the
X, Y, and Z axes, respectively, pound-inch-seconds saunred
I 1T, Mass moment of inertia of a mounted assembly about the

z,y, and 2 axes, respectively, pound-inch-seconds squared

N Products of inertia of a mounted assembly with respeci
to the zy, y2, and zz axes, respeciively

K Constant used in determining the mass moment of inertia
of an assembly by trifilar suspension

Kyv Spring constant of an entire set of mountings relating a
displacement in the y direction with the restoring force
in the x direction and, conversely. A displacement v
in the positive y direction evokes a force —A v in the
z direction; if vand K are both positive, the force is
directed toward ~r. Similarly, a displacement v toward
+ I evokes a force ~HK, " n the v direction

K3 Spring constant of an entire set of mountings giving
either the restoring force in the 1 direction due to unit
rotation about the y axis or the restoring torque about
the y axis due to unit displacement in the z direction.
The sign convention corresponds to that for K

ete. Spring constants of an entire set of mountings defined
oy obvious extension of above definitions. For K,
Keas otc., the same axis is used twice

Trw? \ua‘

k Dynamic spring constant or effective stiffness during
vibration of a mounting with the same stiffness (re-
storing force divided by displacement) in all directiors,
pounds per inch

kyo hy, &5 Spring constants of individual mountings in the direction
of the X, Y, and Z axes, respectively, (always consid-
ered positive)

k, Axial spring constant of an individual mounting (always
considered positive)

k, Radial spring constant of an individual mount {(always
considered positive and independent of direction in
a plane normal to the axis of elastic symmetry)

k. *Cross stiffness” of an individual mounting, that is, a
quantity determined by the restoring action with respact
to the ith coordinate due to a displacement with respect
to the jth coordinate. Either ¢ or j may bo a rectilinear
or an angular coordinate




o Fxyr €tC Spring constants of individual mountings giving the
’ restoring force in the direction of vne of the axes
indicated in the subscript excited by a unii displace-
ment of the effective point of attachment of the
mounting in the positive direction of the other axis
indicated in the subscript. The sign convention

corresponds to that adopted for the A" s, ete.

L Liength of supporting wires of trifilar suspension,
inches

L. L, Distance to planes of mountings parallel to the XY

plane in wultiplane arrangements with three planes
of symmetry

l LLength of equipment, inches; distance, inches

Mo.ou Restoring mowents about x,y, and 2z axes, respec-
tively, due to the displacement of the effective
point of attachment of a mounting

13

m Mass of the unit, subbase, or assembly, —
pound-seconds <auared ner inch ¥

b Number of mountings

n £
2m

Py 9i Terms derived from the 4’s and m's of a mounted

assembly and used in the derivation of the fre-
quencies for symmetrical cases

r Reaction force, pounds

r Distance [rom the supporting wires to the center of
gravity, i.e., center of platform, of the trifilar
suspension, inches

Tysfystz Radius of gyration of a mounted assembly about the
X,Y, and Z axes, respectively, inches

S Distance between centers of the most widely spaced
mountings in the ditection being cunsidered, inches;
also used as constant derived from parame‘ -s of
mounted assembly in frequency equations ...
symmetrical systems

S“, 812’ .’513 Constants derived from spring constants of inountings
used in analysis of symmetrical cases
T Period of oscillation (time in seconds from one

exteemity to the other and back to the first, i.e.,
time of one cycle), seconds; also used for
transmissibility




X, V. 2
\, 7, 4
z

r,y, 2
T ¥y 4
z, Y, 2
a, ‘l;y Y
p

&

@xrdyrdg

TR ¥ o,

n

Small displacements of the centor of mass of the
mounted assembly in the z, y, and 2 directions,
respectively

Weight of mounted squipment and subbase, pounds
Width of mounted equipment or subbase, inches

Rectangular coordinates with origin at the center of
mass of the mounted assembly when the axes are
principal axes of inertia of this assembly; the
coordinates of the effective point of attachment of an
individual niounting with respect to these axes

Coordinates of the center of gravity of an assembly of
equipment and subbase with respect to an arbitrarily
chosen set of axes, inches

Length, inches; distance, inches

Rectangular coordinates with respect to a set of axes
of arbitrary orientation. In the dynamical equations
this origin is taken at the center of mass of the
mounted a=sembly

Rectangular coordinate axes parallel to the z, y, and .
2 axes but with origin 0, at an arbitrary point on the
axis of symmetry of an individual mounting

Coordinates of center of gravity of mounted assembly
or of an individual unit with respect to z, y. and 2
axes

Small rotations of the mounted assembly about the
z, y, and z axes, respectively

Sign of summation over all mountings in an inswa!lla-
tion. When any factor is the same in all terms of

a sum, this factor can be put in front of X, for
example, if £y is the same for all mountings, then
Yk Y2 = k,2Y?

Phase angle by which the driving force leads the
displacoment in the steady-state vibration of a
system with & single dogreo of frecdom

Direction angles between the axis of symmetry of
an individual mounting and the X, Y, and Z axes,
respectively

Direction angles between the axis of symmetry of
an individurl mounting and z, y, and z axes, respectively

Circular frequency

Undamped natural circular frequency of a system »f e
degree of freedom

x1




iINTRODUCTION

A resilient mounting is defined as an item designed to incorporate rigid members for
attachment and resilient elements for the purpose of isolating shock, noise, and vibrations of
a coatinuous or intermittent origin and to serve as a foundation support for an item of equip-
ment to be . isolated. The general nomenclature has been chosen because of the difficulty
in defining speciiically a shock, noise, shock-noise, or vibration mounting. Mountings em-
ployed in one installation primarily to isolate noise or vibration may also provide adequate
shock protection in the same or another installation.

In the application of resilient mountings to item of shipboard equipment, it should
first be determined why mountings are needed and for v..at purpose. The chief aim is to have
shipboard equipment designed to be inherently noiseproof, shockproof, and capable of with-
standing normal shipboard vibration when the equipment is bolted down rigidiy. ¥K.quipment
that has been proved inherently shockproof by shack machine tests requires no resilient
mountings, except when the equipment generates noise which must be attenuated because nf
a shipboard requirement. Equipment that has passed shock and vibration tests can be ex-

pected to withevand normal vibration.: experienced aboard ship when bolted down rigidly.

Laboratory tests! indicate that even electronic equipment will often satisfactorily pass shock
and vibration tests without resilient mountings.

When it is necessary to employ mountings, care must be exercised to prevent excessive
amplification of vibration resulting from excitations in the equipment itself or from propeller,
hull, or adjacent machinery,

On submarines, it is desirable that certain natural frequencies of equipment-mounting
installations be lower tiian the frequencies of exciting forces or motions in order to reduce
noise transmission. FKortunately, low-frequercy mountings can be employed on submarines
because of the smull vibration amplitudes that usually result from the propeller and hull ex-
citations, On the other Land, for surface ships, it is ofter desirable to have the natural fre-
quencies of equipment-mcunting installations higher than the vibration frequencies excited
by propeller forces in order to avoid resonances. In such installations, amplification of the
oxciting forces or motions will exist, but if such amplification is no greater than three, it is
generally considered acceptable. The higher shaft speeds and the greater number of propeller
blades on more recent ships make it more difficult to avoid resonances with vibration fre-
quencies excited by propeller forces. In these instances, mountings with high damping
characteristics may have to be used.

The calculations involved in the sclection and application of mountings are, at best,
time-consuming and tedious. Information must be available on the characteristics of the equip-
ment and mountings and the exciting frequencies that may be encountervd. To meet the re-

quirements of specific conditions for a particular installation, a tentative selection and

IR’efr:n.-nn:es are listed on page 137,




positioning of resilient mountings must first be made. Natural frequencies of the resiliently
riounted systems must then be calculated. Il the design requirements are not met, the mount-
ings will need to be repositioned or a new selection made, and the frequencies must be calcu-
lated again until the design requirements are satisfied.

Accordingly, this ‘*Mounting Guide' has been prepared to aid design engineers and
engincering draftsmen in solving problems dealing with the selection and application of resil-
ient mountings to items of shipboard equipment. The main objective has been .u present quick
and practical methods of solving mounting-installation problems by utilizing charts, tables,
and simple formulas wherever possible.

This guide contains three chapters and seven appendixes, the purposes of which are

as follows:

(a) To Jdescribe briefly the nature and principles of noise, shock, and vibration isolation—

Chapter 1 and Appendix 1.

(b) To discuss the physical constants necded for the selection and application of resili-
ent mountings and to present methods lor their deterinination—Chapter 2 and Appen-
dix 3.

(c) To emphasize the general considerations and list the precautions that should be oh-

served in the selection and application of mountings—~Chapter 1.

(d) To present methods for calculating ‘he natural frequencies of systems with various

types of mounting arrangements—Chapter 3 and Apnendixes 2 and 6.

(e) To present additional information to engineers desiring to dolve more deeply into
the theory of isolation and the equations of motion-Appendixes 1, 5, and 6, Refer-

ences, and Bibliography.
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CHAPTER 1
NATURE OF THE TRANSMISSION OF NOISE, SHOCK, AND VIBRATION

1.1. NOISE, SHOCK, AND VIBRATION

In the selection and application of resilient nountings to shipboard equipment, the re-
duction of the transmission of noise, shock, and vibration is of concern only for certain paths
of transmission. Applied shock and vibration are transmitted to shipboard machinery and

equipment through the ship structure. In the opposite direction, noise and vibration are trans-

mitted from machinery through the intervening ship structure to the huli and water. Such noise

may then be transmitted to an enemy ship or to listening devices in the ship; see Figure 1.

k-

m——— — || "o

Applied
Shock

Viaration to
€ quipment 4

/ / |
E ]
v:?::l \' U =-Listening

1 ! Device

—~——

Figure 1a - Vibeation and Shock I7igure 1b - Noise and Vibration

to Fquipment from Machinery

¥igure 1 - Directions of Transmission of Noise, Shock,
and Vibration on Shipboard

‘The reduction of noise, shock, and vibration is nocessary for various reasons, Noise
may either reduce the tistening range of the shin itseli or increase the chance of detection
of the ship by listeners on other ships. Applied shock, such as that of noncontact undore.
water explosions, may dumage or render inoperable certain types of equipment. Naval eauip-
ment, with the exception of some electronic units, is expected, however, to withstand the
normal vibration existing on shipboard; therefore it is only necessary to prevent excessive

amplification of these vibrations by proper design of mountings.




There are four approaches to the problem of reducing the severity of noise, shock, and
vibration on shipboard:

1. Improvement or modification of the equipment design.

w
.

Relocation of equipment aboard ship.
3. Installation of resilient mountings.
4. Proper maintenance and balancing of equipment.

Design improvement embodies design of ship structures, such as machinery foundations,
as well as design of the inaividual machinery items, particularly design that avoids resonances ’
in structures and appurtenances. It is assumed that conditicns resulting in abnormal opera-
tion, such as excessive unbalance or misalignment of propellers, shafting, or machinery, al-
ready have been remedied. Properly aligned equipment can easily become misaligned in
service; therefore it i8 essential that equipment be checked frequently and realigned when
necessary. As design of equipment for shipboard installations improves, fewer attenuating
devices, such as resilient mountings, will be needed. There are certain locations on board
ship where the noise, shock, and vibration excitations have smaller amplitudes than in other
parts of the ship, Both design improvement and relocation can reduce the exciting forces and
motions and consequently modify the response,

Meanwhile, the need for installation of machinery and equipment on resilient mountings
continues. Resilient moun ‘ngs can reduce the effects (transmissibility) of shock motion and
vibration on equipment and can reduco the transmissibiiity of noise and vibration from machin-
ety to the ship structure and the water. Improperly selected resilient mountings, however, may .
increcse rather than decrease the transmissibility.

1.2. RESPONSE OF RESILIENTLY MOUNTED BODIES

A body that has extremely high stiffnesses between its components may be treated ap-
proximately as a rigid mass. If such a body is supported by a massless spring and constrained
by frictionless, rigid guides to move only in a vertical direction in the plane of the paper,
sec Figure 2, it is a one-dogree-of-freedomn system, that i3, the position of the mass at any
instant can be described by one coordinate. The system has one natural frequency corre-

sponding to a vertical mode.

If the vertical guides are now removed, with the motions still confined to the plane of ‘
the paper, and the spring has vertical, horizontal, and rotational stiffnesses, Figure 3, the |
system has three degrees of freedom and therefore has three natural frequencies. Two of the
natural frequencies due w horizontal vibrations cause modes of rotation about two separate
axes perpendicular to the plane of the paper. These are designated rocking modes. The
rocking mode f_. is cavsed by the mass attempting to move in a horizontal direction, but be-
cause of the restraint offered by the mountings, the mass rocka about an axis below the cen-
ter of gravity. Tk . rocking mode f

max 19 Initiated by the tendency of the mass to rotate
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Iigure 2 - A One-Degree-of- Figure 3 - A Three-Degree-of-
Freedom System Freedom System

about the center of gravity, but since the mountings constrain this rotation, the mass rocks
sbout an axis above the center of gravity. In general, in a system of throe degrees of free-
dom, each mode will involve all three coordinates, but because of the symmetry in this ex-
anmple, the third natural frequence f,, is for a pure vertical translational mode.

.ot it now be assumed that the center of gravity of the mass is at its geometrical cen-
ter and that the principal axes of inertia are the X, Y, and Z axes and let the system be sup-
ported on eight resilient mountings symmetrically positioned about the mass, as in Figure 4,
‘I'hon the system has natural trunslational frequencies in the X, Y, and Z directions and also
natural rotational frequencies about the X, Y, and Z axes. Thus the system has six natural
frequencies, or six degrees of freedom and six natural frequencies in all.

If there is partial or complete lack of symmetry, certain of the translational and rotation-
al modes may be replaced by rocking modes, each of which has translational and rotationai
components of motion. In general, a mass supported by resilient mountings has six normal
modes of vibration and therefore six natural

z
or resonance frequencies, It is possible, how-

ever, for two or more modes to have the same = /JJ“PX——
frequency. Each mode may have translational _

and rotational components. Such a system has -P‘K'\'\’\,\ N%_
the property that a free vibration may exist in

any one of these modes without exciting any

of tho others.

Rockina modes, however, are not the
most complicatad types of motion that can
— x ~

occur in a normal mode of vibration of a rigid

mass. The body may move in rotation about Figure 4 - A Six-Degree-of-

. : . . Freedom Syatem
a parlicular axis and in translation along an




axis inclined to the first axis. In general, a
free vibration may exist in any mode without
exciting any of the other modes.

For a frequently used arrangement,

sometimes called ‘‘bottom mounting’* or
‘‘base mounting,” with four identical mount-

L - ———=Y ings symmetrically attached to the base of a

unit which is also syvmmetrical, Figure 5,

the horizontal translational mode of vibration

‘:;!: i 7 along the Y axis and the rotational mode

about the X axis are supplanted by two rock-

ing modes about axes parallel to the X axis.

Figure 5 - Typical Base-Mounting Likewise, there are two rocking modes about
Amaugement axes parallel to the Y axis, There are two

other modes, ono rotational about the Z axis
and the other translational along the Z axis, each having its own natural frequency. There

are six modes of vibration in all: four rocking, one translational, and one rotational.

1.3. TRANSMISSIBILITY

Consider the one-degree-of-freedom system shown in Figure 2. If the mass is displaced
and then released, it will oscillate vertically at a substantially constant period or frequency,
but the amplitude of vibration will gradually decrease because of damping forces.

If, now, instead of an initial displacement, a sinusoidal force of constant amplitude is
applied to the mass, see Figure 6a, or il a sinusoidal motion of constant displacement is
applied to the spring support, see Figure 6b, after a short transitional interval, the mass will

move in a forced vibration of constant peak amylitude at the frequency of the exciting force

Zd?u ] A sinot
N

Fsinegtd I m m

/

N N
Figure 6a - Sinusoldal Force Applied Figure 6b - S8inusoidal Motion of the
tn the Mass Mounting Support

Figuce 6 - Motions and Forces Applied to an Undamperd One-Degree-of-Freedom System
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or displacement. KFor a given amplitude of
excitation, the amplitude of the forced vibra-

3

tion will depend upon the magnitude of the
damping and upon the ratio of the exciting =
frequency to the natural frequency of vibra- g 2.
tion of the mass. g \

The vaciation of amplitude with fre- g 1

5 AN
quenc . s shown for a typical one-degree-of- - \
freedom system in Migure 7, in which the or- —
dinate is proportional to the amplitude of vi- 0 l 2 3
bration of the mass, As shown by the peak Frequency Batlo: Exciting Frequency
) ) to Naturai Frequency of the Mass-

in the curve, the amplitude of vibration is a Spring System

maximum when the frequency of vibration
nearly equals the natural frequency of vibra- Figure 7 - Response of a One-Degree-of-
tion of the mass. With less damping, the peak Freedom System tc Excitations at
would bo higher and the frequency closer to Various Frequencies

the natural frequency; with greater damping,

it would be lowert.

The ordinate in Figure 7 actually represents what 1s called the transmissibility for the
mass on the spring. When the motion is oxcited by a sinusoidal force applied w the mass,
sinusoidal force is also transmitted through the spring to the supporting base. The ratio of
the amplitude of the force transmitted to the base to the vs.-tting force is the transmissibility.
Tho same number also represents the ratio of the amplitu: - > vibration of the mass to the
atmplitude of vibration of the base when the motion is excitr o by motions of the base, It will
be seen that the transmissibility is unity for a static force or displacement, is greater than
unity at frequencies between sero and resonance, and eventually hacomes 1ess than unity at
frequenciey well above resonance,

The phenomenon of forced vibration is described analytically in Appendix 1.

1.4. SUITABI.LE NATURAL FREQUENCIES

Frequency requirements related to ship vibration, to shock motion, and to noise excita-
tion will be described successively, First, however, the importance of these requirements
should be discussed, On submarines, the primary purpose of resilient mountings is noise re-
duction. Kquipment resiliently mounted to reduce noise must also be able to withstand shock
mations of relatively large magnitude and vibration, with some allowable magnification of
molion without fuiluro or maloperation. On surface ships, at least for the present, noise ro-
duction is less tmportant, but the equipment must withstand shock motions and also vibrations
rmoderately magnified in amplitude. Much shipboatd equipment will perform sausfactorily

under shock excitation, and even more equipent undor vibration exerration Vit is rigidly




mounted. Therefore, for this sort of equipment, no resilient mountings need be provided ex-

cept where noise reduction is required.

1.4.1. VIBRATION

Two types of viLration excitation of resiliently mounted equipment occur on shipboard,
excitation from ship structuro and self-excitation of equipment by unbalanced moving parts.

The hull of a ship can be excited by vibration in the propulsion machinery system as
well as by thrust variations due to the variation of pressure on each propeller blade as the
propelier rotates. The latsral component of thrust variation causes vibration at frequencies
equal to the shaft rpm multiplied by the number of hlades of the propeller. If the excitation
caused by thrust variation has a frequency equal or close to one of the natural frequencies of
the hull in flexura! vibration, then the hull may respond to this excitation at amplitudes large
enough to be troubiesome. For most naval ships, the {requency of this excitation has not
exceeded 25 cps (1500 cpm), but, with the trend toward higher shaft speeds and 5- and 6-bladed
propellers, it may become as high as 331/3 cps (2000 cpm). ;

One way of avoiding resonances i3 to :een the resonance frequencies of the equipnient
above the excitation frequencies. As shown by the transmissibility curve, Figure 7, the
steady-state vibration cannot then be kept from exceeding tie vivration of the foundations, but
it can he kept within reasonable limits. In the absence of damping, & satisfactory limit of
magnification is obtained if all important natural or resonance frequencies of the equipment
are made at least 1.4 tiines as great as the maximum excitation frequency.

If a surface ship, for which structure-home noise is of minor importance, has a highest
propeller-blade excitation frequency of 20 cps (1200 cpm), the natural frequencies of resiliently
mounted equipment should be at least 25 cps (1500 cpm) and preferably 28 cps (1680 cpm).

On this basis, many unite of radio and radar equipment have been installed with mountings
having a natural frequency of 25 cps under rated load. Kor many classes of sucface ships, the
typical vibratory displacement of the hull is about 15 mils single amplitude vertically, about
two thirds of that horizontally, and less than one-third fore and aft in the few instances
measured. On infrequent occasions, particularly <uring hard turns, magnitudes several times
as great occur, Certain maximumn environmental v,lu.s are given in MIL-STD-187 (Ships),
“sMechanical Vibrations of Shipboard Equipment,’* L0 idec 1954,

Submarines have propeller-blade excitation frequencies up to 31 cps (1850 cpm). In
order to reduce as mucth a3 possible the transmissibility of noise from machinery through the
hull into the water, the trend i3 to install mountings with natural frequencies ranging from 3
to 15 cpy at rated loads.

Steady-siate vibration is noticeable throughout the entire hull only near the critical
spoeds, that is, when either the shaft frequency or blade frequency approximately coincides
with ono of the natural frequencies of the hull, but at intermediate excitation frequencies,
there may be little or »o vibration on the ship anywhere except at the atarn. The forced

vibration 1s usuelly most severe at high speeds and iy aggravated on ships with large overhangs
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at the stern. The vibrations may have larger amplitudes on superstructure members such as
masts of directors. If these members are located near a nodal point of the hull for the particutar

mode of vibration that is present, they may be set in rotational motion because the nodal point

is a point of maximum change of slope. If their own natural frequencies lie near one of the
i

natural frequencies of the hull, the amplitude at the top will be much greater than that at the
base.

[he installation of equipment in structures such as masts, directors, high superstructures,
and fantails should be avoided wherever feasible. Sommetimes equipment that nreds to be re-
siliently mounted can be located at a lower level in the ship away from the fantail. Loca-
tions, such as light bulkhead plating which may itself resonate at excitation frequencies
within the operating speed range of the ship, should also be avoided whether or not the equip-
pent 1< resihently mounted.? This does not preclude supportina the eauipment on bulkhead
stiffencrs,

The other aspect of vibration, excitation of equipment by its own moving parts, also
requires some comment. (inbalances of internal rutating parts can cause excessive vibration
if the resulting excitation frequency is close to one of the natural frequencies of vibration of
the equipment on its mountings. If suitable natural frequencies of the equipment on its mount-
ingo Canuot be obtained by rearrangement or substitution of mountings, then the vibration
displacements cap be reduced by substitution of different types of equipment when avaijlable,
such as those with different operating speeds,

Ways to avoid excessive vibration have been described previously, but no quantitative
statement has been offered as to what constitutes excossive vibration, Without attempting an
exact definition, it may be said that vibration is excessive when it causes damage or there is
danger of damage to structural components, when it interferes with the operation or causes mal-
function of equipment, or when it is an unnecessary and avoidahle nuisance.

Some resonance frequencies of resiliently mounted equipment prove to be relatively un-
important because of the absence of excitation for these corresponding modes of vibration.
Orientation of equipment may permit disregard of these modes. tquipment and machinery on
shipboard are normally oriented in a fore-and-aft direction, Since there is little excitation of
eguipment in this direction, either internally or externally, modes of vibration in a fore-and-
aft direction are not as important as other modes with the oxception of those of longitudinal

vibration of the propulsion machinery,

1.4.2. SHOCK MOTION

Shock excitation of resiliently mounted equipment is produced by motions of the sup-
ports of the resilieut mountings. These supports or foundalions have shock motions involving
sudden velocity changes which may be as great as 75 fps and may occur in about 2 msec. The
machanism of shock excitation is treated in several references and will not be repeaied except

 mention that ita effect varies considerably depending on many factors including size and




weig .. of the equipment, its location in the ship, the class of ship, the time history of the
shock excitation, and the response characteristics of the equipment and its components. Only
the following topics will be discussed: the significance of the Military and Bureau of Ships
specifications, acceptance testing for shock motion, the influence of equipment location on
severity of shock, and design changes that may improve resistance of equipment to shock
motion.

The following specifications have been issued for evaluating the performance of equip-
ment under shock and vibration:

(a) Military Specification MIL-8-9013 describes shock tests only for Class HI (High-
Impact) shockproof equipment.

(b) Military Specification MIL-T-17113 (SHIP3)?* prescribes shock tests and is used
primarily for evaluating electronic equipment. In this specification, tests on
the mediumweight shock machines are divided into Class A and Class B shock
tests. Tests on lightweight shock machines are conducted with reduced heights
of hammer blows as compared with tests specified in Specification MIL-8-901.
In MIL-T-17113 (SHIPS), provisions ate also made for testing equipment with

or without resilient mountings.

Thoso specifications and testing machines are used by the Navy to give somo assurance that
equipment passing such tests will give satisfactory performance in service.

The location of the equipment aboard ship has considerable influence on the severily
of shock motion that must be withstood. For excitations caused by underwater explosions,
the most sovere condition occurs when the equipment is mounted on the hull itself, especially
the hull plating, which is subject to diroct impact of the explosion pressure wave. There is
a trond toward decrease in shock severity with increased distance of the equipment from the
hull. Air blast caused by gun fire or exploding bombs can also cause shock excitation of ex-
posed structures such as decks, side plating of superstructures, and directors. Wherever
possible, equipment should not be exposed Lo such excitations by attachment w the inner
sides of directly exposed structures.

Shock tests and ‘‘striking’’ tests show that the vibration of structures, such as hull,
side plating, and decks, is excited at immany natural frequencies simultaneously. In a number
of tests, the dominant vibrations (the components of vibrations having the largest amplitudes)
for surface ships were in the range from 35 to 100 cps, with many at about 50 cps. For
submarines, the dominant frequencies were higher, principally in the range of 100 to 400
cps.2 These ate frequencies at which the structures respond, and they would be the principal
frequencies of shock motion at the points of attachment of mountings if equipment were in-
atalled here.

Modifications in the design of equipmont have often made it capable of withstanding
shock excitation without the use of resilient mountigs.® Items such as switches and levers

have been designed with counterweights to prevent maloperation. Methods of support and
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fastening have been altered, and materials have been substituted so that now many items can
be solidly mounted. Equipment with rotating or reciprocating parts has been strengthened by
increasing bearing diameters and longths and shaft diameters, so that shock damage is elimin-
ated or reduced and the machinery vperatos satisfactorily despite the excitations. However,
equipment of this sort for submarine service and, eventually, for certain types of surface ves-

sels may still require resilient mountings to reduce the transmission of noise to the water and
to sonar gear.

1.4.3. NOISE

Structure-borne and air-borne noise is generated on shipboard by rotating and reciprocat-
ing parts of mechanical equipment, by electrical equipment, and by moving fluids. The
structure-bovne noise is of primary importance at present in the study of methods for reducing
noise. In resiliently mounted equipment, structure-borne noise is transmitted through the
mountings and ship structure to other parts of a ship and radiated into the water, generating
water-borme noise. Structure-borne noise may be loosely defined to be vibration with small
amplitudes and with frequencies above about 20 cps; structure-borne noise is the vibration of
structures that will generate sound waves in the surrounding fluid mediums. In a brcader
sense, it may be defined as vibration at any frequency and ampliitude that interferes with a
ship's own listening devices or that may be detected by another ship, Other sources of noise
on shipboard, such as propeller noise, hydrodynamic noise, and propeller-shaft squeals,® are
not discussed since they are not of concern in the selection of mountings.

At present, resilient mountings are used for machinery on submarines primarily to re-
duce noise. It is expected, however, that certain types of surface vessels with specialized
service requirements may also require this protection. More extensive discussion of the influ-
ence of location, design, and mountings on noise transmission has been given elsewhere.®

Equipment with rotating and reciprocating parts can generats noise of three types:®
1. Noise of definite frequencies, for example:

(a) Running frequency caused by unbalanced rotating parts;

(b) Gear noise at a frequency equal to shaft spead times the number of teeth;

(¢) Noise at armature slot frequency, which is a frequency equal to the shaft

speed timos the number of slots; and
(d) Noine at the commutator frequency.

2. Noises of definite frequencies which do not change with the speed of the machines,
such as free vibrations of machine compcnents, the subbase, or the foundation, caused by
impact of machine parts such as cams or valves.

3. Random noises caused by impacts occurring at irreguiar intervals,

Resilient mountings can reduce the structure-borne noise transmitted to the ship struc-

ture and w the water, The lower the rated natural frequency of the mounting, the greater will
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be the ovetall attenuation of noise. Reducing the rated natural frequency may, on the other
hand, create problems in the stability of equipment, particularly under such motions as roll
and pitch,

The loading on the mountings cannot always be exactly the design loading. For re-
duced noise transmission, it is better for a mounting to be moderately overloaded than con-
siderably underloaded. Subject to experimental verification, it is believed that overloads
in the order of 10 percent will not materially affect the strength of a mounting under shock
excitation.

A characteristic of mountings that must be considered in attempting to reduce noise
transmission is the phenomenon of standing waves or resonance vibration within the mountings
themselves, For this reason, a reduction of the rated natural frequency of the mounting does
not necessarily guarantee a reduction in transmission throughout the uoise spectrum. It may
happen that one of the excitation frequencies coincides with one of the standing wave reso-
nances, causing greater noise transmission at this frequency.

It is not nocessary to reduce the noise of all equipment; it would be futile to reduce
noise of certain units while units with much greater noise levels are not improved. The
priority of items in a noise-reduction program depends also on the operating condition of the
ship. In submacines, the first step has been to improve noisy machinery items that must be
operated during listening condition. Further study is needed on the effects of transmission
of noise into the water by intervening structure between a machine and the hull and the
sub-problemn of the design of the mounting supports, that is, the foundation of the machina.
But if the more important noisemakers on submarines, especially those that need to be oper-
ated during listening condition, can be segregated and located remotely from listening devices,
the listening ability of a submarine can be improved considerably.

In selecting mountings and in planning the installation of machinery, precautions should
be taken lest the beneficial effects be spoiled by the incidental introduction of acoustical
shorts. For example, flexible coupiings for shafting and piping and flexible conduit for elec.
trical wiring need to be provided. Pipirg may need to be further isolated by suspending it in
rubber-lined hangers,

Redesign of machinery can reduce its roise generation.® The use of helical and worm
gears instead of spur gears, nonmetallic gears or beits instead of metallic gears, and sleeve
bearings instcad of ball bearings often helps to reduce noise at its source. Dynamic as well
as static balancing of rotating parts reduces the exciting forces, as does proper design of
slots and poles of motors and generators.

The final test of the effectiveness of a noise-reduction program is a noise survey.

