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FOREWCRD

The Ballistic Research Laboratories served as host to the Second
Conference of Arsenal Mathematicians, This one-day meeting was held
2/, February 1956, Colonel A. R, del Campo, Director of the Laboratories,
extended a welcome to those in attendance, and then commented on the
contributions which mathematicians are making in various specific areas.
He also mentioned a few of the training programs currently active at the
Aberdeen Proving Ground. Following the talk by Colonel del Campo,
Sessions A and B of contributed papers were started and these continued
until noon. Session A was chairmanned by Professor H. H. Goldstine of the
Institute for Advanced Study, while Associate Technical Director of the
Ballistic Research Laboratories, R. H., Kent, served in a similar capacity
for Session B. Following lunch more contributed.papers were presented at
Sessions C and D, Dr. George Glockler, Chief Scientist of the Office of
Ordnance Research, and Mr. R. R. Kuebler, of the Office of the Chief of
Ordnance, served as Chairmen of these two phases of the program which
continued until mid-afternoon. At 1500 the group of some seventy-five
scientists in attendance at the conference came together to hear an invited
address by Dr., C. B, Tompkins of the University of California., His address
was entitled Linear Programming and High Speed Computer Applications.
Colonel P. N. Gillon, Commanding Officer of the Office of Ordnance Research,

was the Chairman of this final portion of ﬁze conference,
CRIMNA N !N <. arec
¢

presented  \gutgighpispenssnnal . Boundary

stic equations, stability and heat con-

[ L,
s Fourteen scientific papers

layer problems, stress analysis,

duction problems, computer and automatic weapon analysis were some of the many

topics in applied mathematics that were
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While it was gratifying to the coomittee on arrangements to have an over
supply of program material, it was unfortunate that time did not permit
presentation of all the submitted papers. A two-day conference would have

been organised had it been possible to foresee the amount and the quality
of the available talent.

Initial Distribution
The initial distribution list of the Transactions of the Sécond

Conference of Arsenal Mathematicians includes those who attended the meeting
and/or the govermment installations with which they are associated. For

economy, only a limited number of copies have b'een sent to each. Additional
copies will be transmitted upon request.
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A NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

By
Erwin Fehlberg
Redstone Arsenal, Huntsville, Alabama

Introduction, This paper presents a numerical approach to the iteration
method as applied to boundary value problems for ordinary differential equ-
ations.

Instead of using a numerical integration procedure for the iteration
method, expansions in series are applied. In this way the solution is
obtained in an analytical form and can easily be computed for any value of
the argument. In article 1 the method will be explained in detail for the
second- order differential equation. In article 2 the results for the
third- and fourth~ order differential equation are summarized.

This paper is not concerned with the investigation of criteria for the
convergence of the iteration method, but it is always assumed that the con-
sidered boundary value problem has a solution and that the iteration
procedure converges to this solution.

1. Second- order differential equation, We assume the differential
equation has the form:

y' = t(x,y,7'), (1.1)

and we are interested in an integral of this equation that solves the follow-
ing boundary value problem:

x==1: y=y(-1),
(1.2)
x=+1: y=y(+),

A linear substitution on x will transform any finite interval
a<xgb into -1 < x< +1. Therefore, our choice of the x-values in
(1.2) does not mean any restriction.

According to the iteration procedure we have to introduce into the
right~hand side of (1.1) an approximate solution of (1.1) which satisfies
(1.2). By this introduction the right-hand side of (1.1) reduces to a
function of x alone:

LY o= £(x). (1.3)

Integrating twice we get the next approximation for our sclution, the
constants of integration being determined by the boundary values (1.2).

To perform in a convenient way this integration procedure of successive
?pprgximation, we make use of expansions in Legendre series. Let us put in
1.3):

y' = £(x) = § PP (x), (1.4)
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the Legendre coefficients Fn being given in well-known manner by:

+1
P = 22513;..:{- £(x) P_(x)dx. (1.5)

For the required solution y(x) of (1.4) we similarly put:

y(x) = z Yn-Pn(x) (1.6)

with unknown coefficients. However, these unknown coefficients Yn can easily
be expressed by the well-known coefficients F of the right-hand = side of

(1.4).
Denoting the integral JT(x)dx by (1) f(x) and the integral
S (1)f(X)dx by (z)f(x), from (1.4) follows:

y = P, (1.7)
The coefficients In in (1.6) are then given by:

+1
-5 @De(x) p_(x)ex. (1.8)

Integration by parts reduces (1.8) in the following manner:

T, - 5= [(z)f(x)‘(l)l’ (x)] 4 ;o 2 Ve (x)ax
-1

¢/ !
X - %ﬂ [(z)f(x) (I)Pn(x)l' - %ﬂ‘ [(l)f(x) (Z)Pn(x)]:* el

a1 ' (1.9)
{ 10 s ®r (dax.

We assume nZ 2 and compute Yo and Yl later by means of the boundary values,

Then the first two terms on the right-hand side of (1.9) are zero, This
follows for the first term from the well-known relation:

(201). e (x) @ P (x) - P (x) (1.10)

(for L§gendrels polynomials, For the second term this follows by integrating
1.10):

(2ne1) (Pp (x) = (L)p

1
n+1( x) - ( )P

n-l(X) ( )
1.11
(2n*1) (2)P (x) - Eﬁ:—s [n+2(X) - Pn(xﬂ- 2n31.

En‘x) - n-2(x)] ‘
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The equation (1.9) then reduces to:

+1
Y - &‘zl!l S f(x) (2)Pn(x)dx (n>2) (1.12)
-1

or, using (1.11):

.1 ¢ 01 ¢
Y =553 -{ £(x) P o (x)dx - 33 onoT) -{ £(x)P_(x)dx +

1.1 F e (i (n22)
2n-1'2 4 Y Tn2 n=

F 2F F
- n=2 n n+2 >
Yn (2n-3)(2n-1) ~ (2n-1)(2n+3) * (Z2n+3)(2n+5) (n22) (1.13)

By (1.13) the coefficients T (nZ2) of our approximate solution y(x)
can immediately be computed as soon as the Legendre coefficients Fn of
(1.4) are known. However, the determination of the Fn is a relatively easy
problem and comparable e.g. to the determination of the coefficients of a
Fourier series. As to the technique of the determination of the Fn' the

reader may be referred to two former papers of the author*).

We still have to determine Yo and Yl . From (1.,2) follows:

Y°+Y1*Yz*...*rn’...-Y(*l)

(1.14)
Y-+, .*(-1)"In+. . .= y(=1),

Introducing the abbreviations:
3 [r6n + 1] = 70

3 P - xa) -5
we obtain from (1.14) by addition or subtraction:

(1.15)

Y +Y +Y, + ...+ +...=7301)
°© 2 4 2n (1.16)

Yl+Y3+YS+...0Y2m1+...-7(1).

¥ Zeitschr. f. angew. Math. Mech. 24, (1944), p. 71/76
n " " " 31 (1951), p. 104/114.
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From the first equation (1.16) and from (1.13) follows:

Y o=31) - Y= F1) T2r-2 ar .
o T VW ~E Toy = v 5k D T ED GRS

szwz
(Ly*3) (Lv+5)
or:
Y =y(1)-1F +1 F, (1.17)
o 3 (<] 15 2

From the second equation (1.16) and from (1.13) follows in quite the same

manner:
¢

=y(1) -1 F + L F. (1.18)
15 35

By the coefficients (1.17), (1.18), and (1.13) our approximate solution of
(1.1) and (1.2) is completely determined,

1

We then have to substitute this approximate solution and its first
derivative into the right-hand side of (1.1) and have to repeat the procedure.
Fo; the actual substituting it is useful to express the Legendre coefficients
T~ of the first derivative y '(x) also by the F.

In quite the same way as in the case of the Y, we find:

F F
' n-l _ntl >
and:
!o' - ¥2). (1.20)

2. Third- and fourth-order differential equations. We can here restrict

ourselves to a short summary of the results which can be obtained in quite the
same way as in article 1 for the second-order differential equation.

a. Third-order Differential Equation
Differential equation:
o= f(x,y,y',7") (2.1)
Boundary values:
x==1:ym=y(-1)
x==1:y =y (-1) (2.2)
x=+1: 5 =y(+l).
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Coefficients for the approximate solution:

F 3F 3F
Y = -7 - N + + -
n (2n-57?2n—3)(2n—ﬁ 2n-3)(2n-1)(2n+3 (2n§i)(2n+3§z2n+5)

Faea (n23)
2n+3)(2n+5)(2n+7

'y(l)-l§(1)+1y'(-1)-;r *LF v 4 Fp- LF
3 15 315 105

-y(l)-1F+2F-1F (2.3)

15 05 ° 315 4

1 315

__4_F2+%_F3-_;_F5

Y,=1y(1)-1y(1)+1F -2F
3 315 3 693

3 9 B

Coefficients for the first derivative of the approximate solution:

' - 2 %y p+2 (n2 2)
n “@n=3)(2n-1) - (2n-1)(2n+3) = (2n+3)(2n*5)
I =57 (2.4)
Y, =3 () -y(-1) +1F -1 F - 4 F,+1F
=3 (1) - y'(- - 1
1 3° 5! 1052 53

Coefficients for the second derivative of the approximate solution:

r"aimdl_Tml oy
n  2n-1" 2n+3 n=

(2.5)

Y " - 1) - y'(-1) + 1 F F +1
S =5 -y LR Lh

b. Fourth-order Differential tion:
Differential equation:
y'ro= £(x,y,yt, Yyt (2.6)
Boundary values:
x=-1:y=y(-1), 5 =K-1)

(2.7)
x=+1:y5=y(+1) , 7 = y'(+1).
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Coefficients for the approximate solution:
b2

N~

F
Y = n-A: -
n  (2n-7)(2n-5)(2n-3)(2n-1) _ (2n~5)(2n=3)(2n+1) (2n+3)

N 6Fn - +2
(2n=3)(2n-1)(2n+3)(2n+5) ~ (2n-1)( 2n+ﬁ( 2n+5)(2n+7)

F

n+
* TZn+3)(2n+ 55f2n'+75('2n+95 (n24)

Y, =FL-15y M) +LF -2 F+ LF
3 45 315 9L5

(2.8)

y1)+ L F-_2 F+ 1 _F

Y. =6y (1) - _2
13 525 1575 > 3485 °

i
5

Y,=1y (1)-2 F + 1 F - 4 F + 1 F
2 3 B ° 105 2 200 4 3005 ©

Y, =15(1) -15y()-_2 F +_137 F, ~ F.+_1 F
35 5 sl THm 3 wuEn ’ 30 7

If, similar to (1.16) the following abbreviations are introduced:
1[ren + p0)] -5
2 (2.9)

1 [y - 51} = 7 (1)

G ]

We obtain coefficients for the first derivative of the approximate
solution:

3F
n- n-l n+l
(2n-5512n-3512n—i) (2n-3)(2n-1)(2n+3) ZZn-l)Z2n+35(2n+55

F

__).(.22,.(__). (nZ3)
(2n+3)(2n+5)(2n+7

D (2.10)
I, =y ()
Y, =5 -1 F o+ 2 Fp- LF

-y - -
1 b3 105 * 315 &

! -
Y, =7(Q1)-5(Q) - 1 F + 2 F,+ 1 F
2 105 1 35 > %93 °
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Coefficients for the second derivative of the approximate solution:

F 2F F
L n=2 n+2 »
Yn (2n-3)(2n-1) ~ (2n-1552n+3) * (2n*3)(2n+5) (n2 2)
YO" = ;'(1) (2.11)

T =5 - 35

Coefficients for the third derivative of the approximate solution:

F F
e _n=1__n+l >
Yn 2n=-1 2n+3 (n21)
(2.12)
' e @)-31) +1L P -1 F
° BT 3% 3

Note: In this paper we have considered only the simplest boundary con-
ditions. However, our method can also be applied to more involved boundary
problems, For these boundary conditions, of course, affect the determination

of only the first Y coefficients Yo, Yl’ voe gr—l sy 1f ¥ is the order of the
differential equation.



THE MEASUREMENT OF NON-LINEAR FORCES AND
MOMENTS BY MEANS OF FREE FLIGHT TESTS

C. H. Murphy
Ballistic Research laboratories
Aberdeen Proving Oround, Maryland

An.:lmporte.nt technique of the exterior ballistician is the determination
of the aerodynamic forces and moments acting on a model by measurements of its
free flight motion. Since this technique has been traditionally handicapped
by a restriction to linear force systems, considerable importance has been
attached to the extension of the technique to non-linear force systems.
Although great success has been achieved in the application of the methods of
non-linear mechanics to the analysis of non-linear problems, this work is
usually restricted to one degree of freedom systems. In exterior ballistics,
however, we are faced with the problem of the angular motion of a misdle and

must contend with two degrees of freedom.

In this paper we will first discuss the problem of one degree of freedom
and then describe the extension to two degrees of freedom. A general class of

non-linear equations in one dependent variable may be written in the form:

x +ax = pf(x, ;:) and a>0. (1)

The general solution of the linearized equation (p = 0) is x = Acos(/a x + 3).
Potncaré’ has shown that , for "emall" values of u, periodic solutions of (1)

exist near solutions of the linearized solution. Poincarf!s work was modified
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by Gylden and Lindstedt to eliminate certain secular terms. Although the

Lindstedt process 1s an iterative one, the first step is often sufficiently
accurate. A rather simple method for performing this first step is embodied

in the Kryloff and Bogolinboff method of equivalent linearization.2

In this process Equation (1) is approximated by an equivalent linear

one of the form.

X +2k+aC x=0 (2)

kb o8 (ot + 8). The coefficients of Equation (2)

with the solution x = A e~

are determined by averaging uf(x, x) over a period of the motion. Kryloff

and Bogolinboff, replace the parent non-linear equation by a family of

equivalent linear equations. The coefficients of these linear equations

depend on the amplitude and, hence, are functions of initial conditions. In
particular, if we consider the motion of a unit mass attached to & cubic spring

with restoring force - ax + bxs,/ﬂ:?i, x) = bx° and the parameters of th? equiv-

alent linear equation are

k=0 (3)

o> = a + b(3/h A%) (%)

For this special case Equation (1) can be solved exactly in terms of an
elliptic integral of the first type. The exact frequency has been compared

with that predicted by Equation (4) and almost amazing agreement has been observed.
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In the case of a weak spring (b > 0) for which the cubic component can actually
reverse the direction of the spring force, Equation (%) was accurate to 1-1/2%
up to amplitudes which would make the cubic component half as big as the linear
' smponent. For the strong spring (b <0), Equation (4) retained this accuracy
of 1-1/2% for amplitudes of oscillation which make the cubic component 8ix
times biéger than the linear component. Thus we see that the method of equiv-

alent linearization is good for non-linearities which are definitely not "small".

Equation (4) can not only be used for the prediction of the motion of a
mass acted on by a cubic spring, but it can be used in the dynamic measurement
of this cubic force. We can disturb the spring and compute values of amplitude
and frequency from the resulting motion. If a series of different disturbances
are used, we can obtain/:mnber of different values of A and w. Using Equation
(%), o 18 plotted versus the effective squared amplitude, 3/4 A2 , and & line
fitted. The slope of this line is b, the coefficient of the cubic term, and

its intercept is a, the coefficient of the linear term.

The situation for the angular motion of a missile is quite similar. If
ve osr make use of a Cortesian coordinate gystem with l-axis along the trajectory,

the 2-axis in the horizontal plane, and the 3-axis determined by the right hand

rule, the direction cosines may be denoted ble - .).Hz - ).va, Ln, xv For
good missiles, the angle between the missile's axis and the trajectory,which
is called the yaw angle, is small and xH and ).v are then projections of this

angle on horizontal and vertical planes respectively.
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For simplicity we will consider an aerodynamic moment of the same form

as the cubic spring. The magnitude of this moment is, therefore, a cubiec

function of the angle between the missile's axis and the trajectory.

| Moment | = |KMO *Keo 8% | c (5)

vhere 52 = ).52 + ).va,
KM and l(Mba are dimensionless serodynamic coefficients, and
0
C is a dimensional constant.