1.5. ELASTIC FOUNDATIONS AND EQUIPMENT

In peesenting methods for the calculation of natural frequencies of vibration in Chapter

3, it will be assumed that the mountings are attached to infinitely stiff foundations and that
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the equipment is alse infinitely stiff internally. To make these calculations applicable, the
subbase, legs, frame, and principal components must be rigid enough so that the assumed in-
finite stiffness is vahdly approximated. T'hese assumptions are not valid for all shipboard
installations.’

If the foundation to which an isolation mounting is attached is flexible and relatively
nassless, then the natural frequencies of the assembly will be lower than those calculated,
without correcting for flexibility of foundations. If the fcundation has eppreciable mass as
well as flexibility, the assembly will have additional degrees of freedom and the normal anai-
vsi< will not be entirely valid. In this case, heeause of rezonances in higher modes, magni-
fication may appear at frequencies where the analysis, without correction, would predict atten-
uation. This effect wmay result in greater noise transmission than anticipated in certain fre-
quency ranges.

The possibility of increased transmissibility due to elasticity of foundations= can be
minimized, particularly for equipment such as machinery with internal vibration excitation, by
avoiding the installation of equipment on light bulkhead or deck plating. Where resilient
rmountings are used, equipment foundations should be integrally stiff and securely attached to
those stulfeners of the ship structure which carry the equipment load. These precautions re-
duce the response of equipmient to propulsion-system excitation and may reduce noise trans-
mizsien,

Flexibility of equipment has effects on the transmissibility curve similar to the effects
of flexibility of foundations.® Resonances will appear supetimposed on the attenuation por-
tion of the transmissibility curve depending on the number of components in the equipment
with supports of low relative stiffness and on the weights of these components. Normally the
maunification factor of the equipment will not greatly exceed unity; thorefore vibration trans-
nission need not be severe. Damaging effects may occur, however, if internal components
are in resonance with vibrat.on excitations. Testing the equipment, when not too large, in
sheck machines or even vibration machines will indicate whether damage may occur because
of relatively low stiffness within the equipment itself. If there is internal excitation, reduction
of noise transmission from the equipment may be difficult unless some of its components can
be redesigned.

tixperience has indicated that for installations where equipment was relatively limber,
such as radio units with light frames and heavy transformer components, the actual fundamen-
tal natural freauency of the unit of equipment on four mountings was 15 to 20 percent lower
than the computed natural frequency. If the stiffness of the equipment, as determined by vibra-
tion tests on its mountings, is compared with that of an equal solid or stiff mass on the same
mountings, then a stiffness rativ less Lhan unity is obtained. The reciprocal of this stiffness
ratio, the flexibility factor, when multiplied by the actual mounting stiffness results in a re-
guired stifiness on the basia of which mountings may be selected. The actual mounting stiff.

ne  waould stift be used 1n calculations, hut the selection of a somewhat stiffer mounting,
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deterinined by inultiplying the actual stiffness of the mounting by the flexibility factor, would
compensate for the flexibility of the equipment. In a similar manner, if the foundation itself
is flexible, the flexibility factor may be determined from the stiffness ra%io by a vibration test
of the equipmont on flexible foundations in comparison with an infinitely rigid base. The
flexibility factor is never less than unity.

For lightly constructed equipment on four mountings, flexibility factors as great as 1.4
have beon observed. kor sturdy radio and radar units, the ratio may be 1,1 or 1.2. [he use '
of more than four mountings tends to reduce this factor because of support provided by the
mounting fittings. For motors and machinery of small to medium size, the factor can be assumed
to be unity, particularly if components, such as rotors and shafting, have comparatively large
diameters. Whether this will hold true for larger units, such as diesel engines, remains to be
determined by design computations and shipboard vibration tests.

It must be adinitted that there are very few experimental data concerring the flexibility
of equipment and of foundations. However, the approach discussed above is believed to result
in better approximations to desired natural frequencies of installed resiliently mounted equip-

ment. In any case, the amount of cut-and-try should be reduced.

1.6. CLEARANCE

Adequate clearances arvund mountings and equipment are necessary to permit the
mountings to function properly and to prevent damage to the mountings and equipment because
of excessive shock or vibratory displacements. On the other hand, since equipment with re-
silient mountings occupies more space than rigidly mounted equipment, no more spuce must .
be requisitioned than is actually necessary.
The value of the maximum oxpected deflection of mountings, ircluding allowable de-
formation of metal parts, must be known in order to determine the necessary clearance for a
unit of equipment. According to data now available, the greatest deflection occurs during
shock machine tests and the least when the mounting is subjected to the prescribed static
test load. Deflections obtainnd dueing full-scale shock tests are between these extremes. As
a8 gencral rule, mountings should not be installed aboard naval ships until samples have been
subjected to at least shock, static load-deflection, and vibration tests to obtain information
for calculating clearances. Specific information on deflections for mountings should be ob- *
tained by reference to reported characteristics of resilient mountings or to the latest Bureau
of Ships Instruction 9110.4.
Another consideration in the selection of resilient mountings for equipment, particu-
larly for shock isolation, is the amount of permissible travel or deformation of the mounting.
This depends upon design and, in the case of rubber mountings, on the thickness of rubber
in the direction of travel. A mounting of good design will have minimum overall size for a
particular load rating and spring constant, thus conserving space in the installation of equip-

ment. A necessary precaution is the avoidance of hard bottoming of the equipment either
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because of inadequate mounting design or because of inadoquate clearances of adjacent
Structures, .

The selected value of deflection gives directly the clearances needed for translational
modes of motion. From this value and the dimensions of the equipment, clearanc:s for rota-
tional modes may be computed, and those for rocking modes may be estimated.

Th. required clearance C (in inches) around equipment may be determined approximately
for various mounting arrangements as follows:

1. For three planes of symmetry as illustrated by a center-of-gravity mounting arrangement,
Figure 8a, the clearance C around the equipment should be equal to the maximum deflection
that occurs across the mounting in either the axial or radial direction. In cases where the
center of gravity is asymmetrically located within the equipment, greater clearance may have

to be provided at points remote from the center of gravity.
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Fig.re 8a - Center of Gravity Figure 8b - Base Figure 8c - Braced

Fipure 8 - Mounting Amrangements

2. For two planes of symmetry as illustrated by a base or bottom mounting arrangement,
Figure 8b, the clearance C can be calculated from the approximate formula?

20H
C= E
3 +

where 0 is the maximum expacted deflection of the mounting in the axial direction, inches,
E is the maximum expected deflection of the mounting in the radial direction, inches,

! is the perpendicular distance from the plane of the mountings to the point on the
equipment (see footnote on page iv of Reference 9) in inches, and
§ is the distance botween cente of the most widely spaced mountings in the direc-

tinon being considered, inches.

3. Yor one plane of symmetry as illustrated by a braced mounting arrangement, Figure 8c,

the clearence { around the equipment should be equal to the maximum deflection that occurs
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across the inounting in either the axial or radial directions, If the mountings are attached
away froin the corners of the equipment, that is, if the top mountings are lowered or the
bottoni mountings are spaced closer together, re-evaluation of the mounting geometry must be
considered and allowance must be made for greater clesrance.

If two resiliently mounted units are placed next to each other, the clearance between
them must be the sum of the clearances required for each of the units since the motions of the -
units may be out of phase. Protuberances such as knobs, sockets, nuts, dimples, and flanges
must be accounted for in providing clearances. If there is a rigid conduit or pipe attached to
the equipment, then adequate clearance must be provided around the piping up to points of
flexibility, such as rubber or bellows joints or flexible U-bends, to prevent striking. In some
instances, clearance may have to be provided beyond these points of flexibility in the form of
rubber-lined hangers for the pipe or conduit.

In Jeteiling the attachment of the resilient mounting to the equipment or subbase and
to the foundation or supporls, provision must be made for free motion of the resilient elements
of the mounting. This is illustrated in Figure 9 for a Portsmouth 3ST mounting. If the hole
in the subbase plate were small so that the plating extended to points A, :1,, the rubber of
thv mounting would strike the subbase plate and eventually fail because of the cutting and
abrading action of the plate. The hole in the subbase plate should be made as large as pos-
sible, consistent with strengtn, leaving sufficient material at the bolt holes. Chamfering the
plate edge is also beneficial.

Finally. all the care, effort, money, and time expended in selecting and applying resil-
ient mountings goes for nought if indiscriminate permission is given to use the clearance
spaces for other purposes. It is true that certain parts of the clearance spaces can be more
fully utilized, but the mounting engineer should always have authority as well as responsibil.
ity to control this space in order to prevent not only the nullification of isolation but also
damage to the equipment.

It is difficult to establish criteria of acceptable maximum motion for resiliently inounted
equipment because each installation has to he judged separately. Previously, a procedure for
calculating the clearances required for motion of the equipment due to shock excitation was
presented, 'f sufficient space i3 not available for the clearance required for a bottom mount-
ing arrangement, or if the violent motion is such that the equipment intrudes in space where
perscnnel normally are working, then the equipment may he damaged or personnel injured. In
these insances, it is often better to use braced mounting arrangeinents or stabilizing mount-
ings to reduce the ex«cessive rocking motion ofthe equipment.

There are other circumstances under which motions may be even larger, usually for
bottom mounting arrangements, The equipment may sway from one extreme position to another
because of a ship's rigid-body motions sucl as roliing and pitching. Itis not likely that in-
atallauons will be encountered in which pravity will have an important effect on any of the

natural frequencies of the mounted equipment. Moteover, since the lowest frequency of the
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assembly will usually be at least several
times as high as the frequency of the ship’s

rigid-body motions, no resonance magnifica.

tion of these slow motions into a large move- Subbose Structure
ment of the assembly relative to the ship L

structure is likely to occur, tlowever, in 57///\\ \ SIS
mounting equipment witha high center of LL

gravity relative to the width of the base, the

static deflection due to inclination of the ship :

in 2 seaway should be estimated for an angle N Foundc;hon

of, say, 30 dog. If it is found that the upper
corners of the assembly would take up a large

part of the clearance, additional clearance

should be allowed, If the required clearance

becomes excessive, the effect of static in- Figure 9 - Detail of Portsmouth BST
Mounting Attached to Subbase

clination can be decreased by setting mount- and Foundation

ings farther apart, introducing stabilizing

mountings, or changing to a braced-mounting arrangement, \Yhen the mountings are set farther
apart, the natural frequencics of the systom, particularly for rocking and rotational modes,
should be checked to insure that the relocation of the mountings does not result in unsatis-
factorily high natural frequencies.

1.7. PRECAUTIONS

The following check list of precautions that should be taken in the use of resilient
mountings is appended for convenience. The list includes the principal points already men-
tioned and additional minor items.

1.7.1. INSTALLATION

1. [he rubber resilient elements of inountings should not be painted.
2. The rubber elemonts of mountings should be protected from the effects of oil, Where

this is inconvenient, the rubber should be of oil-resistant shock.

3. All welding or flame cutting of structures in way of mounting locations shall be per-

formed prior to the installation of resilient mountings.

4. The instaliation of mountings and the alignment of mounting surfaces of equipment and
foundations shall be such as to insure that all load-carrying mountings with the sameo rated
load capacity and stiffness have equal deflection under load. Hnles for bolts for securing
mountings to foundations and holes in the feet or subbases of equipment shall be aligned to

prevent any distortion of the mountings,
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5. Some mountings are designod to be loaded in a specific direction Care should be taken
to insure that ali such mountings are installed so as to be loaded in the correct direction.

6. Mountings used as stabilizers are not to share the dead load of the equipment and
should not be statically deflected after the equipment is installed.* Mountings in a stabilizer
arrangement are not to be confused with braced-mounting arrangements, In the [atter arrange-

ment, all mountings share their design portion of the dead load.

7. Bolts designed to be stressed in shear shall be installed in holes with mininium clear-
ance.

8. Bolt material should be as specified in the Interim Military Specification MIL-M-17185
(SHIPS) dated 12 May 1952.
9, Sufficient clearances should be provided around equipment installed on mountings to

prevent the equipment from striking ship structure or other fixed or resiliently mounted equip-
ment,

10. No conduit, pipe, or other item should be located in the clearance spaces around re-

siliently mounted eouipment without approval of the mounting engineer,

11. Piping connected to resiliently mounted equipment should have long runs, preferably
two 90-deg bends, and rubber-lined hangers close to the equipment, where necessary, in order
to minimize restraint of the equipment by the piping. Flexible couplings should be instalied
in each line close to the mounted machinery, and their effect on natural frequency should be

estimated.

12. Electric ground straps shall be provided for all resiliently mounted equipment for the .
safety of personnel. All cables, flexible connectors, and ground straps shall be so attached

that no pull is exerted on the equipment, and sufficient slack shall be allowed for movement
of the equipment on mountings under shock conditions.

1.7.2. SERVICING OF AOUNTINGS

13. In regard to overhaul, inspection, drift, and replacement of mountings, shipbuilding and
design activities should refer to Bureau of Ships Instructions 9110.4 and 9110.5 for latest in-
formation,

1.7.3, EQUIPMENT

14. 'The manufacturer should detennine and furnish the weight, location of the center of

gravity, moments of inertia about the principal axes, and operating speeds of his equipment.

s*Even though they carry no static loud, snubbors, stabilizers, braces, and all pipe connectinona affect the
netural frequencies of a system to nome degree, All that can be suld about thelr affects is that they tend to raise
the natural frequencles of the system; not enough work has been done {o evuluate quantitatively the spring con-
stants of these {lexible connections. 1y imposing no static loud on these devices, their effects are minimized.
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15. The weight of liquid, if any, should be considered in determining the data in 14.

16. Components of an item of equipment as well as the assembly of a number of units on
a common subbase should be arranged so that the moments of inertia do not differ by a ratio of

more than 5 : 1; preferably they should be as close to 1: 1 as is possible,

”

17. Manufacturers and technical sections responsible for procurement of shipboard equip-
ment have joint responsibility in determining in the eurly design stages whether it is likely
that resilient mountings will be used. If itis decided that there is a possibility that mount-
ings will be used, the equipment dosigner should give consideration to and provide for several
alternate methods for attaching mountings to equipment,

1.7.4, SELECTION AND APPLICATION OF MOUNTINGS

18. The effect of liquid in the oquipment, if any, and the effect of piping and conduit

associated with the equipment should be considered in calculating natural frequencies.
19. For individual units and for subbase assemblies, 16 applies.

20. Resilient mountings for shipboard use must be designed with ‘‘captive features.'’
This is requirod t prevent the equipment from coning adrift in the event of failure of the
rosilient element due to normal service conditions or to shock,

21, Acoustical shorts across mountings, such as rigid conduit and straps, must be avoided,
22. Resonance of mountings with exciting frequencies of the equipment should be avoided.

23. Mountings should be fastened to foundations or stiffeners, not to bulkheads, docks, or
tank plating unless they are sufficiently stiffened.

24. Subbases and foundations should be designed to be rigid and yet light in weight.

25. In calculating natural frequencies, allowance should be made for nonrigid foundations
and equipment.

28. Clearances around mountings and around equipment should be determined as described
previously,
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CHAPTER 2
INFORMATION REQUIRED FOR CALCULATING NATURAL FREQUENCIES

Before the natural frequencies of a resiliently mounted assembly can be calculated,
certain properties of the equipment and resilient mountings must be known or determined. This
information is also of use in selecting from various suitable mountings the one that best satis-
fies the design requirements for the particular installation.

2.1. PERTINENT PROPERTIES OF EQUIPMENT

Information needed and methods for obtaining dimensions, weight, center of gravity,
moments and products of inertia, radii of gyration, principal axes of equipment, and speed of

machinery will be presented,

2,11, DIYENSIONS

[hoe profiles and dimenzions of equipment in three views are needed to determine spaceo
and clearance requirements. If a subbase is to be used, its length and width are needed to
delermine possible positionings of resiliont nountings; however, the subbase dimensions may
have to be changed later to obtain an assembly with appropriate natural frequencies. The po-
sitions of bolt holes in the supporting legs of the equipment also must be lnown, either for

locating the mountings or for designing s subbase.

2.1.2. WEIGHT

The weisht must be determined for each item of machinery and equipment. The sim-
plest method of weighing is with a platform scale. A crane scale or hook dynamomaeter, if
available, is often convenient for larger units. Equipment already installed can be weighed
in place with a calibrated hydraulic jack or with a weighing capsule. It must be remembered
that equipment does not always have equal weight distribution an.ong its supporting legs. If
equipment i3 fastened to a resiliently mounted subbase, then the weight of the subbase must
also be determined and added to the weight of the equipment.

The weight of externally unsupported piping ducts and eloctrical cables connected to
machinery must be estimated, as it contributes to the total weight supported by resilient mount-
ings. On machinery items such as pumps, the normul weight of fluid must be includod. If
there are partially filled tanks or spaces, a correction!? may have to be made for tho free-
surface effect. This would increase the effoclive height of the center of gravity of tho liquid
in the machinory, If the froe-surface area is small and the volume and weight of the liquid are
small compared with the weight of the machinoiy, the free-surface offect is genorally negligible.

Ofton tho mountings must be selectod and positionod and a subbase must be degigned

bufore infortnation on the weight can be obtained. In these instances, if drawings aro available,

20




the weight can be calculated. lisually, calculation of the weight of the principal parts plus
an estimate for the minutiae will give a good approximation. \Yhen insufficient design details
are furnished, the weight must be estimated, Comparisons may be made with known weights -

of similar cquipment.

2.1.3. CENTER OF GRAVITY

¥or exach unit of equipment or for an assembly installed on a subbase that is to be
resiliently rmounted, the location of the center of gravity must be known in order to detormine
moments of inertia and o position resilient mountings.

The center of gravity of equipment may be determined by balancing the unit on a knife
cdge or bar three times. When the unit is balanced, its center of gravity lies in a vertical
plane through the knife edge. If the unit is rotated about a vertical axis approximately 90 deg
with respect to the knife edge and baianced again, another vertical plane passing through the
center of gravity and the knife edge is established. The two pianes intersect in a line through
the center of gravity. The procedure is repeated with the unit turned on its side, giving a third
plane intersccting the line al the center of gravity of the unit,

It may be difficult or impossible to balance a unit on a knife edge. lor instance, if
there is a thin casing in way of the center of gravity, then a heavy unit may be damaged by
being supported in this way. [n this case, the unit may he supported near one end on a station-
ary knife edge and near the other ond on a knife edge supported by a platform scile as in
Iigure 10. From the weight of the unit W, the
woeight on the scale /£, and tho known distance

between the knife edges 1, the distance be-

tween the center of gravity and one knife edge ] —e e
may he determined. | - é_-
The moments about A are l"“— =
A I
Wae=f! W#
/ f
50 that, with the length moasured in inchos, R

the vertical planc through the ceonter of gravie

ty is R I/ W inches tothe right of A and per- Figure 10 - D_eterminat,ion of Center
of Gravity L, '*~ans of a

pendicular to the paper. This weighing pro- Platform ot

cous must hbe done three times with difforent
srientations of the unit in order to locate the
cantor of pravity.
It the unit has n comparatively simple shape and uniform density, the center of gravity

if not obvious by inspection, may be found by formulas given in any engincering handbook.

When severa! units are installed on a resiliently supported subbase, the same methuds




may be used to find the center of gravity of the assembly. If the assembly is too large, then
the center of gravity of each unit and of the subbase may be determined separately, and, if

the locations of the units upon the subbase are known, the center of gravity of the assembly
may then be calculated. In the design stage, the use of a subbase permits the arrangoment
of the units so that the center of gravity is over the center of the subbase ot at least located
with some degree of symmetry. This simplifies the problem of selecting and positioning
resilient mountings., A typical numerical example of the determination of the center of gravity

is worked in Problem 1 of Appendix 2,

2.1.4. MOMENTS AND PRODUCTS OF INERTIA

When the weight .nd the location of the centor of gravity of a unit are known, the mo-
ments and products of inertia may be determined either experimentally or by computation.

For symmetrical bodies of uniform density, the desired quantities can usually be com.
puted from formulas available in engineering handbooks., Wor irregularly shaped bodies, these
quantities can be estimated by dividing the body up into & lurge number of small rectangular
parallelepipeds of dimeasions Az, Ay, and Ag, treating each element as of uniform density,
and applying the basic relations

I, =% (y?+2¥)Am

—
(i}

S(z2+22)Am

—
i

=¥ (y2+2h)Am

-~
]

xy ZzyAm

-~
n
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= XzzAm
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I
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When test apparatus is available, it is oasier to determine moments of inertia experi-
mentally. The trifilar suspension system 11213 for the determination of moments of inertia
is described in Appendix 3.

If an ussembly is so heavy and large that ite moments of inertia cannot. easily be deter-
mined oxperinentally, then the moments of inertia of the assembly can be calculated after those
for the indivi lurl units are exporimentally determined. The moment of inertia of a rigid body
about any axis may he obtained by detormining the moment of inertia of the body about a paral-

lol axis through the center of gravity and adding to it the product of the mass of the body and

the square of the perpendicul ar distance botwoon the axes; see Figure 11.
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Figure 11 - Parallel Axes for Determination of Moment of Inertia
The expression is

'z, =1, + md?

whore 7, is lhe iuss moment of inertia about the 7 axis through the center of gravity of

the unit or subbase, pound-inch-seconds =quared,

I; is the mass moment of inertia about the Z, axis in pound-inch-seconds squared,
1

m =2 ig the mass of the unit or subbase in pound-seconds squared per inch,
9

d is the perpendicular distance between the Z and Z| axes in inches, and
g 18 388 inches por second #quared,

A numerical problem illustrating the calculation of the moments of inertia of an assembly and

one combining center-of-gravity and moment-of-inertia computations are presented in Appendix
9, Problems 2 and 3.

It is recommended that equipment manufacturers note the moments of inertia on their
rounting ingtallation drawings.

2.1.5. RADII OF GYRATION

Once the moments of inertia about the desired axes are detennined, the radii of gyra-
tion about these axes may be calculated from

e r2morrn _Lorr=19.65v—l
- W




where / is the mass moment of inertia in pound-inch-seconds souared,
m 1s the mass in pound-seconds squared per inch,
r is the radius of gyration in inches, and

W is the weight of the equipment in pounds.

2.1.6. PRINCIPAL AXES

So far in this chapter the moments and products of inertia of units and assemblies were
determined with respect to three mutually perpendicular axes passing through the center of
gravity, In solid geometrical configurations with uniform density, such as cubes and rec-
tangular parallelepipeds, the axes would be parallel to the sides or edges of the object. In
the solution of practical probleins dealing with equipment and machinery of varying configura-
tions it is recognized, for example, that the centerline axis of a motor armature is not neces-
sarily congruent with a principal axis of the motor, but it is so close that for all practical
purposes, they can be assumed conpruent. The fact that the principal moments of inertia and
the principal axes are not exactly determined for equipment usually results in little error in
calculating natural frequencies.

A relation betwesn moments of inertia about principal axes and ahout any other set of
rectanczular axes through the center of gravity is

/", " ,Y + /Z = /x + Iy + Iz = a constant

If the moments of inertia about any set of roctangular axes are represented as vectors from
the center of gravity, they terminate at the surface of an ellipsoid of inertia, see IFigure 12,
If zyz is a sot of rectangular axes, -1, /1, and ¢ the moments of inertia with respect
to these axes, and I, £, and F the corresponding products of inertia, the moment of inertia
with respect to any other axis through 0 will be 1/p% where p is the distance along this axis

from 0 to the surface of the ellipsoid whosc equation 1s

Az? + By? + C2? ~2yz -2z - 2’2y = ]

If the axes ate principal axes, the semimajor axes of the ellipsoid have lengths equai to
V174, 178, and \1/C, respectively. In Figure 12 the X, ¥, and 7 axes are the principal
axos of inertia and also the major axes of the ellipsoid. The axes z, y, and 2 are axes with
athitrary inclination to the principal axes,

If there i< angular displacement of the order of § deg between the two sets of axes,
the difforence in the moments of inertia is negligible, The less the difference among the three
moments ol inertia, the groater is the angle between tho sets of axes that can be tolerated for
reasonably accurate calcutation of natur~l frequencies,

In practical applications, one can vsually proceed by selecting axes parallel to the
gudes of installations and passing through the center of gravity, This will help to reduce cost

and complexity of the mounting instatlation. In units such as electric motors, one principal




FPigure 12 - Ellipsoid of inertia

axis is very nearly parallel and congruent to the centerline of the rotor, and the moments of
inertia about the other two axes are very nearly eyual. In the assembly of various items on a
common subbase, principal axes parailel to the sides of the subbase can Le approximated by
positioning the units to satisfy tho conditions for syminetry; see Chapter 3. When the axes
chosen are not principal axes, the calculation will also require the evaluation of the products
of inertia Ixy, Iyz, and /, ..

2.1.7. EXCITING FREQUENCIES (SPEED)

The normal operating speeds of rotating or reciprocating machinery must be known
since machinery can be the generator of excessive noise or vibration. If the speed ranges are
known, remedial steps can be taken to reduce the transmission of noise and vibration by suit-
able selection and positioning of resilient mountings. The machinery manufacturer can best
furnish this information, and it should be provided on identification plates, in instruction
books, and on machinery and mounting installation drawings.

Not only must the operating spoeds of machinery be known but also certain design
features that will contribute to excitations at frequencies which are multiples of the machinery
speed (leference 6). These include the number of poles and slots in motors and geneorators,
the number of teeth in gears, and the number of balls and rollers in bearings. On the basis
of noise-transmissibility data, it may be possible to select from among otherwiso acceptable
mountings the ones more suitable for minimizing the noise transmission from the machinery

at those machinery speeds.




2.2, PRIPERTIES OF RESILIEAT MOUNTIHNGS

The performance characteristics of resilient mountings can be determined by tests
prescribed in the Interim Military Specification MIL-M-17185 (SHIPS). As performance data
are obtained from tests on various mountings, reports showing these data will be distributed

to naval shipbuilding activities. Ready reterence sheets which snmmarize experimental data

considered essential in the selection and application of resilient mountings are reproduced in
Appendix 4.




CHAPTER 3

CALCULATION OF NATURAL FREQUENCIES OF RESILIENTLY
MOUNTED EQUIPHENT

[n this chapter, forinulas will be given for calculating the natural frequencies of vibra-
tion of resiliently mounted equipment. Cerivation of the formulas may be found in Appendix 5.
FFormulas for souie additional cases are presented in Appendixes 5 and 6.

The magniwdes of the natural frequencies depend upon the weight of the equipment,
it radii of gvration about its principal axes of inertia, and the directions of theso axes.
These quantities and directions are usually aiready established, and the engincer selecting
and applying mountings can do little about them. T[he directions of the principal axes are
likely to be the most uncertain quantity, but some error may usually be made in the assumed
directions without affecting materially the calculated (requencies, as has been shown in
Chapter 2. The frequencies also depend upon the number, the elastic stiffnesses, and the
acrangement of the mountings. Kor the most part, these variables are under the control of the
engineer.

In considering dilferent mounting arrangements, the following general principles may

be of use:

1. The number of independent modes of free vibration of a rigid body upon its mountings

is always six. In special cases, two or more of the natural frequencies may be equal.

2. Increasing the stiffness of the mounting arrangement at any point, as by adding another
mounting, generally raises all the frequencies and decreasing the stiffness has the opposite
effect. The only exceptions are those modes in which the mountings with increased stiffness
are not subjected to additional strain due to vibration; in such cases, no change in frequency

occurs,

3. An increase of mass, or an increase of a radius of gyration, generally lowers all fre-
quencies. Decrease of mass or of a radius of gyration has the opposite effect. The only ex-
coptions are those modes in which an added mass lies at a nodal point and therefore is at
rest during vibration, or for the modes in which there is no rotation about the axis to which the
altered radius of gyration is referred; in such cases, no change in frequency occurs,

The calculation of the six natural frequencies is always possible, but it is laborious
unless the mountings are arranged in a relatively simpie manner or unless computing machines
such as the IB\M or UNIVAC are available, First, the necessary simplicity in terms of vibra-
tional symmetry will be explained. Then the most useful types of arrangements and the methods
of calculating the natural frequencies will be described, and numerical illustrations will be
presented. Explicit formulas will be given here for certrin simple classes of arrangements.

The XYZ axes will always be assumed to be drawn from the center of gravity of the
equipinent as the origin and in the direction of the principal axes of inertia and the axes of

the wiountings will be assumed parallel to the coordinate axes unless & =& . Damping in the




mountings will be ignored since its effect upon the frequencies is slight.

3.1. VIBRATIONAL SYMMETRY

As presented in this guide, the calculation of natural {requencies will be based on
mounting arrangenients having at least one plane of symmetry. The greatar the number of
planes of symmetry, the easier are the natural frequency calculations,

A plane through the center of gravity of a mounted assembly is a plane of vibrational

symmetry when:

1. Vibrational motions parallel to the plane do not evoke reactions tending to generate
displacements perpendicular to the plane. such motions may involve translations parallel to
the plane and rotations about an axis through the center of gravity and perpendicular to the

plane. These motions may appear singly or may be combined in each of the vibrational modes.

2. Vibrational motions perpendicular to the plane may involve perpendicular translations
and rotation about an axis lving in the plane. These inotions may appear singly or may be

combined in each of the vibrational modes.

A vibration of Tvpe 1 has= no tendeney to excite a vibration of I'vbe 2 and vice versa,

Vibrational symmetry is usually accomplished a3 follows:

1. Each plane of vibrational symmetry must contain two of the principal axes of inertia

of the equipment or assembly.

2. The mountings must be arranged to provide suitable symmetry in their elastic reaction
to displacement of the equipment or assembly. A siriple way to achieve elastic symmetry is
to arrange the mountings in geometrical symmetry, that is, so that each mounting is matched
by another identical mounting located at the mirror image of the first with respect Lo the plane
of vibrational symmeuy. If a mounting has unequal axial and radial stiffnesses, its axis and
tne axis ol its mate may be either both parallel or both perpendicular to the plane of symmetry.
Geometrical symmetry of this sort satisfies the requirement for elastic symmetry since forces
and moments associated with vibrational displacements are equal on both sides of a plane of
symmetry. Any mounting that has equal stiffnesses in all directions may have its axis orient-
ed in any direction. A few relatively simple cases of inclined mountings will be described in

Appendixes 5 and 6,
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t'igure 13 - One Plane of Vibrational Symmetry

For at least une plane of vibrational symmetry to exist, taken as the YZ-plane as in

r'igure 13, the conditions of elastic symmetry are as follows:

1. The summation for all mountings of the algebraic product of the stiffness of the mount
ing in the Y direction and its X coordinate must equal zero and similarly for the stiffnesses
in the Z direction.

2. The summation for all mountings of the stiffness in the Z direction multiplied by the
algebraic product of the X and Y coordinates must equal zero, and similarly with Y and Z

interchanged:

If each mounting has equal spring constants & in all directions, then three equations

suffice:
2kX=0, X kXY=0, and X kXZ=0

If £ is the sane for all mcunting-, the above equations can be simplified further:

2X=0, L XY=0, and X XZ =0
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3.2. THREE PLANES OF VIBRATIONAL SYMMETRY

Equipment that has the simplest vibrational motion and therefore whose natural fre-
quencies are the casiest to calculate, has its mountings arranged so that there are three
mutually perpendicular planes of vibrational symmetry containing the center of gravity of the
mounted assembly. Then three translational modes of vibration occur, each with motion in the
direction of one of the lines of intersection of the planes of symmetry, and three rotational .
modes occur with the lines of intersection of the planes of symmetry as the axes of rotation.
If cach mounting has the same stiffness in all directions, then the three translational frequen-
cies are equal and u translational mode at this frequency may occur in any direction.

The XYZ axes will be drawn as usual through the center of gravity and along the prin-
cipal axes of inertia of the niounted equipment, The three planes of vibrational symmetry will
ther be the XY, YZ, and XZ planes. Any mounting not having equal axial and radial stiff-
nesses is assumed to have its axis oriented parallel to a coordinate axis,

If £y, ky, and k; are not the same for all mountings, the conditions for elastic symme-

try relutive to all three plane= are

ShyX =0, SkyY=0, SkyZ=0
Sk, X=0, Sk,Y=0, SkyZ=0
21'52XY=0, ZkYXZ=0, ka YZ=0

If k£ y hus the same value for all mountings and if the same is true of &£y and k,, then

the conditions for elastic symmetry relative to all three planes are

LXY=0, 2XZ2=0, 27YZ2-=0

For inclined mountings, conditions for three planes of elastic symmetry are stated in

Section A5.4.2. of Appendix 5.

3.21. COMMON CENTER-OF-CTAVITY ARRANGEMENTS OF FOUR MOUNTINGS

As a special case, the effective points of attachrient of the mountings may lie in a
plane containing the center of gravity of the equipment, forming a ** center-of-gravity arrange-
ment,”” If the mounting plane contains two of the axes of inertia of the equipment, it is a
plane of vibrational svmmetry; the mountings may also be so arranger ‘-~ the plane that ‘wo
other planes of symmetry exist, all three planes being mutually perpendicular. 3ee Vigure 14

for typical arrangements. Such arrangements have been used in mounting many electronic
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Figure 14 - Commoen Arrangoment of Four Mountings with Three Planes
of Vibrational Symmetry

devices and even a few items of heavier equipment. A more general type of center-of-gravity
arrangement in which the mounting plane is inclined to two of the principal axes is described
i'n Section A5.5.

Case (a): k, =k

14

The simplest arrangement with threo planes of vibrational symmetry is a center-of-
gravity arrangement consisting of four identical mountings having equal axial and radial
stiffnesses 4 with the effective points of attachment falling at the corners of a rectangle whose
sides have lengths 20y and 200y and whose center is at the center of gravity of the equipment.
The sides of the rectangle are parallel to two of the principal axes of inertia, taken as the
X and Y axes. 'The formulas for the frequency /, of translational vibration in any direction
, and f

and the frequencies f v, f » of rotational vibrations about the axes indicated

rot, Y rot,

by the subscripts are
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Ngk k
=L \/___ V_
fre sV o 6.26Y

whero N equals the number of mountings, here four, and

6.26 Uy 6.26 D 6.26 —
_ ‘/ } x1/k ] ATYN'Y
/'O(,A’ = rX w , /ro!,}" ry V;’ /{0('2‘— rz W (DX +Dy)

Here, for four identical mountings, 6.28 = \Ig/2#, W is the weight of the equipment in pounds,
DX’ Dy, and D, are the absolute values of the coordinates of the point of attachment of a

mounting in inches, and r,, r,, and r, are the radii of gyration of the mcunted equipment
about the X, Y, and Z axes, respoctively. Il D, =r, and D, =7y,

/t.' = /rot, X=,rot, Y
Cese (b): ¥ #k,
If the four mountinge have unequal radial and axial stiffnesses but are identical and

have their axes parallel, the formulas for the three translstional {requencies of vibration par-

allel to the X, Y, and Z axes and for the three rotational frequencies about these axes are

% ky k
- X - '/ ¥ - l/
fux =626 Y/28, fyy -6/, 2 =626)E

6.26 Dy [k, 6,26& k, 6.26 ¢ /1

f =YYz, = -2, == V2 D2+ kD>
o1, X T T 0 oty ,Y W Tenz =T y Uy Dy +kx Dy

For most mountings, one of the threc stiffnesses, 44, £y, or kz is enqual to the axial stiff-
ness of the mounting while the other two are equal to its radial stiffness. In the plane of the
directions of the two equal stiffnesses, translational vibration can occur in any direction or
the motions may be elliptical depending on the direction or directions of the initial exciting
forces as well as their relative magnitudes.

Computations in the use of such formulas as those for £, or /rot,,‘(' and /r Ly may be
reduced by the use of a chart, Kigure 15, when four mountings are employed.

The application of the frequency equations is illustrated in Problem 4, Section A2.4.
where four identical mountings are attached in a plane containing the center of gravity of the
equipment. In this problem, procedures are indicated for modifying the frequencies if the

initially assumed positions of the mountings result in natural frequencies unsuitable to the
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requirements imposed by environmental conditions for the equipment,

Another illustration of the application of the formulas for equipment having three planes
of vibrational symmetey is Problewm 5, Section A2.5. In this problem, ky= k, and X7 and
Y7 planes of symmetry may pass either through the axes of the mountings or halfway between
them; the same frequencies are obtained with either choice of the planes of symmetry.

3.2.2. OTHER ARRANGEMENTS WITH THREE VPLANES OF SYMMETRY

Frequency equations will now be presented for more general cases, to be used whore
these may provide the mmost satisfactory solution to the problem of arranging mountings,

Ways of generalizing center-of-gravity arrangements of mountings in the XY plane
starting initially with four parallel mountings at the comers, D4, Dy, of the equipment and

still maintaining the three planes of vibrational symmetry, see Figure 16, are:

1. Any number of additional sets of four mountings, with parallel axes il k¥ # k., may be
arranged at % a; Dy, e b, Dys ta, Dyt b, Dy etc, see Figure 18a.

2. Two identical mountings, with parallel axes if k¢ k, may be added at X = ta Dy on
the X axis,orat Y =% 6 D on the ¥ axis. Any number of such pairs may be added; see
Figure 16h,

3. Any two identical mountings with the same Y, with parallel axes if k4 £,, may be
movad equal and opposite distances parallel to the X axis without changing Y; or if they have
the same X, they may be moved equal nnd opposite distances parallel to the Y axis; see
Figure 16c.

4. Any two identical mountings, with parallel axes if k , ¢ £, having the same . but
equal ana opposite Y may he moved so as to change X to (1/¢)X for both provided the olas-
tic constants are changed by a factor of ¢; and the converse statement holds with X and Y
interchanged. l'or example, if the two mountings are at X = 4, Y =B and X =~ 4, Y = B, re-
apectively, with stiffness &, they may bomoved to X = A4, Y = B/cand X = = .}, Y = B/c with
stiffness ck; see Figure 16d.

5. Any mounting may be replaced by two mountings having equal total stiffness and placed
at suitable points whose location may be determined from the conditions for symmetry. Kor
example, if the two have stiffnesses ¢ and (1-c¢) times the stiffneas of the original mounting,
then they may be placed with the same Y and the same orientations of axes as the original but
with coordinates X’ for the first and X *’ for the second mounting where

X =0bX, ,\/H,L—_Q.C‘_ X
)

and X is the original coordinate, b is any number, and 1 > ¢ > 0; ses Kigure 16e, By such

changes as 4 and 5, it may be possible to adjust the stiffness of each mounting to the load
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it supports. Many other arrangements are possible, but the process of design tv secure the
requisite symmetry may be tedious.

Frequency formulas for any number of mountings, identical or different and with equal
or unequal axial and radial stiffnesses arranged in the XY plane drawn through the center of
gravity of the mounted equipment with vibrational symmetry relative to the XZ and YZ planes, -

- Ly
/",,(_3.13|/§;sz, f"'y=3.13‘/#2k, f“,z=3.13|/%2k2
_3.13|/1 2 . 31311 2 3.13
fovx = T Y k2 Py feoyy = ry Vg =F20%0 oz V#(E"yoxz*}:"xurz)

rz

aro

ere 3.13 = \/g/2n, and the position of a mounting is at X = £ Dy, Y= t Dy. An illustration

is Problem 8, in Section A2.6., in which the mounungs are not identical.

3.2.2.1, Mvultiplane and Otlier Arrangements with Three
Planes of Symmetry

Multiplane arrangements with three planes of syrimetry can be formed by taking two or
more center-of-gravity arrays in the XY plane and translating them parallel to the Z axis so
that they lie in parallel planes at suitable distances from A Y; see Figure 17. Then, of the
conditions for three planes of symmetry, thoso not containing Z are already satisfied, so are
those containing XZ or YZ since Z has a constant value for each array, There remain to be
satisfied the equations containing Z slone.

If there are just two asrays consisting of Ny mountings in a plane at a distance L, from
the XY plane and N, mountings in & plane at a distance L, from the XY plane and on the oppo-
site side of it, then, provided &, and k, are the same for all mountings, the only restriction
on Ll and L, is that N, Ly=N, Lz‘ If, however, there is variation in r'cX or in ky, then it is
nacessary that the ratio Lk, /2k, have the same value for both arrays und that L, (Elcx)l =
I,l(EkX)z, the subscripts indicating the plane to which esch sum refers.

More generally, if several center-of-gravity arrays in the XY plane are inoved into paral-
lel planes at Z = 7 Zz' .+y Tespectively, then Zky/z',kx must have the same value for all of
them and they must be placed so that

Z((Sky), 42,y (Shy)y+ Zy(Shydyseee=0
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Figure 17 - Multiplane Arrangement with Three Planes of Symmetry

The formulas for the frequencies are those that hold for any arrangement having three
planes of vibrational symmetry and not including inclined mountings. I'hese formulas are the

same as the last set given above, excapt for these two:

. 31311
fror, x = _rx_‘/!_v(zkll)f + Lk, DA

frot, ¥ w‘/ﬁ (kD2 +2kyD2)

Ty

3.2.3. SUMMARY FOR THREE PLANES OF SYMMETRY

‘The conditions for three planes of vibrationai symmeuy and the frequency equations
for equipmnent resiliently mounted are summarized by types of arrangements in Table 1. Sep-
arate equations are given for assemblies having mountings witi, equal and unequal spring
constants in axial and radial directions, Sketches showing typical arrangements for each set
of equations are given also,

3.3. TWO PLANES OF YIBRATIONAL SYMMETRY

Many arrangements of mountings have only two planes of vibrational symmetry., £xam-
ples are the base arrungements described in Section 3.3.1. When two planes of syninetry exist,
there occuts a single translational mode of vibration parallel to the line of intersection of the
two perpendicular planes of symmetry and a asingle rotational mode about this intersection as
an axis, The other four modes of motion are, in general, rocking modes, two in each plane of

symmetry. Kach rocking mode, however, is actually a mode of rotation about an axis which
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TABLE 1 - Frequency Equations for Three Planes of Symmetry, Inoludxng

Each mounting sither has k = k_or has its axis parallel to X, Y, or Z.

Common Four-Mounting Arrangements

Mountings
. Frequency Equations
ldentical Aman Diucftion douti cm;:'“s
of mange- o ounting
: Different| ®ent Mounting Stitinesses Elastic Stiffness Four Mountings wilh
Ares Geometrical Symmetry Any Number N
Identical | Coplanar Any k =k, =ke const. IXalYulZa)
in XY
Piane ky=kyskz =k EXY=ZXZ=2Y2e0, /tr.X'/u.)"/tr.Z'G'“V;iF- fa, x=lu,y= I,
ux-):ky.zkz-zk
G.ZGDY k 3'13 -& 4
frot, x= > VW fm.x'-,x— W
6.26D .13 { /E
frot, ¥=~ "y »% fm.y'7; v
f.m.z's—“'6 *(D”D ) fm.z'3',l: f'ﬁ
All Mountings | x «k S$XeXYuZZal Ex YL .N_"L
85 | k ok, “IYe1Z- fu, 2828 5 fo, y= 626y SL | A xm 303
Parallel to EXY aSXZ=SYZu0
Same Axis kg - const, - i
XY ouZ k, = const, ez G'ZGVWZ' fo, z=3.13 \/.TZ
6260 k5 e
’m.x'TVT L% Sared b
—
fo ye ”‘”xy"_z / u;\Fz
rot, Y Ty rot, Y ry
frw, 2= 82 ‘L&, UyD2 + kyDP) | fop, z=2BYL
2 fz YW




Frequency Equations
Examplas
F:;::::Y Any Number N of Mountings
= (2 ‘
s.zsv% fo, X =,y = Foa, 2= 313 VW‘Z .
Z
LayVEsp 2 ' ' A P
e, x5 Yy 20V “ —% HeSEs
AN T Y J R P
<, Y RN S Y
33VE5p2 £y YA A 7
N ,M. Y W X / a8 rd
X
| -
. k
pi+oh "-q..z'aTl: R RS
k Nk Nk (b} Examples (a) and the following;
¥
_y-s.zsvw /‘,'x-a.uV—wﬁ.r,,'y-s.ls -
Nk, z z 2
,U, 2‘3.13V’T‘ “
. [4 WY /a -“ - ."‘, -\F "
2 ' ' JU- B P L
Z /"”' X .l:l} E%L - ,f/“-':". % Y - o j_ X i r—-"' aurr y
X ,/7—' ' - 277?‘ a W, -/
z f .-Lu ZZDx2 X x i 4
ret, ¥ ry »"’W— X
i,o;mxo,}) fron, 2.2;_122 i(kyzo,}uxzo,’)
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« ** TABLE 1 (continued)

-

Mountings Frequency
i Direction Conditions
Identica! of
of Atrange- of Mounting Elastic Stift
Ditfecent| ment Mounting Stiffnesses astic Stiffness Any Numbet of Mounth
Axes
Either | Coplanar| Each Axis Any SkyX=ZkyY=ZkyZ =0 -33V/Lsk,, =313
Identical | in XY | Paratiei to fu, x WX fe v
of Plane XY, o2 I]"4‘!'\'"2’]‘2}"ﬁ1'z"u
Different
ik, wk, SkyXYeZkyXZ=Zky¥Z=0 /m,x.l;% 1z
. . 1
/rot, Y 3_":1 w Ika
3.1 1
frol z" po 3 W(EH
Any Each Axis If mountings are attached | 3k, X=3k)Y=ZkyZ=0 fy x=3.13 -’—Ekx N - 3'13‘/
Atrange- | Parallel to in two pianes parallel to x Sk ko2 14
ment XY o2 XY plane, ZkyX = 2Y=2ky2=0
ik, ok, (8) il also ZkyXY=ZkyXZuSkyYZ w0 fm,x'w I—(Ikz
: kx- const. and Ty W
ky = const. then
N, L =NL.. 3.134 /1 )
171" 252 b4 =2:22Y [ Bk
‘(b) Otherwise, L YRS YW T2
must have the same valie
for both planes and frot, z=.3;_13. .917 Eky
Z
also
L, (z/‘X)l - Lz (zkx)z
See Sections A5,6 and A6.4 for additional cases.
Principal Axes X, ¥, Z Planes of Vibrational Symmetry YZ, XZ, XY
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Frequency Equations

Examples
833 Any Number of Mountings
. —_— () Examples (a), (b), and the following:
1Z2=0 fu, xm 313\ /L Sy s £y, y =38 -‘}/-21:, » fy, 27303 #zkz )
yZ=0 T
K
Ek,YZ =0 .13 1 2 L
X B m— -— Ek D >

fro(,X ’x W Y'Y ;711__:;____ ——— %Y

oy = 23 . A "

cot, Y * W }‘kZOX X - . g

k N K
1
frot, 2= 3BVL @y 02+ 2ky D) .k :
’ fz 114 t
(d) Examples (2), (b), and (¢), and the following

:2=0 o, x= 3BV L 2y £y ns.u‘/lw-zky, fmz-s.n‘/;ly_ Sk,
Z=<0 z
kyYZ a0 frot, X= 313‘/ Ckz0F + ThyDF)

frot, Y-l;_lygvlw (Zkszz + EkxDz2)

hor, 2= B\ L @y D2+ ZhyD )
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does not pass through the center of gravity of the equipment. Calculation of the natural
frequencies requires the solution of quadratic equations,

_ The XYZ axes will be drawn as usual from the center of gravity of the equipment along
the prit\la\p‘al:axes of inertia of the equipment, with the Z axis perpendicular to the plane of
the mountings; and the planes of symmetry will be taken to be the XZ and YZ planes. The
single translational mode is thus in the direction of Z. Any mounting not having equal axial
and radial stiffnesses will be assumed to have its axis parallel to a coordinate axis except
when the contrary is stated.

For two planes of vibrational symmetry to exist, the following equations must be satis-
fied:

SkyX =0, Tk,X=0, SkyY=0, Tk,Y=0

Tk,XY =0, TkyXZ=0, SkyYZ=0

If each of the constants &, ky, and k; has the same values for all the mountings as, for
example, for identical mountings with parallel axes, these conditions may be simplified to

2X=0, XY=0, 2XY=0, 2XZ2=0, 2YZ2=0

One way to satisfy the requirements of these equations is to start with mountings in
the XY plane as in the case of center-of-gravity mountings described in Sections 3.2.1 or
3.2.2. If such an array is translated parallel to Z, then Z has the same value for all mount-
ings in the array, so that Z may be taken outside the summations in the equations contain-
ing Z and these equetions are also satisfied. Two or more such arrays in parallel planes
can then be combined if necessary. If the distances between the planes and the spring con-
tants are properly adjusted, the arrangement becfomes that of the multiplane center-of-gravity
type; see Section 3.2.2.1. -

Another variation in arrangement permissible without upsetting the vibrational symmetry
is to give equal and opposite displacements, paralle! to Z, to any two identical mountings

provided they have the same X and Y but different values of Z, and provided also that they
" have parallel axes if £« k.

3.3.1. BASE OR BOTTOM ARRANGEMENTS IN A PLANE

Base or bottom arrangements of mountings are used in many of the resilient-mounting
arrangements on shipboard. In such arrangements, the points of attachment of the mountings
lie in a plane parallel to the base of the equipment, Usually the mountings are placed under
the equipment, but the equipment may also be suspended from the overhead or fastened to bulk-
head stiffe.ers; see Figure 18. A modification sometimes used is a stepped-base arrangement
in which the mountings are in two or more parallel planes, Figure 19, but in this case there
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Figue 188 - Four Identical Mountings Figure 18b - Typical Arrangement of More
beneath Equipment Than Four Mountings
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Figuwe 18c - Equipment Suspended from the Figure 18d - Equipment Supported by a Bulkhead
Overhead by Identical Mounung'l with Identical Mountings

Figure 18 - Normal Arrangements of Mountings for Equipment
with Two Planes of Vibrational Symmetry

Figure 19a - ldentical Mountingse Figwe 19b - Different Mountings

Tigure 19 - Steppod-Base Arrangements




is only one plane of symmetry and an exact calculation requires the formulas of Section 3.4.

Let the mountings have all their effective points of attachment in a plane parallel to
the XY plane, and let them be arranged to have vibrational symmetry relative to the XZ and
YZ planes. Let the mounting plane be at a distance D , from the center of gravity of the
mounted equipment.

(8) Four Identical ‘lountings Symmetrically Placed, With &, = k,.
The simplest example of such an arrangement consists of four identical mountings
having equal stiffness in all direciions, placed at symmetrically disposed points X = % D x»

Y =2*Dy. The frequencies f,, of the translational mode in the Z direction and of the rota- :
tional mode about the Z axis are

- k _6.26 Y /k 2 2
f“_6.26‘/%, f’°"7\/W(D"+D")

The frequencies of the four rocking modes may be found with less computational labor

Here 6.26 = 2\/y/2n.

by use of a chart which will be called the Base Mounting Chart;*!4 see Figure 20. For rock-

ing modes in the XZ plane the abscissa represents Dy/ry, and for rocking modes in the YZ

plane, it represents )y /r,. Ihe ordinate is D,/r, where r stands for the radius of gyration,

fx of ry, whichever is being used for the abscissa. The origin representsthe center of gravi- .
ly, while any point on the chart represents the position of one of the four mountings with re.

spect to the X or Y and Z axes in either the XZ or YZ plane. Since the coordinate distances

have been divided by the respective radii of gyration, the chart coordinates are in nondimen-

sionsal form, Circular arcs are drawn on the chart representing constant values of the ratio of

the maximum frequency f to the minimum frequency f

min
same plane; see Section 1.2. Hyperbolas are algo drawn representing constant values of the

max for the two rocking modes in the

H 7 . H .
ratio f . /f,., where f . is always less than f, .

min
In calculating frequencies, the value of f" is first obtained from the formula. Then

/f

values of the two ratios f_, /f, and f min 8re read off the chart, usually by interpola-

max

tion hetween curves., Tho two rocking frequencies are then calculated as f

max and fmin'

This procedure is followed for each plane of symmetry in turn,

The chart may also bo used by the designer in planning the arrangement. It is helpful
to lay off as a horizontal line on the chart the half-length (I/2) ¢ slf-width (w/2) of the
base of the equipment divided by the appropriate radius of gyratiun, thus reducing it to non-
dimensional form. This line then indicates the possible positions where a mounting can be
attached to the equipment without extending the base, If the line is drawn at the proper or-

dinate [),/r, then the circular arc that is tangent to it represents the minimum value of

»This chart is similar to the upper right quarter of the Isomode Chart devised by Lewis and Unholtz end
issued by the MB Company.
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fmax’Tmin that can be attained under the given conditions. The abscissa of the point of tan-
gency indicates the proper value of Dy or Dy to secure this minimum.
As an alternative to the chart, the formulas for the two rocking modes in the XZ plane

are
2 2 2 2
foax 1 F1+££;_D_z +‘/(1-Dx +022)2+4Dzz ]
2 2
/['2 - ’Y ryz fyz
2 2, 2 2 2 2
fmin =_;- "1+DX DZ -V(l-px +DZZ) +4DZ
2
f" L ’YZ "Yz fy2

Here Dy = | X|, Dy = | Y| while D, = | Z| is the distance from the center of gfavity to the
plane of the mountings. The formulas for the YZ plane are obtained by changing D, to Dy
and 7y to ry. ‘ \
A numerical illustration for four mountings using the Basd Mounting Chart is presented
in Probiem 7, Section A2.7. This problem, typifying many shipboard installations, is carried
out in considerable detail including calculation of the clearances required around the equipment.
(b) More General Base Arrangements |
The Base Mounting Chart or the formulas just stated for /___and f_, slso can be used
for determining the natural frequencies of the rocking modes of vibration for other types of base
arrangements merely by reinterpreting certain symbols. In particular, D y and Dy will now be
the distances, not to the actual mountings, but to a set of four identical mountings in rectangular
array that would be equivalent to the actual mountings. The general formulas for Dy and D

D, = Dy = .
X Y .
Lky ' Tky g
Assuming that the mountings are arranged in a plane parallel to the XY plane with vibra.
tional symmetry relative to the XZ and YZ planes, the principal cases are as follows:

are

1. For any number N of identical mountings each having stiffness & in any direction, take,
on the chart or in any formula,

DX-‘/#zﬂ, Dy-\/-lN-zyz.' o

f, =3.13 %-", frot -§;1_3 V% (2X2 + £Y?
Z .

also
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Here 3.13 = \/g/2n.
2. The base arrangement of four mountings each having its radial and axial stiffnesses

equal may be arranged in two pairs, one pairat X = Dy and Y = Y, the other at X =2 D, -
and ¥ = Y,. To preserve the symmetry in the XZ plane, the stiffnesses k, and k, of the two

pairs must be such that

k
"1Y1+"2Y2=0°"‘_1=ﬂ
kz '|Y1|
dence
2 2
lel +I‘:2Y2 _ k2|Y2| |Y1|+ kll}"l !Y2|=.|Y';IY2|
kl + k2 /cl+k2
and
Dy=1Xl, Dy=VIYI| Y]
Also

foo =513 |2 52 /,°t=3'13\/2(k A x2 .y ()
14 r2

flere 3.13 = \/g/2n. An example is treated in Section A2.8, Problem 8.

3. For any number of nonidentical mountings, each having equal stiffnesses in all direc-
tions, the corresponding equations are

D ,l/}:w2 <1/ 2kY?
X Ik’ Py Tk

fo =323 |/ -2k, g = 313W(Ekxz+2kY2)

4. For any number of mountings with unequal axial and radial stiffnesses and each mount.-
ing having its axis parallel to a coordinate axis, on the chart or in any formula, Dy and D

Sk, X? [2k, Y2
Dy = Sky Dy = Sky

The equations for the translational and rotational frequencies are

must have the values




fie = 3.13 V'IW Sky Lo = i-'_lf‘/lw (Tky X2+ Tky ¥?)

and, for the rocking modes, f, is to be replaced by fy in calculating frequencies in the XZ
plane, or by fy for modes in the YZ plane, where [y and fy have the values

Tky Tk
fy=23.18 VT’ fy=3.13 V’TY

3.3.2. NEARLY COPLANAR ARRANGEMENTS

When the mountings do not all lie in a single plane parallel to a principal plane of iner-
tia, here taken as the XY plane, there may be only one plane of vibrational symmetry, and the
more complicated formulas for this condition of symmetry presented in Section 3.4 should be
used for an accurate calculation. If, however, the departure from a single mounting plane is
rather small and if the conditions for two planes of symmetry are satisfied when the vria-
tion in the value of Z is ignored, then a sufficiently accurate estimate of the frequencies may
often be obtained by using the chart or the formuias for the base mounting arrangement with
an average value of D,. This is illustrated for four noncoplanar identical mountings in
Problem 9 of Section A2.9, and for four noncoplanar different mountings in Problem 10 of
Section A2.10.

3.3.3. NONCOPLANAR ARRANGEMENTS WITH TWO PLANES OF SYMMETRY

The Base Mounting Chart is not directly applicable to uoncoplanar arrangements with
two planes of vibrational symmetry where the mountings lie in more
than one plane perpendicular to these two planes, Exact formulas
for the frequencies are a3 follows, the first two being the same as
for the plane base arrangement:

fu,z=3-13v;lv-2"z’ frot, 2 =§;lz§ IW(}'-"yX“z"sz)

and for the rocking modes in the XZ plane,

foax =3.13 ‘/FN-Q: L. Ly= ‘[(Pl-%)’ . (Ekxz)z
2 + X! X 2 wfy
P +Q ShoZ 3
-3.13 ‘/1_2_1, 208/ p o _{Eky
fose 2 . / 102 w'y




where

1 2y
X Q= (Shy X4k, 22)
Wey

For the rocking niodes in the YZ plane,

P +Q, . P,-Q\? [Zky Z\?
frax =313 5=t e Ly, LY:W22 1) +( wu)
P o SkyZ\2
fmin=3'13 2.*Q1~LY:MVP2QI‘ _;}-)
2 ,;nax "I‘X
where
Sky 1 2 2
P2=——, y Q= , (Ekz}’ +2kyZ )
W Wr

Mere 3.13 =\ J/2n, 9.8 = ¢/ (2m)*

tquations for certain arrangements of inclined mountings with unequal axial and radial

stiffnesses and with two planes of vibrational symmetry are given in Sections A5.3.2 and A§.3.
3.3.4. SUMMARY FOR TWO PLANES OF SYMMETRY

The conditions for two planes of vibrational symmetry and the frequency equations for
the resiliently mounted equipment are su.umadcized in Table 2 by types of arcangements. Sketches

showing typical mounting arrangemeuts for each set of equations are given also.
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TABLE 2 - Frequency Equations for Two Planes of Vibrational Symmetry
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3.4. ONE PLANE OF VIBRATIONAL SYMMETRY

Mounting arrangements with one plane of vibrational symmetry are usually braced
arrangements where the base mountings are supplemented by uppec lateral mountings. Such
arrangements are particularly suited to equipment whose height is large compared with its
base dimensions and which i= nlaced 3o that lateral mountings may be attached to an adja-
cent bulkhead; see Figure 21. These arrangements have been used for installations of many
electronic and alectrical devices and even for a few items of heavy equipment.

Figure 21 - Common Arrangements of Mountings for Equipment with One
Plane of Vibrational Symmetry (the YZ Plane)

As usual, the XYZ axes pass through the center of gravity of the equipment along the
principal axes of inertia, and any mounting with unequsl axial and radial stiffnesses has its
axis parallel to one of the coordinate axes. The single plane of vibrational aymmetry is taken
as the YZ plane. The general conditions for elastic symmetry are




TkyX =0, kX =0, ZkpXY=u, ZkyXZ=0

If every mounting has the same value of £y and % ,, then
=0, 2XY=0, 2ZXZ2=0

Special arrangements satisfying these equations are easily designed; see Figure 22,
The simplest methods are the following:

1. Single mountings can be added anywhere in the YZ plane; see Figure 22a. !

2. A pair of identical mountings, with parallel axes when % # &, can be placed at any
pair of points having the same Y and Z but baving equal and opposite X. Any number of such
pairs can be added; see Figure 22b.

3. Equal and opposite translational shifting of any magnitude parallel to the Y axis can
be given w any two mountings having the same value of & ,X, or equal and opposite shifting
parallel to Z if they have the same velue of £y X; see Figure 22c,

4, The elastic constants of any mounting can be changed by a factor of ¢ provided its

coordinate X is simultaneously changed by the factor 1/ ¢, without change of Y or Z or of the
orientation of its axis; see Figure 22d.
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Plane of Vibrational Symmetry (the YZ Plane)
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5. Kinally, any mounting can be repiaced by two or more mountings of equal total stiff-
ness suitably located. For example, if the two have stiffnesses ¢ and (1-c¢) times those of

the original, then they may be replaced at the same X butat (Y*,Z2"),(Y",2"), respectively,

where

Y'=aY, Z'=bz, Y"=1—6C y 20 1-b¢
1-¢ 1~

o

tiere X, Y, Z is the originai position, a and b are any numbers, and 1 > ¢ > 0.
Many (urther modifications of the arrangement are possible, but it is more tedious to
insure that the conditions for symmetry are satisfied.