In Reference 3 it is shown that the angular motion must satisfy the following
second order differential equation in the complex variable A = LH + uv

M
N - (B + Ky ) = 0 (6)

vhere A = axial moment of inertia
B = transverse moment of inértia, and

® o= axial spin.

The solution of the linearirzed form of Equation (6) is

i

k-l&e 1+K2e

P (7)

vhere f, = @, + éi t

. ™ 2 o
et ol e

K:l. are complex constants.
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Thus we see that the solution is generated by two complex vectors with
magnitudes Ki and rotating with frequencies ;61. In Reference 3 the equivalent
linearization process is applied to Equation (6) and it is found that the
solution has the same form as Equation (7). The frequencies bi'a are now
functions of the amplitudes K,'s. In perticular,Equation (4) has the follow-

ing generalization

Knmnge -7 .1 = Ky * 2 8, (8)
. K° - K’ ¢2
Kl x2 r= ,31 ¢2

According to Equation (8), from a number of different firings the measured
applitmles of oscillation and frequencies should be combined to yield pairs of
81 . 62 and 8 ea and these data points fitted by a line. In Figure I*this 1is
done for a body of revolution. In this case three center of mass positions
were tested and so three different values of K“o and KM62 were obtained. These
values showed excellent internal consistency when they were compared with the
usual center of mass transformations. Independent wind tunnel tests of this

model were made and good agreement with flight tests was obtained.

Next this technique wes applied to a large yaw program in which angles up
to 30°> had been obtained. In Figure P*these data are plotted and we see that
two lines are needed to fit the points! A little reflection showed that each

line corresponds to a cubic segment in the moment plane. An examination of

-

Apm——————

# See end of this paper
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the individual firings showed that all rounds possess yawing motions which made
use of one or the other segments but not both and this interpretation of the
data was, therefore, valid. In Figure 3 the actual moment plane is plotted.
(For large angles, 8 1s actually the sine of the yaw angle and not that angle
itself.) The physical explanation for the "corner" at 23° was found to lie
in the fact that the flow separates from the lee side of the model at about
23°. Comparison with direct wind tunnel measurement showed excellent agree-

Because of this success in treating a non-linear static moment, the
effect of non-linear Magnus and damping moments wes -c;.maidered. In Reference
3 it was found that these moments cause both modes of osciallation to damp
exponentially. The exponential coefficients are functions of amplitude and
plots similar to Figure 1 are possible. A number of measurements of non-linear
Magnus moments have been made and this extension to damped oscillations has

proven extremely valuable.
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AN ANALOG COMPUTER STUDY OF INTERIOR BALLISTIC EQUATIONS

By

William A, Dittrich
Frankford Arsenal

A study has been undertaken at Frankford Arsenal to simulate the interior
ballistic performance of a recoilless rifle by solving a set of simultaneous
differential equations describing the system on an analog computer. It was
desired to make use of the computer as a development tool to investigate the
effects on system performance of varying certain parameters. This provides
weapon system development with an intermediate step between theoretical cal-
culations and firing a test weapon, its simmlation on an analog computer,
making possible a large reduction in the number of test firings necessary to
develop a weapon.

The object of the study, then was:

First, to establish the validity and limitations of the equations proposed.

Second, if the validity of the equations proposed were established, to show
the use of the computer as a development tool by investigating the changes in
mzzle velocity, peak pressure, and the like produced by varying certain pro-
pellant and physical design parameters.

The initial weapon studied was a 57 mm recoilless rifle, chosen because
of the large amount of experimental data available for it. The equations of
motion for this weapon are a modified form of those derived by Hirschfelder and
others for a conventional weapon, familiar to many of us.

Equation of State:

PV=(1+B)12NFT V=V_ +AX+
v ¥

0
Where:

P = pressure (lb/inz)

V = volume (in’)

N e gas in weapon (1b)

F = impetus of propellant (£§i%§)

T = gas temperature (°K)
X = travel (in)
C = charge (1b)

T,= isochoric flame temperature (K)
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virial coefficient for gases

area of bore (in2)

total gas produced (1b)

v = > o
[}

density of propellant Lb
in3

PEOJECTILE VELOCITY EQUATION
V=AM [fPdt
where V = velocity
M = mass of projectile
PROJECTILE TRAVEL EQUATION

X=JV at

BURNING RATE EQUATION
N=2cr fpat
w

where /™ = burning rate constant (in )
sec

W = web (in)

nogzle discharge equation

N" = Cp Ay [TLdet
T

where:

CD = nogzle discharge coefficient

A, = throat area (inz)

T
N = gas flowing from noszle (1b)
ENERGY EQUATION:
N'C'T - chTo - CD Cp A_}_ ToT MV- (1 +2Qz M'! z
where:
Cv = constant volume spec. ht. of gases
Cp = constant pressure spec. ht. of gases

B = heat loss coefficient
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These, then, were the equations set upon the computer. I suppose a short
explanation of the analog computer operation would be in order here. The
analog computer found its first major use in the field of guided missiles

where the cost of test firing made necessary a means of performing all possible
research by theoretical means. Recently its use has been rapidly increasing

in other science and engineering fields. The analog computer uses such elec-
tronic components as amplifiers, resistor capacitor networks, and potiento-
meters set up in a circuit which obeys the same set of equations as the dynamie
system under study. Voltage fluctuates as pressures or displacements, for
example, in the physical section and the dynamic response of the simulated
system can be recorded. The analog computer has the advantage of simplicity
of setup and operation, and speed of solution, however its accuracy seldom
exceeds 1 percent. In interior ballistics problems this is normally adequate;
the accuracy of measurement equipment used in experiments seldom is more
accurate, A few of the basic circuits for various mathematical operations

are shown below:

Resistor Condenser Amplifier
—AWW— 1| ™
Integration Diffeq?ntiation

..__.4 }Ef_w

R l\ C RX
M, & %

. eo._._RQoLC—;
e.x - hg:‘féaclif oL

R;<<R (70 reduce amplifier noise sive .

nnltiplicationfpy constant Summation
R

L%,

€o* '%,5'— C E— AN

3 €L, , €, €L
C :=- —t ?T2—>
(R \ %L‘_ M

3

The circuit schematic for the equations given earlier to represent the
interior ballistics of a recoilless rifle is shown in figurel. (At the end
of this paper).
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A total of 18 amplifiers, six multipliers and some nonlinear function
generators were used. Six channels of information were recorded.

A typical computer run is shown in Figure 2,

It can be seen that peak pressure ls 6100 lb/'in2 and muzzle velocity is
1175 ft/sec. Since the initial charge is 1 1b. it can be seen in (N) and
that only 70 percent was burned and only 30 percent went to propelling the
projectile, These values agreed quite closely with experimental test results
as can be seen in fig, 3. Peak pressures of experimental test results were
within 5 percent of computer values, Muzzle velocities came within § ft/iec.
of each other as shown in figure 4.

Having shown the ecquations to be representative of the actual physical
system it was then decided to vary certain design parameters to discover the
effects on interior ballistic performance. Variations of such parameters as
web of propellant, burning rate constant, throat area, and nozzle discharge
coefficient was made and effects on weapon performance noted. Although time
does not permit a complete listing of results of varying such parameters, 1
can say that it was found that the web size, charge weight, burning rate
constant exerted the greatest effect on peak pressures and muzzle velocities
of weapon while virial coefficient, nozzle discharge coefficient and specific
heat ratio of gases has little effect on the ballistic cycle. The effect of
nozzle variations might greatly effect recoil, however, a point not investi-
gated in this study. An example of results obtained, the effect of a linear
burning rate equation on weapon pressure is shown in fig. 5.

Since the completion of this study other weapons have been analyzed by
this means and suggestions made for ways to improve their performance. Once
the analog computer is set up, it is possible to make a hundred or more
solutions for different parameter values within one day. The feasibility of
certain new weapon systems, such as rocket assisted guns, have also been
investigated by this method, resulting in quite a saving over experimental
studies. It is hoped in the future that the computer simulation will become
one of the standard steps in the creation of a new weapon system.
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™E RESPONSE OF A TAPERED CANTILEVER BEAM WHEN
A TRANSIENT FORCE IS APPLIED AT THE END
by
Ao 8¢ Elder
Ballistic Research Laborstories

INTRODUCTION

In recent years several authors have investigated the vibrations
of a beam attached to a mechanical system having lumped physical con-
stants. McBride*determined the normal modes and natural frequencies
of a uniform cantilever beam with a terminal dashpot. Y calculated
the response of a cantilever beam attached to springs and masses. We
wvill determine the response of & cantilever beam with linsar terminal
constraints when an arbitrary transient force is applied at the end.

We will restrict our investigation initially to beams having a power
lav variation of section properties, as beams of this description have
been considered by several authors, and their results form a convenient
point of departure for the present study.3%5

I. RESPONSE OF A TAPERED CARTILEVER BRAM WITH
A TERMINAL SPRING, MASS, AND DASHPOT
Consider the mechanical system shown in the diagram below:

F(t)

’
m L
”
4
-
< :
4
[} ; m = MASS

J ¢ = viscous damping constant
k = spring constant

The equation of motion is

. |
S 3 2, . éﬁro | ()
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The boundary conditions are

Y(s, t) = 0 (2)
Y, (s, t) =0 (3)
nnxx(o, t) =0 ()

‘n¥, (0, t) + c¥, (0, t) + K¥(0, ) = K(t) - [xnu(o., t}x (5)

F(t) =0, tS0 (6)
F(t) =F, t >0 (7
¥(x, 0) = 0 | | (8)
Y.(x, 0) = 0 (9)

The laplace transform, defined by the equation
o0
y(x, 8) = f e *ty(x, t)at,
o :
wvas used to remove the time variable from the above system of oquat:lon-.‘

[nyn(x, l)]n + saw(x, 8) =0 (10)
y(s, 8) =0 ' (1)
v (4, 8) =0 (12)
Ely, (0, 8) = 0 (13)

(1k)

oy

(m2 + cs + k)y(0, 8) + [llyn(o, .)]x -

Consider a cantilever beam in which the section properties vary
as & power of the distance from the tip.

EI(x) = E2(4) - (])° . (15)
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pA(x) = pa(s) « (PP (26)

The mass of the beanm is
2
m = [oA(x)ax = 54.?. (17)
o
The static deflection curve due to a terminal load F is

3 -
¥ (x) = m{@“ -(3-a)(} +(2- B& (18)

The static spring rate is given by

Yor beams of rectangular cross section, the section modulus is given:
by

2(x) = 2(s) + (3) Bl + ) | (20)

The stress at the outside fiber of the beam is
| .
olx) = 2'!&)' (3‘:_)1 % (a+8) | (21)
Thess equations show that the parameters o and p are subject to certain
restrictions:
> -1 Finite mass of beam.

ax +2 FMnite deflection.
a+p £2 PFinite bending stress.

The problen may be rendered dimensionless by the following series
of substitutions:

€ = qx



38 Oonference of Arsenal Mathematicians
A= gl '

q--oxaﬁ-&-} )
or 8 .- x-wﬁ#& ——E_I'("'LK

pA(2) - £

4= T T T T

WRJ -

3 - g)k

um

Equation (8) now becomes
[Vecee = P =0 , (22)

Let 6 =B -+ b
Then the series solutions of (22) are

8

yl(c) =1 +§r§ -1 +a‘_ 2)(m * eeces + (23)
‘G"'l
¥o(¢) LR (e 1 () R RN (T TR A (24)
S-atd
3..
yi(c) ¢ 5 +3:a)(5—+1‘ja)(m+ teces + (25)
2od

2«
yh(‘) = € a+w- l)M"’ B a,ml .“‘a) + ceoes + (26)

Ifa=1, Y2 andyu coincide, e.ndyh must be replaced by the loga.nthlic
solution .
&+1
1 2 1 C € ' ;
v, (€) = y,(€)log € + (g— + 3 + ) 4+ .o 4+ (27)
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These solutions satisfy the following boundary conditions at the origin:

2 2
¥, (€) ?%-2-‘-)- < i‘-%é-'l = [e“ -d—%gl]
¥(€) 1 0 0 0
yo(€) 0 1 0 0
¥5(e) 0 0 0 (5-a)2-a) (28)
y,(¢) (Eq. 26) 0 0 (2-a)(1-a) 0
y,(¢) (Ba. 27) 0 0 1 0

The transform of Y(x, t) 1s of the form
y(x, 8) = c,(8)y,(€) + c (s)y,(e)
+ ex(s)ys(e) + o) (s)y,(¢)
On referring to (13)and (28), we see that

c u(.) = 0
The remaining coefficients are readily obtained by applying Cramer's

dz':.'l.os. Oon conbini;gn:he results according to the rules for adding

terminants, we
v, (¢) ¥,(¢) ¥5(€)
y,(») ¥p(M) y3(»)

I s . ¥,'(A) ¥,'(A) y5'(x) (29
SRR (- w1 ?""'%1") 0 (2 - a)(3 - a)xb.'“

y,(3) vo(2) ¥3(M)
¥y'(2) ¥,' (%) ¥3'(»)

The deflection Y(x, t) may be found by using the Bromwich inversion
integral. Let s = y + iw, v°>0; then
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Y(x, t) = lim ETJ e’ y(x, 8)ds

The integral is an analytic function of s. The only singularities
are poles which occur at s = 0 and at the roots of the frequency equa-
tion

~a(\) =0
where
(~m.5 +37A A +1) 0 (2 - a)(3 - a)l.}'a
&x) = ¥, (M) (M) ¥5(») (51)
v,'(0) ¥,'(2) ¥5'(2)

It will be shown subsequently that all the poles of y(x, s) in the s
plane lie on or to the left of the imaginary axis. let xl, ).2 xn

be the r;u of thiu equation in order of increasing modulus and
let s

2 2 EI(4
= = 32
% + mh) ., —5—(-1—‘ L) (32)
The residue at the origin is

lin sy(x, s)
s-»0

If the damping constant 7 is sufficiently small, the remaining poles
are simple and the residues may be found by differentiation. ILet

vi(e)  yle)  ysle)

p(s) = | v, (0) v, (0 v

') v'h) vy'(a)
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and let
q(s) = ea(r)
Then the residue at the pole 8 = s, in the upper half plens is
1'15 8 :nt
or
e  yle)  ys(e)
) ¥y
3 yl.()') }'2'(*-) y}'(x). V.t
Fo4 n
m . @5?‘] [co- mnt + 1 sin mnﬂ e
since
oA
E-35
Let
r(s, ).n) = ':‘

whenun=\vn+1¢nnx thentheresiducttln-vn-%inthelwer
half plane is

8
- n
r(e, ).n)e

The sun of these residues is real. let

Re(rn), In(rn) be the reel eand imaginary perte of r(e, xn). on

-t

combining the above results, we find
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/] X)L (3. )@ -
) Tz - o) - IR B") (3 -a)g) + (2 °;j

) T Ya*
- TR nzl Re(r )cos qy t - In(r,)sin ﬂ)nt]e (33)

If the damping constant y is zero, y and Im(rn) are both zero, and
the geries solution has the sirmpler form

re’ . Xy 3-8 X
te, ) ¢ e T [ ¢-ag) + (-l

nie)  yle)  ys(e)
yl()-) ye(k) 73()»)
O FALS I AV AV ] | BB R W

CEND oo \ §§§Ll'

The characteristic root A, may be found approximately by truncating

cos a;nt (34)

).sl.n

the ascending series for A(A) with the term in A0 ret

nO) w0 s
= *l- G Ta- NG -2 a-37 "
') oy

U3

(M) ¥s(n)