When vibrational symmetry exists relative to the YZ plane, vibration in this plane is

independent of vibration perpendicular to the piane. The motion in the plane can be resolved

into translational vibration parallel to the plane and rotational vibration about a petpendicular

axis containing the center of gravity of the equipment. Vibrational motion perpendicular to
the plane may be resolved into translation and rotation about an axis lying in the plane of

symmetry.

Calculation of the six frequencies frequires the solution of the two following cubic
equations in f2:

For rotion in the YZ plane,
6 4 2 -
f°-8,1"+C,1°~D,=
where

By=p,+73+ ¢

Cy=pyPy+ Py + P34y - w925'32 [(szY)2 + (EkYZ)z]
r
X

Dl = pz P3 ql - w25.62 [pz(zkzy)z + p3(2k}'z)2]

X

and where p,, p;, and ¢, are three of the six quantities

9.7 = 9.7 _9.78
Py ="W—8 Sk Py == Iky Py T Xky

g, ~ 218 (5,724 5ky2%), q,= 208 (Sk, X2+ 3ky2Y
Wry? We,?

gy =—2T8 (35 X243k, ¥?)

Wer 22

e

t



For motion perpendicular to YZ, including rotation about an axis lying in YZ,
f8~B,f4+Cy 12 -Dy=0
where

By=p+ ¢+ 4,

Cp=py9,+ P 93+ 4, 4 -&g [_1.5 (SkyY)? + .l; (Ek y2)? + 21 - (kaYZ)z]
w r; ry ry' r7

= _958[ %2 2, 9 2 Py 2
Dy=019,95 ?[;‘2—2(2"}(2) +;—:5(2ka) +"2’.2 (ZkXYZ)]
Y’z
+ 1810 (5k,Y) (Sky2) (Sk,Y2)
W3r},2rz2

dere 9.78 = ¢/ (2n)2, 95.8 = g2/(2m*, 1870 = 2¢3/ (2m°.
If the mountings have equal radial and axisal stiffnesses, then ky = ky k, = k, 8 single con-
stant for each mounting; if all the mountings are identical, (2%,Y)2 = £,2 (£Y)2, etc.

The p's and ¢'s serve as a basis for the quantitative consideration of the frequencies.
Let £, f2, f3 denote the frequencies for motions parallel to YZ. Then

f12+f22+/32‘P2+P3+ql
(F2 =12+ (F2-1D2 + (1212 = (p,-p3)% + (P, - 4,)% + (P3 - 4,)?

+8x95.6 [(zk ;N2 + (3k YZ)Z]
Wr 2

From the last equation, f, = f, = fy only if p, = p, = ¢, and also 2k,Y = 2kyZ = 0.

If the latter sums do not vanish, their effoct is to spread the roots further apart. Thus,
if it is desired to bring the frequencies closer together, the differences between p,, P4, 8nd
g, and the sums just mentioned should be decreased. More precisely, if 2k,Y = 2ky Z = 0,
then /,2 = p,, f,2 = pyy f,2 =¢,. Otherwise the square of the lowest of the three frequencies
fi+f;s f4 cennot exceed the least of Py Pas and ¢, and will in general be less, whereus the

square of the highest frequency usually exceeds the greatest of p,, p,, and ¢,, and at least
cannot be less,
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In the case of vibration invuiving at least some motion perpendicular to YZ, three sums
are involved:

SkyY, ZkyZ, SkyYZ

To make the three frequencies equal, it is necessary that all three of these sums vanish and
also that p, = ¢, = ¢,. If all three sums vanish, taen the three frequencies /,, /., f, have

the values

fE=py f8=2am fi=qy ’
In anv caso

[+l +ld=p v+ qy

) .
(P21 (121D + (U2 ~1D = (9, =g, + (,-93)° + (P, - 9)°

w2 r 2 2 2ef

ry ry r7

A chart, Figure 23, has been prepared to reduce the numerical work in calculat.iﬁg
natural frequencies of equipment. First, the coefficients B, €|, D, and 8,, C,, D, of the
two cubic equations in f2 are evaluated. Then the ratios ¢ = C,/B8,2 or C,/B,?, and
b=D,/B 13 or 02/823 are calculated. The abscissa of the families of curves in Figure 23 is
¢ =C,/B? or C,/B? while the ordinate is f/\/B, or f/\/B, depending upon whether the roots
of the cubic equation are being determined for motion in plane YZ or perpendicular to plane
¥Z, respectively. Curves representing discrete values of b = D,/B 13 ot 02/323 are plotted;
to assist in identifying these curves, values of & at the upper or right-hand turning points of
the curves are shown on scales above the plot. If the ordinates f/\/B are read for the three
intecsections of the calculated value of a = C/B2 with the appropriate curve b = D/B3, these
ordinates multiplied by /B give three of the frequencies. The multiplication may be avoided
by use of the alignment chart shown at the right, in Figure 23.

A typical numerical example for calculating natural frequencies of resiliently mounted
equipment with one plane of vibrational symmetry is Problem 11 in Section A2,11,

3.4.1. SUMMARY FOR ONE PLANE OF SYAMETRY

The conditions for one plane of vibrational symmetry and the frequency equations for

resiliently mounted equipment are summarized in Table 3. Sketches showing typical applicable
~—~

arrangements for each set of equations are given also. .




TABLE 3 - Frequency Equations for One Plane of Vibrational Symmetry

Mountings ’
. Direction Conditi
lder;t:cal of Mounting “of 1ons Frequency Equations
Different Io:::;nz Stitfnesses Elastic Symmetry ) '
Kentical Any  (k ek ek | ZX=ZXY=3XZ «0 By Formula : Any Number of Mountings
k, = const. Motion Parallel to YZ Plane

By=pa+pa+q

, 95.6
Each Atis |k, ¢k, | kX aZkpX aZhpXYuZhyZe0 | C1oPaPs *R2 0+ P30~ s 13k 1P + (Shy2P)
Parallel to ry
One of
ki D 95.6
1=P2P34, - Fr} [p, Bk YP + 9y Tk 27
Ditterent |  Any |k =k =k | ZkX = ZkXY «ZkXZ =0 Transiation 4 to YZ Piane or Rotation About a1 Axis in YZ Plane
Biepirgyegy
Compiy +9 05+ 030y 95—: [.’_(zk,m2 +.L2(2kx2)2 +
W2 |r? ry ?
Each Axis {k; uk, LkyXalkyX alipkYalkyXZ=( Dznplqzqa-.s_s-_ﬁ ..ql.(zkx}')z+qi (zkxz)2+ 4] (Tky ¥
Paralle! to w22 ry? rird
One of

Xtz - where

1 ,] 9.1

8.78 2 2 9.78 2 2
g, === (Zk,Y2+3k,Z9), w2l Tk, X4 ThkyZ%), gy
l Wry? z ¥ g We 2

¥

Then for obtaining frequencies from the chad, Figure 23.

Three frequencies - YZ Plane

a-—c’-, b--gl-, B=8,
Blz Bf

See Sections AS.4, AS.7, and AG.2 for additional cases.

Principal Axes X, Y, 2 Plane of Vibrational Symmetty YZ
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APPENDIX 1 |
- TRANSMISSIBILITY AND ISOLATION THEORY

In the case of & maas attached to a spring, whether a sinusoidal force acts directly on.
the mass or & sinusoidal motion is impressed on the support the amplitude of the mass will w;ry
with the frequency.!5:16 This physical principle is utilized in isolating machinery or equip-
ment from motions of a support ot in isolating the support from motions or forces generated by
the machinery. Isolation is attained by making the natural frequency of the mass-spring system
such that the response of either the equipment ot the support is sufficiently small to be satis-
factory for the particular installation.

I the mass is considered concentrated st a point, and the supporting spring is almost
weightless, and if the mass is constrained to move in one dircction only, then the system has
one degree of freedom. Its behavior can be approximated by analysis based on simple vibra-

tion theory, even for nonlinear springs such as resilient mountings if their displacements are
small.

Al.1. EXCITATION BY AN IMPRESSED FORCE

From Newton's second law, the acceleration of a given particle is proportionsl to the
force applied to it and acts in the direction of the force. This may be expressed as F = ma,
or for more than one force, S.F = ma or 2F —~ ma = 0. First let a sinusoidal force be impress-
ed on the mass of a one-degree-of-freedom system. Then the forces on the mass are: the
sinusoidal force P sin w ¢, a damping force proportional to the velocity of the mass cz, and
the restoring force of the spring proportional to the displacement of the mass relative o the
support kz; see Figure 24. T

A

Support LLLLy

Damping == Spring

- X
- k2

Driving
m(kass) Force
P sinwt

3
PP . Po sinwt

Figure 24 - Free-Body Diagram, One-Degree-of-Freedom System




T'herefore, by Newton's second law, the equation of motion is
mi = ~ cz - kz + Py sin ot
or
m& + oz + kz - Py sin ot =0
The solution of this equation for steady vibrations with transient terms omitted is

PO sin (wf~-g¢)

A =
1
m ’/(aun2 - w2)2 + (‘an)2
2nw
where & =tan™! —— |
wnz - w?
n = __C_,
2m

w, = Vk/m is the natural frequency in radians per second, and
w 1% the exciting froquency in radians per second.

The equation can be written

z,=Asin(wt-¢)

where
P
A= 9
2./t wi\¢ 4n?,?
m w, (1 - "
2 4
wﬂ m’l

The amplitude can also be expressed in terms of the static deflection z,, that would be pro-
duced by a steady force of magnitude P applied to the mass

T :fi = PO
st k 2

The amplitude becomes




3 T 180
l .c_ = C_= / =1
. 1 150 4 —
el =
5 T o.105 g 0.125 // FA/’/
] Loz S 120 — 0.2 -~
S .
g 3 /0.5 )= YN /g
= 1.0 ) .
g MY s |
g 2 7 g
= 4 g 60 ,/
£ .
Q-
1 __q: 30 7 ]‘
l 4
g 1 2 3 0 1 2 3
Exciting Frequency _ o _f Exciting Frequency o _ f
Natural Frequency W, 'n Natural Frequency o, o
Figure 25 - Curves of Magnification Factors Figure 26 - Curves of Phase Angle versus
versus Frequency Ratios in Steady-State Krequency Ratios 1n Steady-State
Vibration of a System of Vibration of a System of
One Degree of Freedom One Degree of Freedom

The quantity

is called the magnification factor. This factor times the static defiection gives the maximum
dispiacement of the mass. Normally the term 4n? w2/ % is much less than unity. As the
ratio w/w, approaches 1, the magnification factor for zero damping becomes infinite. In
practical cases, damping usually reduces the factor to 10 or less at resonance. LIf the ratio
w/w, 19 much less than 1, the factor approaches 1; if the ratio w/w, 1s much greater than 1,
the factor approaches zero; see Kigure 25.
Since the force on the mass is Py sin ot and the displacement of the mass is 4 sin
(wt~¢), ¢ is the phase angle between the force and the displacement. In another form,
2L @
c

w
tan ¢ = —< 0 .

-2

n
where ¢ is the value of ¢ that produces critical damping and has the value ¢, = 2mw , = 2k/w .
Critical damping is the damping just sufficient to cause the system to return t¢ its rest position

without oscillation offer an initial displacement, The argle ¢ is small for small values of

w/w,, and the force P sin f leads the displacement X by a small amount, ¥For values of




w/w, greater than 1, ¢ approaches 180 deg, and the displacement is almost completely out of

phase with the exciting force; see Figure 26.

The transmissibility 7 is commonly defined as the ratio of the force transmitted to
the support to that imposed on the mass. The transmitted force is

" P,
Cl‘l+ :L'l=

[ksin(wt-¢) + cwcos (wt-¢)]
m ﬁ)nz_wzp + 2nw?

or

Po \/kz + 2wl

sin (wt +¢7)
m \/(wnz_w2)2 + (2nw)?

where ¢ “is a new phase angle. Hence by definition

|/1 £
T k2 + c?w? +(2c

m \/(mnz—w2)2+(2nw)2 (_w_2\)2 +(2 )2
(l)nz CC n

when. the damping factor ¢/c_ is small, the equation reduces, except for

Since k/m = “-’nz

very large o, to T = 1/(1 ~w%/w nz)_ When » , becomes small, the transmissibility approaches
zero and as w , becomes lurge, the transmissibility approaches 1.

Al.2, EXCITATION BY MOTION OF SUPPORT

For application to shock excitation, it is useful to consider also the case in which

there is no impressed force on the vibrating mass, but the support is given a sinusoidal mo-
tion. Let the displacement z, of the support be

z, =hbsinwt
The equation of motion for the mass is then

m&+ cle-z,)+k(r-z,)=0
The solution for the steady-state vibration is

bk? 4+ 0242
Ty

= = sin [wt—tan"l L@ _ —tan! C“"]
m \/(a)n‘—w2)2 + (2nw)?

This equation is the same as for the previous case except that P is replaceu by b Vk2+c2?
and a phase angle is added to wt - .

The ratio of the amplitude of vibretion of the mass to the amplitude of vibration 5 of
the support is thus
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vk2 + 02 (,J2

.= 7

rn\/((unz-mz)2 + (21 w)?

dence the transmissibility I’ can also be defined as the ratio of the amplitude of vibration of
thu mass to the amplitude of vibration cf the support when the motion of the mass is excited

by motion of the support and not by an impressed force. The ratio of the velocities and the

ratio of the accelerations are also equal to T
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APPENDIX 2
NUMERICAL EXAMPLES

Typical numerical examples illustrating the determination of centers of gravity, moments
of inertia, and natural frequencies of resiliently mounted equipment with various symmetrical

arrangements of mountings are presented in this Appendix.

A2.1. PROBLEM 1 - CENTER OF GRAVITY

Assume that the centers of gravity of the subbase A and of the individual units B and

C, Figure 27, are at their respective centers. Determine the center of gravity of the assembly,

The weights are:

Subbase A 150 lb
Unit B 90 1Ib
Unit C 150 b

Total Weight « Z % = 390 lb

I'igure 27 - Problem 1 - Determination of Center of Gravity of
Assembly of Two Units and a Subbase

Take as tho moment about the z axis the weight of the individual unit in pounds times
the y coordinate of its center of gravity in inches,

z

e 20" — ]

fg—— 10”“——ﬂ

x &— : : y Vxy
150 1b Subbaso A 150 x 10 « 1500
z L'— 10" | Lfn:It D 90 x 4= 3060
B’ ~em I it C 150 x 15 » 2250
g 4 ? C Wy = 4110 in.-lb
! o 1
L BT, PRIl PR
- TRLN S
I 190 1b
._,lr",,,
’ T son

8]




Dividing the total moment = Wy by the weight ZW, the distance y from the z axis to the

center of gravity is determined.

2y _ 411y : _
Wy 4110 _ 105 ip. -
i~ 390 pin. =y

Take as the moment about the y axis the weight of the individual unit in pounds times

the z coordinate of its center of gravity in inches.

e 15" —
~—7.5"—-1 Wxz
. S . Subbase A 150 x 7.5 = 1125
‘ISOIb Unit B 90 x 3 = 270
Unit C 150 x 11 = 1650
Z 12
-—e"a‘ |'_8 — YWz = 3045in. lb
' 8 '@'C ;
A4 Wz 3045 .78, = 3

2 |
W 390
| I
3“
bo90 4t
*.._-

Y 150 1b

Take as the momont about the z axis tho weight of the individual unit in pounds times

the z coordinate of ita center of gravity in inches.

L

X 1
Wx 2

5 B Subbase A 150 x 1 = 150

{ 90 1b Unit B 90 x 5= 450

UniL C 150 x 6 = 900
e 8 Wz = 1500 in. Ib

1so|b-**A ?c -
e 1500 _38in. -3 ‘
——l " e P 390
}

150 1b




The center of gravity of the assembly is

7.8 in. back of the front edge of the subbase,

10.5 in. to the rigzht of the left edge of the subbase, and
3.8 in. up from the bottom edge of the subbase,

that is, the coordinates of the cencer of gravity with respect to the references axes are

z=18in., y=10.5in., z=3.8in. R

A2.2. PROBLEM 2 - MOMENT OF INERTIA

Assume the same units of equipment, B and C, and subbase as in Problem 1, see
Figure 27. Determine the moments of inertia about axes in the z, y, and z directions through

the center of gravity of the assembly.
In Problom 1, the location of the center of gravity of the assembly was calculated as

7.8 in. back of the front edge of the subbase,
10.5 in. to the right of the left edge of the subbase, and
3.8 in. up from the bottom of the subbase.

Assume the moments of inertia of the individual units about axes through their centers

of gravity in the z, %, and 2 directions to be -

I, 1bin. sec? Unit A Unit B Unit C
/2 13.08 1.94 5.31
1y 7.42 1.40 4.15
I, 20.24 1.94 5.31

Now that the moments of inertia of tho individual units about axes through their cen-
ters of gravity are known, the wansformation formula, for oxample, / =1/, . + mA4? for axes
parallel to the X axis, may be used to determine moments of inortia about parallel axes through
the center of gravity of the assembly. The formuia shows that the moment of inertia about any
axis is equal to the moment of inertia about a parallel axis through the center of gravity of the
unit plus the mass of the unit multiplied by the square of the distance between the axes,

Before the transformation formula can bo usod, the squures of these distances must be
calculated, But first the distances of the center of geavity of vach unit in the z, y, and 2

directions from the center of gravity of the assembly must be determined; they are

Direction Unit A Unit B Unit C
z 0.3 in, 4.8 in. 3.2,
Y 0.5 in. 6.5 in, 4.9 in,
2 2.%in, 1.2 in. _JL 2,2 in

fh




‘The squares of the distances between the axes of the units and those of the assembly and

the moments of inertia of the assembly may now be calculated.*

Axes tinit A Unit B Unit C
Parallel to
T 2 —_— 2 B
L W09 297 | M1.02+ (6997 | (492 +(222)° )
' = 8.09 in,? = 43,69 in.? =25.09 in.2
R ,
v (V0.3)24 (2.8)2) (\/(1.2)2+(4.8)2)2 (\/(3.2)%(2.2)2)2 .
=7.93 - 24.48 = 15.08
2 242 2 2,2 2 7,2
((0.3)2 4 (0.5)2) (V(e.s.) + (4,8)2) A4.92+ (3.2
2
=0.34 I =699 = 30.49 |
About Lnit A Unit 8 Unit C Total
! =1 +md?
x X, C.§8.

: 150 30 150
z Axis | = 13.08 rrie 8.09 1.94 + Tl 43.69 | = 5.31 M TT 25.09 | = 43.41

=13.08+3.14 = 1,943+ 10,19 = 5.31+9.75 call
= 16.22 1t in. sec? | =12.13 Ibin. sec? = 15.06 Ib in, sec? 43.4 1b in. sec?
2 .
ly = Iy' c.g. +md
N 150 - N . 150 -
y Axis | = 7.42+386 793 | =1.40 + 396 x 24,48 4.15 + 386)( 15.08 27.62
= 1.42 + 3.08 = 1.40 + 5,71 = 4,15+ 5.86 call
= 10.50 Ibin. sec® | ~ 7.111bin. sec? = 10.01 Ib in, sec? 27.6 1b in, sec?

1 =1 +md?

: 'z, 0.

196 + 30 . 65.29 | = .31 4350 3049 | —54.70
386 386

- 20,24 + 0.13 1.94 + 15,23
« 2037 1bin, sec? | «17.171bin. sec?

L}

is | =20.24 + 150, 0.34
2z Axis +386x

5.31+ 11.85 call
17.1€ b in, sec? 54,7 Ib in. sec?

[}

n

¢No uttempt was made to arrange units on the subbase so thst the x, ¥, 5 axes would be princlipal ases, In
pructice, the units should be arranged so that the center of gravity is close to the geometrical center of the
assembly sand the principal axen sre parallel to the sides of the esyvembly,

an




A2.3. PROBLEM 3 - COMBINATION OF PROBLEMS 1 AND 2

By Rearrangement of Operations, the Centers of Gravity and Moments of Inertia
ore Worked Together, Reducing the Computations

|
Unit | ¥ m z | mx| mx?| ¥ my | my?2 | 2z | mz | ma? I, /y I,
A [150{0.389 7.5{ 2.92( 21.90 | 10.C | 3.89 { 38.90 { 1.0 0.39( 0.3913.08 | 7.42 | 20.24
B8 90)0.233f 3.0/070] 2.10| 40| 093 | 3.73 (50 1.17 5.83( 1.94 | 1.40 | 1.94
C {15010.38911.04.26]47.07 150 5.84 | 8753 (6.0 2.33 /14,00 §.3) ) 4.15| 5.31
Y {390} 1.011 7.90 | 71.07 10.66 | 130.2 3.89120.22120.33 12,97 | 27.49
Smzx 7.90 .
ITe——=-2 - 7.80in.; z%2= 60.8
>m 1.011
g=&my . qu%é - 10.54in.; 72 = 1111
- T .
7=2m2 _ 3.8 _ 3450, 32. 14.8
>m 1.011
Iy =215, .4 +Imy? +Lma? ~Em(y? + 22)
=20.33 + 130.2 + 20.22 ~ 1.011 (111.1 + 14.8) = 43.6 lb-in.-80c?
Iy =2l  +imz?+im2? - Im(2? + 22)

= 12,97 + 71,07 + 20.22 ~1.011 (60.8 + "4.8) = 27.8 lb-in.-sec?
I, =%0, oo+ Emz? v 2my? - Em(2? + y?)

= 27.49 + 71,07 + 130.2 - 1.011 (60.8 + 111.1) = 556.2 lb-in.-sec?

A2.4. PROBLEM 4 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT
THREE PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR IDENTICAL MOUNTINGS

The unit in n solid homogeneous rectangular body and weighs 4000 1b; see Figure 28,
Tho centor of gravity is at the goometrical center of tho unit. The X, Y, and Z axes coinoide

with the principal axes of inoctin, ‘Tho dimensions, moments of inertia, radii of gyration, and

f7




initial locations of the resilient mounts are

! =50in. Iy =1230 1b-in.-sec? ry =10.9 in, Dy =23 in,
w =32 in. [y =2500Ib-in,-sec? ry =15.5in. D, =19 in,
h =20in, [, =3040 lb-in.-sec? r, =17.1in, D= Oin.
Four 1000-1b mountings are attached to brackets of the unit in a horizontal plane con-
taining the center of gravity of the unit.
Using the value of the rated frequency of the mounting obtained from the standard re-

port forin, here taken to be 15 cps for the supported load of 1000 1b, the dynamic stiffness of
a single 1000-1b mounting may be determined from the formula

W 2
k=@int ¥ WP 1000082 23,000 1b/in.
g 9.8 9.8

The translational and rotational natural frequencies of the equipment supported by

these four mountings are

X 23,000
- 6.26 |/ - 6.26 |/23:000 _ 15 cps
fie V: £,000 P

626Dy /& _ 6.26 x 19 4 /23,000
= = 2o 2= = 26.1 cps
frot, X " ‘/w 10.9 v 4,000 P

YZ Plane |Z

L 1970 ol 19"

w - 32" g ‘*:{ & "
. 4
| 1 o 16 160

t‘—_—_— 3211___.‘

X2 Plane lz

’—'—' 1 o4ttt
A PESpTIET

N 4
T

4 h]
F___zsu___-____ 25“___‘
- 50" —————=]

Figira 26 - Problem 4 - Throo Plunes of Vibirational Symimotry
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ey % _6.26 x 23 l/23,000 _ 223 eps
oY, W 15.5 4,000

o7 _ 6,26 V/( 2D 6 26 Vs 23,000 ((94y2 , (19)2] = 26.1 cps

4,000

The /'0l x and fror, 2 natural frequencies are the same solely by coincidence,

If the maximum deflection across the mounting under shock is assumed to be 1 in. either
side of an equilibrium position, the clearance around the equipmant should be 1 in.; see
Section 1.6.

If the mountings can be positioned closer in the X and Y directions, reducing D y and
Dy, the rotational frequencies frot,x and f:oz, y are reduced proportionally, while f,, remains
the same. If the translational frequency is not satisfactory with respect to noise transmission
and a lower natural frequency is desired in this mode, other mountings with rated frequencies
lower than 15 cps must be selected. In this problem the Dy distance, and therefore feot, xo

cannot. ne redaced with a solid hody. dowever D x, and therefore f, , y and to a lasser extent

rot,
fror, z» can be reduced. If the equipment were not solid and the components could be redistrib-
uted, an increase in ry, a smaller increase in r_, and a decrease in D y would reduce all the

rotational frequencies,

Anotlher illustration of the application of the formulas for equipment having three planes
of vibrational symmetry, Problem 5, is also presented in this appendix. In this problem moments
of inertia about any axis in the XY plane through the center of gravity are the same. The ques-
tion here is the location of the XZ and Y7 planes of symmetry, If the planes are taken at 46
deg to the mountings, the formulas for four mountings previously presented may be used. If
these planes of symmetry are taken through the mountings, then the coefficient of the equa-
tions becomes 4.43 rather than 6.26 boecause two mountings instead of four are acting with
respect to either the XZ or YZ plane of vibeational symmetry. The natural frequencies obtain-
ed by calculation are tho same for either procedure. Still another illustration of a problem with
mountings arranged vith three planes of vibrational symmetry is Problem 6, also in this

appendix,

A2.5. PROBLEM 5 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT

THREE PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR IDENTICAL MOUNTINGS

Tho unit is a cylindrical body and weighs 5000 lb; see Figure 29. The center of gravi-
ty is on the axis of the cylinder, 28 in. from its bottom. The X,Y, and Z axes coincide with

the principal axes of inertia of the body, In this instance the moment of inertia about any axis

09




through the center of gravity in the XY plane is the same, The dimensions, moments of inertia,

and radii of gyration of the body and initial locations of the resilient mountings are

1 =48 in. Iy =8.76 x 103 lb-in.-sec? ry = 26.0 in. D, =19.8 in.

>
!

w=48in. I, =8.76 x 103 lb-in.-sec?  r, =26.0in. D, =19.8in.

h=172in. Iz =372 x 103 Ibein,esec? 7, =17.0in. D, = 0 in.

Four 1200-1b mountings are attached to brackets of the unit in a horizontal plane con-
taining the center of gravity of the unit, The dynamic stiffness of one 1200-1b mounting may
be determined by the formula

Wr2

k=en2 W 2
(2rf) g 9.8

in vhich the value of the natural frequency obtained from the standard report form, and here
assumed to be 15 cps for the 1250-1b load to be supported, is used.

w2 1250 (15)°
9.8 9.8

k= = 28,700 lb/in.

The transiational and rotational natural frequencies of the equipment supported by the

four mountings are

f, =6.28 ‘/%= 6.26 I/l%’% - 15 cps
y _8:26Dy 1 /k _6.26 x10.8 |/28,700 _ 11 4 cps
oL X Ty W 26.0 5000

6.260D
- Y k _6.26 x19.8 28,700 _
Teot, v " ‘/—w 260 l/ =000 11.4 cps

=60'26 L D 2 D 2 =6.’26 28,700 1982 1982 = 24.7 -
froz =828 |07 0 -4 v 8,700 (19.8)2 + (19.8)) ot

In this problem, when the moments of inertin or the radii of gyration are thw same about the

X and Y axes, the rotational freqyencies are the same,
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Figure 29 - Problem 5 - Three Planes of Vibrational Symmetry

The transiational frequency f, is a function of the mounting frequency. To reduce this
frequency, imountings with lower natural frequencies under normal load must be selected. Tho
rotational frequency fm!' 2 can be reduced by recistribution of the coniponents of the unrit so
that r, is larger.

For any of this group of problems, it should be noted that f,, need not be caiculated if
the load per mounting 13 the same as the load associated with the natural frequency of the
mounting, which is obtained from the report form to calculate the spring constant. It should
also be noted that f,, may not be exactly tho same in the X, Y, and Z directions and depends
again on the mounting characteristics in the axial and radial directions. Nevertheless, for
mountings having nominally equal radial and axial stiffnesses, it can be assumed that the
natutal frequencies in the two directions are close enough to be represented by one number
for most practical probloms.
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A2.6. PROBLEM 6 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT
THREE PLANES OF VIBRATIONAL SYMMETRY

FOUR COPLANAR DIFFERENT MOUNTINGS

The unit is a nonhomogeneous rectangular body and weighs 3600 lb; see Figure 30.
The center of gravity is 10 in. back of the front, 10 in. to the left of the right side, and 10 in.
up from the bottom of the unit. The X, Y, and Z axes coincide with the principal axes of

inertia, The dimensions, moments of inertia, and radii of gyration of the body are

[ =50 in. [y =1500 lb-in. sec? r, = 12.0 in.

w =30 in. [y = 2800 lo-in. sec® ry = 16.4 in.

h =20 in. 1, = 3600 lb-in, sec? r, = 18.6 in.
30"

S o @—i L |

ro-——3 157" ——ey ®

R I L
7 A U .
45 | i Bl
ol —w—Joo oJoll o o)

Figure 30 - Problom 6 - Three Planes of Vibrational Symmetry

Four different mountings, each having equal axial and radial stiffnesses, are attached
to brackets at distances from the center of gravity of the equipment inversely proportional to
their sti{inesses in order that elastic symmetry be obtained. The mountings selected wore
2000-, 1000-, 400-, and 220-1b inountings.

Their stiffnesses ate:
For the 2000-1b mounting,

Wf2 2000 (15)2
1" 98 9.8

= 45,900 lb/in,
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For the 1000-1b mounting,

W2 2 .
ky = L2000 18)% _ 93 000 1by/in. ‘
9.8 9.8 R

For the 400-1b mounting,

)

2
oo M7 00 (15)2
3
9.8 9.8
For the 220-1b mounting,

= 9200 lb/in.

W 09 =y 2
. by = oLl 220 U8)F L 5100 Ibyin,
9.8 9.8

The mounting locations ana their spring constants are

Mounting No. | X =20, | Y =20, | Z=2D, | kilky=ky =k,)
1 7 12 0 45,900
2 7 -23.95 0 23,000
3 - 34,92 12 0 9,200
4 -31.5 ~21.65 0 5,100

Sh-8.32x10% TkD,Z=1.967x107, TkD,=2357x107, TkD?=0

The natural frequencies are

‘/ ‘/ 1
= 3.13 k=313
. he = 3600

since Lky =3k = feox = T,y = T, 2

f 2 3.131/2.357 x 107
=303 Zk = 2 = 21.1 ¢cps
ror, Y " 12.0 3600 P
3, 13 2 _ 3.13 1/1.967 x 107
_ 3.13 kD2 = 3 - 14.1 ¢
froty " : " 6.4 V 3600 °ps

7 7
2, kDB - 2l ‘/1.9(,7 x 107 + 2.357 x 107 _ 15 4 ons
18.6 3600

x 8.32 x 10% = 15.0 cps

313

fror,

A2.7. PROBLEM 7 - BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR IDENTICAL MOUNTINGS
The unit i8 a rectangular nonhomogeneous body and weighs 7500 lb; see Figure 31.
The center of gravity is 6 in, ebove the bottom of the unit and at its midlength and midwidth.