3 2).6 A
Y- Y. () ya'()) ‘(Q.Q)X'af.'mi-a-lﬂb*a.3)...}
2 3

a0 = (- + 12 2%+ X)u(0) + (2 - )3 - AT us00) (39

If the tip of the beam is free, the frequency equation reduces
to

us(r,) = 0 (36)
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or

5, 2
)‘1"’&(6+a-1)(5+a-2)(§+a.3) . (37)

If on the other hand the tip is hinged, we have
ul()'i) = 0 ‘38)

or

5. 2
MEE T Ta- DB - a v (39)

Let

27 6 - 3
MEETEE T I va- DB -a+ ) NEra- D s a5 +as3)

- T+35-a
Then, approximately,
).5 + i “k’ a

"- Y+ lﬂ (40)

On referring to Eq. (32), we see that

BI(s) 2
L~ - .5“1 - ,M(l) 12 beyu > 7 (41)
J J um

pA(S)

M

2
if by >y (42)

Critical damping occirs when

2
h‘l’lplo\- Y4
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Tue first characteristic root 8, is then repeated giving rise to a
double pole in the transform y(x, s). Terms of the form t cos Wt

and t sin w t will then occur in Eq. (33). If kv u.< 72, Eq. (40) will
have two refl, unequal roots, and the system w:llllb% overdamped in the
first mode.*

Orthogonal function theory may be used to show that | <O when the
damping constant ¢ is > 0. let y(x, ln) be a normal funct@on satisfying

Eqs. (10-13) and the homogeneous boundary conditiou
(xms2 + ca + k)y(0, 8) + E.‘.Iyn(O, lﬂx = 0 (u3)

Then the complex conjugate of y(x, sn) vill satisfy Bqgs. (11-13), the
,differential equation

EEﬁn(x, ln)]n + i'epﬁ(x, 'n) =0, (L4)

and the boundary condition
(a° + ¥ + XIF(0, #,) + [EF (0, 8}, -0 (45)

Ve may show that

2
(.7 - 3,2 [ oarlx, 2)5(x, 8 )ex
[»]

a%(0, s.) (o, 'n)]

d e 4
=70, ) gf [;1— " |- 50, ) f o 2

t]:n the case of a uniform cantilever beam with a terminal dashpot, McBride
has shown that critical damping and over-damping cannot occur in modes
higher than the first. This fact is probably true of cantilever beams
of non-uniform cross-section with a terminal mass, spring, and dashpot.
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Noqan-wn+mn,i'n=vn-mn, so that

an-ln-21mn

2 =2
s, -8, -hiwnmn

On using the boundary conditions (13 and (45), we find after same reduction

ey(0, 'n)§(o: ﬂn). (46)

Yo = - 1

2 [0, 80500, 8,) + [orrtx, 8)5(x, o,)ax]
o

Now a complex number times its conjugate is real and positive; therefore

tn< 0 if ¢ >0

Vnuo if ¢ =0 (u47)

This result would be expected on physical grounds.,
By means of a similar analysis we find that

(1 1) f. = a) a%(x, 8)
(—z - =7 fEI -2 & (48)
s, s, J)g ax _ ax

+ (0, 8,)5(0, 8,) = {—1- - L]0, 50, 5)
n

6n comparing the coefficients of c in Eqs. (l&6).and. (48), we f£ind

. | 4.2 0, da- ,
W(O, ‘n)_y_(o’ .n) +fEI y( d .n) ’(02 'n)
2 2 0 - dx dx
Vo vt = (49)

s
my(0, 8,)¥(0, ) + f PAY(0, 8,)¥(0, s )ax
- 0
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hen
2 dY(op n
ky(o,sn)+fm —
(Dne = ° 7 (50)

27(0, 5;) + J ohy?(0, 8 )ax

Equation (50) is the usual energy equation for the circular frequency;
(49) is the corresponding equation for the modulus or the complex circular
frequency @, + 1\1' .

DYNAMIC EFFICIENCY OF BEAMS

The present astudy is the outgrowth of a design problem which ?.role
in the Ballistic Research laboratories at Aberdeen I'roving Ground,
spring device was required to respond accurately to large forces of
rapidly varying megnitude. In order to apply approximate engineering
enalysis to the test results, it wvas necessary for the spring device

to respond essentially with a single degree of freedam. Due to the high
forces and relatively low spring rates encountered, the spring element
wvas fairly heavy, and it was suspected that the distributed mass might
cause appreciable response in the higher modes.

The beam-type spring device built at the Ballistic Research Labora-
tories is represented schematjcally in the figure below:

Fiv)
Y
m /
Mg L,
2
p—- X —-ﬁ' L’
Y ”

E—_

Ve will consider only the response to a step function of force applied
to the moss, m, as the response to other terminal forces may be found
by using Duhamel's integral.
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Equations (1-9) of Part I apply provided we set k = 0, ¢ = 0 n
Eq. (5). We may £ind the nomal elsstic curves by setting Y (x, t) =

¥, (x)308 at;

2
er. 4y, 2
- =0

recd Galre d RENZA ()
| a% (o)
= EI—%;— - oy, (0) = 0 (52)

a% (o)

n

El —r 0 (53)
y,(8) =0 (54)
ay (s) :
_.:l‘.x_.. =0 (55)

It is convenient to use the influence functiom and its bilinear expan-
sion in terms of normal elastic curves to solve this problem. The
response coeffiocients are expressed in terms of energy integrals and
other parameters of the system. The effects of a change in system
parameters upon the response of the first mode may then be determined.

The influence function G{x, ¢) is the equilibrium displacement
of a point x caused by & unit load at ¢. It satisfies the differential
egquations

Ed [EI f—g -l 0Se€x<h
dx

. 4

Ed EI:x'g‘ = 0 OS:(CS[

The influence function and static deflestion curve yo(x) satisfy the
boundary conditions (52-%5).

" Under fairly general conditions, the influence function will possess
the absolutely and uniformly convergeat bilinear expansion
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oe Yalx)y,(e)

6(x, ¢) = X )
ol + fou%e]
o

n=1
It is evident that yo(x) = FG(x, 0). The final expression for the dynamic
deflection is

(56)

L 0 ) .
Y(x, t) =y (x) - nil ol )y"](x cos o t (57)
N AR A
o

The response coefficients for cantilever beams may be defined as follows:

[ -}
Y(0, t) = y,(0) [1 - X A, cos mnt] (58)
Y,,(0, t) = i-' £ 8 cosqt | (59)
" po |
Y (x, 1) = mi[l - ::1 C,(x) cos mnta | (60)

[]

A comparisom of aquations (57) and (59) shows that

2
5 - my,(0) : (62)

n s
w, (0) + [ oy, fex
o

This coefficient has an obvious intepretation in terms of kinetic
energy. In cases of interest B, differs far more from unity than
either A, or Cl' and forms & GO t basis of comparison in measuring
how far & beun-mass system departs from single degree-of-freedom action.
In order to find B, exactly, the complete solution of the Bermoulli-

Buler equation is required. Reasonable bounds, howvever, may be derived
from the influenze function, which is the solution of a much simpler
equation.
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The notion of reduced mass is Irequently used to acocount for the
effects of the distributed mess upon the fundamental frequency and
kinetic energy of & beem-mass system, It is defined as

j oy, “ex
[}

R

We see that

1 n+n
' r

B

We may shov that

2

3 Z
(0, 0) + [oA(mxlex w,2(0) + [ fex
o o

] y |
1 Y 2
G(o, 0) !W(X, x)ax » m, > ;;?-(-6; fwo (x)ax (63)

(o)

The above relations were derived for a cantilever beam. Never-
theless, they hold for more gemeral conditions of constraint, provided
the asswsptions which underlie this development are still valid, Xo
energy must pass between the beam-mass system and the supporting
structure and this structure must restrein the beam sgainst rigid body
mtion, In the tadble below, a comparison is made detween the exact and
spproximate values of B} for certain wpifora beams,
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n
VALUES OF B,AlD =~ FOR CERTAIN UNIFORM BEAMS

m,
3.2
) z
Central Mass Central Mass
Cantilever Ends Higged BEnds Built In
B, Exact .863 TS5k .800*
B, Upper Bound .864 «755 .802
B, Lower Bound 857 738 .766
By
q Upper Bound 1/k 8/15 16/35
mr '
I; Lower Bound 33/140 17/35 13/35

In the above equations, m corresponds to a terminal mass fixed
by the conditions of the test. The kinetic energy of the beam must be
reduced in order to improve the dynamic response of the bean-mass
system. This is done by increasing the stressing efficiency and at
the same time minimizing the reduced mass of the beam. However, the
strength end energy requirements of the beam-mass system must be main-
tained, and the beam should be readily fabricated. The last condition
sets a practical limit to the improvement in response which may be
obtained by redesigning the beanm.

Let

= maximum load

= meximum stress

stress at given point

Young's modulus

spring rate

density (mass per unit voluie)
V = volume of beam '

© X W a 0w
]

¥These flgures are derived from data given by H. P. Oay, Reference (8).
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The static effiziency, &, is defined as

1 fa
8 = ~=x o av
Vs

By equating the interncl strain energy to the work done on the bean,
we may show the minimum mass of the beam is

1,2
m, =3 @ &
All the factors but a are determined by the characteristics of the beam
materiel and the required characteristics of the special spring device.
Consider again & cantilever beam in which the section properties

vary as a power of the distance from the tip (15-21). The static
efficiency is

-3 375

The mass of the beam is
y ]

) ]

m, = [orex - 4]
0

The reduced mass ratio is

m

D = =

and the net efficiency ratio is

plo

mt1=§,5=a-a+h; then, on referring to Bq. (63) we £ind that

- 1
. 2 ’ 2
e dorra > 2> [P G- (2 - o)) s
0

When a is fixed, the extremes of this inequality are decreasing fun:tions
of 8. We should take 5 as large as vogsible gubject to the condition
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a+rpS 2. Let 5 =2 - @; tuen for cantilever beams of unifor: static
bending strength we have

1
. - 2 .
(E-a%@-a)>§>f'2.a[e-a' (3 - a)r +(2-a.)) ac
4 :

We sce thatgmaybemadeas anall as we please by taking o large and
negative. However, the only values of o which are practical for engineer-
ing purposes lie in the interval

1Sas¥ lé

In the table below, the mass ratio Eﬁ is taken to be g .

vnmormmwmmssnmomalm
CANTILEVER BEAMS OF UNIFORM STRENGTH

B, 3.2
v(a) 1w 2
o Lower Bound Upper Bound Upper Bound Lower Bound
1.0 0667 .0833 .985 .982
1.1 0706 .0884 .984 .981
1.2 OT49 .0940 984 .980
1.3 .0796 «1001 .983 .978
1.4 ,0848 .1068 .982 976
1.5 0905 J1h3 .980 975

The combined effects of increased stressing efficiency and more
favorable nmass distribution decreases the net efficiency ratio -2 fron -Jé
for a uniform cantilever beam (@ = B = 0) to 1/36 for a linearly tapered

cantilever bean (¢ = p = 1) baving the same strength and energy
choracteristics.
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THE RESPONSE OF UNIFOGRM AND LINEARLY TAPERED CANTILEVER BEAMS

Cantilever beams of uniforu cross section were used in the first

special spring device constructed at the Ballistic Research lavoratories.
A diegraun is shown below.

F(v
¥
m

SANMAL\RV

b x
2
% My

The response to a step function of force may be obtained by setting
a=0,Bp=0,2=0, k=0 1inRBq. (1-9). The series (23-25) are then

expressed in terms of hyperbolic and cirsular functions. The character-
. istic equation is

TAMN

AR B

A3} )

-;E).(cosh).ainx- cos )\ sinh )) + (1 + cos A cosh 1) = 0O
The circuler freguencies are given by

2
@ =My \lﬁ

vhere ) 18 the n® positive root of the frequency equation. The motion

at the free end is

3
(s, t) -%g— [1. - ;lAa cos a;nia
=
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wvhere

12 [ coth A - cot xn)]

A =

B L
M [ mb Ay * ('m; + 1)(coth M, - cot ).n)]

The acceleration of the mass m is given by

X F o
Ytt == § Bn cos (Dnt

vhere

coth ). - cot >.

=
.oFI§

2 E; + (1 + E;)(coth A, - cot xn)

The strain et the built-in end is given by the series

Yxx“’ t) = [l - Vn(l) cos o, t]

Calculations were carried out for the mass ratio = = %, as this was

considered the most unfavorable ratio that would odcur in practics.
The results are tabulated below:

RESPONSE COEFFICIENTS FOR A UNIFORM CANTILEVER BEAM

m_ 3

%, "2
n My ay/ey A, By Co
1 1.14644338 1.0000 «999461111 .863269 +1.022259
2 3.99951130 12.171 00051740 .066194 - 026047
3 7.1152135 38.497 00001859 .023801 + 0049776
L 10.241683 79.806 000002159 .011874 - .001694

9 13.376078 136.13 .000000442 .007074 + .000767
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We sec that only the ecceleration coefficient Bl differs markedly

from unity. The approxinete analysis of Part II indicates that a
linecrly tcpered cantilever bean should respond more faithfully to a
trensient forze applied at the end. Accordingly, tiue second spring
device wos constructed of linearly tepered beams of conatant stat:l\.
bending strength, o8 shown in the diegram below:

F(t)
_m
’
r
L,
~
my /
4

Y
==

AR RARR NN

The response to a step function of force may be found by setting ¢ = O,
k =0 in Eqs. (1-9) and @ = 1, B = 1 in the equations of Part I. The
deflcction may be expressed in texrns of the functions

8

*3—;8“*

D
€ 6 &
'T+T_-B'§T+"'

+

cx

1
yy=1l+gx

&

Yo =€+

Vs = Ee +5'6T ——%m—+

which are solutions of the differential equation
Veeee * Veee = B 0
These series were first given by A. Ono in his study of turbine blades.

The frequency egquation is

a(r) =0
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m .2

qh 0 -]

A(l) = yl(x) Y2(x) y5(>.).

70 v v

th

The circular frequency of the n° mode 1is

A2 o
%-";'2158‘}

vhere "n is the n"’h

defleation is

, XY(x, t) 'd{-n (s - !)2

¥;(¢) vo(e)  ys(e)

positive root of the frequenay equation. The

) M) 0y

'ﬁf;y 'Z" 7'00)  ¥'(y)  ¥st(ay)
3 k)
TR

cos %t

mu-pho—ntatthofrnmhunnw

Y(0, t) = ﬂ:n- (1 - A cos q t)
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where
00 vs(h)
8
¥2' () ys'(ny)
)

x'n )Y
The corresponding acceleration is given by

Ytt(o, t) = %ZBn cos ay t

vhere
o(h)  ¥s(0)
N 2xnm
5 Xn m ya'(xu) 15'(1-‘)
e o w,
" T
The strain at the free end is given by
0 ¥ =gy |2 - El a, o8 mnt]
=
vhere ' |
. ¥, () ¥o(n,)
'0g) v Xn)
%a = &)

Sy
On referring the charssteristic equntion, ve see that
: Bn -c,

for all values of n. A similar formula is true for all beams of uniform
static bending strength.
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The functions yl ’ ya, and yj, together with their first three

derivatives, were calculated Ly the Computing Laboratory of the
Bailistiz: Research laboratories. The characteristic roots and Fourier’
coefficients were then found by desk pul:zulation. The values of these

constants for a mass ratio E’E = é are given below.

RESPONSE COEBFFICIERTS FOR A LINEARLY TAPERED EEAM

n_3
w2
%

n Ay 261' A, By =9,
1 1.26397436 1 99969708 9563696
2 4,10791986 10.563 00029522 .0315259
3 7.13977 31.908 00000680 0066287
I 10.25647 65.8L4 .00000054 .0022484
5 13.3853 112,144 00000008 0010133
Sum 9999997 9977859

This table shows how a more favorable mass distribution reduces the
kinetic energy of the beam. The estimated value of B, estimated by

Rayliegh's method is .957L4, an error of only 1/10 of 1$.
The renpénso coefficients were also calculated for a mass ratio
of ﬁf = § . This constant strength charscteristics as a uniform

cantilever beam having a mass ratioofis-%-
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RESPONSE COEFFICIENTS FOR A LINEARLY TAPERED BEAM

1
%t
%4
A s Y A
1 9674117k 1 93996478
2 4.08611 17.840 +00003439
3 7.13179 54,347 00600076
4 10.25263 12.32 00000006
5 13.38315 138.34 00000001
Sum 1.00000000

98523

01078
.00222
00075
«00034

99934

We see that the acceleration response of the tapered cantilever
beam closely approximates the response of a massless spring for the

mass ratio used here. The figure B, = 863 obtained for the cantilever

59

beam of uniform aross section should be compared with the value Bl - ,985
shown in the table above. There is a corresponding improvement in

the Al coeffiaient.

Normal deflection curves for uniform beams subject to various end
It vas
convenient to graph the normal deflection curves for the tapered beam

in dimensionless form. The length of the beam equals the characteristic

constraints have been published by Den Hartog and others.

root; the deflection scale is arbitrary. The base of the beam is

built in; the tip was either hinged or free. These correspond to the

limiting values of the ratio == —p O and —= — o9 . The deflection

D 5

equation is:

y,(¢) ¥o(¢€) ¥5(¢)

y(e) =8, » *  Iny)  yy)  Ts0)

Yl'('xn) 72'(*:1) | y}'()-n)
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=8, n [sl,nyl(c) + 8y Yole) + 85,nv3(¢)]

The characteristisc roots, the scaling constant so,n’ and the constants

8 are tabulated below.
i,

DEFIECTION CONSTANTS POR A TAPERED CANTILEVER BEAM

85,!1 =0
2 M Som S1n fon
1 2.6752 1.0000 2.83354% 1.50406
2 5.5718 .2000 -20.84760 +12.57850
3 8.6883 .0200 +297 . k2400 -178.12100
b 11.8152 0010 -4931.18000 +295k 16000
5 14.949k .0001 +90799 . 60000 =54395 . 30000

From this table, it is found that ).12 = 7.1567, vhich may be compared

with the value 7.16 given by Ono. The remaining roots apparently
have not been given previously, even in the extensive tabulation of
characteristic roots published dy D. Wrinch.

Similar caloulations vere made for & tapered beam hinged at the

tip.
DEFLECTION CONSTANTS FOR A TAPERED BEAM
TIP HINGED - BASE BUILT IR
Bl,n =0

i_ xn soln s2,11' 83,11

1l 4.0750 1.000 +3.92382 -2.90119
2 7012’8 .100 -1&6.@510 4-55.1“0‘00
3 10.2507 010 +715.68200 -545.85500
b 13.3820 .005 -12452, 30000 +9498.11000

These deflection curves dare shown in Fig. 1 and 2.
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ANALYSIS OF AN INFINITE PLATE CONTAINING RADIAL CRACXS
ORIGINATING AT THE BOUNDARY OF AN INTERNAL CIRCULAR HCLE

by
O. L. Bowie
Watertown Arsenal

I. INTRODUCTION

Considerablé advance has been made in recent years in the

spplication of energy type theories in determining the influence
of cracks in the specimen geometry on the strength of the specimen.
f. order to apply theories such as that developed by A. A, Oriffith

(1)5:: it is necessary to calculate the elastic strain energy of
the system. Although only the boundary streszes and displacements
are actually necessary for this caloulation, one must nevertheless
formally solve the problem as a whole to obtain this information.

This paper is concerned with the solution of a particular class
of plane protlems in elasticity arising from a distribution of
radial cracks of finite length originating at the boundary surface
of a circular hole in an infinite plate under the two load systems
shown in Figure 1. The geometry of the internal voundary, T, can
be conveniently déscrived by eogsider:lng the plate as the complex
g - plane vhere z = x + iy = re*”, Then, if the center of the hole
ss chosen as 2z = 0, we specify that the radial cracks lie along
Q= o, 2“, e o o (K-l) where le is an mug‘ro For ‘_72’
we further restrict our attention to cracks of equal lemgth.

Two load systems will be considered in detail. The first of
these (1llustrated in Figure la) is the case of uniform tension
at infinity vith Tfree from applied load. In addition to ite
plane stress apyrlications, this case enables us to study the plane
strain problem corresponding to internal pressure acting in hollow
cylinders of very large wall thickness with longitudinal cracks
originating at the inside surface. Indeed, this latter problem
can be studied by superimposing the solution corresponding to unie
form hydrostatic pressure. The second load system will be taken
as tension (in one direction) at infinity as 1llustrated in Figure
1b, again with T considered as free from applied 16ad, This latter
case arises in the plane stress problem of radial cracks at the
boundary of a circular hole in a very large thin plate under tension.

The problems described above can be most conveniently handied
_ by the complex variable method of Mushelisvili [(2)] for solving
plans problems of elasticity.

¥ Numbers in brackete refer to the relerences at the end of the
papere
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II. STRESS ANALYSIS.

A. Pormulation of the Problem

The complex variable method of Mushelisvili depends upon the
representation of Airy's stress function, U (x, y), in te of
two analytic functions of the complex variable, 2, namely, @ (1)
and Y/ (z), where

U (x 9 = R[04 fEiU () 2] (1)

With this representation the stress components in rectangular oo-
ordinates can be written as

o7+ 0xa 2[B(s) 4 Ps)] a4 e[ Ps)] (2)
Cy-0x+28Txy a2 k@ (z) ¥ (2] (3)

where the prime notation demotes differentiation with respect to s
and the bars dencte the complex conjugates. The condition that a
boundary 7~ be load-free can be expressed as

P(z) + 28 (x)+ P(x)=0 , st (4)

It is convenient for the purpose of enforcing the boundary
condition (4) to imtroduce an auxiliary owlox plane, the[
- plans, such that the unit cirole, ¢~= ¢*¥ , and its exterior in
the{ -plams are mapped into T and its exterior, respectively,
by the analytic funotion

’lW(g) (5)

The stress functions £ (z) and ¢ (3) can be considered as funotions
of the parameter § ; in faot, to simplify the notation we shall
desigmte

D) b5 5 PG (6
W) sbwE) =¥v¢)

Thus, ¢'(z) H ¢'(‘ )/w’(f ), etc. and the boundary condition (4) can
be written as

PCT) + w (o) ¢’(a-)/w'(q-) +ple) =0 (7)

. The analysis of the problem requires the determination of the
functions @ (¢ ) and (;) which are amalytic for '&,71 , and
satisfy the loading oconditions at infinity and on the unit circle,
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‘ B, The Mapping Funotion '

The mapping function (5§) for this problem can be expressed
in differential form as

de/s « (1 -0-XWE /€ (1 4 263K 4 § -2k (8)

where € is a real constant such that 0« [€/<1 and ‘he denominator
is considered poeitive at ( = 1 in order to define the proper branch.
By varying € , the crack depth can be adjusted to assigned values.
The integer X determines the number of radial oracks. It is evident
from the structure of Equation (8) that the exterior of the unit
cirole in the [ -plane is mapped conformally into the exterior of
the corresponding boundary in the g - plane. Finslly, from symmetry
it is clear that the unit circle is mepped into a clircular boundary
interrupted by K symmetrically distributed radial oracks of equal
depth.

The mapping function defined in differential form by (8) oan,
in general, be found in closed form by quadrature. For K sz 1, it
can be shown that

sz wW(B)=Ce[I-r e+ UL I EERT) (9)

The form of the mapping function, however, inereases in complexity
with larger integers, K.

For the purpose of the subsequent stress anmalysis, it is
desirable to find a series representation of W(Qx converging on
and exterior to the unit circle. The form of such a series is
ovidently

raw(l) s 843 a5 ®] (10)
nsl

where o and the A 's are real coefficients. The coefficients A,
can be oomnient?y computed from the following recursive formulae,

determined by expanding both sides of (8) in series and equating
coefficients of equal powers of [’

"‘ Al' 8 1

-2k A, = B, + 48, (1)

KAy = Hg 408, 404
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where LA =,
4;44-‘6; =X
28486, —«,
(12)
"'ﬁ# lﬁﬁ-rﬁ =x, :
and

o(K s =2(1 - co8X) sinKx /sinX , cos K 3 - €

The unit circle in thet -plane is the circle of convergence
of the series (10) since aingulo.ritios ocour on the unit circle at
the roots of

£ s2rfi1.0 - (13)

It oan be shown'l) tnat lim A, = 0; thus, by & well-known
n o0 .
theorem (i3] the series (10) converges at all points on the circle
of convergence except at the singular points described above. This
property is useful in that it provides for a systematic scheme for -
obtaining polynomial approximations of the mapping function.

C. Method of 8olution

Were it not for the unknown character of the singularities of
(f) and ¥ (g) on the unit circle, the problem could be solved
y 8imply assuming a series development of the two functions with
the proper conditions at infinity, substituting into the condition
(7), and determining the numerical values of the coefficients from
the set of relations obtained by equating coefficients of equal
powers of 0. This approach would lead to immediate difficulties
as it will be shown'that W(r) must admit simple poles on the unit
oircle at those points corresponding to the notch roots. Further-
more, certain singularities appear to exist at the points on the
unit circle corresponding to the junction of the cracks and the
circle. The forms of these latter singularities appear too diffi-
cult to establish a priori. A completely rigorous solution of the
problem would require that a seriss expansion of 4 ( ) and ¢ (“b),
in which terms corresponding to simple poles at the craok roots
added to the series for / ([ ), be examined for convergence on the
" unit oircle. Although there is every reason to believe that this
procedure is possibly theoretically, severe practical difficulties

1. The proof is partiocularly simple for K.z 1. From (9), it csn be .
seen that the A,'s behave essentially as the Legendre polynomhll.
The proof is more diffioult for X > 2,
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immediately are encountered. Although the infinite system of
linear simultaneous equations which determine the coefficients
of the series is amenable to numerical solution, it is diffioult
to determine rigorously the properties of the coefficients
necessary to examine convergenoce.

The method of solution which will be used in this analysis
ciroumvents direot consideration of the second type of singularity
mentioned above by considering polynomial approximations of the
mapping function. An accurate desoription of the streess distribu-
tion at the crack roots is obtained by introducing cusps to desoribe
the crack roots and their neighborhoods. Convergence of the poly-
nomial approximation to the exact problem can then be oconsidered
a matter of choosing a sufficiently acourate polynomial approximm-
tion of the mapping function such that a closer approximation will
not affect appreciably the values for the information desired.

In the following amlysis, we shall denote polynomial approxi-
mations of the mapping function by

2= W(§)=CB' €57 | (14)

The existence of cusps at looations corresponding to the crack
roots is ensured by demanding

az/df = w/(8)=(1-; ™) g (&) (19)

where (C) is a polynomial with coefficients such that the roots
(§) a2 O fall inside the unit circle. Due to the convergence
or 10), suiteble approximations can be obtained by setti
’An modifications of the A 's being made to utilrynflﬁ)

D. The Case of "All-Around" Tension at Infinity

Por uniform tension at infinity, illultrated in ngn la,
the applied loading ocan be expressed u (o =Ton {2l =R,
where R is very large. It can be shown? tfn.t !‘br this load
condition, the stress functions @ ({ ) and ¢ ({ ) behave uh* R/2
nndCT"f'l, respectively, for large |[)] . .

Z. A detailed disocussion of the stress functions for infinite
regions oan be foud inT@wJ. -
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The singularities in the stress functions due to the existence
of cusps can be determined by the following argument. If there
were no boundary irregulerities in (14), it can be shown® that
the stress function ¢ (¥) is a polynomial of the form

p)=cT [t/2 b %, T (26)

e/

By regarding the solution for polynomial mappings with ocusps as a
limiting case of this solution, it is evident that ¢ ([ ) will still
retain the form of (16; even though cusps are permitted. To deter-
mine the form of Y ({ ), it is convenient first to express the
boundary condition (7) as

w!() Y () = — w'(e) ) — o) Pl(a), (17)

e functionw/(t ) (') is analytic exterior to the unit ocircle
and is given as & oontinuous function on the unit cirele by (17).
If the coefficients,ol,, are chosen so that the coefficients of
a1l positive powers o r in the laurent expansion of

w(§) @Cif)+w () () (18)

vanish, we can determine (/ () explicitly in terms of the mapping
function and O (). Multiplying both sides of (17) by 1/27¢
(=-F) and integr&ting around the unit circle, we cbtain by a
well-known theorem .

WX Y(F)= = w(T)PU[E)-w(fg) PLE),  (9)

Thus, the stress function Y ({) has simple poles, -each located at
& ocusp root,

All that is required to complete the analysis is the determima-~
tion of the coefficients in the series expansion (16) for ¢ (7).
Bquat ing coefficients of all positive powers of in the series
expansion of (18) yields the following system of linear simultaneous
equations for the determination of the (,.4:

. N-p -
‘.P"r% OCP+T) s-n C‘ ‘hﬂ)*g €P§n ocn (".nK) "‘ép/ A= O (20)
P“o;)"‘)N

§. E.g., the case for K= 2, N a 2 has been discussed by Morkovin
C(6- in some detail.
4. Reference [(4], p. 145.
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It is evident that the state of stress is not affected by

the addition of & linear expression of the form C "ts4+ P1 +ol
to @ (z) or a complex constant, &4 15, to ¥ (s). The constants
¢!/, B and /' may be considered as sero in this problem. For K> 2,
the oonstant ol has been chosen as zero; thus, a value of o’ is = .
necessary to identically satisfy (7). For X z 1, the constant ec’

is established as zero by the equation P = 1 in (20); thus, ot a0y
is determined to satisfy (7).

E. TNe Case of Tension in One Direction at Infinity

Fcr the loading @, = 7, illustrated in Figure 1b, the analysis
1s quite parallel to thit of Section D. It can be shown L] that
for this loading condition, the stress functions #(} ) and /(L)
approach CT¥/4 and CT{/2, respectively, for large|r’| . The stress
function @ (T ) is again a polynomial and has the form

#E) = T [g/n +%— % 4l (21)

The constant <., does not oontribute to the stresses; instead, it is
determined in the sense of the last paragraph of 3eotion D.

To determine W ([ ), we note tmt W'({)W([) has a simple
pole at infinity; in fact, W/ (T )W (E )= Cc*T¥/2. With the ex-
ception of the point at infinity, () ¥/ (L) is amlytic exterior
to the unit oirocle and is given as a continuous function on the unit
oircle by

w (@) W)= ~w o) FoI - W $(T)
If the coefficients o, are chosen so that the funotion

—w! - ! (=c7C/a .
we :n gga)igcll tgmm%glg\L?t{gx):W( ) ﬂto::: :;rg;.l ru'ppi.ng
function mdf(;'); in fact, again we find

W p(8)= ~ w' @) PCYE)- (/g P18) (10°)

Due to the relative lack of stress symmetry for this ocase,
it is difficult to present the linear systems of simultaneous
equations for the determination of the O 's in a campact manner
for an arbitrary integer K. Therefore, only the systems for the
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single crack (K s 1) and the two crack (K = 2) cases will be
explicitly formulated.

For Kx 1,

NP s = ol
CCprer mp 5770'77)*112P S UM Spfy = { 3OS

2l P$a
P2 N (22)
For x - z.
L V- ‘ —* P=1
%p'g, “an+P) e,,o-gn)+§ € pvp “on(1 9M+€ o/ = { © (28 P>
p-y =0 Pebauh

III. APPLICATION OF THE GRIFFITH CRITERION

The critical stress for which the radial oracks begin to
spread will now be determined from general considerations of the
total energy of the system as developed by A. A, Griffith (3] in
his theory of rupture of brittle® materials, such as glass and
oast iron. ‘

This theory is based on the e xistence of coracks on the surface
or in the interior of the solid; thus, rupture is assumed to be
oconditioned primarily by the extension of an existing orack., The
spreading of a orack is accompanied by an increase in energy pro-
portional to the increase im surface; on the other hand, under the
action of a given extermal stress, the potential energy of a oracked
solid is lower than if there were no crack. If an extension of the
orack leads to a decrease in total energy, the system becomes un-
stable, the crack spreads, and the material fractures.