Tho X, Y, and Z axes coincide with the principal axes of inertia, The dimensions, moments

of inortin, and radii of gyration are
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! =68 in. ) 8.66 x 103 lb-in.-sec?

]

= 21.1 in.

-
>
|

X

w=34in. [, = 437 x 103 lb-in,-sec?  ry = 15.J in.

W
1]

h =24in. [, =9.36 x 103 lb-in.-sec?  r, = 219 in.

Let it be assumed that this unit was subjected to vibration tests in accordance with
Military 3pecification MIL-T-17113 (SHIPS);* the most severe excitation of the components of
the equipment occurred at an exciting frequency of 24 cps. Therefots it is desired o aveid
resonance at this frequency aboard ship. In addition the equipment has an exciting frequency
of 40 cps (2400 rpm) due to a rotating part, It is desired to avoid this frequency in order to
reduce the transmission of structure-borne noise. To avoid any magnification of vibration, the
rated frequency of the mounting selected, with its share of the dead load of the equipment
applied, shorld be less than the exciting frequency divided by 2, or less than f/,2 =
24, \'2 =17 cps. This mounting, for the moment, may be assumed to be satisfactory with
respect to the $0-cps excitation in the equipment.

By referring to performance data in report form on various mountings, as illustrated in
Appeudix 4, a 2000-lb mounting with a rated frequency of 15 cps obtained for a dead load of
75004 or 1875 Ib can be found., Assume that the performance data for this mounting shows
equal stiffnesses in the axial and radial directions, therefore permitting easier use of the
Base Mounting Chart 1n determining the natural frequencies of the rocking modes of the equip-
ment. Assume also that under tests on a shock machine the mountings have adequate shock
strength, and the maximum deflection across the mounting is 0.75 in. from the equilibrium
position in all directions.

Solving the frequency equation for the dynamic spring constant k gives

WooW s
k= (2vf)2—=5—g- ~ 0.1022 (15)2 1875 = 43,000 lb/in. for one mounting
q .

where I = 75004 = 1875, and the translational frequency, f,,, of the equipment with four

43,000
f.. = 6.26 = 6,26 = 15.0 eps
tr W 7500
where IV = 7500.

Now, for the YZ plane, locate on the Base Mounting Chart, ¥igure 20, the half-length
of the base divided by the radius of gyration, ({/2) /ry = 34/21.1 = 1.61, and the distance from
the center of gravity to the plane of attachment of the mountings, D ,/ry = 6/21.1 = 0.284 in

mountings is

nondimensional units, as shown in Figure 29. One position of the mounting along this line
=1.65 and Dy/ry = 1.60, or 0y =1.60ry =1.60 x 21.1 = 33.6 in.

Therefore the four mountings should be a distance Dy = 33.8 in. in the Y direction from the

will give a value for f__ /f .

center of gravity of the equipment. IFor this mounting location the chart gives the value

([ / 1)) = 0.975. With the f

s already corputed, the values of f

.
max and fmm , the two

5



rocking modes in the Y7 plane, may now be computed

/_min . fmin = 0,975, fmin = 14,6 cps
Imax  15.0

/max /max 1.65 f 24,1
—_— - = 1.65, = <4.1 cps
/n\in 11.6 max p

In a similar way, the natural frequencios of the rocking modes in the XZ plane may
now be computed, againusing the Dase Mounting Chart, Figure 20. The half-width of the

base is laid off (w/2)/7, = 17/15.0

the mounting position is taken as /_

= 1.0 x 15,0 = 15 in.

Therefore the four mountings are a distance D Y=

=1.13 at a height Dz/ry = 6/15 = 0.40. The value at

oin= 1.5 This pointis Uy/ry = 1.0, 0r ) = 1.0xr,

15 in. in the X direc-

tion from the center of gravity of the equipment.

For this mounting location the chart gives

= 0.82,

the value [ oin e

With 7,

rocking modes in the \'Z plare, may be computed as follows:

already computed, the values of [max 8RS the two

/’min ’.min

S~ 0,82 f =123 cps
i 15.0 77 i '
tr
fmax /ma.( -
T 1a3 Sl max = 184cps
min

The rotational frequency with respect to the 7 axis is

6 'k—([))(2+ 0}12) - 1»"!000
W 7500

Some of these frequencies are close to the 24 cps excited by ship hull vibration.

06.26
21.9

rot = +(33.8)2] - 25,2 cps

"z
By
moving the points of attachment for the same mountings closer together, the natural frequen-
cies of the mountod equipment may be reduced to more satisfactory values with respect tc the

In the Y7 plane, ) ,/ry =
Chart Uy /ry = 0.88 be chosen for the location of the mounting, then f

exciting frequencies. 0.284 and if a point on the Base Mounting
1.4 and

S in f,, = 0.8. TFor this chart point, the mounting would be a distance in the Y direction

max /rnin

Dy = 0.88 ry = 18.6 in. from the center of gravity, The two rocking frequencies are
= 16.8 ¢ps. In the X7 plane D ,/ry = 0.4,
O 67, then /__ f . = 1.9 and fonin Iy
mounting would be a distance in the .\ airection, Dy = 0.67 ry

‘The two rocking frequencies are 9.0 ¢ps and 17,1 cps and the rotational frequency

= 12.0 cps and [ Choose a point on the
, the

= 10 in., from the center of

I's
!'min

chart such that () ,(.,"r} = 0.6, For this point

mi

gravity,

|




with respect to the Z axis is

) 6.‘26‘//: 2, 5.2y _ 6.26 |/43,000 2 2] _
/’°‘_—r; B by < &2 ‘/ Lo [(10)2 + (13.6)%) = 14.5 cps

Problem 7 is written in tabular form, including calculations for the two sets of mount-

ing locations, in Appendix 7. There, too, clearances around the equipment are calculated.

A2.8. PROBLEM 8 - BOTTOM MOUNTING ARRANGE MENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR DIFFERENT MOUNTINGS

I'he unit 1s a rectangular nonhomogeneous body and weighs 800 1b; see Figure 32. The
ceinter of gravity 1s 7.5 in, from the bottom of the unit, 14 in. from one end, and midway be-
tween the sides. The X, Y, and Z axes coincide with the principal axes of inertia. The
dimensions, moments of inertia, and radii of gyration of the body are

L =50 in. [y =174 lbiin.-sce? 7y = 9017 in.
w =20 in. Iy =108 lb-in.-sec?  ry = 7.22 in.
k =15in. 1, =215 lb-in.-sec? 7, = 10,1 in.

Sinco the mountings are not geometrically symmetrical with respect to the XZ plane, an
equivalent D y is needed in order to use the Base Mounting Chart, Figure 20. The equivalent
lgnl” =
vGUY, D G Y, D). Because of the unequal distances of the mountings from the center of gravity
in the 1 direction, the two pairs of mountings must differ in stiffness such that /cl//\:2 x

Dy = VEEY IS ko= Y’Len)(}'mgm) for four mountings is Dy = \-UYM“I) (|Yg

i¥,.. 1Y, | so that a translational mode parallel to the Z axis and a rotational mode about the
/7 axis exist.

k

ke |Y
2

Y

2|_ 3 ]
AR ky =3k,

resulting in two 300-1b and two 100-1b mountings, with &£ = &, located as shown in Figure 34,

T'he dynamic stiffacsses of the mountings are, with natural frequ.ncies of 15 cps lor all
mountings,

s 2
BT 3000152
' 9. 9.8

: ii'/z . 2
' . _lo(s)? ., ,
"2 9.0 - 9.8 = 2(‘00 lb/ln,

= 6900 Ib/in,
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Figure 32 - Problem 8 - Two Planes of Vibrational Symmetry

Then from Figure 34,

Dy =AY, DY, = V(A1 (33) = 19.1 in,

Now the natural frequencies may be calculated. The vertical natural frequency f,
is dependent on the stiffnesses

o= 33/ Lsr - 303 |/9900 x 2 2300 x 2 _ 5 ¢ps
tr m 800

The rocking frequencies in the Y7 plane are then obtained. First, converting to nondimension-

al units,
£
2225 a45 Z¥ 190 o4 Pz 15 g
9T ry 9.17 Tory 97

Draw the elevation in the YZ plane on thr Base Mountine Chart, Figure 20, in these nondimen.

sional units and for the mounting location read off the frequency ratios:

78




min =13.8
1, 15 min °ps
fmax /rrax
=.lmax_ o 48 = 34,2
[min  13.8 fmax P
Similarly for the \'Z plane
= b, D
=10 om0, Xl o007, - T304
Ty 22 Ty e Ty 7.22
/_m'm - f'ji" =0.59, [, = 8.9 cps
Ter 15.0
Toax _Twax 2.79, [ .. =247 ¢ps
fmin 8.9 me

The rotational frequency about the Z axis is then obtained

o 3%3 V;lT ShXTi kYY) = iﬁ ‘/%6[6900(49 +121) 2+ 2300 (19 + 1089) 2} = 30.2 cps
The natural frequencies are:

Translation, 7Z direction f,, =15.0 cps

Rocking, in the YZ plane fmin = 13.8 cps, [ = 34.2 cps

Rocking, in tho .YZ planc foin = B9 cps, foax = <47 cps

Rotation, about the 7 axis frr = 30.0 cps.

A2.9. PROBLEM 9 - BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR NONCOPLANAR IDENTICAL MOUNTINGS

an

The unit 1s a rectangular body with a stepped hottom and weighs 2290 1b; =ee Figure

33, The center of gravity 1s 9 in. from the bottun of the body and midway between its sides.
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‘The X, Y, and Z axes coincide with the principal axes of inertia. The dimensions, moments
of inertia, and radii of gyration are
2 -4
! =48 in. [, =1700 lb-in.-sec? ry = 14.7 in.
w =30 in. [y, = T92lb-in.-sec® ry =10.1in, .
h =18in. i, = 2070 lb-in.-sec? r, = 16.3 in.
YZ Plane XZ Plane
2 P
f———— 1 19— e i-———s( -
1 T
. ' . , 3
‘S" . I |
— —— v H -
s 5y [T Bl
) S l < s -
l i i il"—-:‘—— ll"é
-— . —— 20" ————:
2 4
T { T 1
9 | g9 l
| |
—4— - 4} --- — Y -4 @ - - b
£ - 6" :
4 : 1 l %

TENEE |
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Figure 33 - Problem 9 - Two Planes of Vibrational Symmetry

Nince the mountings are not in the same plane, an equivalent /), is needed to use the -

Base Mounting Chart, Ficure 20. The equivalent D, =(ZUPper + 2

With the use ol identical mountings in the arrangement, the remainder of the solution is simi-

/2 i .
Lower 72 approximately.

lar to that for previous problems,
The dynamic stitfness of each of the four B00-1b mountings selected, assuming that

15 ¢cps s the natural frequency of the mounting with a dead load ol 750 lb, is
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k

Wf2 250 (15)2 ,
- - 250 (15)% . 17 920 lb/in.
9.8 9.8

Now the natural frequencies may be calculated, The vertical natural frequency f,,

18

fo=aa3l/Ash, =303 A 17,220 _ 450 cps
tr T 3000

The rocking frequencies in the YZ plane are then obtained. First, converting to nondimension-

al units,
i ' / 9.0+3.0
22 g3, 22020 e, 2.2 0.4l
Ty AT ryo 14T Ty 14.7
Fron the Base Mounting Chart, Figure 20,
-—f"‘"‘"" _Imin 900, f_. =13.8 cps
”(r 15 ™
,max ’{max =
*-T2X - 158,  f - 2L8cps
[ min 13.8 '

The rocking frequencies in the YZ plane are obtained next, Converting to nondimensional

units,
fo i
5 D D P T 1:"(1) =0.99,  foi, = 11.9 cps
22149, =X 1,00, Z£ - 0.59 '
f)- f)- r),

/r'\
....ax= /ma\( . 1.8, fmax = 21,4 CpS

Finally, the rotational frequency with respect to the 7 axis is obtained:

pooe B s w2 07y = 2 L (17,200 (45 120+ 45 400)] = 21,0 cps
rot r, i" 16.3 ¥ 3000

The natural frequencies are:

Translation, £ direction [, = 15.0 ¢ps
Rocking, in the Y7 planc s 138 eps, o= 218 ¢ps
Yocking, in the X7 plane frinm 110 frax = 21e 4 cps

Rotation, about the Z axis fror= 210 cps
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A2.10. PROBLEM 10 - BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR NONCOPLANAR DIFFERENT MOUNTINGS

The unit is a rectangular body with a stepped bottom and weighs 2500 lb; see Figure
34. The center of gravity is 16 in. from the left end and 9.2 in. above the bottom of the body.
The X, Y, and Z axes coincide with the principal axes of inertia. The dimensions, moments

of inertia, and radii of gyration ate

1l.+1nm.

| -48in. [, = B842lbin.sec? ry

i

It

673 lh-in.-sec?  ry = 10.41in.

) 1100 lb-in.-sec? r, =13.0in.

"
[
o
=]
-~

N
1t

This problem 1g similar to Problem 10, both have a stepped bottom. In Problem 10, the
four identical mountings were located symmetrically to the YZ and Y7 planes and were equally
loaded; in this problem the nonidentical mountings are symmetrical to the YZ plane but not to the
A7 plane. They are arranged so that !},! = 21V 1 along the ¥ axis, or

P!
Ky

using two 500-lb and two 400-lb mountings with equal axial and radial stifinesses, FEffective

Dy and D, can be computed, and the rocking [requencies can be obtained using the Base
Mounting Chart, Figure 20.

Dy =V e Wasgel =V Y0 (Y50 = V114 228 - 16.1in.

where the §00-1b mountings are 11.4 in. and the 400-1b mountings are 22.8 in. from the center
of gravity in the Y direction. The individual mountings have a natural frequency of 15 cps
with aead loads of B33 and 417 1b for the 800-1b and 400-1b mountings, respectively

W2 2
ko 017 _ 8330502 19,195 tb/in.
800 9.8 9.8

- 42
BT 17092 9514 1b/in.

k
400 9.8 9.8
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Figure 34 - Problem 10 - Two Planes of Vibrational Symmetry

[)Z _ Z Upper * ZLower _9.2+5 _ 7.1in.

2

&)

Translational frequency:

fo= )/l ve, =308 [ (2x19,125 4+ 2%9574) < 15.0 cps
e W2 2500

The recling frequencies in the Y/ plane, converting vimensions to nonaimensional units by

{

Y D, D -

—2-:&:1.98. __}=.1_(’-_1=1,41, ___=._‘.d_.-=0.62

ry 1t 7y 11.4 , 1.4

. . X

are, {rom tho chart.
f""'-’:—/‘"‘i"-OS’-') [ . =12.5 ¢cps
T ’ min ° 1509 P
lU’ .
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,'P"lx ','Tl'\X 3
—max _ _max .. 1,85, = 23.7 eps
hvin  12.8 Fmax Lo

The rocking frequencies in the X/Z plane, converting dimensions to nondimensional units by

{8

— D . D -
N T S (R S A N TS
ry  10.2 ry  10.2 ry 102
are, from the chart,
f,.nin - fmin" - 0.71’ ,' = 10.4 cps
Iye 14,7 min
/ max - fmax = 2,00, [ =20.8 cps
foin 10.1 max

Finally tho rotational frequency with respect to the Z axis is obtained,

fo = 3BV A 2 o3k, 1D = 213111 15,010,195 [(10) 2+ (11.412] + 2 95741(10)% + (22.8)2)
SRS 1T - 13.0 }/2500
= 21.3 eps

The natural frequencies are

Translation, 7 direction i, =147 cps
Rocking, in the Y % plane foun=12.5¢Cps, [ =237 cps
Rocking, in the XZ plane foin =104 cps, [ = 20.0 cps

Rotation, about the 7 axis =21.3 cps.

o~

A211. PROBLEM 11 - BRACED MOUNTING ARRANGEMENT - ONE PLANE OF
VIBRATIONAL SYMMETRY - FOUR IDENTICAL BOTTOM MOUNTINGS
TWO IDENTICAL BACK MOUNTINGS

The unit is a teim pump and motor with vertical in-line shafts and weighs 2035 lb; see
Figure 35. The center of gravity is 40 in. above the bottom and is on the vertical centerline
of the unit. The X, Y, and Z axes coincide with the principal axes of inertia. The dimen-

sions and moments of inertia are

! =22in. Iy = 2150 lb-in.-sec?

w=22Iin,

= 2150 lb-in.-sec?

-~
a2
)

A= 84%in. [, = 321 lb-in.-sec?




The four 550-1b bottorn mountings and the two 50-1b back mountings are initially lo-

cated as shown in Figure 35.

Sige Erd Plan

L —AAAA—

1 e £,

IFigure 35 - Problem 11 - One Plane of Vibrational Svmmetry

The dvnamic stiffness of one 550-lb mounting may be determined, using an assumed
value of the average rated frequency in radial and axial directions for the load to be supported,
by the formula

‘- W2 484 (16.7)2
9.8 9.8

=13,860 lb/in.

and similarly for the 50-lb mountings
L 1 (6.0)?
T 9.8

= 1150 Ib/in.

The values of the loads are found as follows:

Let # be the load on each back mounting and ¢/ the load on each base mounting., Then

HG+ 28 = 2035 1b, but each base mounting is rated at 550 b and each back mounting at 50 1b,
Therefore
¢ _F

eg - (;, or (¢ =11F

(@3]

and

M E 4+ 2F = 16 F = 2035, F = 44 1b, ana ¢ = 484 |b.
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The problem may be solved in two general steps; the first, solving for g, b, and B in
terms of the coefficients of the two cubic cquations &,, C,, D, and B, (), Dy, and the sec-
ond, taking off the frequencies from the plot of the cubic equations in terms of parameters
a, b, B; Figure 23,

Solve for the three natural frequencies in the Y'Z plane of vibrational symmetry by de-
termining

Cl Dl
a=—, b='—', B=B
B 2 g3 1
1 1
where

F31=;>2+;)3+ql

95.0 SRR Y L 2
P L
X

95.6 G L vy 2 o
Dy =pypy0y - 22 [rz(uln +p3(:n,‘z)2]

Wory”
and
9.78 y _9.78 . 9.78 v,
7, = 208 Sk Y2 e Xky 2, g - 28 Sk NP Sk, 2D,
Wy Wry
g = 28 (S, X2 Nk

f, 2
Hrz

It may be seen that in these equations only the constant i, the spring constants
k xy kyy k5, and the positions of the mountings are known. The expressions rxz, r),2, "22'
(S VA (k2003 Sky, Shy, Shy Sk,¥2 2k, 2% SkyX?, 24,22 and 24,72 must be
evaluated,

Since each mounting has equal stiffness in all directions,

Sky=Yky =Sk, Zk,¥'-Ik, Y% and Lh,2%=3k, 27

To determine r,., ry, and r,:

[ - mrt
! 01
et - 250 L 47,8 10,2
‘ n 5.272
21y _ 2150 =8 in.2
ryt - - == = 407.8 in,
™ 11.212
, 1 :
r2 o7 2320 _ 60,89 in.?
P
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and to determine the summations:

Nk, = Yky o= Ni, = (4x13,600 + 2 x 1150) = 5,670 x 10

kY, = -8.160 x 104 kY 2=k X7 20,4896 x 10°
koY, = 8160 x 10* ko ¥,2 =k, N2 = 0.4896 x 10°
kyYy = 8.160 x 10 ky ¥ 2= ky X, =0.4896 x 10°
kg ¥, =-8.160 » 10 k¥ ,2 = kg X2 20,4896 » 10°
kg Vg = 0.600 x 104 ko Y2 = kg X2 = 0.0414 x 10°
ke Yg = 0.090 x 10¢ kg Yl = ke X = 0,014 x 108

YLAY = 1,380 %107 YAYZ =XhAX? =201 «x 1061

#t

Pk 2= 1.901% ~ 103J

i 7, = =510 x 108 b 22 = 2176 « 107
Ko7,y = =5.440 x 10° kyZ 2 = 2.176 x 107
kyZy=~5.410 x 103 kyZ,? = 2,176 x 107
ko Zy = - 5.410 x 1C° kyZ 2 = 2.176 x 107
kg Zg = 0.196 x 103 kg Z2 =0.033 » 107
kg Zg = 0.196 x 10° ke 7 = 0.033 x 107
SkZ=-2137 x 108 S /72 - 8.770 x 107

($47)2= 4567 x 1012

Then
po=p, =p, =285 g T8 L5670 x 10 - 0.2722 « 103
1 2 ) W X 2035
and
o= 28 (N, ¥24 8k, 2% - =218 (2,041x105+8.770x107) = 1.056 x 10°
P2 z 2035 x 407.8




0.9 (v v,y 72 Ci V2 N y2 72 _ % L. 72
q, = -—‘2(.\.AZ.\ 'ZA,\'/‘ ) and since MY SARE TP B Sk‘\./l =Sky2°,
Wry
anu
r},2 = r/\,2
then
2= %
gy = = kX Na 1) = T8 (2,041,100 42,041 % 109) = 0.3219 x 10°

Wy 2 2035 x 60.89
Z

The coeflticients £, €|, /7| may now be determined.

By =py+py+q,=0.2722x10%+0.2722x 103+ 1,056 x 103 = 1,600 x 103

W2r,2 ’ )

. 0.2

©722 % 103(0,2729x103) + 0,2722 » 103 (1,056 x 102) + 0.2722 x 103 (1.056 ;- 10 3)

95,06

(2035)2(107.8)

[1.904x 108 + 4,567 x 1012] = 3,904 x 10°

95,6
2, 2
Wory

[)1 =p2 P3 ql - [P2(5A7Y)2+p3(.\:/\‘],2)2]

= (0.2792 % 103)(0.2722 x 103) (1,056 x 103) —-——95.6 [(0.2722 x10%) (1.904 x 108)
(2035)2(407.8)

+(0.2722 %103 (4.567 = 10”)]~_- 7.89 x 10°

Now that /s, (', and ), are known, the ratios a, b, and B may be calculated, and the
three natural frequencies for the modes of vibration in

chart, Figure 23,

the YZ plane may be taken off the

2 o1 3.904x108

= 0,153 .
1,2 (1.600x10%)2
D 6

b o= -1 . _1.89x10° _ 400103 .
B2 (1L600x10%)3

L =0 = 1,600 x 103
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From the chart, Figure 23, the natural frequencies are
fy=36.0cps, f,=16.5c¢cps, [y="17 cps.

To calculate the natural frequencies of the modes of vibration not in the YZ plane of

vibrational symmetey, a similar procedure is followed:

. _ ¥ S
ki Yy 7= 32.064 x 10

k. Y. 7. =-32.64 x10°

S YA : S
kyYyZy =-3264 x10
2 7 _ S
kgY %y = 3264 x10
kg Yg4g= 1173x10°
A , _ - S
kg YeZg = 1.173x10
SkYZ = 2.346 x 10°

($hYZ)¥%= 5,504 1010

B,=p, +9, + qy=0.2722x 10+ 1.056 x 10°+ 0.3219 x 10% = 1.650x 10°

Co=py Gy * Py O3+ 9y 1y - 228 [—li(zkxnz . (zkx}'m?]
W r; ty r'},2 7

= (0.2722 » 10%) (1.056 x 103) 4+ (0,2722x103)(0.3219 x103) + (1,056 x 103) (0.3219 x 103)

- -25.6 L1 _(1,904x108) + —— (4,567x10'%) + ——L — (5.504x101%)
(2031-,)2 60.89 407.8 487.8 x 60.89
= 4.561 x 103

. . q P .
D, - Py 4,43 -95&[—"2 (S kP24 22 (34,2020 —2 (\.k,(m?]
2 2 2 2,2 :
W 1y rs ry"ry
1870 S RY. AT o
+--—3—ﬁ (LI\‘})(EI»)(C)(}./tX}A)
" Ty rz

r 3
- (0.2722 % 10%) (1.056 x 103) (0.3210 x 103) — -25:6 [lﬁm (1.904 x 108)
' (2035)2 L 6089

: . 3 - 3
+ 0.3219« 10 (1.567)(1012) +0.2(22X10 (5.504 x 10 10)
407.3 60.89 x 407.8

‘- 1870 (1.380 x 10%) (~ 2.137 x 108)(2.346 » 10%) = 9,12 x 106
12035)3(60.391407.8)
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B (1650 x10%)2

6
» - D2 o 9.12x10% 400903
B2  (1L650x10%)32
B =B = 1.65 x 103

2

From the chart, Figure 23, the natural frequencies are
fq = 35.9 cps, [g=18.0 cps, fe = 4.6 cps.

Problem 11 is also presented in tabular form, Appendix 7, where calculations of the

cloarances needed around the equipment are also made.
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APPENDIX 3

EXPERIMENTAL DETERMINATION OF MOMENT OF INERTIA
WITH A TRIFILAR SUSPENSION

The most practical experimental arrangement for determining the moment of inertia is
the trifilar suspension!! where three wires or three cables support a table or platform upon
which different units can be placed in various orientations; see Figure 36. In the simplest
case the center of gravity of the unit is placed aver the center of the platform which is equi-
distant from the three supporting wires, It the platform suspended from the three supporting

wires is symmetrical, its center will also be its center of gravity.

Vertical ine ——
through CG

of Unit plus
Table, 8t

Center of

Table

Platform - Equil ateral |

Triangle

NV

Figure 36 - Trifilar Suspension for Experimentally Determining
Moments of Inertia

The equation for the moment of inertia about the vertical axis through the center of

gravity of hboth the unit and the table is
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where W is the weight of the body plus the piatform, pounds,

T is the period of oscillation, time in seconds from one extremity of rotation to the
other and back to the first, i.e., time of one cycle,

L is the length of supporting wires, inches,

r is the distance {rom center of gravity, i.e., center of platform, to supporting wires,
inches, and

I 1s the mass moment of inertia of the unit plus platform, pound-inch seconds squared.

If the platform is rotated 5 deg or less (L must be at least three times as large as r)
and released, the period, T, may be measured, The accuracy may be increased by measuring
the time of several oscillations and dividing by the number of cycles, Once the trifilar sus-

pension platform is huilt, L and r are fixed and the moments of inertia, /, now becomes

= KWT?
where
2
K==L
ey

The moment of inertia of the table alone may be determined in a similar manner without
anyv eauipment installed on it. This moment of inertia is then subtracted from that for the
unit plus the table to give the moment of inertia of the unit alone. The determination for the
table alone need only be made once since it will remain constant. If blocks are needed to
support the unit in an appropriate orientation to the tahle, then the period, T, should be detet-
mined with the table and blocks and this moment of inertia should be subtracted from that of
the table, blocks, and unit together,

The principal inertial axes of the equipment may be determined by repeated tests with
changes in the angular position of the equipment without a shift of the center of gravity. The
position of the equipment resulting in the maximum period establishes the maximum principal
axis. The position with minimum period establishes the minimum principal axis. The third

axis 15 at right aneles to the other two.

A3.1. GENERAL CASE

In general when the unit is placed on the platform, vertical lines through the center
of gravity of the equipment and through the center of gravity of the platform do not coincide,
The table should be so designed that it is svinmetrical and its center of gravity is equidistant
from the suspension wires; Figure 37,

“hen the equipment is installied on the platforin, the combined center of gravity of the
equiprient and the piatform is determined; Figure 38. Then the distances, r , r,, and r,, from

the combined center of gravity of the equipment and the table to each of the suspension wires
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LYl
Supporting

LY yires
PN .

f)——r

VAxis through Center of

Gravity of Platform Vertical Line through
Center of Gravity nf
Equipment and

Platform
Figure 37 - Location of Center of Figure 38 - Location of Center of Gravity
Gravity of Platform of Equipment Plus Platfoim

may be determined. The equation for the general case of moment of inertia is

. .2 . . . .
,=”'1'2'37 rls1ndl+r231n02+r3sm03
4n?L

273 smt.‘)l + 71y sm()2 + 7, 8in 93

where i is the weight ot the hody plus platform, pounds,
T is the period of oscillation, seconds,
L is the length of the supporting wires, inches,
r is the distance from the center of gravity to the supporting wire, inches,

0 is the angle between radial lines from the center of gravity to the supporting
wire3, degrees, and

I is the mass moment of inertin of the body plus platform, pound-inch-seconds squared.,

A3.2, DESIGN NOTES

In the design of the cable-suspended platform, a number of factors must be considered.
The dimensions L and r should be such that reasonable aifferences in period of oscillation
can be obtained for the apparatus alone and for the apparatus plus the equipment so that / may
be determined with suitable accuracy. The distance r from the center of the platform to each
of the cables is determineda largely by the size of the equipment being tested. This distance
should be kept as small as possible, since the / of the nlatform alone increases as the square

of r. This increase in / can be counteracted by relatively larger increases in L. For the
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linear approximation of the analysis to hold when the osci-llation is started by an anq,ulaf dis-ﬂ
placement of 5 deg or less, L must be at least three times as large as r. The / of the platform
for a given r can be minimized by fabricating it from light members, but the size of the plat.
form components is limited not only by the size of the equipment but also by its density. A
pointer attached to the platform is handy for measuring the time of oscillations. The weight
of the platform should not exceed the weight of the equipmest. The trifilar suspension should
be calibrated using objects whose moments of inertia are known to determine accuracy and
capacity of the apparatus,12+13

For units of arproxir. eiy the same size and weight, only one trifilar suspension is
required. If, however, the sizes and weights vary considerably, two suspensions should suf-.

fice, one for the larger units and the other for the smaller.
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APPENDIX 4
REPORT FORM FOR RESILIENT MOUNTING CHARACTERISTICS

This report form indicates the type of information available on all types and sizes of
mountings as a result of tests made at a naval activity. The mountings must pass these tests
in order to be acceptable for shipboard use, The reports may be obtained through the Bureau
of Ships. In reports published by the U.S. Naval Engineering Experiment Station these sheets
are inserted in the back and are intended to be removed and retained by design groups engaged
in the solution of mounting problems,

The X,Y, and Z axes here are local axes applicable to individual mounts, and the use
of capital letters does not imply the significance attached to the notation that is used for

mountad assemblies in other sections of this manual.