The oritical stress is that value of the applied load for which

the total energy contribution of the oracks is a maximum. Its value
can be obtained from the condition

av
ua. -2k h G aL (24)

T. Wodifications of this theory to acoount for looal plastic deforma-
tion ocourring in duct ile metals have been made by several authors,
®.g., Orowan, Reference [(6)]
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where : .

V s Vo = Vo s Reduction of the potential energy due to
the introduction of radial ocracks

Vo s Potential energy of the system with radial
oracks

Vo s Potential ensrgy of the system without oreeks
K 2 Number of radial oracks

h = Thiockness of the specimen (axially)

G = Surface tension per unit area

£ g Length of the radial crack (s)

A, Calculation of the Reduction in Potential Energy, V

l. Uniform tension, T, at infinity.

For the case of uniform tension, T, at infinity, the
potent ial emergy for the oracked solid, Vo, is given by

Vo a lim - %_— fo w;i(a;u\"t.re»VO) de (25)

where g3, T !. U, and Ug are the stress and displacement com-

ponemts in polar coordimtu.

In order to compare the difference in potertial energy with
snd without radial cracks, it is reasonable to refer to the exact
geometry rather than polynomial approximations. This will now be

carried out by referring the stress functions to the original s
coordinate system. The application of the results obtained by

polynomial approximation of the boundary will then be oarried out.

The integrand in (25) can be expressed in terms of the stress

functions @(z) and (/(s) by observing that

i~ Tpe =P+ - L EH Dy (2)] (26)

and -
aM( Y, - Yg=2 “Ifo-2070)- 7)) (a7

where, in terms of Young's Modulus, E, and Poisson's ratio, o

Als B/2(1 407) (28)

75
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and .
M= (3 ~¢)/(1 $77) for plane stress
(29)

Nsd =40 for plane strain

Thus, but for the constant factor 2.4{, the real part of the pro-
duct of (26) and (27) ylelds the bracketed portion of the integramd
for the potential energy.

For the case of uniform temsion at infinity, the stress funstions
have the forms

P(@) =T [a0+2/2+a 2" "+ o0 ] (30)

(@) =T[B 8,25 &' *+ -+ ] - (31)

After some algebra, it follows that, for plane stress,
kofim - b fomo)peaeg) 6D

In order to ocaloulate the potential energy for the uncraghksd
plate, Vo, the stress analysis for a concentric ring with immer
radius and outer radius R loaded on the outer boundary by the
same applied load must be carried out. It is necessary to retain
secondary effects in arder to arrive at the correct value of the
energy difference. The actual distribution of applied load including
seoondary terms can be determined by substituking (3%0) and (8I) into
(38) and evaluating 0= - C T,y it T = R2° . The solution
of the corresponding boundary value problem for a conocentric ring
oan be found in & straightforward mannerS and for plane stress,

- Sl aca s I
The reduction in potential energy, V = Vo =Vo, is in the limit
V=AITh (6, +R%) (34)
for the case of plane stress.

- We now proceed to interpret this result in terms of the previous
analysis based on conformal mapping. The stress function W/ (T')
given by (17) can be expanded in a series

UE)=CT X+ uT '+ 7" ] (35)

T Reference &, pp. 291-298.
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from which it follows that
6, =2, (36)

The hitherto unspecified parameter C ocourring in the mapping
function will now be chosen so that the radius of the circular hole
is adjusted to & fixed unit distance. If ¢ s ¢7 is defined as that
point on the unit circle in the g = plane which“corresponds to the
Junotion of the orack and the circle in the ¢ -plane, then € will
be chosen so that

R|= wo) =1 (37)
Thas |

v 2T Ch {%/ [wery ™ l] (38)

The orack length, Z, measured in units of the radius of the
oiroular hole, can be expressed as

/Z=WCI)/W(9»_)-" (39)

from whioch it follows:

V= éﬂ:f—a-b- fFce) (40)

f(l):-%[(,eﬂ)/wﬂ)/ga +/ (41)

for the case of plane stress.

where

For plane strain, the second form of a in (29) must be used.
The results are identical but for a factor of 1 -g2 with those
" of plane stress. In fact, for plane strain

V= iT:I_E_%QL::'_’J_ F(e) , (42)

where £(L) is again given by (41).

2. Tension in one direction at infinity.

The caloulation of V for the case of simple temsion at
infinity, a“y s T, oan be carried out in a manner similar to that
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of the preceding section., For the case of plane stress, we find

v -2—*,",12—h e(£) (43)
where g(2) = (7, + 2%, -A) E(,Z& 1)/w(1)/c_‘j‘°'/4 +3/4 (44)
In (44),

CT ¥ = coeffioient of { "1 in the expansion of W (¥),
e.g., Bquation (36)

Xy z coefficient defined by Equation (21) (45)

coefficient of ‘{'1 in the mapping function (14).
Thus, A .gz for X z 1; A.El for K = 2;

A 20 for X> 3,

P

B. The Critiocal Stress by the Griffith Criterion

The critical applied tension, T , can now be calculated for
the different cases by substituting °(40), (42) and (43) into the
condition expressed by (24).

For planes stress,

1'0‘ - { % For uniform tension, T (48)

r*™ s [ -x6 For simple tension, 4= = T (47)
° T \NpTe y
For plane strain,

s Por uniform tension, T (48)

? J___e&.__
° NTTIrR
Thus, if T > 1'0, the oraok will becomes unstable and lead to failure.

The plane strain oriterion (48) is intended for the study of
radial oracks in cylinders under intermal pressure. 8Such a load
system is obtained by superimposing a hydrostatioc pressure of mag-
nitude P = T on the load system corresponding to the uniform tension
case. 8ince it oan be shown that the superposition of a hydrostatio
stress state will not affect the above oritioal stress, the critical
internal pressure, P, is given by (48) .
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' IV. NUMERICAL RESULTS

The analysis indicated in the previous sections was numerically
evaluated for the case of two cracks as shomn in Figure 1. In par-
tiocular, the stress functions were evaluated for nine values of the
parameter£ . From these results, the functions f£(.2) and g(-£) in
the @riffith criterion were found in tabular form. These data in tum
were numerioally differentiated with respect to the orack length, £,
and the oritioal stresses according to (46) ard (47) were obtained.

A. Uniform Tension at Infinity

In order to apply the Griffith criterion to this ocase, it is
necessary to numeriocally evaluate the coefficient Xo in (41). Prom
the definition of )Y o2 it can easily be shown by expanding (17) that

on-[:nz i—_&nog(l-a:_)—j S (49)

n=1
It was found thet xo oan be obtained to three significant figure
acouracy if thirty terms of the polynomial approximation of the
mpping funotion are retained. The system (20) for the determinm-
tion of the O( 's was solved for each ohoice of £ by iteration.

The pertinent results of this oalculation are listed in Table I,

TABLE I
Calculation of f () for Uniform Tension st Infinity
£ L __woe Yo £(4)
-1.000 0,000 1,000 - 1,000 0,000
- 0.866  0.303  1.259 wwx - 0.159
- 0.707 0.497 1.383 - 1.160 v - 0.359

1,267V . - 0,694

0.600 0.782 1,500

0.000 1.414 1,707 1,509 v 2,018

+ 0,500 2,732 1,866 1,762 6,008

$0.707 4,027  1.924

1.862 -11,640

+ 0.866 6.596 1.966 1,938 ' -27.860

] 1.000 o 2,000 2.0w - o
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For large values of L » the solution approaches the form corres-
ponding to the case of a single crack in an infinite plate. In fact,

t L)z~ (f+1)2% 2+ (50)

An examination of the tabulated values of £(_¢) indicates that for
A >1 there is very good agreement with Equation (50).

B. Tensjiop in One Direction at Infinity

In order to apply the Griffith criterion to this case, it is
necessary to calculate the function g(£ ) given in (44). It can be
shown by expanding (19') that, for this case, with K = 2

N
Y, " 51/2 - [_1/2 +2 %1 Cn ’%n Q- 2nﬂ (51)

The system (23) was solved by iteration for the determination of the
—( n'a for the same walues of £_u previously chosen. The pertinent

information obtained for this case is listed in Table 1I.

TABLE II
£ g, or Simple Te a t
€ e; =, Y, ")
=1,.000 0,00 0,50 -0,50 0,00
-0,866 0.07 -0,61 0,62 ~0,.28
-0,707 0.15 <0.69 =0.74 ~0,57
-0,500 0.25 =0.75 -0.87 ~1,00
=0,000 0.50 =0,83 -1.13 -2,53
+0,500 0.75 -0,82 -1.33 ~6.69
- +0,707 0.85 -0,80 =1.41 =12,40
+0,866 0.93 -0,78 -1.46 +28,80

+1,000 1,00 =0,75 =1,50 = oo
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" @. The Critical Stresses

The oritical sEreases for the cases of uniform and simple
tension, T ¥ and T, *, respectively, can now be found by

differentiating mumeriocally the tabular functions £/.Z) and
g(_L) and observing Equations (46) and (47). These results
ere shown in Figure 2.

For sufficiently large values of /Z, the or ti% ﬁ&enec
for both loading conditions are proportional to (1 ¢ £)-+€/

as would be expected from the solution of a single crack of
length 2(1 +.£). In Pigure 2, it oan be seen that for £ > .7
such an approximation becomes inoreasingly good. For L.,
the behavior of the solution becomes complicated by the presence
of the cirocular hole,

Finally, the oritical internal pressure, P_, for the plane
strain problem of a circular ocylinder with the Sotrrelponding
plane geometry loaded by internal pressure is proportiomal to
the ourve for T *, as indicated by (48) and the paragraph
following (48).° '

8l
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ANALYSIS OF THE N~WAVE OF A SLENLER SUPERSCNIC PRCJECTIVE
by
D, H. Steininger and F. D. Bennett
Ballistic Recearch Laboratories
1, INTRODUCTION
1.1 Interferometric Method of Analysis
Interferometric investigation of the fluid flow around a supersonic
projectile in free flight gives a quantitative record of the density over

the entire flow f:leld.]'/ Experience shows that the reduction of fringe

i

R. Ladenburg, Hi eed Aerodynamics and Jet Propulsion, (Princeton
University Press, 1 ol. 9, Section A, 3.

shift to density values for an axisymmetric flow is a cumbersome and time
ooncumsing process because, in general, the relationship between fringe
shift and density at a particular point is not simple. It is useful,
therefore, to find fiow regions for which some intrinsic property can be
determined directly from the measurements of fringe shift.

An interferogram of a supersonic cone-cylinder shows two regions which

have conspicious symmetry of fringe shape, suggesting the possibility of a
2

simplified analysis. The first of these is the well studiedw region

Y

(o !;.)01080, F. D. Bennett, and V. E, Bergdolt, Jo Appl. Phyﬂo &1_, 1226
1950

. H, Gdess and V. E. Bergdolt, J. Appl. Phys. 24, 1389 (1953)

+ E, Bergdolt, J. Aeronaut. Sci. 20, 751 (1953)

SBSERS

(. g.)ml" G. E, Solomon, and W. W, Wi.'l.llarth, Jo Aeronaut. Sci. -2_0_, 627
1953
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near the cone in which the fringes are nearly straight and parallel. The
flow here is characterized theoretically by the fact that the physical
variebles are constant along straight lines through the vertex. Assumption
of this flow regularity leads to a method of plotting fringe shift which
verifies in many instances the close approximation of real flows to idealized

conical flow.

The second of these regions lies between the front and rear shock waves
at rather large distances from the projectile axis. Here the fringes have a
gentle curvature and a similarity of shape which changes only slowly as the
distance from the axis increases. This similarity suggests an underlying

simplicity of the fundamental flow field. Experiments of Du Mond et alélshow

~§I J. W. Du Mond, E. R. Cohen, W. K. H. Panofsky, and E. Deeds, J. Acoust.
Soc. Am. 18, 97 (1946) .

that at large radial distances and parallel to the axis, the pressure profile
conslists of a sudden rise at the front shock followed by a linear decrease to
a value below free stream and then a sudden rise at the rear shock. The curve

80 generated has the shape of a capital N, hence is given the name "N-wave".

1.2 Bcope of the Paper

Using the results obtained by G. B. Whitham in his improved linearized

theory for slender, superscnic proJectileaZ{ wve derive here an analytical

U g. B. wnitham, Comn. Pure and Appl. Math. 5, 301 (1952)
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expression for the fringe shift in the N-wave region. .Ho investigate the

more obvious properties of this function and close with an account of pre-
liminary experiments designed to test its validity.

89
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2. THEORY .

2.1 The Fringg Shift Intege.l

If x, r are the polar cylindrical coordinates of the axisymmetric dis-
turbanceg and the front tip of the projectile is at the origin with the line
of flight along the positive x-axis, then the fringe shift 8(x,r) is related
to the density p at (x,r) byu

8(x,r) =

R | R

& v. D. Bennett, W. C. Carter, and V. E. Bergdolt, J. Appl. Phys. 23, 453 (1952)

K ié the Gladstone-Dale constant, A the wave length of the light in vacuum, Po
the free stream density, and Ty is the outer radius of the disturbance at x.
% is the variable of integration in the r direction. As m‘rigure 1 the fringe
shift at (x, r) is determined by an integration of the density values found

along the line from r to Ty



Distance, r
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An inversion of Equation (2-1) allows the reduction of fringe shift
measurements to density throughout the flow ﬁ.eldal. Such a reduction does
not interest us here; for our purpose is to obtain in the N-wave a functional
description of (p - po) and from it derive an expression for the fringe shift

in that region.

2,2 Improved Linearized Theory

The linearized theory of von Karman and Moorey for a slender, supersonic

y'l'h. von Karman and N. B. Moore, A.8.M.E. Trans. 54, 303 (1932)

projectile gives solutions which are good first approximations to the actual
conditions at the surface of the projectile but which fail as the diatance r
increases. This failure arises from the fact that the Mach lines are parabo-
lae in second approximation, while the linear approximations to them are
straight; and although a curved Mach line intersects & stralght one at the
surface of the body, the curves diverge with increasing r. The improved
theory offered by G. B. Whithanuukes the linear solutions uniformly valid
over the entire field by associating them with the appropriate second order
Nach lines. This improved theory still is based upon a first approximation
to the potential flow equations and, like linear theory, neglects terms of
order pa, v2 » vhere u and v are the small perturbation velocities in the x
and r directions. Nevertheless it has the additional advantage over linear

theory that the existence and position of the shock waves are predicted.
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With this background, we now list and discuss those results of Whitham
vhich we intend to use. Equations which appear in Whitham®s paper will be

1dentified by the notation Wh ( ).

1. The shock waves. At great distances from its axis the supersonic
proaecti.'!.e produces two shock waves, both extending to infinity. The

equations for the shock waves at large r are from Wh (L43)

C1/h
x-ar-n»yoT-A.r (2-2)
vhere the upper sign represents the front shock and the lower sign the rear
shock (a = (M - 1)l ; and A and y_ are constants related to the body shape).
The straight line x = ar + y_ and the two shock vaves inter@$f the x-axis
at &o. By inspection of Equation (2-2) one sees that the front shock wave

lies ahead, and the rear shock behind the straight line by the amount Arl/Y.

Thus the horizontal distance between the two shocks is 2Arl/ h. If the proJj-
ectile is slender, both A and Yy, can be calculated theoretically from body

shape (Cf. Wh (21) and Wh (43)).