SUMMARY OF PERFORMANCE DATA ON TESTS OF
RESILIENT MOUNTINGS
(Ready Reference Sheets — Abstract from EES Report 050095E)

MOUNTING INWNTIFICATION

Type of Mounting: Portsmouth BST No. 1000, Design A
\Mfounting Mfr: Hood Rubber Company, Watertown, Mass,
Mounting Dwg No.: (BUSHIPS) 5000-S1112.F-1385777-C
Applicatle Specification: (Procurement) MIL-M-17191A
standard Navy Stock No.: P17-M-75887-2126

6. Rated Load: 1000 lb

7. Natural Frequency: 7 Dirsction = 13.6 cps

DN e N

X and Y Directions = 16.0 cps

VMOUNTING DELALILS

7,375 20010 _
-3.687 50005 — b x.Axg

-

*Note: “H' .2 % Unloased Herght

LR 23” Lcaded Height (Upper Rated Load) ' X-Anis !

Plan View of Mounting Plate

/-" YL i
//@ ik 2
| J—

74 :
1}
: @-Mcunlin( Plate
}
//‘/4:‘ | Rubber Bonded
g i @ to Metal Surfaces
at all Points of Conlact

U N 1 S




SUMMARY OF TEST DATA
(Ready Refecence Sheets — Abstract from EES Report 050095€)

1. Vibration:

i i Load on Mountings |Load on Mountings | Load on Mountings [ Load on Mountings
| Characteristics 1,000 b 800 o 800 b 100 b
} bz X and Y 4 Xand Y 2 X and Y Y4 Xand Y
. Natural '
Frequency
Ponicps) 13.6 16.0 144 16.8 153 178 15.1 19.0
i Cntical Damp- : ;
. | onggeicent 5.2 5.3 i ; 47 4.6
Maxirmun : T— T -
Transmissi- j '
bitity 9.7 : 9.5 b | 19.7 10.9
Scring Con- | l |
, stant | ; '
'LKC {1b-in.) I 18,900 | 26,200 119,100 | 26,000 [ 19,200 {25,900 MB,SOO 25,800
2. Dreift:
! | ; : I Naturai -
| i | ' Deflection | Drift 1 Hour aturai Frequency - CP$
i Direction | Lead ; Temperature | After 1 Hour| to 200 Hours |Room Temperaturel 3 Winytes .lRoor\ Temperature
! N T A . in. Before Test After Test After Test
a — i
11,000 160 i 0019 0.033 14.7 . - 14.2
! 4 |L| nrn an . n n1n 0.014 129 —lr - 11
N | l.v\lv.! A —'r-:-\ll\l i' Vv AN.L 4.
'1,000 160 ¢ 0050 P 0.029 17 -
| Xady - ’ —
. L £ 1,900 0 i 0.050 0.008 17.7 | - 17.3
3. Static Load Deflection: 4. Shock Deflection:
! Losg | Deflection ~ dnck) . tg?d o ¢ | Deflection - 1ach
- i ! | Direction | 4 Mountings
i 2 IXangy]| . :
———— g i i ib Up Down
ool s | oo '
ARSI e , 1,000 1.00 | 0.80
/ 3
! l.f:)O . 3 0.0¢ 2.600 ! _ _
| 33000 €4 031 gyl 4000 1 100 | 0.0
|10,000; 0.6 | 0.54 I 2.800 _ B
;15,0001 0.67 [ 0.6
L25,0001 0.75 | 065

5. Brief Remarks:
(a) Inspection: Mountings conformed to drawing details, Neoprene rubber stock Type C
used. Mountings manufactured in June 1959 and June 1952, Tests completad
May 1953.
(b) Test Specification: MIL-M-17185 (SHIPS).
(c) Transmissibility: No remarks.
(d) Uniformity: /n varied less than 0.5 cps from average of 4 mountings= tested.
(o) Static Load Deflection: No remarks,
() Noise lgolation: Satisfactory. See EX= Report 050095t .
(g3 3hock Damaye: There was no damage observed to the rubber or metal parts or to the
N load bolts (1-1/4 1n. 12NF.3 of Alloy No. 2) or foundation bolie (7.6 in. 9NC.2 of
mild steel).
‘h) 3Salt Sprav: No damage or =ignilicant change.
(1) Oil Ixmeesion: No damnge or significant change.
()) Deft: No significant change in fn a=s a result of these tests,

(k) Coid Storage: No damage or significant change.




APPENDIX §

DERIVATION OF EQUATIONS OF MOTION AND FREQUENCY FORMULAS
FOR A RESILIENTLY MOUNTED RIGID ASSEMBLY

A5.1. BASIC THEORY

For generality there is given here the analysis with respect to an arbitrarily oriented
set of axes, which presumably would be chosen with reference to some compartment on the
ship but which need not line up either with the axes of the mountings or with the principal
axes of inertia of the mounted assembly. This procedure ma) require the evaluation of both
moments and products of inertia. It will be assumed that all mountings have at least one axis
of elastic symmetry, by which is meant that the spring constant of the mount is the same in
any direction normal to this axis.

The analysis is based on linear theory and hence can be considered valid only for
small motions. Under large shock motions the mountings may he displaced into their nonlinear
ranges. Since one of the main objects in design is to avoid steady-state resonance under exci-
tations of known frequency, the linear theory is useful in predicting whether large vibrations
are likely to build up.

AS.1.1. THE EQUATIONS OF MOTION

Let a right-hand system of fixed axes be taken with the origin at the center of mass of
the mounted assembly when the system i3 in its rest position. Let u, v, and w be displace-
ments in the z, y, and z directions, respectively, of the center of mass, and @, 8, and y the
components of angular displacement about the z, y, and 2 axes, respectively; see Figure 39.

p

y
4
N ]
0 \a a

Figure 39 - Right-Hand Coordinate System Used in the Analysis
with Arbitrarily Oriented Axes
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With the restriction that the motions remain small, the dynamical equations are

IFX = mu
LFy = my
.\.Fz = mth
E.‘Ix = lxoi - I”B -1,y
) s M'Y = I’vﬁ - Iyzi - I”&
>

M= 1,y - 1,0 =1,

where /_, Iy, and [, sre moments of inertia and Ixy, I, and Iyz are products of inertia with
respect to the fixed axes when the body is in the rest position. The restriction to small
motions permits treating the I's as constants. The F’'s and ¥'s are sums of the forces and
moments acting on the body due to the elastic distortions within the individual mountings and
can be expressed by equations of the type F = - Ku where X is an elastic constant of the en-

tire set of mounts,

A5.1.2. CALCULATION OF THE ELASTIC CONSTANTS

The elastic constants of the individual mountings must first be determined. The

‘‘effective point of attachment’’ of the body to any mount will be assumed to be a point about

. which a rotation of the axis of the movable element of the mounting evokes only a torque, and
this torque will be assumed to be negligible in comparison with tho moments on the mounted
assembly resulting from the rectilinear displacement of the effective points of attachment.
Thus only the axial and radial stiffnesses of the individual mountings have t» be taken into
account in the analysis. It is to be noted that a mounting can have radial elastic symmetry
with respect to a certain axis without necessarily having polar symmetry in its geometrical
construction.

The elastic constants thst must be calculated for the entire set of mountings are desig-
nated here by a K labeled with two subscripts, e.g., K, and each constant represents a re-
storing action in the direction of or about one coordinate axis due to a displacement in the
direction of or about the same or another axis. The sign convention used conforms with the
usual convention applied to the simple system of one degree of freedom, according to which,
if a displacement in the positive direction results in a force in ‘he negative direction, the
spring constant is taken as positive. Exact definitions are given in the Notation.

It can be shown that in such an elastic system conservation of energy requires that
I(‘.]- = K;; so that the total number of K's required is only the number of possible combinations
of the six coordinates defining the displacement of the mounted body taken two at a time,
plus the six of the form K;,. This gives 15 + 6 or 21 K”’s to be evaluated.
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Let z, y, and 2 be the coordinates of the effective point of attachment of an individual
mounting, &, and &, its axial and radial spring constants, respectively, and ¢,, ¢y, and ¢,
the direction angles which its axis makes with the z, y, and 2 axes, respectively. For the in-
dividual mountings there are only six elastic constants to be evaluated since local torques
generated by the displacement of a mounting and forces due to its rotation are considered

negligible, These constants are denoted by Koy A-”. k, ., kxy, k”. and ke, Exact defini-

tions are given in the Motation,

In Figure 40 the axis of the movable element of an inclined mounting is shown by the
line O, P making direction angles G, ¢, and ¢ with axes z,, ¥, and z, parallel to the =,
y, and z axes, respectively. The effective point of attachment is assumed to be P and through
this point is passed a plane normal to O, P intersecting the z, axis at Q and the y, 8xis
at R,

If P 1s displaced a small distance %, in the positive z, direction, there will be develop-
ed a restoring force whose axial and radial components are indicated by F, and £ in Figure 40.
In this case F is (algebraically) equal to u, k cosd, and K w u, k,sind_. The sum of the
2 components of the restoring force is thus

<2 i 2 .
—ulkn(.‘Ob &, u‘kraln @,

By the definition of &__ this sum equals —u & .
v xx 1 xx

Hence

B 2. .5 ain?

k.. =k,cos“o <+ k sin &,
Similarly

- 2 s 2
k” =k, cos <py + k, sin c_by

_ L 2 ;. 2
/f“ =k cos b, + k,sin @,

To obtain the constant ¥ _ the components of £ and F, in the y direction must be
found. The former is F cos c’)y = u, k, cos¢ cos d)y. To obtain the y component of ¥, account
must be taken of the fact that F, lies in the plane determined by O, P and O, 2z, so that its line
of action coincides with QP. F may then be considered as the resultant of two vectors Fop,
and £, » (shown dotted in Figure 40) in the Pﬂ,Q plane, one parallel to 0, z, and the other
parallel to O, P the anple between these two vectors is ¢, Of these two vectors only Fop

has 2 componant in the ¥, direction. Since the force triangle is similar to the triangle PO, Q,

numertcally

LLE

ﬁ‘0P= f_' =ulkrsin C‘)xx

—= =u, k, cosd,
sing,
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and the compenent in the y, direction, which is also the component of F, in this direction, is
u k cosé, ens d, . If account is taken of the directions of the force component= and the con-

vention for the £'s, it foilows that

k,, =k, = k) cosd cos¢7

xy
similarly
"7: = (ka - k,) cos éy cos ¢,
and
k,, =k, - k) cosd, cosg

It may be noied that the same values of the %'s are obtained if the line O, P is drawn
in the opposite direction along the axis of the mounting. Furthermore, they depend only on
the direc ‘on of the axis and are not changed if the mounting i3 roversed end for end, or if the
attachments to the assembiy and to the foundation are interchanged. In Figure 40, O,P “ repre-
sents the axis of a mounting which is the mirror image of O, P in the y, 2, plane. The same
formulas are obtained with ¢ replaced by ¢ " The mirror mounting has the same value of
k“ as the original mounting but equal and opposite values of k;y and & _,.

For the ontire assembly, then, I(“u = }.'k” summed for all the mountings, and similarly
for five other K's,

For A= involving rotation, however, the effects of small rotations of the mounted arsem-
bly must also be taken into account; this involves the position coordinates of the effective
points of actachmont. For examplo, consider the evaluation of K“a. This requires the deter-
mination of the force in the # direction due to a unit positive rotation of the mounted assembly
about Ox. A small rotation /0 about Oz causes a displacement of the effective point of attach-
ment of each mounting in a plane through this point drawn parallel to the yz plane; the z com-
ponent of this displacement is y/0 and its y component is - 2d0, These displacoments evoke
forcos in the z diroction of magnitude -k yd6 and +ll~xy 2d0. The total force in the z direc-
tion i8 the sum of these forces or — 4, 0 + kxyzd(). The resulting force due to the entire
rystem of mountings is denoted by ~K 0. Hence, for the summation of all mounts

Kog=2k, v - lc”e)

Again, considor the evaluation of KaB' This requires the determination of the momont
about Nz duo to a unit positive rotation of the assembly about Oy. A small rotation d6€ about
Oy causos displacements of the effective point of attachment (z, y, 2) of any mount in a plane
para’lel o the rz plano of magnitude 2df in the z direction and —~zd#@ in the 2 direction. Each
of those displacements, in turn, may evoke forces in both the y and 2 directions. Thus the
displacoment in tho z direction gives forces -k 2df in the z ‘irection and -kxyde in the
y diroction, wheroas the displecement in the z direction gives ‘orces +k,,zdf in the z direc-

tion and «+ & zd0 in the y direction. These four forces yield the following moments about
Oz por unit angular displacement:
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-k 2wy +k_ 2% <k, zy; and 'kyz”
The resultant moment eauals —K“B d0. Hence for the entire set of mountings

/\'GB =3(-k, zy - kzye2 + kY2 kﬂzz)

It turns out that, as is required by the conservation of energy, the order of the sub-
scripts on the K's is immaterijal; thus Kau = I(m; KBa = Ko etc.

By such processes the following set of K’s was derived:

KUU = };kxx
Koo =3k,
K., =Sk,
Kuu =2 lrxy
I\.uw = xkzz
Ky, =Yk,

L

"

Tk, ,y% e kyyz2 - 2k ,y2)

“aa
Knp =Sk 224k 2292k 22)
BB T = ax i Ik
. .5 2 2 _
Ry =2l 2" kyyy” -2k, 2y)
K(XB =2k, 2y - k1722 LA k)’JIZ)
. 2
Kyy = S(k o2k, v+ k 20+ b, y2)
Kﬁ)’ =3 (-k”yz - .Iry:zz + k”.’ta + /C“I!/)
Koy =Sy~ kxyz)
l"uﬁ =2k 2 -k, 0
Koy =%, 2=k Y
Koy =X (kyzy - k”e)
Kop =2k, 2 =k, 0
Roy =2l 2= heyy)
Kyg =20k, =k 2
E,g=20 2~k 2
/"uy = };(/fyll‘ - A‘xz.’/)
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A5.1.3. THE FREQUENCY EQUATIONS

On substituting terms of the type -uw? for'v in the equations of motion, since the mo-
tions in question are simple harmonic, the equations of motion become in algebraic form: R A

—mue? + Kpu+r Ko+ K w+k o +I(uBB+[(uyy=0

-mrw? + I(wu+ K,,v+h w+Kua +Kvﬁﬁ+’(uy)"—'0

vw
—muww? 4 Kou+K v+K  w+K, o+ KwBB + Kw),)’= 0

-10? e 1 Bt 4l yel s K s K v Koqu v K avKagB+ K ye=

[
o

2 2 Z g ’
_]wa +,zy°"” +Iyzyw‘+}.uﬁu+l(vﬁv+Kw'810+l\’aﬁu+ KBﬁB+I.Byy~

2 2 . 2 . =
-l,yo +1 00 "/yzﬁ“’ +Kuyu+l(uyv+/\’wyu+Kaya+KByB+Kyyy-0

The following determinant of the coefficients of the displacement coordinates, when
set ecual to zero, gives the frequency equation,

, 2 .
i ,‘uu T mw Kuu kuw Kua kuB Kuy
. ’ 2
Kyo Auv - mw Kuw Kua KUB Kuy
r 2
kuw hvw wa - nw Kwa Kwﬁ Kwy
2 2 2
Kua Kua Kwa Kac-lxw Kaﬁ+l”w K¢y+1xz“’
2 _ ;2 2
Kup K.g Kup Kap* leye™ | Kpg-1y0” | Kgy+ly; @
, . 2 2 2
kuy KU), kwy Kay*'ln“’ Kﬁy*’y:“’ Kyy'lz“’

One method of solving the problem is to find by trial the values of w (the circular fre-
quency) for which the determinant of the coefficionts of the diaplacement coordinates vanishes.
1f the valuer of the determinant calculated for various values of w are plotted against w, a
curve is obtained which crosses the axis at each of the natural circular frequencies, provided
the six frequencies are distinct. When, however, certain frequenci~s coincide, the plotted
curve may only touch the axir at the corresponding points without crossing. If, when the six
frequoncies are distinct, the set of simultaneous equstions in u, v, w,a, 8, and y above
is solved, in each case with the appropriate value of w, the values of the ratios of the coor-
dinates found will represent the normal mode pattern corresponding to that particular circular
frequency. If two or more frequencies coincide, the mode pattern for that frequency i1s not

unique. If a number n of frequencies are equal, n different basic mode patterns can be found,
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and any other mode pattern that is possible at that frequency can be regarded as a linear com-

bination of the n basic modes. ‘
Under special conditions it may be found that various A”’s in the frequency determinant S

vanish. If all the £’s of the type Kil' {where i # j) vanish and the axes are principe! axes of

inertia, there will remain only terms falling on the main diagonal. In this case the throe mo-

tions of translation in the z, y, and z directions and the three motions of rotation about the

z, y, and 2 axes are all independent, and each frequency may be found from an equation of the

type K’ - mw? = 0. Although the motions are independent because of the symmetry of the

. mountings, the frequencies of different modes may be the same.

Where only certain terms not on the main diagonal are zero, it may be found that the
3et of six simultaneous equations in the six unknowns breaks down into smaller sets in fewer
variahles which are independent of each other. These sets may then be treated separately,
and in such cases it may also be found that the frequencies of different modes coincide.

The evaluation of the elastic parameters requires the taLulation for each mounting of

the following quantities:

k , k

ar Ko Tyoz b, éy. and &

These are, respectively, the axial stiffness, the radial stiffness, the three position
coordinates of the cffective point of attachment, and tho three direction angles which the axia
of the mount nakes with the z, v, and z axes. It is obvious that, regardless of the physical
shape of the mounting, if any two of its principal stiffnesses are equal, the analysis given

here is applicable by taking the mounting axis as normal to the directions of equal stiifness.

A5.1.4. VIBRATIONAL SYMMETRY

i The solution of the general frequency equation is so laborious that it is seldom under-
taken without the use of a high-apeed computer. Usually, however, the imountings themselves
aro so arranged that one or more planes of vibrational symmotry exist, and thon the sixth-otder
determinant can be broken down into independent determinants of lower order. Such cuses will
be treated in the following sections:— -

Vibrational symmetry exists with respect to a given plane passing through the center
of gravity of the mounted assembly when motion parallel to that plane has no tendency to
excite motion perpendicular to the plane; then, also, translation in & perpendicular direction
or rotation about an axis lying in the plane does not excite motion parallel to the plane. Such
symmetry usually requires that two of the principal axes of inertia of the mounted body lie in
the plane of symmetry and also that there be elastic symmetry with respect to this plane. It
is convenient in such cases to take the axes of coordinates along the principal axes of inertin.
Coordinates so defined will be denoted by X, Y, Z to distinguish them from the more general
coordinates », v, z. The subscripts on the 4’s and I's will therefore bo capital letters.

For computational purposes in these simpler cases, it is more convenient to write




explicit symbols in place of A, etc., and for simplicity ky, ky, and k, will be written for
the individual mountings in place of ky (or k), etc. The appropriate sums are easily read
off from the definitions of the K's, for example

K

uu

0

Sk

I\, =xkxy ] . D

uv

2 2
Ky = Sk, Y2 4 kyZ2 = 2ky,Y2)

Summation over all mountings is understood in each case.
Explicit frequency formulas will now be given for the principal cases that may arise
in practice, X, Y, Z axes being assumed in all cases,.

A5.2. ONE PLANE OF VIBRATIONAL SYMMETRY (YZ)
A5.2.1. SIMPLY ORIENTED MOUNTINGS

Let every mounting have either ¥, = &, or its axis parallel to X, Y, or Z. Let the
plane of symmetry be the YZ plane. Then the conditions for elastic symmetry are

SkyX=0, Sk;X=0, TkyXZ=0, 2k, XY =0

When these four conditions are satisfied, it is apparent that, of the six equations of motion in
Section AB,1.1., the second, third, and fourth contain only the variables v, w, and a, so that
these equations can be solved independently of the other three. Similarly, the first one and
the last two contain only u, B, and y.

Eguate the Jdeterminant of each set of three equations to zero.

. 2 -\
Sky-me? 0 ~SkyZ Sky-mw? ShyZ ~ZkyY
- 2 B y’
0 Xk, mw Tk,Y =0 | TkyZ ZkpX+3kZ%-lo?  _Sk,vZ =0
9 Y Y 2 ! 2’ i
-3k, 72 ShY Bk Y4k 7210 - Syl ~ShyYZ  ZThyXaZkygYol 0|
Expansion of the first determinant gives the equation )

Ehy-mo®)(Eky-mo)(Ek, Y2 4ZkyZ2-1y0?)

(-Zky2) Sk y-moN(~Zky2)-(Eky-mwd)(Ek, 1?0

After expanding further, the equation has the form of a cubic in w*,

106




Introduce the notation

Tky, P3=

Ekz
4nim 4nim 4mm

q,=————(>:/¢ Y2+2ky2?, ¢, = ——-—(wzx%zkxz’)
4n mr/,(2 4n2 mr},

q3=——-—-2- (ThkyX2+Zkyt?
4n? mry

in whichry, 7y, and r, are the radii of gyration of the body about the X, Y, and Z axes, re-
spectively, so that /y = mr; , etc. Then the cubic equation can be written, after dividing
through by — 64 rr6mzlx and replacing w by 2n/,

fe-Byf*+Cf2-D,=0

where
Bi=py+pr3+q,

- + -—1-— (Zk,N? + (Zky2)?]

Dy=pypyq, = —te—lp, Tk, 1) + 9, (2% 2)2]
1 2731 (2")4 2, 2

The roots of this cubic equation, which are necessarily real and positive, give three of
the natural frequencies of the bodv on its mountings. In each of these three modes of vibra-
tion only v, w, and a differ from zero.

If the roots of the cubic equatior are /2, 1,2, f,2, then f,* + £,2 + f2 = p, + py + q,.
Further facts can be inferred from the following: Write ¢y = (£k,7)%, g, = (2% Z)2 Then,
if gy =g, =0, the roots for 12 are Py Py, 8nd ¢4, If F(1?H represents the functxon of 12
including D, that appears on the left in this cubic equation, then, when f%is held constant,

IF aF
3 - 1 (pz_/Z)’ - 1
9y 16 n*m?r,? 99z 16a*m?r,2

(py~19)

Now, when gy = g, =0, the maximum root is the grestest of the three quantities p,, p,. and
4. Then, as g, and ¢, increase from zero, at the maximum root 12 2 p,and dF/dg,y <o,
and similarly dF/d g, < 0; thus the curve for F (1?) sinks, or does not move if p, = p, and
g, S p,. It fotlo- s since the slope of the curve is positive at the maximum root, see Figure
41, that the mrimurn root increases progressively or, perhaps, does not change. Similarly,
the minimum ot decreases or does not change. One root or the other, however, must change,
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unless- p, = p5 = ¢,, in which case all three roots
for {2 ate equal to p,. Therefore, unless p,=p,y=q,, F (1)
the effect of g, and g, is to increase the difference
between the maximum aad minimum frequencies.
At the middle root, on the other hand, the

slope of the curve for F(1%)is negative; therefore, : ~ I

increasing ¢, moves the middle root toward p,, //L\/ 1?2 ;
while increasing ¢, moves it toward p,. /

Finally, the three roots can be equal only if , 2
P; = P3 =4y, and also gy, = g, = 0. For, from the
general relation between the roots of a cubic and Figure 41 - Plot of a Cubic K quation

its coefficients,

flz*f22+f32=7’2*7’3+91

/xzfzz* f12f32“/22/32 =Cy=PaPy+Py0,+ 9,0, -W

where W stands for the last term in the expression for C, . If the first equation is squared and

multiplied by 2, and if 8 times the second equation is then subtracted from it, the result can be
written

2 2 2
W2=1D + R fD + 12 =1 = (py=p)? + (py=g ) + (py—q))? + 8W

Here W 2 0. Therefore, /12 - /22 = /32 only if p; = py = ¢, and W = 0.

The cubic equation can be solved by standard methods or with the help of a chart.* In
special cases the standard methods are easier. 1f p, = pyorif Zk,Z =0, one root for 1% is
py i Zk,Y =0, one root is p,. In either case, a quadratic equation for the other two roots
can be formed from the cubic equations by dropping D, and all terms that contain as a factor
the root already found, p, or p,, and dividing through by 1.

Similar weatment of the second determinant gives

/6—32/‘+0212”02=0

where
By=Py* 9+ 0,
C. = + (T 1 1 k 2
2P 92+P1 93+ 92 73~ ——— — X}) -
(2m4m? r,t
s Tk 22 e LSy v2)?
rd pir 2
Y Y2z
*Figure 23,
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D =p, qzqs__l.. iz.(zka)2+.(Ii(kaZ)2
2 (2m4m? |r 2 r?
2 Y

Py

+

(EkXYZ)2]+ 2 Sk NSk D (SkyY2)

ry2 "22 (2m%m3 ry2 rz2

where p,, ¢,, and ¢, are quantities previously defined. The roots of this equation give the
frequencies of the three mcdes in which only the quantities u, 8, and y occur.

When all terms, except the first, are zero in both €, and D,, the roots for 2 are Py
75, &nd 75. In any case, the sum of the roots is /12 + /22 + f32 =Pyt dy+ gge Further reason-
ing is complicated by the presence of the last terr in D,. The other tetms in ¢, and 1), con-
taining £, 88 can be seen by reasoning as before, raise the upper root and reduce the lower
root, except that in special cases one root may not be affected. This effect becomes greater
as those terms are increased. The last term in D, if the product (= kyY) (X kyZ) (XkyYZ)
is positive, lowers the curve for F (f2) and thereby increases both the upper and lower roots,
with the opposite effect if the product is negative, Therefore, if this product does not vanish,
increasing the numerical value of 2k, Y or 2%y 2 or Lk, YZ will lower the lowest root if the
product is negative, or will raise the upper root if the product is positive. The general effect
of these sums is to spread the roots farther apart.

The same general methods for solving this cubic equation apply as for the previous
one. As special cases: if all three of the sums occurring in C, and D, vanish, then the roots
of the equation regarded as a cubic in 12 are Pys 991 943 if two sums vanish, whichever of the
quantities p,, ¢,, or ¢; multiplies the third sum iu D, is a root; if only one sum vanishes, a
root lies between the two of the quantities p,, ¢,, ¢, that multiply the other two sums in D,.
These statements can be verified by writing the cubic expression as the sum of the product
(r2 - ) (/2 -q5) (12 - ¢4) and a remainder.

A5.2.2. INCLINED MOUNTINGS WITH ONE PLANE OF SYMMETRY (rZ)

When one or more mountings have unequsal axial and radial stiffnesses and are not

parallel to a coordinate axis, the conditions for vibrational symmetry relative to the YZ plane

becoma Skyy=0, Zkyz=0

. . 2 . , e

- 2 -
SkyXZ + Shy, Y2 e Shy, XY + ThyyYZ
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The zeros in the first determinant are now replaced by X ky,, and skew force additions
occur in many other elements. The expressions for p,, p,, Py, 81, 8nd B are unaltered. The
remainder of the quantities in the two cubic equations become ' S

1 - y2 : 2 ,
7, = (XA Y + 2402283k, Y2
Centard ’ v
. 1 . Ve LN, 72 ;
7, = (Bk, N2+ $hy 22 =25k, , X2)
(2”)2”!?)-2
et kX 24 Nk Y2223k, XY)
emimr.t ’ xY
- z
.2 2
N S
Cr=pyPa+ py1y+ Py ’71‘—14—2( l; + ”2 +5132)
2a)% m ry x
S 2 8 28,.8..8
Dy=r, ”371‘———1 (Pz—l-l + py K +715132)‘ —i1.
(2m)4n? r/\,2 r~,‘,2 (276 m3 'A2
l s, 2 .2 S, .2
Ca=Py0,+ P03+ 4,9, - 2L, 22, 23
2 172 173+ 9192 (2myinZ 2 5 > 2
' 4 Ty 'y '’z
2 2 2
D,=py0,0s 1 7 S51 v, Sy, v, Sas . 25,15,28,3
(2m)%m? ’22 ryz "y2"z2 (2n)6m3ry2rz2
where
Sy =3k, Y =3ky, 2, S,,=3kyZ-3ky,Y, S;3=3ky,

Sy = ShyY -3k X, Sy, =TkyZ - Sky X,

Sy3=2kyYZ + Sky X2 = Sky , XY - Sk X2

The discussion of the roots of the equation regarded as acubic in f? follows the same
general lines as in the absence of the skew forces.