2. The pressure distribdyion. When r is large the pressure distribution

between the shock waves is by Wh (71)

(p - B,)/p, =¥ (2n) 2+ far - x + ) (2-3)

vhere k = (Y'+ 1)!4“2'1/ 2(!'5/ 2, R 1s the disturbed, and p  the free stream
pressure. Notice that along a trace of constant r the pressure difference,

P - Py decreases linearly with x from a positive value at the front shock
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to an equal negative value at the rear shock wave. Midway between the shocks
on the straight characteristic x = ar + Yor P = Pye The pressure slope,

{M2 (kr)'l(az)'l/ 2, depends only on the flow constants and the distance from

the axis, and not upon the shape of the body producing the disturbance.

2.3 Density Distribution in the N-wave

We now relate p - p_ of Equation (2-3) to p - p, of Equation (2-1).
Despite the seeming simplicity of this program, some care must be exercised

to assure an approximation consistent with that of linear theory.

It can be shomtht the entropy may be considered constant across a

LW'M. A. Reaslet and H. Lomax, High Speed Aer cs and Jet Propulsion, .
(Princeton University Press, 195k) Vol. 9, Bection D, 32, pml

shock wave 1f third and higher order powers of the perturbation velocities are
neglected. We neglect second and higher powvers and may, therefore, assume that
the flow behind the shock is isentropic. The adiabatic gas law applies, thus

e/e, = (p/po)l/ v (2-4)

Expanding (2-4) in Taylor series around p = p_,

2
1/ 1 P-P Ll-f)p-p P-D
(/Y =10 f (52 + L (=) w0l |
In Wh (66) Whitham finds that
P-p .

2= 0 (u);

Po
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80 to the linear approximation

P- P,

Po

p/py = (p/po)l/{- 143 ( )

P-P

Py

R

Po

0 1(

- ? o). (2'5)

If we substitute Bquation (2-3) into Equation (2-5), we find that
p- by = ot ()2 r ) (ar - x4y (2-6)

This is the density distribution in the N-wave region. Along a trace of con-

stant r, its profile has the same characteristic shape as the pressure curve.

2.4 Fringe Bhift in the N-wave

Combining Equations (2-6) and (2-1), we obtain

b o

J_a'xpouz (u (“t - "*yo) t at

b(x,r) = —x—;—am T . (2"7)

(t2 - %)

Here x is constant along the path of integration from r to Ty Regrouping
terms and using Pierce?s Equations (133) and (126b) we find
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2xpu2d1/2rlr2 X -y p o T .
o = G () 2R ) o
rN is related to x by means of the front shock equation
X =ary +y, - Arll/u. (2-9)

Bquations (2-8) and (2-9) predict the fringe shift in the N-wave.

2.5- - Behavior of the Fringe Shift Expression

We examine the variation of b(x,r) along a trace r = constant as x
increases from Xy to Xg. Xy and Xg lie on the front and rear shocks,
respectively. x, lies on the line x - ar = Yo halfway between Xy and Xg
(8ee Figure 2) -



x,fy)

Ao n..w&.\.. m..o.nc ||||||||||

\

Figure 2, The region between the two shock waves.
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1/2

2
g+ (" -1)
vhere ¢ = T/ For ’ba.rticula.r flow the magnitude and sign of § is

1/2
Let £(t) = (¢° - 1) / » 8(8) = 4n and R = (x-y,))lar,

determined from Equation (2-8) by the term in the curly brackets vis.
{¢-5a).

Examine R. By comparison with the equation of the straight character-

istic
(1 x<x°
R -] ir x=x
21 xX)yx,

Thus R increases monotonically With x from a value less than 1 at the front
shock to a value greater than 1 at the rear shock. From the equation of the

front shock wave
1 - (Ma)r~/M R4 + (a3

The variation of £(§) and Rg(f) vith § is shown in Figure 3 for RS 1.
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The curves have vertical tangents at S- 1 and intersect at no other point.

When R 1, they are related as in Figure 4. In addition to their
intersection and common vertical tangent at § =1, they intersect at one,
point, nyg = 5 o S e increases as R increases,

We. can now examine the combination of functions {t - Rg},. As x
increases, so does §, R, and 50 (when R1).

When x, {x éxo, R<€1, so £7Rg. Therefore, & is positive in the
forward portion of the N-wave,
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Figure 4, Variation of the functions

£ snd Rg when R>1.
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When xo( x¢ Xg» R) 1l and

?
) = Rgirt i ) = tc.
< {

When x is Just greater {:han.xo, g>gc, 80 § 18 positive. But it is possible
that as x increases, ;c increases faster than §. If it does, then the con-
ditions gi;c can occur and §will pass through zero to' negative values near
‘the rear shock wave. The proof that 5’; (gc) )535 (¢) 18 too complicated to be
attempted here. We resort to calculation to establish the behavior of § in

the rear portion of the N-wave.

. A calculation of §ve. x frow Equation (2-8), using representative values
of A, Y, and the flov constants, yields a curve that is similar in shape to
the dashed line in Figure 6. Computations made at several values of r show
that the curve deéreues in amplitude as r increases, The zero of the §
curve occurs about 3/4 of the way between Xy and x,, no matter vhat the value
of r. This fact and the occurrence of the negative fringe shift will be

clarified by a deeper analysis now 4be.tng prepared for publication.
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3. PRELIMINARY EXPERIMENTAL RESULTS

3.1 The Slender Cone-Cylinder

We select for this investigation a cylinder of .225-inch diameter with
a conical tip of 20° included angle. This projectile is both stable in flight
and slender enough to meet the requirements of slender body theory. A com-
parison of the results of Whitham®s theory and theq exact adiabatic theory of
flow past a cone showe reasonably good agreement for included cone angles up
to 20°. 1

3.2 Instrumentation

To obtain quantitative data the projectile is fired from a caliber .22
rifle a'pproximately along the axis of an inclosed free flight range. The
flow is observed through optical glass windows at the interferometer station
of the range by a Mach-Zehnder interferometer with an 8" x 10" working field.
For the experiments reported here an interferogram (Figure 55 is taken of the

flow around the cone-cylinder at a Mach number of 2.25.

In order to record the disturbance as far from the axis as possible the
gun 1s aimed to place the projectile near the edge of the picture. Fringes

are ad'Justed to lie parallel to the trajectory.

Projectile velocity is measured between a pair 'of stations served by
0.1 - Mc chronograph counters triggered by impulses from photocells which

respond to fluctuations in light screens through which the missile passes.

#The caption for this figure should read as follows: Interferogram of 20°
included angle, cal. 225 oone-cylinder at N = 2,25, p, = 1 atmos,
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3.3 Measurement of the Interferogram

To interpret the interferogram we measure fringe shift Salong the path
traced by a fringe between the shock waves.  If r is the radial distance to
the disturbed fringe at a certain point (x,r) and r, the distance to the
same fringe in the undisturbed region in front of the shock, then B= (r- ro)/A,
vhere A is the average distance between undisturbed fringes. The measurements
have an estimated accuracy of + .06 of a fringe. Although fringe shift along
a constant r trace 1s discussed in g 2.5, it 1s more convenient to measure
fringe shift along a fringe curve. Because the fringe curve deviates from
r = constant by only a small percentage of r, the behavior of & along the

fringe 1s qualitatively much the same as that along the line r = constant.

3.4 Results

A comparison is given for r Ko iO diameters (Figure 6) between 8 measured
along the fringe curve and 8 as it is predicted by Equation (2-8). The

measured 8 is about .2 of a fringe greater than the predicted 8 at the positive
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shift, 8

Fringe

+1 4+

(o)
ro = 10 diometers
-1 4 ——--Theoreticel N-wave, K Eq(2-8)
—easured
19 % 20 21 22 23 24 25 x4 26 27
Distance along trace, x diameters
Figure 6. Comparison of measured fringe shift and predicted N-wave fringe shift.
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peak and .3 of a fringe lower than predicted at the rear aboek; it becomes
sero one half wmit shead of the predicted curve. These discrepancies give
the impression that the actual pressure profile in this region is shaped as

. in Figure 7, the curve lying above the N-wave profile near the front shock
and oslow at the rear shock. A pressure profile teken along & trace only

a fev dismeters from the body and passing through the oconical region would
show the pressure rising for a short distance behind the fromt shook and
then falling repidly below free stream in the expansion region coming off the
shoulder of the projectile. As this profile degenerates with increasing r
to the final linear shape of the N-wave, it passes through the intermediate
shape of Migure 10, Evidently wo must make observations still farther away

from the projectils axis to measure fringe shift in the fully developed
N-wave.
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— Actual pressure

- === N-—wave pressure

Figure 7, Pressure profile betwsen the shock waves.
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3.5 Future Experiments

Experiments are under way to launch & very small diameter proJjectile (on
the order of 1/16 inch) in order that the disturbance can be measured inter-
ferometrically in regions at least 50 diameters from the axis. Sub-caliber
(less than .225 inch in this case) 'pro,jectilea are made to fit the rifle bore
by encasement in a plastic holder, called a sabot, which separates from the
projectile after leaving the muzzle of the rifle. Ditficulties arise because
during separation the sabot imparts a certain amount of angular momentum and
initial yaw to the proJjectile, and causes a body of borderline stability
(such as the 20° cone-cylinder) to yaw violently or tumble in flight. This
problem makes it desirable to use a more stable projectile than the cone-
cylihder. A sphere 4g a practical choice. It is stable, easily saboted,

and can be readily obtained in almost any size.

From a theoretical standpoint it seems possible to use the disturbance
from a sphere to verify the predicted N-wave fringe shift. Whitham, in an

earlier paper]-%{ shows that the pressure profile between the shocks far

mG. B. Whitham, Proc. Roy. Soc. A201, 89 (1950)

enough away from any supersonic body is linear and that the equation of the
front shock is similar in form to Equation (2-2). We infer, as Lighthill
has done]-'g'! that Equations (2-2) and (2-3) from Whitham®s slender body theory

ETM. J. Lighthill, ngx_. S%ed Aerg%mn%ics and Jet Propulsion, (Princeton
University Press, 195 ol. 9, Section E, 6,
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apply to the disturbance sufficiently far from the axis of any supersonic
projectile. We will attempt to substantiate this inference in proposed
experiments with spheres. A future paper will give a complete account of the

the results of these investigations.



ENGRAVING PRESSURES FOR ROTATING BANDS

An Bstimate of Oontect Pressure for Continued
Normal Engraving of Rectangular Bands

by
~ B. We Boss, Jre
Watertown Arsensl

he principal new result of this report concerns the normal onmvi.ng
rectangular cross-section by a flat, rigid die.

:
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In this report we shall consider the behaviur of a rotating band
under the engraving action of the rifling in the forcing-cone region of
a gun tube. In order to gain insight into the fundamental forces at
work during this engravin.. action, we idealize the provlem in the follow-

ing ways:
(a) The band is imasined as unwrapped and laid out flat.

(v) The band is taken as a solid rectangular block, of infinite
length in what would be the circumferential direction of the shell.

(¢) Since the forcing cone angle is small, we assume that the rigid
lands of the rifling move vertically downward onto the band,

(d) The lands and grooves of the rifling occur periodically in the
circumferential direction; consequently, it is only necessary to consider
one band and a half groove width on either side of it as the fundamental
sone.

Thus we consider the geometry shown in Figure (1). A solid band of
ductile material is set into a surrounding rigid encasement, and a rigid,
rect ar die is pushed down into it by some outside agency. We want

o find out how much pressure must be exerted in order to push the die
any desired distance into the band. The coordinate system (fixed in
space) is shown in Figure (1a). (Mgure near end of this manuscript.)

Ve shall assume that the band material behaves as an ideally plastiec
80114 (no work-hardening), and that the loading takes place slowly enough
00 that inertia effects may be neglected, Jurther, the material is as-
sumed to obey Tresca's yield criterion and flow rule, and, finally, we
suppose that there are no friction forces between the land and band
material,

In a previous report, ﬂﬂ: we used the limit design theorems of
ideal plasticity to find an upper bound on the pressure required to ini-
tiate normal engraving of a band of any width and any clearance above
The surrounding shell body. In general, this upper bound depended on
the band width and clearance as shown in Figure (2), Since pubdblication
of @t]. a slight improvement has been made in the upper bound for wider
bands, and this is incorporated into Figure (2). In the present report
we are concerned with estimating the pressure required to keep the en-
graving process going at any stage of indentation, i.e, not only the
initial engravings pressure, but also the pressure at any later time is
soEEEt.

*Bee iibliographx
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In the next section we state the 1imit design throrems of ideal plas-:
ticity, and the third section gives the principal new result of this repors,
namely the derivation of an estimate of the normal vressure needed to con-
tinue indentation of narrow bands in the early stages. That is, it gives
a complete prediction of the engraving pressure during the early history
of the engraving vrocess. Section IV gives a short discussion of the results
and the method used to obtain them.

THE LIMIT DESIGN THEOREMS

We state these theorems in the somewhat restricted form that they take
_when ‘applied to inset bands of an idealliy plastic material obeying Tresca's
"y1eld condition and flow rule and loaded normally by a flat die which exerts
no friction force on the band materal. More general statements and proofs
of these theorems may be found in [1] and [g] and some additional remarks
are availabdle in Eﬂ .

Pirst we must make some definitions. Collapse is defined as the state
in which, for the first time during the loading, the die can appreciadbly
indent the band under constant normal pressure, provided the geometrical
changes in the band are ignored. A kinematically admissible state is defined
as a state of velocity which satisfiee 1) all boundary conditions on veloci-
ties, 2) the incompressibility condition and 3) the condition that the rate
of work of the external applied load equals or exceeds the internal rate of
snergy dissipation. If, (as in the present report) the assumed velocity
state consists of zones of rigld body motion separated by surfaces of tan-
gential velocity discontinuity, the internal dissipation rate ilIQDK Av d’bo
where K is the yield stress in pure shear, AV is the magnitude of the vec-
‘tor velocity change across a surface of discontinuity and the integral is
taken over all discontinuity surfaces. A gggggfg;;x_gggigg1p;g_g§g§. is
defined as a state of stress, which satisfies 1)the equilibrium conditions, 2)
the yield condition and 3) the boundary conditions on stresses.

The two limit design theorems are as follows:

(1) OCollapse will not occur until the largest values of the surface
loads have been reached for which it i1s possible to find a statically
admissidle stress state.

(1I) OCollapse will occur under the smallest value of the surface
loads for which it is possible to find a kinematically admissidle velocity

.”t. '

Thus, the load corresponding to any statically admissidle stress state
is a lower bound on the true collapse load, and the load corresponding to any
kinematically admissible velocity state is an upper bound on the true collapee
load, .
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We point out in pascing that thesc tl.eorems only apply to problems
having certain general tyvet of boundary conditions, and that these
conditions are satisfied by the band both in its initial configuration
and in the assumed deformed configurations, As stated these theorems
"consider collapse to occur at constant load and neglect the change in
bdoundary shape as time goes on; that is, they give bdounds on the load at
the first instant of uncontained plastic deformation.

THE PRiISSURE HISTORY IN NORMAL ENGRAVING OF NARROW BANDS

In this section we restrict our attantion to bands that are narrow
enough so that during engraving the displaced material moves out the
ends of the band and does not flow up around the sides of the die, i.e.,
the material always and everywhere deforms without motion in the x-direc-
tion, see Pigure (1a). We may also add that if some outside agency prevents
the material from flowing up around the sides of the die, the displaced
.material will all flow out the ends of even a wide band. This is not a
far-fetched situation in practice, for most guns in current use have

(I11.1) diameter of groove bottoms > band diameter.

That 1s, there is no clearance at all bétween the groove bottoms and the
top of the band. In such cases almost all the flow during engraving will

" be longitudinal; the only transverse flow will occur in the later stages .
of engraving and will involve the metal which has at an earlier stage
flowed longitudinally into the cannelures, .