AS.3. TWO PLANES OF VIBRATIONAL SYMMETRY (xZ AND YZ)
A5.3.1. SIMPLY ORIENTED MOUNTINGS

.et each mounting have either k = k or its axis parallel to X, Y, or Z, and let both
the XZ and YZ planes be planes of vibrational symmetry. Then, by extension of the condi-
tions previously written for one plane, it is necessary that
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SkyX=Sk,X=3kyY=3k,¥=0
Sk, XY =Sk XZ<%kyYZ =0

Wwhen these conditions are satisfied, the six equations of motion, Section Ab.1.1., bacome
three independent pairs; one pair contains only u and 8, another only v and &, and the third

only « and y. The three pairs are
(Ehy ~moNu+(SkyZ)B =0
Qh 2 u+ Sk, X243k, 22 -0 [)B =0
(hy —modv - Qky2la =0
~(Ehy Do +(Eh, Y2+ Sk Z2 - 0?1 a= 0

(5.1:2 -mwi)w =0

Equsting the determinant for the first two equations to zero gives the equation

Shy-mao? ShyZ .
SkeZ Sk, XSk Z%-0?ly|
or in terms of the notation defined in Section A5 2 1,
Fé~(py 4 g )2 +py 7y - ) (Zhy2)2=0

2m! m2ry2

and, by the usual quadratic formula, the frequencies for the two rocking modes in the XZ

plane are given by the equation

f2=;1;[l’1+ 7= ‘ﬁpl —q2)2+-—i—' (ZkXZ)z]
“ (2”)‘”12’},‘

The second pair of equations gives

Sky-mao? ~3kyZ
=0
2
~SkyZ ThyYlaZk,Z?-0?ly
or
-, ) e Py - (Sky2)2=0

4 2,2
(2m)%*m ry
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and for the frequencies of the two rocking modes in the YZ plane,

f’=%[p2+q1t V(pz-ql)u 4 (zk,'zﬂ] T

For the fifth equation, it may be assumed that v ¥ O but all other five variables are _ _
zero. Then, ' ‘ ..
Sky-mw?=0

2 *
and PR =p, = 1 Sk,

4 n? 4nin

where f is the frequency of a translational mode of vibration in the direction of the Z axis at
the intersection of the two planes of symmetry. Similarly, the last equation gives

1

4n2m r'z2

13=1y= (ZkyX?+ Sk, ¥?)
for a rotational mode about the Z axis,

In the most important practical case, that of arrangements with base mountings, all the
mountings lie in a single plane perpendicular to both planes of symmetry. For this case, the
base-mounting chart, Figure 20, is useful. The relevant theory is as follows:

LLet the distance from the center of gravity of the mounted assembly to the plane of the
mountings be D,. Then Z = -D, for all mountings, the Z axis being assumed drawn from the -
center of gravity away from the mountings. Write

o0 -2
X

Then, using the definitions of p, and ¢,,

= = 2

D2 D2
(;—2=2—1(£kzx2+zkxzz)=_x+ Z
1 A%k, f},2 r},2

and, dividing through by plz, the first quadratic equation becomes

2 2
(1-2>2-(1+D-i +l_).£ -Lz +£’¥- =0

Py ry2 12 P )R

112




ol

Therefore, if f2  is the greater and f 3 the smaller of the two roots of this equation, h

2 2 2 2 2 2 2 E o
fmax + ,min =1+ D_X_ + DZ ,max ,mln - DX T oo T
pl pl 'y2 'Y2 Plz fyz

and, as is seen after multiplying out,

- (l_fmznx)(l_frgln)=_022
pl pl 2

Ty

On the left in this equation, the second factor cannot be negative since then the first factor

would have to be a negative quantity of greater magnitude and the product would be positive,
Therefore )
fmln § Py

It follows that, if /min is substituted for 2 in the quadratic equation and if Dy/ry and

Dz/ry are taken as coordinates on a plot, curves drawn for particular values of f"f;n/p1 will
be hyperbolas. '
Furthermore, if R = fmax

——

fmin

. by substitution for f__ in terms of £ in the preceding two equations

2 D2 D2 2 \2 p2
: 1+ Ry fmin _q, 20X + =L Rﬁ(ﬁ) =X
Py r},2 ry? Py r}?

and, by elimination of fmzm )

D2 p2? D
_x+_2-(;f+_l.)_x+1=o
r}? P R] ry

Curves for a given value of R are, therefore, semicircles centered on the DX/'Y axis.

Finally, dividing the first of the equations of motion by X ky or 4 nzmpl, and substi-
tuting 2 = -0,

2 2
(l-f—)u -BD, =0, hence;-/—-e«l»ﬁ“)Z
Py Py u

) Substitute this expression for fz/pl in the quadratic equation and multiply through by u/8
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Therefore, if curves were drawn on the chart for a fixed value of u/8 ry, they would be ‘circu-
lar arcs centered in the D /ry axis; see Figure 20, The same arc would represent

u/Bry =a, >0 and u/Br, = -1/a,. Since 2 /p, S 1, itis evident that for vibrations at
frequency fmm y u/Bry >0, the vibrations with u/8r, <0 must therefore be those at frequen-
cy fmax :

A similar analysis holds for rocking motions in the YZ plane; ry is replaced by r,,
p, is replaced by p,, u/Bry by (-v/ary) and Dy by D, where

D.2 =.z_kZ_Y_2
Y sk,
A5.3.2. INCLINED MOUNTINGS WITH TWO PLANES OF SYMMETRY (XZ AND rZ)

When one or more mountings have . # k, or are not parallel to a coordinate axis, in
addition to the requirements stated in Section A5.2.2. for symmeury relative to the YZ plane,
the following conditions must be met to secure elastic symmetry relative to the XZ plane as
well: s

ZkyY =2x yy X
b3 =
kY =3ky,2

ThyYZ+2ky, X2 =Zky, XY +ZkyyXZ

The formulas for the frequencies are:
For the rocking modes in the XZ plane,

1
f’=5[m+92"‘/(pr?2)2 W(I"xz Efsz)]
ry

where
2 2 _
(2m?m 2 (2n)2mr}
For the rocking modes in the YZ plane,
1 2
f2=2p,+q V(p -q,) -——-—(Zk Z-Zk 7?).\
where
pym —L—Sky, 7 = (T, Y 4Zky22-23ky,Y2)
2m?m (2m2mr,?
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For translational vibration parallel to Z, as before, /2 = p,, but for the rotational mode about Z

2 1 . y2 2
2n)émr,

The Base Mounting Chart is not usually applicable to arrangements includir g inclined
mountings.

AS5.4. THREE PLANES OF VIBRATIONAL SYMMETRY
A5.4.1. SIMPLY ORIENTED MOUNTINGS

Let every mounting have either k= & orits axis parallel to X, ¥, or Z, and let the
XY, XZ, and YZ planes all be planes of vibraticnal symmetry. Then the conditiune for elastic
|ymmetry are
Thy XN s b, X=Xk Y =Xk, YV =2k, 7=24,2=0

Sk XY =Nk NZ =SkyYZ =0

When these sums are all made zero in the (requency equations, Section A5.1.3., only
the [irst two rerms remain in each equation. Therefore, each of the six modes of motio., is
either translational or rotational. By permitting in turn only u, v, v, &, 3, Or y to be differ-
ent from zero and solving for 2, the following values are found for the frequenc es of tie

three translational and the three rotational modes of vibration.

f12= 1 E’kX’ f22= 1 Eky, f’..’__ 1 2k
(2m)?%m (2m?m 3 (°m?m 2

= —— Sk, Y23k 2, -l Sk, X243k, 29,
2m?21, 2m?i, ‘

18 =~ (Sky X243k, ¥2)
(2m?1,

A5.4.2. INCLINED MOUNTINGS WITH THREE PLANES OF SYMMETRY

When at least one mounting has either k_ # k_or its axis not parallel to a coordinate
axis, in addition to the conditions for the XZ and YZ planes as stated for inclined mountings
with two planes of symmetry in Sections A5.2.2 ang A5.3.2, the following conditions must be

met to secure symmetry relative elso to the XY plane:
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The formulas for the translational frequencies f,, f,, f; a8 just presented for simply oriented
mountings are unaffected by the inclination of the mountings, but the formulas for the rotation-

al frequencies become : .- - S s i e

1= —L1—(Sk, V2 43kyZ?-22ky, Y2)
(2m? 1y |

2 _ 1 2 2

fd=—L Tk X2+ Tky Y2 -23kyy XY)
(2m?i,

A5.5. OBLIQUE CENTER-OF-GRAVITY ARRANGEMENTS

It can happen that special features of an arrangement, although not giving rise to an
additional plane of symmetry, nevertheless greatly simplify the formulas for the frequencies.
One important practical case, which includes two distinct subcases, will be treated.

L.et the points of attachment of the mountings all be in a plane containing the center
of gravity of the mounted body; let this plane, although containing the X axis, be inclined at
an angle 6 to the Y axis. Thus two of the principal planes of inertia are inclined to the
plene of the mountings. If mountings having unequal axial und radial stiffnesses are present,
let their axes at least be perpendicular to the X axis, so that ky, = ky, = 0 for all mountings.

Let the arrangement he such that vibrational symmetry actually exists relative to the
YZ plane and would also exist relative to the XZ plane if sll terms containing Z or ky ,
were replaced by zero in the conditions for symmetry relative to XZ, that is,

SkyY=5k,Y=0, Sk, XY =0

in addition to the conditions for YZ symmetry with inclined mountings as stated in Section
A5.2.2. Note that here kyy = ky, = 0 for all mcuntings. Since also Z = Y tan 6 for each
mounting, it follnws also that

Case 1: Assume also either that all the mountings have equal stiffness in ali direc-
tions, so that ky = k, and ky , = 0, or that the mountings, N in number, are identical and
have parallel axes. Then the following additional equations hold:

SkyZ=Sky,Zn0, SkyXZ=3Zky,XZ=0

On the second assumption these equations hold because all #'s cancel and the equationa
state nothing new.
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The equations of motion, Section A5.1.1, now give, for solutiona conteining sin w?,
(Ilcx—mwz)u =0
(Shky-mod) v +(Shy,) w =0
(Ekz—mwz) w +(Zky;) v =0
(Sk, Y2+ (Sky YD) tan20 - A% ky,¥?) tanb ~Iyw?] =0
[Tk, X2+ (Sky7Dtan?0 -1y 0?18 ~USky Y tanb+ Tky, X2y =0
(Sthy X3+ ky Y3 = 1,0%)y - (Sky Y tan6 + Tky, X218 =0

The equaticns are solved for the six frequencies; the last four give two quadratic equations

for w2,

Cacge 2: Instead of the additional assumptions of Case 1, let it be required, in addi.
tion to the previously stated conditions, that

whence it follows also that

Then the equations containing u, 8, or y are the same as in Case 1 but the other three are
as follows:

(Eky-mo?)v +(Zky,) v ~Zllkytand -ky,)Y)a=0
Sk, -mod) v +Zky)v ~(Zky,Y)(tan6la =0
(ZkzY2 4 (Sky Y tan?0- 23 ky, Y?) tan6 - Iy 0%a

- Zkytan @ ~ky )Y v - (Zky, V) (tand) w =0

These three equations lead to a cubic equation in w? like those encountered with only YZ
symmetry and can be treated in the same way.
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APPENDIX 6
PRACTICAL ARRANGEMENTS OF INCLINED MOUNTINGS

The equations of motion and the general conditions of elastic symmetry of arrange-
ments of inclined mountings were given in Sections A5.2.2, Ab.3.2, and A5.4.2, Possible
practical arrangements will be discussed here. Some further remarks will be made on vibra-
tional symivetry and on specific cases of arrangemcnts for three, two, and one planes of vi-
brational symmetry. Arrangements of inclined mountings with equal axial and radial stiff-

nesses are included in the cases treated in Chapter 3.

A6.1. VIBRATIONAL SYMMETRY WITH INCLINED MOUNTINGS

Let a mounting have axial and radial stiffnesses k, and &, respectively, and let its
p]
axis make angles Byr Oy D5 with the X, Y, Z axes, respectively, where

2

2 : , 2. . .
cos“dy + cos @, + cos“é, =1. Then, for this mounting,

ky=kycostey +n, sinfdy, kyy=(k,~k) cospycosdy

Similar formulas for ky, 45, kx 7+ kyz can be found by changing either Y to Z or X to Y or Z.
Note that ky“, =Ryys ’I"'Z.X' = k.YZ' kz y = n’:},z . A small displacement u of the equipment
toward positive X causes a restoring force ky v on the equipment directed toward negative X,
and also skew forces kyy u, ky, u directed toward negative Y and Z, respectively. 1f the
axis of the mounting lies in the XY plane, then cos ¢y = sin by, cO8S, =0, and

kyz =kyz =0, and similarly for other planes.

To secure geometrical or mirror symmetry relative to a given plane when k, # &, any
mounting and its image mounting must have their axes on lines which are mirror images of
each other in the plane, e.g., oither 2a or 2b for the image of 1 in Figure 42. If the X axis
is drawn perpendicular to the plane of symmetry, and if ¢, byr &g refer to a mounting and
‘:’,i" d){,, & to its image, then e‘)i =m-by. d:;, =y, d)é = ¢, , 80 that cos d:)’{ = -CcoSdy,
CO8 ¢y = COSHy, COS 7 = CO8 by, hyy = ~kyys kyz=~kygz.

Vibrational symmetry can exist, however, without geometrical symmotry; a few cases
will be mentioned. The general conditions for elastic symmetry for inclined mountings are
too complicated for practical use. The difficulties of allowing for the effects of inclination
of mounting axes to tho principal axis of inertia of the mounted equipment is the principal
advantage of using mountings parallel to the inertial axes, or, if they must be inclined, using
mountings with equal axial and radial stiffnesses.
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Figure 42 - Mirror Image of an Figure 43 - Inclined Mountings with Axes

Inclined Mounting Lying in the XY Plane

A6.2. ARRANGEMENTS OF INCLINED MOUNTINGS WITH THREE
PLANES OF VIBRATIONAL SYMMETRY

Inclined mountings with &, # & _in center-of-gravity arrangements with three planes of
vibrational symmetry lead to great complications unless their axes all lie in the plane of
attachment of the mountings. Even then, the only practical design seems to be the insertion
of groups of four mountings, all in a group being identical and so located and oriented that,
each has a mirror image of itself in both of the two planes of symmetry that are perpendicular
to the mounting plane. The locations and orientations oi the four, if they are in the XY plane,
see Figure 43, can be written

Xl="A, Y1=_B’ ¢X=
Xy= A  Y,==B, ¢y=n-6,
X

X

+
) D D@ D

Xy=-4, Y,= B, ¢y=6,
B, ¢X=”-61

»

"

>

-<

&~

0

S 6 6 o
S S

]

(SIERMIERCIERNIE]

+

In such an arrangemont, for each mounting
ky=k, cos? 6 +k, sin?6, ky =k, 8in26 + k,00320
kZ =kr
while k4 has the same sign as XY (k, ~ k), and |ky | = |(k, - k)| sinf cos 0. Also
¢Z =% and kXZ = kYZ = 0.

The frequency formulas for such arrangements are the same as those given in terms of
lcx, Icy, k; in the normal arrangements, Section 3.2.1.
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A6.3. ARRANGEMENTS OF INCLINED MOUNTINGS WITH TWO PLANES
OF VIBRATIONAL SYMMETRY (XZ AND YZ)

In arrangements with two planes of vibrational symmetey, inclined mountings with
unequal axial and radial stiffnesses can be introduced readily only in groups of four, the
members of each group being identical and arranged so that each has a micrror image in each
of the two planes of symmetry. The image must correspond both in the position of the mount-
ing and in the orientation of its axis, The positions and orientations for a group, see Figure
44, can be specified in terms of arbitrary numbers 4, B, and arbitrary angles of a, 8 radians
as (ollows, the planes of symmetry being the XZ and YZ planes:

!

X1=“A’ Yl"“'B’ by=oa, ¢y=B; Xz'Ao Y2=-B, ¢X T~ ¢y*'l3—
l¥3=~Ap Y3= B, ¢X =a, ¢Y="-B; IY“.A’ Y4-= B, ¢X"-‘ "-a, ¢}‘=f‘-B

The values of Z, ¢ ,, k,, ky, and k, are the

same for all members of a group, whereas those

membere having equal and opposite X have also

equal and opposite values of £y ,, and ky ,

changes sign similarly with Y and &k, with XY.
If at least some of the mountings have

their axes parallel to a coordinate plane, further

generalization may perhaps be accomplished
easily without destroying the symmetry. If any
two identical mountings have axes parallel to
the YZ plane, so that ¢y = /2 and

kyy=kyz =0 for both, and if these mountings
Figure 44 - Orientation of Inclined Mountings -
have the same values of X2, Z, and ¢ 7 but g ! . g
Two Planes of Vibrational Symmetry

have equal and opposite Y and cos ¢y, and
hence also equal and opposite &y ,, then the elastic constants of these two mountings may be
changed in any common arbitrary ratio n provided X is simultaneously changed for each in the
ratio 1/n. Note that for the two mountings X may have either the samo value or equal and
oppusite values. Similarly, if the axes are parallel to XZ, so that ky, = k,, = 0, and if
Y2 Z, and ¢ ; are the same but X, cos ¢, and, hence, & , are equal and opposite, then the
elastic constants may be changed in the ratio n provided each Y is changed in the ratio 1/x.
The general conditions for two planes of symmetry with inclined mountings were stated
in Section A5.3.2.
For any of the arrangements just described with twc planes of symmetry, the working
formula for f,, stated in Section 3.3.3 for noncoplanar arrengements atill holds, but here

3.13 1 2 2
m'f_; W(Eky)( +2kXY -221:“,){)’)
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The formulas for f_ . and f_, a8 thera stated in terms of Ly and Ly also still hold as well
as those for P, and P,, but here Ly,Ly, ¢ and ¢, have the values:

For the XZ rocking modes, ' ' S B

Pl_Q2)2 1
= - 2
Ly ‘/( ) o (EkyZ -ZkysX)

(y=— (kX3 + Sky 22 - 25k, , X2)

2
WrY

For the YZ rocking modes

Py~ (41\? 1 2

Tx

1 2
f
X

A6.4, ARRANGEMENTS OF INCLINED MOUNTINGS WITH ONE PLANE
OF VIBRATIONAL SYMMETRY (YZ)

The general conditions for vibrational symmetry relative to a single plane YZ are too
involved for practical use; see Section A5.2.2. Mention will be made only of certain methods
for designing such arrangements including inclined mountinge with & # k, .

Of the procedures listed in Section 8.4, Nos. 1, 2, and 4 can be used for any inclined
mountings whose axes are parallel to the YZ plane; No. 3 can be used provided also ky , X
has the same value for both members of a pair.

Complete geometrical symmetry with respect to the YZ plane is always sufficient; the
mountinga are then located in pairs. The members of a pair have equal and opposite values
of X, supplementary values of by and the same values of ¥, Z, $y,s #,; therefore they have
equal and opposite values of &y, and k, , but the same %, ,.

The frequencies /, to f, are obtained by solving the two cubic equations given in
Section 3.4 or A5.2.2 with the values of B, Cy, Dy, B,, Cpy, D, a8 given in Section A5.2.2.
The formulas may be converted into a numerical form like those in Section 8.4 by substituting

1978 __ 1 _ 958
)
417271‘7, W (2")4’"2 w2
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A6.4.1. OBLIQUE CENTER-OF-GRAVITY ARRANGEMENTS

Sometimes it is not convenient to have the mounting plane coinci‘e with a principal
plane of inertia of the equipment. It may happen that only one of the principal axes is hori-
zontal, or it may be more convenient to incline the mounting plane. Then only one plane of
vibrational symmetry will exist, and the methods of Section 3.4 can be employed in design
and in the calculation of the frequencies. In special cases, however, the problem is simpler
because of certain other features; several such cases will be given separate treatment here.

With the axes taken as usual along principal axes of inertia of the equipment, let the
plane containing the points of attachment contain also the X axis but be at an angle 6 with
the Y axis. Thus the mounting plane contains only one of the principal axes of inertia.

Since it may be desirable to have the mounting axes perpendicular to the mounting
plane, any inounting with unequal axial and radial stiffnesses will only be required to have
't~ axis parallel to the Y7 plane. Then for any mounting kXY = kXZ = 0. Furthermore,

Z =Y tan 6 for all mountings; the origin is at. the center of gravity.

Vibrational symmetry will be assumed to exist relative to the YZ plane, and it will
al=o be assumed that both the YZ and the XZ planes would be planes of vibrational symmetry,
if Z and k, , were made zero for each mounting without other changes. This necessitates,
in addition to the requirements for YZ symmetry stated in Section 3.4, that £%,7Y =0,
p3 /'fZ Y =0, .‘;,‘cz,\'}' =1,

Two cases will now be treated.

Case 1: Assume in addition either

(a) that every mounting has equal stiffness in all directions, so that £y, = 0, or

(b) that the mountings are identical and have parallel axes so that ky , has the same
value for all.

Under these conditions two translational modes occur in the YZ plane but probably not
in the Y and Z directions, and two rotational modes cccur about perpendicular axes in this
plane. The frequency formulas for this case are:

For translation in the X direction,
fio = 308/ Ty

For rotation about X,

1 2 2 2
o =3-13‘/@7[5sz‘ +(Sky Y tan?6 - 2ky, (2 Y2) tand)

For translations in certain directions in the YZ plane,

f= ]/p'+ q'i L, L =V(P'- q')2+ Py
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where

For rotations with axis in YZ plane,

f<Viia:il, L-VG-97+a e

where ) , o Ce

p'= 382 (5k, X%+ (SkyY?) tan? 6]
We 2

Y

g'= 382 (5k X245k, Y. =
Wr ;2

9.78 2 2
8= (Zky, Y tanb + Zky, X?]
Wry fz X ¥ YZ

Here 3.13 = \/g/ 2n, 4.89 = -;- 9/(2m)?, 9.78 - g/(2m)2.

Case 2: As an alternative to Case 1, it may be assumed, in addition to the require-
ments previously stated, that the mountings are arranged with mirror symmetry relative to the
YZ plane, so that each one is matched by another with equal and opposite z but the same
values of Y and Z and of the elastic constants including ky,. Or, more generally, make

The formulas for /,, and for rotations with the axis in the YZ plane are the same as
in Case 1. The other three motions are rocking modes, the frequencies being roots of the

cubic
f6-Brt+Cfi-D=0

where

Bnrp*+py+ 1y

C =P,P3+P,7,+P31, -2&-29 ["lz' (EkYY tane-ikyz}’)2+(2kyz)2+r—1§ (ZkYZY)zunze]
W X X

. p
D «pyp3dy - 25—26[—-3 (Sky Yian 0~y 17 + 9, Bk yg)? + 2 (zk,zy)%u’o]
W* |r r
X X

. ;3302 (Sky, ) (Sky, DSy Ntan6-Sky, Y]
X
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9.78 9.78
Pa== Thy,  py==0= Zkg

0,=2T8 [Sk, Y2+ (SkyY?) tan?9-2(Sky, ¥?) tanf]

19 2
er

Here 9.78 = g/(2m3, 95.6 = g2/(2m*%, 1870 = 2¢93/(2m°, . Y

For discussion and method of solution of the cubic equation, see Section 3.4.




APPENDIX 7

DESIGN WORK SHEETS FOR COMMON CASES OF MOUNTINGS

Sample work sheets are presented for calculating the natural frequencies and the
required clearances for resiliently mounted equipment. These work sheets offer arrangements
that minimize the repeated writing of numerical values and the amount of desk calculator com-
putation. The sheets are offered as a convenience for those who are just starting work in this
field and who have available only desk calculators, It is recognized that other forms may be
more convenient under certain circumstances and that those who use electrical computers
must code the problems to suit the particular machines.

A proposed design work sheet is presented for buse mounting arrangements with two
planes of vibrational symmetry, YZ and XZ, using the calculations of Problem 2, Appendix 2.2,
as an illustration. Another proposed design work sheet is presented for braced mounting
arrangements with one plane of vibrational symmetry, YZ, using the calculations of Problem
3, Appendix 2.3, as an illustration.
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BASE MOUNTING ARRANGEMENT - TWO PLANES OF
VIBRATIONAL SYMMETRY, YZ AND xz

DESIGN WORK SHEET FOR NATURAL FREQUENCY AND CLEARANCE CALCULATIONS

1. SHIP: 2. COMPARTMENT

3. EQUIPMENT LOCATION: Frame No.__—_____ Port Side _ Stbd. Side

4. EQUIPMENT: Name -~ Mod. No, —______Ser. No.
Mee. - Dwg. No.
WEIGHT: Ecquipment 7500 1b Subbase Total 750016
Speeds or Exciting Frequencies of Equipment

5. FOUNDATION DWG. NO: BuShips Shipbuilder

6. SKETCH OF MOUNTING ARRANGEMENT:

Plan

§ |
P i
Side , .| End ; |
Co ; ) T
0, 6" | |
' D G R
* i | .
; % § g
' |
f— Dy_+—0v_'1 oDy =Dy~ !
e U e 34" STARS VNN
RECOMMENDATIONS:

Use four 2000-1b mountings located at Dy = 10 in,, Dy=18.6in,, D,- 6.0 in,
Calculated from Static Load-

Clearances Calculated from Shock Data Deflection Data ¢
Cyz 25/16 in. 13/8in.
CXZ 37/16in, 2in. .
Vertical 1.0 in, 0.6 in.
Horizontal 1.0 in. 0.6 in.
CALCULATIONS BY: ACTWITY OR SHIPBUILDER:
APPROVEDBY: DATE:

DF.3IGN NUMBER:

SHEET 1 OF 4
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NATURAL FREQUENCY CALCULATIONS

Frequencies to be avoided:

24-cps excitation by ship
40-cps excitation by equipment

KNOWN DATA
Weight 7500 1b Iy  8.66x 103 Ib-in.-sec? rx  2llin
Length 68 in. Ty 437103 [b-in.-sec? ry  15.0n,
Width 34 1, l;  9.36x 103 Ib-in.-sec? rz  219in.
Height 24 in,

SELECTION AND CHARACTERISTICS OF MOUNTINGS

F_i-;st Trial

Second Trial

2000-1b mountings
for dead load of 1875 Ib per mounting,
natural frequency = 15 cps

ka=kr=kr+ﬂ/2

MOUNTING DEFLECTION:
from shock tests - D=£& = 1.0 in,
from static-load deflection tests -

2000-1b mountings
for dead load of 1875 Ib per mounting,
natural frequency = 15 cps

ko=k, =k, , n/2

MOUNTING DEFLECTION:
from shock tests - D =E= 1,0 in.
from static-load deflection tests -

D=E=0.6in, D=E=0.6in
B DYNAMIC STIFFNESSES OF MOUNTINGS
First Trial Second_Trial

L W1 1815 (12

_ = 43,000 Ib/in.
9.8 9.8 43,000 1b/in

_Wf? 1875 x(15)2
9.8 9.8

k

= 43,000 Ib/in.

CALCULATION OF TRANSLATIONAL FREQUENCY

7500

First Trial Second Trial
Sk k - Ik . [k _
f,, =3.13 VT - 6.26 ‘/.". - f,, = 3.13 I/_w_ 6.26 ‘/; -
= 6.26]/43000 _ 15 (o5 - 6.26]/43000 _ 15 cps

7500
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CALCULATION OF ROCKING FREQUENCIES IN YZ PLANE

Half-Length of Base -
Fiest Trial Second Trial
TP EL /2 U
e = - 16l L2 = 2 - 161
Ty 211 ‘ ry 2L1 !
Z Distance from Centor of Gravity to Plane of Mountings
First Trial Second Trial
D D
ZZ_ .5 _o.4 Zz__E _q.om
ry 211 y 211
Selection of Mounting Position
First Trial — Second Trial
1) Y Uy . D Y D R
— === = 160, Dy=3.81in “Y_ZY _ .88, Dy= 18.6 in.
'X Zl.1 rX 1.1
Rocking Frequencies in YZ Plane
First Trial Second Trial
fmu‘l Chart /min f f f
= M0 0975, £ . =14.6 cps min _ _min _qg = 12.0 ¢ps
- (Fig 22) 5.0 fmin =145 o0 e TR
fmax /Chaﬂ f'rax . fmax fmax :
. f_-m_n Fig 22)- T 1.65, fmax = 24-1 CPs o 50" L, f., =168 cps
CALCULATION OF ROCKING FREQUENCIES IN XZ PLANE
Half-Width of Base
First Trial Second Trial
w2 _ 17 w/2 17
_——-—=l.l3 -—=——=l.13
Ty 15.0 ? 15.0

Z Distance from Center of Gravity to Plane of
Mounting Position

Mountings - See Above Selection of

First Trial Second Trial
_D.i = _D_x. = I.C, DX=15 in, 2_-_—2& =0.67' D = 10 in.
ry 15 ry | X
Rocking Frequencies in XZ Planu
First Trial Second Trial
fenin fChart \_ foin - f f min
Zmin = -0 082, . =12.3cps Imin _ m 0,6, = 9.0 cps
7. (Fig 22) 15.0 fmia P T s T faun = 300
T max (Chart | max f f
—Tax = max _ 150, =18.4 max _ _max _ 19, = 17.1
P (Fre )T 7 M e 84 P O
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CALCULATION OF ROTATIONAL FREQUENCY
First Trial Second Trial
3.13y /1
- r_zv (Sk X3+ 2k, ¥3) o= 313 V (SkyX? + 3k, Y3
=§l‘/‘ (X34 Y%= 625 ko(x2, v -
r2 W
- 2_12—3‘[73_6[“5)2 +(33.8)%) = 25.2 cps gl’g ‘;50&? ((10)2 + (18.6)2] = 14.5 cps
SUMMARY OF RESULTS
First Trial Second Trial
Dy= 150in,, =33.8in, Dz=6.0in Dy=10in., Dy=18.6in., = 6.0 in.
fy = 15.0 cps fie = 15.0 cps
fenin, x = 12.3 cps, Foax, x = 18.4 cps foin, x= 9.0 ¢ps, fmax,x = 17.1¢ps
[,y = 1.6 Cps, foax, ¥ = 24.1cps fmin, ¥ = 12.0 cps, froax, v = 16.8 cps
fios  25.2¢ps feor = 14.5cps

_CLEARANCE CALCULATIONS
Approximate Formula: ( = 20H

+ = - See Section 1.6.
C = Clearance for Movement of Point 1 Shown on Sketch

First Trial Second Trial
| Shock Test Data | _Static Load Shock Test Data Static Load
Deflection Deta Deflection Data
D=0L10in E=10in1D=206in E=0.6in.
H = 24in,
Wyz = 37.2in.
“-XZ = 20 in.
2x1.0x24 _2x0.6x 24
CYZ=—X-37.2—"+1.0 Cyz-_’iﬁz)_+0.6
=129+1=229 =078+ 0.6=1.38
Call 25/16 in, Call 13/8 in,
2x1.0x 24 _ 2x(0.6x24
CXZ=—X-20—X—+1.0 CXZ_T+0'G
=24+1=24 = 1.44 + 0.6 = 2.04
Call 37/16 in, Call 2 .in.
Clearances: 1.0"" max 0 6” min 3 7/16"" max
y ; 25/18" max Z T T ,
25/ b { : min
13;? :‘::—r."—# ———i -_-1 ™1 3/8" min i.rd'r—ttl— ___1._,:,‘.___: i
6" :'\1 — 68" ~ : 3 1/16™ ma_xJ \ 34" —d 1 I D
‘ \ - ’I 2” min \\ : !' 2411 !
IR slpy ek Y IR . Al pa S B
I :“‘——l - "' 1.0"" max __1\"‘%’ RO S :
L 1.0" max ”: , i ! | 0.6" min o : | i i 1.0'" max
04 min 8.6 ——f—apo—er— 18.6' 10" — —+ 0" 06" mun
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BRACED MOUNTING ARRANGEMENT - ONE PLANE OF
VIBRATIONAL SYMMETRY, YZ

DESIGN WORK SHEET FOR NATURAL FREQUENCY AND CLEARANCE CALCULATIONS

1. sHip: 2, COMPARTMENT
3. EQUIPMENT LOCATION: Frame No._ .. Fort Side ___________Stbd Side
4. EQUIPMENT: Name _Tfim Pump and Motor Mod. No.__________Ser. No.
Mfe._ Dwg. No.
WEIGHT: Equipment _20351b _ Subbase .__ Total __2035 b
Speeds or Exciting Frequencies of Equipment
{5, FOUNDATION DWG. NO: BuShips . Shipbuilder
6. SKETCH CF MOUNTING ARRANGEMENT:
Side End Plan
1 2 12
"[—1 ;
T e |
17" : |
!
s —— [—-9 v @ —\-x
i |
i
40" | 5g_]
S XA p e 22
I
G” % 6“

le 6” e 6"

RECOMMENDATIONS:  Use four 550-1b base mountings and two 50-1b back mountings whose
locations are shown on page 131 under Selection of Muunting Positions.