In estimating the pressure necessary to continue engraving at any
stage, we shall use the second limit design theorem at successive instants
of engraving, Jjust as we used it in [ﬁ] for the initial instant of en-
graving. Ve recall again that this theorem gives us an upper bound on
the load that produces collapse, collapse being defined as a state in
which for the first time during the loading program uncontained plastic
flow can take place under constant loads if the simultaneous geometrical
ghanges are ignored, see, for example, . Suppose we know the correcs
deformed geometry of the band at any inetant (say, t); then we choose a
kinematically admissible state of deformation, and this gives us an upper
bound on the collapse load for that instant. If the kinematically ad-
missible velocity state ies a good approximation to the true mode of defor-
mation, the upper bound will be a good estimate of the collapse load and
the accompanying change in shape of the band will be accurately given to
us for a bdrief ensuing interval of time by the chosen velocity state.

This leads ue to a new deformed geometry at time t + A ¢, and we may
imagine the whole process, choosing a kinematically admissible state, find-
ing the new estimated collapse load and mode of deformation to be repeated
at time t + A t. If this can be done starting from the initial moment of
collapse and kept up for a number of intervals of length At, the pressure
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history curve will be approximated by a discontinuous set of horizontal

- 14nes. If the analysis can be carried out letting At~0, we shall get in
the 1limit a continuous approximation to the pressure-history curve; if,

fortuitously, we should happen to guess the true velocity state at each

stage, ve would get the true pressure history curve.

Wo shall use the idea sketched above to get an approximate pressure
history curve. In deriving our estimates, we shall use at every stage
velosity states like those used for narrow bands in [4],

Call Ly and Hy, respectively, the band's initiel half-width and
clearance; similarly L and H are the half-width and clearance at any
later stage. During engraving the value of H decreases from Hy, and the

'L H ;
value of L increases from L;. We define G = 4 and C = 2 o If for any

a a
G, C 1s sufficiently small the state of deformation will at, any later

time bde chosen as shown in Figure (3). For larger values of'}b. however,
the state of deformation will be chosen as shown in Figure (L), for a

short time after the beginning, but, as the die descends further, the

over ing 1ip will eventually strike the surrounding shell body see
Figure (5), and the state of deformation becomes as shown in Figure (3)
again., It is then clear that two types of deformation may be distinguished
depending on whether the deformed metal comes into contact with the shell
bdody or not., When it does not, as illustrated in FPigure (4), we shall
call it an optimum flow, and when it does, as 1llustrated in Pigure (3),

we shall speak of constrained flow, We shall call ¢ =..,g. and the time-

1ike variadble vhich measures the progress of events will be chosen as
the penetration, =1 - ¢ .

We first deal with the case where the flow is initially constrained,
The mode of flov at any stage is shown in Figure (3). Internal dissipe-
tion, calculated for a half-land width and half-band width, takes place
on the bottom and side of the szone of flow,

Bottom: AV = V, csc a

Area of the Bottom = a L sec a

L Vo

Dissipation = m—;

8ide: AV = Vo csc a

1 2
Area of the side = ?Li tan a

Kv,L3
Dissipation = —Q-i-
2cosa

Bxternal work rate = pV,alL
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Therefore the pressure required rfor continued indentation satisfies

-

P 1 . 1 1 L L
(111.2) * S¢:oea. [eina. * ) -:' .f‘-]
Incompressibility requires that
(111.3) HL = HL,,
and the angle a 1is given by
(111.4) a = van~}(H),

Oombining these results gives (after some algebra)

-2 2,4
G1 Ce C é‘
III. £<-- + - + 1*
(111.5) k-cé? @ 2 G?

These results are plotted for G = 1, 2 and 3 in Pigures (6), (7)
and (8) in the form of curves of F against n = 1 - § with C as parameter,
It 48 almost obvious that if the fiow is constrained initially, it can
never become optimum under the assumed modes of deformation. but a simple
proof may be desirable and will be given shortly.

We now deal with the somewhat more complex case where the flow is
.optimum to begin with, In thie case we assume the state of deformation
looks as in FPigure (4), The dissipation is as follows:

8ide sone dissipation = kv, csoc a‘%f— tan a
Bottom zone diseipation = kV, cec a . al; sec a
External work rate = pV, al

The pressure required to continue indentation therefore satisfies

LI 1 G 1
k L/7/cos a Iz sin a
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The value of a is found by setting the partial derivative of the right-
hand side equal to zerc, giving

(111.7) %ein’ a+2sinta-1=0,
the same result as was obtained for the initial indentation prodlem in Dt‘J.

¥We call the solution of (III.7) % . The value of L during the optimum
stage of indentation is given at any time by

(III.‘) L = Li + (H‘ -H) Otn ao .

This type of deformation continues until the overhanging 1lip strikes
the rigid shell body, i.,e. until

(111,9) L, tanay= H

or

(111.10) € = -G—t:—n—a“ =€,

From this point on the flow ie constrained, The value of a Jumps to
the valus given by

(111.11) % = tan ! (§)
or, (using (III.8) and (II1.10))
(111.12) @, = tan -1 .(5, tan a ),

Prom this point on the pressure obeys equation (III.5), and L 1is givea
by (111.3).

The complete pressure history estimate is shown in Pigures (6), (7)
and (8) forG=1, 2 and 3 respectively, It will be noted that a die-
contipuity in pressure occurs for all flows that are optimum at the start,
the magnitude and time of the jump depending on the original geometry of
the band, Analytically, the time of the jump is givea by (III.9) where
"Gy 48 the solution of (III.7); the magnitude of the jump is given by

Ap c 3 G ’ 1 0’ v G
;—.(—}-otn a°+Etm %’;'6' tan a, 1#-6!t-¢m‘ ag
(111’13) G sina a 1
. . - _T-ﬂ. — ¢
_ C cos®a, |8 oin a,
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In order to facilitate the calculation of the total load on the land,
given by :

(111.1%) Q = 4pal,

we have included on Figures (6), (7) and (8) curves of .I_o. as a funoction of

! s
7, When the flow is optimum, we have (see 111.8))

L
(I11.15) == G + on otnia,

we see that 2 varies linearly with 7, When the flow is constrained, we
[
have (ses III.3)

(111016) % = .g 14

and the variation of (L/a) does not depend on 0, For given G and O
valuss, the curve for constrained flow of course intersects the optimum
flov line at the point of pressure discontinuity (provided a discontinuity
occurs) .

We now give a simple proof that if the flow is constrained initially,
it can never become optimum at a later time under the assumed modes of
deformation,

We rewrite (III.2) as follows:

1 1

(r1.a7) Re L . 95]

k cosajsina 2

The value of & which minimises this (we call it a, ) satisfies (compare
(111.6) and (III,7))

(111.18) :—5 sinda, + 8 8in? a, -1 = 0

.It 18 clear that @pdepends on ¢ , and that for {<iwe have
(111.19)  a, &) > a,(2)

Now if the flow is initially constrained,

(111,20) tan ay(a) >-%*
i



Conference of Arsenal Mathematiclians : ' 121

and (III.20) we get that for ¢ < 1
H H(E)

(111.21) ten a,(€) > tana (1) > 4> ——

L
£ L(g)
The first and last expressions in this continued inequality give us.the

statement that the flow cannot become optimum for-‘f <1, i.0. for > o,
This completes the proof,
DISCUSSION
We first make several comments on the results obtained.

(1) TYor optimum flow, although the estimated indentation pres-
sure decreases during penetration, the total lcad on the land stays con-
stant, as is apparent from (1I11.6).

(11) Geaerally speaking, increasing G causes the whole curve
of pressure history to be raised and increasing C causes the curve to
be lowered.

(111) Yor the cases where optimum flow ocours initially, the
qualitative behavior of the pressure jump is as followss increasing @
decreases the magnitude of the jump and makes it occur earlier in the
process, and decreasing C has the same effect,

(iv) We want to re-emphasise that all these results depend firsty
of all on the assumption of no flow in the X-direction, Naturally for
sufficiently wide bands and for small clearances this condition will be
violated, and we would not expect very good results in these cases,

We have carried out calculations for some of these cases, however, de-
cause it is of some interest to see how much error is introduced, and
because the results may be useful for the case (mentioned previously)
where external constraint prevents flow in the X-direction, :

It still remaine to clarify a point concerning the theory under -
lying this method of finding the pressure history. The point 1s that the
estimate of the pressure history given here is not necessarily an upper
bound on the actual pressure at any stage of indentation except the firss
instant, The reason is, of course, that at no instant after the first
can we be sure that we have the correct geometry. I.e. at each instant
ve find an upper bound on the pressure necessary to continue indentation
from the assumed geometry; there 1s no positive assurance, however, that
the assumed geometry 1s sufficiently close to the actual geometry so thal
the pressure found is an upper bound for deformation from the actual geom-
etry except at the initial instant.
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Pherefore it 'is desirable to view these results as followss if we
nake good estimates of the mode of deformation at each.instant, the es-
timated pressure will be close to the true pressure at any stage although
we no longer can say that it is an upper bound, Some unpublished exper-
imental work on normal engraving done at Watertown Arsenal by Mr, E. N.
Hegge indicates that the velocity state used in deriving the results of
this report is reasonably accurate, We present these results at this
time, therefore, as an approximation to the true pressure history for
narrow bande,

We may note in paseing that Onat and Haythornthwaite [%] have recent-
1y (and quite independently) used A method, intuitively identical with the
one used here, on the problem of finding load-carrying capacities of cir-
cular thin plates at large deflections.

Tinally we wish to call attention to some normal engraving experi-
ments being conducted at Watertown Arsenal Laboratory., The results of
these experiments should permit a much more sensible assessment of the
preeent results than is now rossible.
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FIGURE 1 : IDEALIZATION OF SOLID ROTATING BAND AND WNIFLING,

FIGURE o : COORDINATE SYSTEM. REFERMRED TO THE SHELL,
(Z) 18 IN THE LONGITUDINAL DIRECTION, (Y) 18 NN THE
MOML DIRECTION AND (X) IS IN THE CIRCUMFERENTIAL DWECTION.
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ANALOG COMPUTER SIMULATION OF AUTOMATIC WEAPONS

» by
E. H. Jakubowski
Springfield Armory

INTRODUCTION. An electronic analog computer is essentially a device used

to solve differential equations. The differential equations may be either
linear or non=linear,

The computer consists of a collection of circuits and circuit elements,
such as amplifiers, relays, passive electric elements, and control circuits,
which are capable of being arranged so that the clrcuit voltages follow a
particular differential equation. The computer then becomes an electrical
"model™ of the mechanical system being studiede.

The analog computer is used as a design toole The process of supplying
information to the computer consists of setting potentiometers and other cire
cuit elements, and arranging special function generators. These settings and
function generators correspond to coefficients and functions in the equations
which describe the system to be studieds The output information, or solutien
provided by the computer is usually in the form of paper-chart records. In
the study of an automatic weapon, displacement, velocity and acceleration of
various components of the system are recorded as functions of time,

The heart of an analog computer is a high gain d.c. amplifier, generally
‘referred to as an operational amplifier. When an operational amplifier is used
with appropriate combinations of input and feedback impedances, certain
mathematical 'relationshipa may be obtained.

FMigure 1% shows the manner in which an operational amplifier is used to
perform a general mathematical operation. When the drift voltage “eq™ and grid

current "ig" are taken into consideration, the application of Kirchoff's Laws

#Figures have teen placed at the end of the manuscript.
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will yield the general equation for the output voltage "e," as a function
of the input voltage, drift voltage, and grid current. But as

1< 5 x 107 anpe.

eq < 500 x 106 volts (with statilization)

and A 3» 150,000
the general equation may be simplified such that

eo':- 2¢/%Z; e;  vhere 2y = feedback impedance
Z:I. = input impedance

Figure 2 shows the application of this equation. The upper diagram shows
the manner in which sign changing and multiplication by a constant may be
achieved, while the lower diagram shows the use of an operational amplifier to
perform the operations of addition or subtraction.

The upper diagram of Figure 3 shows the manner in which an operational
amplifier is used as an integrator. It will be noted that in the integrator
there exists a constant "K", This "K" is equivalent to the initial charge on
the capacitor and is analogous to any initial condition which may appear in
the protlem under consideration.

The lower diagram shows the use of the operaticnal amplifier to perform
the operation of differention.

WEAPCN OPERATICN. Figure L4 is a sketch of a revolver type authomatic

weapon, in which the brincipal recoiling parts - the drum suprort, slide, and
receiver - are represented by their masses, M, Mp, and M3, respectively. The
drum, which is fixed to the drum support but is free to rotate, is represented
by I, its moment of inertia.

Springs used in this type of weapon are recoil adapters, driving springs,
and mounting leaf which are designated by their stiffnesses Kj, K, and K,

respectively. The displacement of any mass is denoted by "X" with the
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proper subscript.

When the weapon is in neutral position, the driving spring holds the
slide (Mp) against the drum support (M;), which consists of the barrel, drum
cradle, and drum (I). The drum is fixed in the drum support in such a mamer
as to prohibit longitudinal motion (relative to the drum support) but permit
rotation. The drum has rollers on its periphery, at least one of which is
lccated in a cam which is cut in the slide.

When a round is fired, a force is applied to the drum support, which tends
to move the drum support rearward and the projectile forward. As the slide is
held against the drum support, the slide displacement must be identical with
the drum support displacement; i.e., we can consider the drum support and
slide as a lumped mass which exerts a force on the receiver by means of two
parallel springs, Ky and Kj.

A short time after firing, the moving projectile passes over a gas port,
allowing the gas to expand into a gas cylinder, which causes a piston to strike
the slide and drive it rearward. When the piston strikes the slide the two
masses, M and M,, are separated and each mass is now displaced by an amount
which is dependent on the summation of the forces on.the individual masses.
This action is indicated by the force Fa,

As the slide is being moved rearward, it causes the drum to index. While
the drum is being rotated, the slide transfers mtationai kinetic energy to
the drum and stores potential energy in the driving springs (K2). When the drum
roller reaches the apex of the cam, it limits the rearward displacement of the
glide relative to the drum support, causing the slide velocity to be equal
to zero; i.e., the slide kinetic energy becomes zero.

With the drum roller at the apex of the cam, the drum now acts as a fly

wheel; therefore, the rotational kinetic energy of the drum and potential emergy
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of the driving spring cause the slide to be moved forward in such a manner that
the drum is indexed into battery position. Some instant later, the slide arrives
into battery position, firing a subsequent round, thereby initiating another
cycle of operation.

During a cycle of operation the slide exerts a force on the receiver by
means of the driving spring and any friction that may exist. It also exerts a
force on the drum support by means of the came The drum support 'e:aerts a
force on the receiver through the recoil adapter. The summation of these forces
causes the receiver to be displaced if the stiffness of the mount (K3) is not
infinite.

Although the various springs are represented by their stiffness Ki’ it is
not implied that these K's are constant. Function generators are used to
simulaté these devices, so that complete variations in spring characteristics
are permitted; .i.e., complete load-displacement characteristics of the spring
can be duplicated and easily varied.