Calculated from Static Load

Clearances Calculated from Shock Data De‘flection Data
Cy, L1 in, 0.7 in,
CXZ 1.1 in, 0.7 in,
Vertical 1.0 in. 0.6 in,
Horizontal 1.0 in. 0.6 in,
CALCULATIONS BY: ACTIVITY OR SHIPBUILDER:
APPROVED BY: DATE:

DESIGN NUMEER:
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NATURAL FREQUENCY CALCULATIONS

Frequencies to be avoidad:

KNOWN DATA

Weight 2035 Ib I'y 2150 1b-in-sec?
Length 22.0 in. Iy 2150 lb-in.-sec?
Width 22.0 in. I, 321 Ib-in- sec?
Height 84.5 in.

SELECTION AND CHARACTERISTICS OF MOUNMTINGS
First Trial Second Trial

550-1b bottom mountings
50-ib back mountings
for 550-1b mountings, £,
for 50-1b mountings, £,

ka=kr=kr+ /2
MOUNTING DEFLECTION;
from shock tests 1.0in.

=f,=16.7 cps
=f, = 16.0 cps

|

DYNAMIC STIFFNESSES OF MOUNTINGS

from static load deflection tests 0.6 in.

v First Trial Second Trial
k- W f 2 . sz
T 98 “98
for 550-1b mtgs &=k, = BLUETY _ 13 g9
9 Ib/in.
for 50-1b migs &, = “150 = 1150
Ib/in.

- SELECTION OF MOUNTING POSITIONS
First Tnal B Second Trial

— e — o |

Mgl X | Y] 2| ky | ky | k7 | (Mg [ &Y [ 2] ky | ky | #g
T 146 |6 |-40] 13860_| 13860 | 13860
2 l+6 +6 [—40] 13860 13860 138

1
)
N C-6 |.6 {40 13860 | 13860 | 1386 3
4 -6 (-6 40| 13860 | 13860 | 13860 4
5 146 46 14171 1150 1150 1150 5
[ 6 1-6 [+6 |+17] 1150 1150 | 1150 | [ 8 -
7 |l 7
8 1 8
9 9
10 10
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: : )
CALCULATIONS FOR a,, b, c, and a,, by, ¢,
Radius ol Gyration
First Teial Second Trial
! ¥} ' .
2. X, U0 467802 LI
XCnTTm " £ S
! 1
2 X . U0 401802 2.y
ry - 5272 in. y "
I /
2.2, .32 0892 2.
2T T m ' 7
Summations
First Trial Second Trial First Trial | Second Trial
kY, ~8.160 x 104 kYl 0.489 = 10°
kyY, +8.160 x 10 koYl 0.489 ~ 10°
ky Y, +8.160 x 107 kY3 0.4896 x 10°
koY, -8.160 x 104 ktd 0.4896 x 10°
koY +0.690 x 104 keYe | 0.0414x 108
koY +0.690 x 104 keVd 0.0434 x 108
k,Y, kY
ok 24 k2
koYs "a’oz
koYo koY X
LM K10Y10
Sky 1.380 x 10* Y ky? 2041 x 106
(Z 4132 1,904 » 10°
kX2 0.4895 « 10° kY,z, | 32.64x10®
kz.\’i 0.4896 x 10° kaY,Zy 13264 %103
ky X 0.4836 « 10° kyY3Zy | 32.64x10%
kX2 9.4896 « 108 ko YoZy | 32.64x10°
koX? 0.0414 x 106 kYeZg | 1103 10°
koXd 0.0414 x 106 keYeZo | 1.173x 108
koX$ kr Y47,
kg Xg kgYoZy
koX i ko¥oZ,
kloxloz klOYlOZIO
% kA2 2041 x 108 kY2 2.346 x 108
($k¥2)? | 5.504x 1010
kaZy | -5.440 % 108 k7] 2176 x 107
ko7 o -5.440 x 108 Y 2.176 x 107
kyZ, -5.440 x 10% kyZy 2176 » 107
k2, -5.440 < 10° kZi 1 2at6x 007
ke +0.196 x 10° koZg 0.033 x 107
ko2 20.196 x 108 keZg 0.033 x 107
kyZs k,Z,z
kyZy kel _
koly koZg
2
k10710 kioZ 1o
Y k2 S2.137 % 108 tkz? 8.770 x 107
(Lk2)? 4567 x 1012
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CALCULATIONS FOR 7y, Py, p3 and q,, q,, 24

First Trial Second Trial
Shy 4
n. =9.78 A.'\ 9.78x5.670x 10" _ 2.722x 102
o1 W 2035
* 2 k -
py =978 -2 = 2722x102
Py
Py =9.78 -“—Z =2.722x 102
9.78 .2 2 9.78 6 7
= k , —20 _ {2.04x10°+8.7
7, - 2[2 2Y + 3k, 2 ] m35x407.8[ x1094+8.770x 107)
X = 1.056x 10°
9.78 2 2
7, =;V———~2[£kzx +2k 2% v = 1.056x 103
4
Y
_9.78 2. - 2 9.78 6
7, -;"2[& yX2+ 7k, 72 TE g 04X 0%+ 2.041x106)
4 = 3.219x 102

CALCULATIONS FOR B, C,, D, and B,, C,, D,

/31=P2+7’3""71

First Trial
B,= 2722 x 102 + 2,722 x 102 + 1,056 x 103 = 1.600 x 103

Second Trial

Co=pyty+ Pydy + p371~8 (k12 4 (Sky2)3)
Wi 2

Fiest Triel.

95.6
Cy = 2.7122x 1025 2722 x 107 + 2.722% 102 1.056x 107+ 2,72 102 x 1.056x 10%~

(0352 x407.8

Second Trial x {1,904 10%+4,567x1012) = 3.904x 10°
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Dy = PaP3y ~ 936 (py(Sk ,1)? + p4(Sky2)2)
Wery

First Tnal _ : L
9.6 S

D) = 2722x 103 2.722x 102 x 1066 103 - ———— [{2.722x 102 x 1.904x 108+ 2.722x 102x 4.567x 10'3)
(20357 x 401.8
= 7.89x 108

Second Trial

82 =Pyt @+ G4
First Trial
B, = 2.722x 102+ 1.056x 103+ 3.219x 107 - 1.650 x 103

Second Trial

Cp=py9,+P1 93+ 9, q3--§-5-;§ [—1-5 (k4 Y)2 «».1_2(2‘.1«:XZ)2 -
w 7 ry Ty "z

(Sk sz]

First Trial €, = 2.722x102x 1.056x 10%+ 2.722x10%x3.219x 10? + 1.056x 10%x3.219x 102

95.6  (1.904 x 108) 1 1
- 4,567 x 1012) 4 ————— (5.504 1010ﬂ=4.561 105
%P gyt oas X ) e X X

Second Trial

D, -P,f)z'la—%:;[——(}‘.k SN2+ ;mxzm (EkXYZ)2]+ 810 (5 y¥)(Zk 52)

'Z "ty ry2722 W3r},2r
x (Sk yY2)
95,6 |1.056x103
First Trial D, « 2.72x102x1.056x 10%x3.219x 102 -~ w7 [ Sbx (1.904 x 108)
L329x102 (4 667 012), 27225 B2 (g 509 1010) i (1,380 x 104) (- 2.137x 10%)
“407.8 80.89 x 407.8 * (2035 €0.89 < 407.8
Second Trial % (2346 10%) = 9.12 x 105,

SHEET 6 OF 7
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Constants u,, &,, ¢, and ey by, €,
YZ Plane First Trial Second Trial
c s o -
al - -1_. 3.904 x 10 _ 0.153
B2 (1.600 x 103)2
6
s 21 _1.89x10° 409103
2 B2 (1.600 x 103)3
e, =B, - 1.600 x 10°
Other
c 4.561 x 10°
2
= 2 ——— A = 0-168
P (1,650 x 10372
D . 106
by=—2 —9—12—"—3—2 - 0.00203
B, (1.650 x 10%)
C2=32 = 165)(103
NATURAL FREQUENCIES OBTAINED FROM CHART, FIGURE 23
First Trial Second Trial
YZ Plane Other YZ Plane Other
fy= 360 cps fo= 3.9  cps fy = cps fo ™ cps
fa= 165 cps fs = 180 cps fa= cps fg = cps
f3= 4.7 cps fe= 46 cps f3= cps fe= cps
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CLEARANCE CALCULATIONS

Approximate Formula: C = Deflection of Mounting + a Feactor
= Clearance for Movement of Point 1 Shown on Sketch et

First Trial Second Trial
Shock Test Data Static Load Shock Test Data Static Load
Deflection LCata Deflection Data
1 . 1 - ) —
C}'z= l+-8-= 1.1in. 0.6+E-0.7 in.
Cxz= 1+-;-= 1.1in, 0'6+ll—6=0'7 in,
CVeruc.l = 1in. 0.6 in.
Choriz 1in, 0.6 in.
Clearances
1—
11" max
Z 0.7" min
1.1" max _.‘ 11" max o I‘ ‘{
0.7 min I }‘ I'" 0.7 min |
'{‘\——L o A ——
/ 1.0"" max 1 )
lJ l_O.G” min r L 1 L‘} 1.0"" max
| H I  0.6" min
? [ I I
g |
l % ) | \
/
—t[P - X / "—é—- Y
84.5'" / Qﬁ / \
i
]

0

1.0"" max
0.6'" min

10" max
0.6" min

F_zzll

——————— —r/
R ———

!

|

|

|

' (
N
|

|

|

!

{

|

|

|

|

|

i

|

|

|
10" max  LEd——-- " L ) I
0.6'" min~ %’i*-——ég.,"‘.“ —— Lé ] %4 y

min H
+—-'-—-4— g 6"—4-—L—ﬁ—6" L_1.0"" max

0.6'" min

SHEET TOF 7




REFERENC-E.S»

1. Woodward, K.E., ‘*Damage Resulting from Laboratory Vibration and ngh lmpact Shock o
Tests,"” Naval Research Laboratory Report 4179 (Sep 1953). S S - s

2. Vane, F.F., “‘Natural Frequencies of Side Plating, Bulkheads, Decks, and Radar and
Radio Supports, Measured Aboard Three Cruisers, Three Destroyers, a Submarine, and a
Battleship,’’ Taylor Model Basin Report 548 (Apr 1948). ' '

3. Military Specification, MIL-S-901 (SHIPS), 16 Nov 1949, ‘‘Military Specification -
Shockproof-Equipment, Class HI (tligh-Impact), and Tests for (Shipboard Application)."

4. Interim Military Specification, MIL-T-17113 (SHIPS), 26 Jul 1952, ‘*Bureau of Ships

Specification - Tests; Shock, Vibration, and Inclination {for Special £quipment) General
Specification."

5. Crede, Charles E. and Junger, Miguel C., ‘‘A Guide for the Design of Shock Resistant
Naval Equipment,”’ NavShips Publication 250-660-30 (1949).

6. ‘‘Noise Survey an” Repair Procedures for Submarine Noise Reduction,'’ NavShips
Publication 250-371 (Apr 1951).

7. Hamme, R.N., ‘““A Study of the Problen of Resilient Mounting Against a Non-Rigid
Structure,’’ University of Michigan, University Project No. M788, ONR Project No. NR216020
(31 Jul 1950),

8. Crede, Charles E., ‘‘Shock Mounts for Naval Shipboard Service,’ NavShips Publication
250-600 (Jun 1944), p. 40.

9. Bureau of Ships, Code 371, Informal Note, ‘‘Proposed Requirements for Resilient
Mountings,’’ pp. ¢-5.

10. Rossell, Henry E, and Chapman, Lawrence B., Editors, ‘‘Principles of Naval Acchi-
tecture,”’ The Sociely of Naval Architects and Marine Kngineers, Vol. 11 (1939), pp. 124-127.
11. Crede, Charles E., **Determining Moments of Inertia,*'’ Machine Design (Aug 1048).

12. ‘“‘Evaluation of Experimental Methods for Determining Radii of Gyration,’’ Portsmouth
Nava! Shipyard Tochnical Report {-340, Supplement No. 2 (20 May 1953).

13. Portsmouth Naval Shipyard Drawings, No. S-14599 - Arrangement and Details of Device
for Determining the Moment of Inertia; No. S-80648 - Device for Determining Radii of Gyration
of Equipment; No, S-806857 - Scale for Determining Center of Gravity of F.quipment.

14. Lewis, R.C. and Unholtz, Karl, **A Simplified Method for the Design of Vibration-
Isolating Suspensions,’” Transactions American Society Mechanical £ngineers (Nov 1847).

15. Timoshenko, 8., ‘‘Vibration Problems in Engineering,”’ D. Van Nostrand Company,
Inc., New York, Second Edition (1937), p. 61.




16. Den Hartog, J.P., ‘‘Mechanical Vibrations,’* McGraw-Hill Book Company, Inc., New
York, Second Edition (1940), p. 85. ‘

17. Lamb, Horace, “Higher Mechanics,’* Cambridge University Press, Second Edmon
(1929), pp. 219-221.

138




BIBLIOGRAPHY
Bastien, Carl J., ‘‘Vibration Isolation and Shock Mounting,'’ Product Engineering
(Sep 1948).
Bastien, Carl J., ‘‘Vibration and Shock Mounts,'’ Product Engineering (Oct 1948).

Blake, Ralph E. and Walsh, J. Paul, ‘‘Proposed Shock and Vibration Requirements of
Shipboard Mounts,’’ Naval Research Laboratory Report 3597 (Jan 6, 1950),

Browne, K.A., “‘Dynamic Suspension - A Method of Aircraft Engine Mounting,*'' Transac-
tions Socioty Automotive Engineers (May 1939).

Crede, Charles E and Junger, Miguel C., ‘‘A Guide for Design of Shock Resistant
Naval Equipment,’’ NavShips Publication 250-660-30 (1949).

Crede, Charles E. and Walsh, J. Paul, ‘“The Design of Vibration-Isolating Bases for
Machinery,'’ Naval Research Laboratory Report V 2927 (Aug 19486).

Crede, Charles E., ‘‘Determining Moments of Inertia,’’ Machine Design (Aug 1948),

Crede, Charles E., ‘‘Shock Mounts for Naval Shipboard Service,'' Navships Publication
250-600 (Jun 1944).

Crede, Charles E., ‘‘Vibration and Shock Isolation,’’ John Wiley & Sons, Inc., New
York (1951).

Den Hartog, J.P., ‘‘Mechanical Vibrations,’ McGraw-Hill Book Company, Inc., New
York, Second Edition (1940).

‘‘Evaluation of Experimental Methods for Determining Radii of Gyration,’' Portsmouth
Naval Shipyard Technical Report T-340, Supplement No. 2 (20 May 1953).

Hamme, R.N., ‘‘A Study of the Problem of Resilient Mounting Against a Non-Rigid
Structure,’’ University of Michigan, University Project No. M788, ONR Project No. NR 261020
(31 Jul 1950).

Hardy, Howard C., ‘‘Sources of Machine Noise,’’ Product Engineering (Mar 1948),

Harrison, Mark, Sykes, Alan O., and Martin, M., ““Wave Effects in Isolation Mounts,"’
Journal of Acoustical Society of America (Jan 1952).

Himmelblau, Harry, Jr., ‘‘The Positioning of Vibration Mountings for Optimum Perform-
ances,’’ U.S. Naval Engineering Experiment Station, Informal Report (Aug 1951).

Hull, F.H. and Stewart, W.C., ‘‘Elastic Supports for Isolating Rotating Machinery,"’
Transactions American Institute of Electrical Engineers (Sep 1831).

Hull, E.H., *“The Use of Rubber in Vibration Isolation,'’ Transactions American Society
Mechanical Engineers (Sep 1937),

139




Interim Military Specification, MIL-T-17113 (SHIPS), 25 Jul 1852, ‘‘Bureau of Ships
Specification - Tests; Shock, Vibration, and Inclination (for Special Equipment) General
Specification."’ ' T o

Jacobsen, Lydik S., ‘‘Steady Forced Vibration as.Influenced by Damping,’’ Transa.-
tions American Society Mechanical Engineers, Vol. 52 (1930). '

Kendall, George H., ‘'Noise and Vibration in Ball Bearings,’’ Product Engineering
(Dec 1981).

Keys, Walter C., ‘‘Rubber Springs,’’ Mechanical Engineering (May 1837).

Lewis, R.C. and Unholtz, Karl, *‘A Simplified Method for the Design of Vibration-
Isolating Suspensions,’* Teansactions American Society Mechanical Engineers {Nov 1947).

Ludeke, Carl A., ‘‘Resonance,’’ Journal of Applied Physics (Jul 1942).

MacDufi, I.N., “Isolation of Vibration in Spring Mounted Apparatus,’’ Product Engi-
neering, Part [ (Jul 1946); Part II (Aug 1948).

Maier, M.W., ‘‘Application of the Inhurent Flexibility Factor in the Design of a Mount-
ing System,’’ Naval Research Laboratory Report V 2969 (Sep 1946).

Military Specification, MIL-M-17185 (SHIPS), 12 May 1952, ‘‘Interim Military Specifica-
tion - Mounting, Resilient, Tests for General Specification (Shipboard Application).”’

Military Specification, MIL-8-901 (SHIPS), 15 Nov 1948, *‘Military Specificati'on .
Shockproof-Equipment, Class HI(High-Impact), and Tests for (Shipboard Application).”’

Mindlin, R.D., Stubner, F.W., and Cooper, H.L., ‘‘Response of Damped Elastic Systems
to Transient Disturbances,’’ Society for Exparimental Stress Analysis, Vol. V, No. 2 (1.948).

“‘Noise Survey and Repair Procedures for Submarine Noise Reduction,”’ NavShips
Publication 250-871 {Apr 1851).

Portsmouth Naval Shipyard Drawings, No. S-14509 - Arrangement and Details of Device
for Determining the Moment of Inertia; No. S-80646 - Device for Determining Radii of Gyration
of Equipment; No. S-80857 - Scale for Determining Center of Gravity of Equipment.

“‘Resilient Mountings for Reciprocating and Rotating Machinery,’’ Illinois Institute of
Technology, Annual Engineering Report No. 2, 15 Jun 1949 to 14 Jun 1950, ONR Contract
N 7-ONR-32904 (14 Jun 1950).

Rosenzweig, S., ‘‘Theory of Elastic Engine Supports,” Transactions American Society
Mochanical Engineers (Jan 1939).

Rossell, Henry E. and Chapman, Lawrence B., Editors, ‘‘Principles of Naval Archi-
tecture,” The Society of Naval Architects and Marine Engineers, Vol. 11 (1839), pp. 124-127.

Soroka, Walter W., ‘‘Energy Method of Calculating Vibration Modes and Frequencies,”
Product Engineering (Dac 1949).

140




Sykes, A.O., ‘‘The Evaluation of Mounts Isolating Nonrigid Machines from Nonrigid

Foundations. Part [ - The Mount Acts as a Mechanically Paralleled Spring and Dashpot,"’
David Taylor Model Basin Report 1094 (in preparation).

Timoshenko, S., *‘Vibration Problems in Engineering,'* D. Van Nostrand Company,
Inc,, New York, Second Edition (1937).

Walsh, J. Paul and Blake, Ralph E., ‘‘The Determination of Shock Isolator Performanée,"
Naval Research Laboratory Report 3696 (Jan 8, 1950).

Welch, W.P., *“Mechanical Shock on Naval Vessels,”’ NavShips Publication 250-660-26
(1946).

Woodward, K.E., ‘‘Damage Resulting from Laboratory Vibration and High-Impact Shock
Tests,’” Naval Research Levoratory Report 4179 (Sep 1953).

141




INITIAL DISTRIBUTION

Copies

46 CHBUSHIPS, Library (Code 312)

Tech Library

Tech Asst to Chief (Code 106)

Res & Devel Program Planning (Code 320
Naval Architecture Planning Coordinator
(Code 320E)

Applied Science (Code 370)

Noise (Code 375)

Shock (Code 376)

Vibration (Code 377)

Prelim Design (Code 42¢)

Performance & Scientific (Code 436)
Hull Design (Code 440)

Submarines (Code 525)

Internal Combustian Engines (Code 543)
Machinery Arcangements & Piping
Systems (Code 548)

Retrigeration, Air Conditioning

8§ Fumps (Code 549)

Electrical (Code 560)

Design Standards (Code 815)

Assistant Chief of Bureau for Nuclear
Propulsion (Code 1500)

3 CHONR
2 Mech Br(Cecde 438)

2 CHBUQRD
1 Mt J.M. Crowley

7 CHBUAER

w

P s r Gl Cad gt = —— —

b

2 DIR, USNEES, Annapolis, Md.

CO & DIR, USNEL, San Diego, Calif.
CO & DIR, USNUSL, New London, Oonn,
DIR, USNRL

CUMSUBASE, New London
COMSUBDEVGRPTWO
SUPSHIPINSORD, Groton
SUPSHIPINSORD, Newport News
SUPSHIPINSORD, Seattie
SUPSHIPINSORD, New York
SUPSHIPINSORD, Camden
NAVSHIPYD BSN

NAVSHIPYD CHASN

NAVSHIPYD LBEACH

NAVIHIPYD MARE

T NAVSHIPYD NYK
2 Material Laboratory

S  NAVSHIPYD NORVA
S  NAVSHIPYD PEARL

[ NAVEHIPYD PHILA
1 Tech Lib Unit (Code 263 mac)

[ NAVSHIPYD PTSMH
1 Res Statf Asgt (Code 2632)

S NAVSHIPYD PUG
S NAVSHIPYD SFRAM

I T T Y . T O T Y

o

i) LPPO PANC WASH D C

143

Copies

!

The Barty Controls Incopotated
700 Pleasant Strest, Watertown, Masa.,
Attn: M1, C.E, Crede

Brodie Engin Corp, 330 Endicott Bidg,
Fourth Street, St Paul ), Mina,

Genersl Motors Cotp, Cleveland Diesel
Engin Div, Clevetand 11, Ohio

Faicdanks Morse & Company,
Beloit, Wisc,

General Oynamics Corp, Electric Boat Div,
Groton, Conn., Atln: Mr. R. Collier

Kortund Company, Incorporated, 4815
Thirty-Second Place, Long Island, N.Y.,
Atta: Mr. D.H, Vance

Lockheed Aircraft Corp, California Div,
Burbank, Calil., Attn: Or, C.T. Molloy

Lord Manufacturing Co, Etie, Pa.,
Attn; Mr. George Beltman

The M.B. Manufactwing Co., ;060 State Street,
New Haven 11, Conn., Attn: Mr, Xarl
Unholtz, Chief Engineer

Wira Corporation, Subsidiaty of Chrysier Corporation,
Washington, D.C., Attn: Mr. J, Strasyer

Robinson Avistion incotporated, Teterdoro,
N.J., Attn: Mr. Nietsch

Sparkman & Stephens, Incorporated, 79 Madison
Avenue, New York, N, Y., Attn: Mr. H.D. Johnson

Sperry Gyrosrope Company, Great Neck, N.Y.,
Attn; Mr. R. Garbarine

The Wavgh Equipment Company
420 Lexington Ave, New York, N.Y.,
Attn: Dr. N.H, Roy

Westinghouse Electric Carp, Electronics Div,
Radar Equipment Enginering, Friendship
International Airport, P.Q, Box 746,
Baltimore 3, Md., Attn: Mr. Harold C. Simons

York Corporation, 1014 Duponi Circle
Bldg, Washington 6, D.C.

Technical Operations, inc, Buthington,
Mass,, Attn: Mr, F, Everetl Reed

Gibbs & Cox, Inc, 21 West Street,
New York 6, N.Y.




LTIO-8ILSN il
. cd epueag ‘eusA ‘Il
‘sSupunow WetjBeY °jJ
. sondnpey — eLloN ‘¥

jI0M
{rvonendwos oY) 2PYLN) GONPAI 0 POLN TOAQ BABY FUTYD pus
‘ojqiewcd vs YInw &% PTIVWNELS pus peytdwis Ueeq easy Sa0K;
-s)ndwod e ‘cvewedusss posnunoate AJUOWOd dl0W OY) JO4
*poreen; UEeq BARY SUOITS]{*IST) [¥IN382d Ul PRINUNCIUR &g 0}
paedye Muewsdusire Junur Sw ey IV -uewdinbe preogdigs M
sJununow Jue)|isel jo uonsatjdde pus vonde|es eyy Jo) 801000 e
udisep oy eouwpind epiacad C) peswdesd veaq Sy [ERUBW S14Y

LT0-8TLSN "1l

‘d s1ouwag ‘eusp |l
-edununow JuelISey ]
uonJnpey — esioN ¥

‘yi0a
{wvuonuindinos ey BTUN) 8INPAI 0) POLR UBSQ BARY WIEYD pus
‘e|qiesod vu YInw 6% PeTNTWEAE pus paylldmis Ueeq Bty suLN
-mndwod oY ‘TuewelvsuE PRRIENCIUe LjUOWWOD 80W 341 304
‘peTee) U0OQ @ANY SUCTI¥{[#IETI [$31I82d Ul PEINUN0ITL 8q !
perdedxe srvewsdusars Sununow ey |1y “Iwswdinbe preogdiw o
s#ununow jue Ijisws Jo tonestidde pus vonOL]es oY) Joj selouade
odisep o) eduwpind opiacyd 07 paredesd caeq swy [enUBwW SIY]

oonInpey . wononpey

- yooys womsaadwo) -g | GILJISSVIONA (uodes ;uewdoesep pue ~ yooys vowsaidwoey g | GALAISSVIONA (130des 1vewdojarep puw
vOrRIQIA qaiveses A307810qe] S21UBGORN TUININNG) “¥)0s "saswip ‘wyduid uoneIqIA (vese) KI10TeJ0qNT] €I1TNYISN [RIRIINNG) “8jea “sidwip ‘wydwad
- uewdinby — adrg -z | PN EHI ‘x BS6I Ammged Ceuwp 4 S1ouwwid A9 Q3SIA — Juswdinbg — sdigg ‘g | ‘9O19W ‘dLVI ‘x 8861 Arvnigeq -owsA "4 vrowed £q ‘GASIA
svopeorjddy “3d ‘IN3NJINOE JYVOBdIHS O SONLLNIOW LNEI11S3Y suonwaddy 34 "INANAINOF JUVOULIHS OF SUNILNNOW INIITIS3Y

~ 23013081 LOTTIQIA 1 40 NOLLYDI'1ddV NV NOIIETES 30 H0d 3QLI0 ¥ - g3079108) vONMAQIA °1 40 NOLLVOI14dV XV NOLIDITAS 311l 804 3AIA0 V
‘088 woday "ursog | opoN soj4o] piacg "0gg woday “ursog |epoy sopin} prasg
TN ‘on

LY0-BILSN ‘Il

‘d s1ommg ‘eusp ‘1)
-efunjonow 1er1s0y ‘]

dotjonpey — esio!] ‘§
wonanpey

- yooys uvomsesdwo) g
(13,1 SLTYN

- jweudinby — edwg ‘g
suoneotjddy

— 920791081 UONWIQIA ]

[suonwIndwos ey3 QI 8INPOI 01 PESN ULSq VABY FUWYD pus
‘e1qiesod sy Yonw U PEZITPWNEAY puv peyndwrs uceq @avy KU
-€1ndw o2 9y ‘suewedusus PaseIunodLs A[uoWwwod Blow eyl o4
paTsen] UGGy BABY FUOITH([¥IST! 18INI%.d Ul peieIunodLe 8q !
peroedxe srueweduvire Hununow ey) [jy “uewdinbe pNcqdiys o
sdununow gaitses Jo vonwatjdde pus vonoeles ey) Joj se1dudde
ufep 03 @duvpind epiacid 0) persdesd uoeq Wy [VREVW siy]

adidIssSvIONI {(1s0deos Juewdojessp puw
§Iveee) AIOTRIOqE’] §IITYDBN [RINRANG) “8)e) siFeip ‘sydead
‘wejqm "dup] ‘ix  ‘REET Arsnugey Ceuwp ‘4 s1oussg AQ ‘UUSIA
-3¥ ‘INIKRJINOT JUVYOSJIIHS O SUNIINNOW INII'TISIY

4G NOLLVDITddV ANV NOLLD3TYS i1 ¥0d 3qQing v
“0gg woday “ursog|epoy sojdo) piog

LLO-CLLSN "IN

o s1uRIg ‘eusp 1]
‘sdununow WeIILey )
uonanpey — estoN b
vonanpoy

- yooys vowsedwae) ‘t
uoavINIA

~ quenduaby - sdyg 3
suoned, ldy

- sioejodl wonwmagly ‘1

[euonwIndwod vyl 3Y1n) @INpal 0] PesN USBQ SARY EIIBYD pus
‘olqiusod ve YINW sv PIZLWNELS pus peyijdurs Lesq AABY Euon
-wndwoy 9 ‘SUBWATUBLT PeISINN0IVY L[UOWOD BI0W 8y JOq
-pejRen UBSq @AY SUCHV][ILU! [EINIRI U1 pRIeUTOIUe 89 O
porredxe sIUBWANURLN Tuljunow ey IV uewdinde preoqdiys o
sdununow jue1jIsel Jo uonei|dds pus tonIeles 8yl Jo) setousds
ufwep o) 8duepind epiacyd o poredaid ueeq vy TRNUBW S1Y]

GALAISSYIONA (node: Juewdojesep pus
JIWesel AICTRIOqE ] §IiUBYISN [WIRIIRNG) "§)6) 'siBeip ‘sydesd
‘so|q® "deEl ‘ix g6l Avniqed  cauwy "4 s1omwrg A1 *QFSIA
-FY INTNGINOA JUVOEINS CJ SUNIINAON LAl TSIy

40 NOLLVIITAdVY ANV NOILDIIAS J11L ¥04 Q10 v
"0gg Wodey -ursog |epo sojdo) piaeq

"t ¢ Stns

YRR R N RN NN

€eV . 49 v . Bee e 8 e8P s . @

X R Y R YRR R Y NN RN RSN Y B T B N A R

e €s v ®Y & .. waes LR Y IR e . 8