EQUATIONS OF MOTION. The kinematic system under consideration may be

described by the following equations of motion:
Case I (M + M) Xy + (Ky + Kp) (Zy = Xg) = Fy(t) - By
(M +2p) Xp + (Ky + Kp) (Xp = Xg) = Fy(t) = Fy
M33'3 *EXy - X)) ¢ KXy - X)) + Kylye 7
Case II M]a}fl + Kl(xl - x3) = Fl(t) - F2(t) *F om
MXp + Kp(Xp = X3) = Fp(t) = Foan x - Fy
Xy + Ky (X3 = X)) ¢ Kp(X3 = X,) # KjXym Fy

F = JQ 40
cam X mg - Xl)

where "1 = mass of Drum support

X

My = mass of Slide

M3 = mass of Receiver
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I = Moment of Inertia of Drum

=
[ ]

Stiffness of Recoil Adapter

=
L}

Stiffness of Driving Spring

=
[}

Stiffness of Mount

Displacement of Drum Support

Ly
]

Diesplacement of Slide

<
n
]

Displacement cf Receiver

©
w
[} [ |

Angular Displacement

Fl(t) Firing Pulse

Fy(t)
Ff = Coulomb friction between slide and receiver
Case I defines the motion before force Fz(t) is applied, while Case II defines

Piston pulse

motion during and after the time Fz(t) is applied. These two cases are
necessary if the displacements of the slide and drum support are to be identical
before the slide is separated from the drum support by the gas piston. As a
continuous record of the displacement of each individual component is desired
from the a.ﬁa.log computer, the computer must transform the equations of Case 1
into those of Case II by switching circuit parameters. This switching is
impractical from the standpoint of available equipment, therefore, to utilize
the equipment efficiently one assumption will be made; i.e., between the slide
and drum support there exists a single acting spring having a very high rate,
This spring will only act in compression and ‘\rnl exert a very high force on
the slide and drum support when the slide displacement relative to the drum
support tends to be less than zero. Upon introduction of this single acting
spring betyeen the drum support and slide, the new equations of motion are as
follows:
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M%) + Ko(Xy = Xp) + Ky(Xy = Xg) = Fy(t) = Fp(t) + Fogp x

MyTot Ko(Xy = Xy) + Kp(By = Xg) = Fp(8) - By - Py

M3.x‘3+ xa(x?‘ - x2) + K._L(](3 - ’1) + K3I3 = Ft

F = 10 &0
b TR

It will be noted in these equations that the firing force Fy(t) does not
affect the second equation directly, but is introduced into the slide equations
by the term Kc(x2 - 11) which requires that the slide and drum support dis-
placements will be almost identical when Xp tends to be less than X,.

This relationship involving the cam force has been derived assuming that
frictional losses are non-existent. This relationship also shows that manner
in which the cam force in the longitudinal direction is dependent upon the cam
shape., '

PATCH DIAGRAM.' A patch diagram is the wiring of the snalog computer which

is necessary to solve a particular set of equations. Patch diagrams utilize
a set of symbols to define mathematical operations as shown in Figure 5,
Numbers inside of the block indicate the magnitude of the feedback resistor
(in megohm) or cépacitor (in microfarads) while numbers outside of the block
indicate the reciprocal of the input resistance in megohms. When a number is
replaced by the letter "G", it will be taken to mean that the input is tied
directly to the grid of the operational amplifier.

The tentative patch diagran of a revolver type automatic weapon is showm
in Figure 6. Operation of the simulated automatic weapon is initiated by the
momentary closure c¢f the push button switch "SW". The simulated weapon
operates automatically due to the pulse actuating circuit which is introduced
into the circuit when the slide velocity is negative and the slide displacement
relative to the drum support has some predetermined value which is simulated
by the voltage "e",
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The method used to synthesize the cam force is the same as that used in
automatic control systems, where a component is forced to move in accordance
with a preconceived demand.

Accelerations, velocities and displacements of the drum support, drum,
slide and receiver may te measured at the output terminals of the operational
amplifiers indicated in Figure 6,

AID TO A GUN DESIGN. The application of the analog computer to gun design

is in the kinematic analyses of the dynamics of the principle recoiling masses
of the weapon. This includes vibration problems, trunnion reaction problems,
effect of changing parameters on the rate of fire, and similar problems which
involve the time-displacement relationship between the moving masses. Once the
coupled systems of masses have been set up on the computer, the design engineer
is able to adjust the masses, spring constants, losses, and input functions in
such a way as to study the relations among these parameters and functions, and
their effects on weapon operation. The designer should be able to optimize a
set of parameters and make the best compromises to obtain several desirable
operating conditions.

The computer is regarded as a designer's aid, not as a replacement for
designers. It is not expected to eliminate‘the construction of prototypes of
new weapons., However, it should reduce the number of modifications necessary
on each prctotype model. The computer should be expected to save money be
reducing design, fabrication, and testing time, because it is easier for an
engineer to vary a parameter by adjusting a knob on the computer than by having
a new component fabricated and tested.
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SOLIDIFICATION OF MOLTEN MATERIALS IN FINITE REGIONS
by

Amine Nordio
Picatinny Arsenal

1. The Semi-infinite Molten Mass.’

The exact analytical solution of the problem of solidification of a
semi-infinite mass of molten material has been obtained by N.N.H. Lightfoot.
The solution applies to a liquid mass originally at uniform temperature,
bounded by the plane x = 0, and extending to infinity in the direction of
x positive, the plane x = 0 being kept at 0°C. Since convective currens
are assumed to be negligible, Lightfoot’s solution can be applied only to
highly viscous molten materials. The author also attempted to solve the
problem of solidification of a molten mass in a slab of finite thickness but
was uasuccessful except for the case where the initial temperature of the
molten material is equal to its melting point.

In order to solve the problem of solidification one must consider the
effect on the temperature of the medium resulting from the flow of heat of
fusion that evolves during the change from liquid to solid. 1n the semi-
infinite mass, the medium solidifies from the boundary x = 0 and, in
Lightfoot’s analysis, the plane at which the transformation takes place is
regarded as a source of heat moving from the boundary toward an increasing
value of x. The position of the moving plane at a given time is determined
from the condition that its temperature is equal to the melting point of the
material. The mathematical solution for this case is obtained as follows.
The temperature at a point x, at time t, given initial temperature ¢, with
the boundary surface x = 0 maintained at 0°C, and neglecting heat of
fusion, is given by

- - 1
V¢ ¢ erf . (n

whete « is the thermal diffusivity of the material.

'N.M.H. Lightfoot, 'The Solidification of Molten Stcel,” Proc. London Math Soc.
(2), 31, (1930) 97
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The temperature at the same point x due to the heac of fusion is ob-
tained by integrating from t = 0 to ¢ the temperatures due to instantaneous
sources of heat:

t
ole [{(% x-fe) \ _ x_«o_-_f!t_)l] ,
* "Lnﬁ—TEL”( W)~ WS v o

In (2), L is the latent heat of fusion and c is the specific heat of the
material. The position of the source of heat a¢ time ¢’ is represeated by
the fuaction £(t’) which is determined from the condition

Vg+V =V (3)
with V the melting point of the material.
Lightfoot assumed a function
x = f(t) = 2k Vxt 4)
with k uakaown. By substituting in (2) aad (3) and through successive

changes of variable, he established that to satisfy the coaditions of the
problem, the uaknown quantity k is to be evaluated from

Vagerfk+ LV geklerfk erfc k (5)
C

which is the mathematical form of condition (3) at the plase of separatioa
of solid aad liquid.

While solidification proceeds, the temperature at a point x, <2k y/xt
(in the solid region) is given by

- K. Lﬂkk’ X k 6
v, ¢effmt=+c eel’fz—ol—nel"c (6)

and at x,> 2k \/xt (through the molten material) by

mperf T 4 LVE peklerfk erfc % ™
Vet € 2Vt
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Equations (5), (6), and (7) consist of two distinct terms and show that
during solidification the temperature at any point is obtained by super-
posing the temperature due to the initial supply of heat (¢) and the
temperature due to the heat of fusion (L) evolved during solidification.

A brief analysis of Lightfoot’s results indicates other properties of the
flow of heat during solidification which can be applied to the solution of
the problem for other cases.

Equation (5) shows that at the surface of separation of solid and
liquid, temperature V, the melting point of the material, results by
addition of two terms independent of x and ¢: the two temperatures Vo
and V| at the moving surface will be constant regardless of the distance
of this surface from the boundary.

In equation (6) the ratio of the two terms V¢/ V_ is a constant for
all points in the solid region and coincides with the ratio V /v, at the
plane of solidification. Therefore the ratio of flow of initial heat and of
heat of fusion,

dVy favy
dx dx

is also a constant at all points in the solid. The value of this ratio
depends only on the values of ¢, V, L,and c of the material.

In equation (7), which applies to the molten region, the second term
at the right does not indicate flow of heat of fusion through the molten
material, but evaluates the amount of initial heat retained by the molten
material as a result of added flow of heat of fusion through the solid
region to the boundary. This second term will be referred to as (Vp ) .
Since the first term at the right is identically equal to ¢ only at infinity
(x = o, erfx = 1), one would obtain (VL)¢ = 0 only when x = «. ‘A more
definite value V; at a point x,, with x,/2/xt >3, is obtained if the point
is regarded as tte center of a slab of thickness 2x,. Ia this case the
temperature is givea by

-

4 1 . (20+1Dw  ~(2n+1)*m*ke/4x,?
V¢ = _1?20 2n+1 s _T+.! ¢ ) ®
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With x,/2\/kt >3, the result of (8) will always be equal to ¢. But the
temperature at x, in the semi-infinite region cansot be lower than the
temperature computed for x, as if it were the center of a slab of finite
thickness and we may correctly conclude that when x/2y/xt >3

[vqa e Ev,_)g "0 ©)

An example of the various distribucions in a semi-infinite mass dwring
solidification is shown ia Figwre 1.

2. The Slab 24

In the case of solidification of a molten mass initially at uniform
temperature and bounded by the two plane surfaces x = 0 and x = 2a kept
at 0°C, the condition V = Vg +V, must be satisfied at the two planes of
separation of liquid and solid moving from boundaries x = 0 and x = 2a
toward the center of the slab; the positions of the two planes (symmetrical
about the center x = a) at time ¢t must be obtained accordingly. A mathemat-
ical treatment of the problem similar to that followed for the case of a
semi-infinite mass proves to be quite involved and has not been followed.
As suggested by Lightfoot it is assumed instead that in the beginniag,
solidification proceeds from each boundary indepeadently and that the
position of the surface of separation of solid and liquid ia the region
O<x<a is given by x = 2k/xt with k obtained from (5) as for the semi-
infinite case; the position of the plane surface moving in the region
a<x<2a will be given by x = 2a-2k /xt-

According to this assumption, and using the dimensioaless variable
fm BL’ t

the three distinct temperatures which are superposed at a point x/a = 2ky7
are obtained from the following:

-7 5 gy s R a4 (10)

(V) = LV keterti erfc %‘L;_'_; (11)
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- L-C\G—kek’erfk erfc k (12)

Because of symmetry, (11) can be regarded as being due to original heat
retained at x as a result of heat of fusion flowing to boundary x = 2a, and
(12) accounts for heat of fusion flowing to boundary x = 0. It is found chat
the sum of (10), (11), and (12) is equal to V, the melting point of the
material, up to a maximum value s, which depends on the temperatwre at
Z = a, the center of the slab. During solidification, this total temperature
is given by

v __'& Eo Zn-:l sin (204 D ~(20+ 1)*w*r/4

(13)

Lyw, _k* 1
+2" ke erfkerfcz‘/?
The maximum value r, for which (13) equals @, the initial temperature, is
the limit of the independent stage of solidification. When r = r,, the
surface of separation of solid and liquid will be found at

!./l - 2kff-. (14)

The boundary conditions to be satisfied during this first stage are obtained
from (11) and x = 0. As indicated previously in (9), when

L3, (15)

NG

(V)¢ can be assumed to be identically equal to zero.

From r = 0 to r = r, the total temperature distributions through the
solid sections bounded at x = 0 and at x = 2a will coincide with the
temperature distribution obtained in the solid section of the semi-infinite
mass. The ratio of flows and ratio of temperatures, which are constant at
the sources and through the solid sections, will be expressed as follows:

divg +(V)g) _ Vg +(V)y (16)
dvp VL
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The various temperature distributions for a numerical example at
r = 1,, are shown in Figure 2.

For solidification in the range x, <x<a it is assumed that the
position of the plane of separation of solid and liquid is given by

x/a =~b +2k_\F=r, (17)

where b, k,, and r, are all unknown and must be determined from the
condition that the temperature at the moving plane or planes is always
equal to V. Also when r>r,, heat will flow from the center x = a toward
both boundaries x = 0 and x = 2a, and the new function must reflect a
rate of solidification higher than the rate given by x/a = 2k /7.

The condition of continuity of the two functions of r, x/a = 2ky/r
and (17), at r,, and of their first derivatives, gives two relations betweea

the three unknown quantities

—_— (1__';_‘-;_’) (18)
x/a = =b + 2k, V1, =1, (19)

For solidification at x = a we have also
le—b+ Zk'\/ra =y (20)

The new parameter 7o appearing in (20) refers to time of solidification at
the center of the slab x = a and caa be evaluated directly if the value of
V_ a the time the two sources merge at x = a can be pre-established.

During the first stage V; at the source is constant but beyond x = x,
we may observe any one of the following trends:

(a) Temperature V; at the sowrce increases
(b) Temperature Vv at the source decreases
(c) Temperature v, &t the source remains constaat and equal to

LYZ ek’ erk erick

as for the semi-infinite mass.
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For case (c), of constant V, , g can be evaluated from

< 1 o (20 + 1w _~(2041)'wr,/4
V-.‘.ﬂé nz.o TYS B 2+ mem N
(21)

+2 Lé/-i kek'erf k erfc k

It is quite evident that r, will be greater for tread (a) than in (21) and

will be smaller for trend (b). Solving (18), (19), and (20) with the three
different values of 7 it will be found that rate of solidification (a) will
be lower than rate (c), while rate (b) will be greater than (c). But both

(a) and (b) are inconsistent with (c) since a higher source temperature can
be obtained only with a higher rate of evolution of heat of fusion or rate
of solidification, and a lower source temperature with a lower rate. The
oaly possible solution left is (c), with temperature V; at the source
coastant through the entire process of solidification. This result indicates
that, in one-dimensional flow, the value of the ratios

dVg +(V)g) od Vg + (WL)g
av, v,

at any point in the solid and at the sources will be maintained till solidi-
fication is complete.

Is conclusion it can now be stated that, in a freezing mass, initially
at uniform temperature ¢ and with bounding surfaces x = 0 and x = 2a
maintained at 0°C, the position of the plane of separation of solid and
liquid ia the region 0<x<a is given by the two functions

x/a = 2k\/r O<r<r,

(22)
x/a = =b + 2kgyr—r, r,<r<ra

where the various constants and the ranges of r are evaluated from the
data of the problem according to the method specified above. The position
of the moving plane in (22) is expressed in terms of the dimensionless
variable 7=k t where « is the average thermal diffusivicy of the material
in the temperature range V to ¢ (in the molten range). The aumerical value
of x is to be obtained from experiment.
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Complete solution of the problem for the special case ¢ = V (that is,
when the initial temperature is at che melting point of the material) is
given by Lightfoot. In this case the position of the moving plane through
the entire range 0<x<a is given by

x/a = 2kt (23)

where k is obtained from (5) as for semi-infinite mass. Lightfoot's solw
tion implies a constant value of V; at the moving planes, as can be
verified with the following

vodv 3 Lo sin.(}l%'_ﬂ’!. e=(20+ 1)y /4

" 2n+1
~0 (24)
+2 L\ci keK’erfk erfc k
and
l |
Ta "('ZT ) (25)

Numerical examples of solidification in finite slabs are shown in
Figure 3.

3. The Cylinder and the Sphere

The results obtained in the previous section furnish the basis for
solving the problem of solidification in an infinite cylinder 0<r<a
and ia a sphere 0 <r<a where the initial temperature of the molten
material is the same as for the slab 2a and the boundary surfaces are
kept at 0°C. According to the property observed above, during solidifica-
tion in one-dimensional flow, the ratio of flow of original heat to heat of
fusion and the ratio of temperatures remain constant through the solid
from the boundary to the source. Because solidification in a cylinder aad
in a sphere will proceed by radial flow, we find that at the surfaces of
separation of solid and liquid, and regardiess of their distance from their
tespective boundaries,

d[Vj + (vl__)¢h,c,l .[_VL'P (VL)i]['cJ! (26)
divp ] l,c,s (W lle,s
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and
Vg + (Vg + Vi le,s =V (27

The subscripts 1, c, and s stand for slab, cylinder, and sphere respectively.
The (VL)¢ ia cylinder and sphere is for original heat retained because of
heat of fusion evolving at radially opposite point sowrces. From (26) and
(27), we bave

VL1 = (Ve = (VL ) 28)

or a constant source temperature at the convergent surfaces of the cylinder
and of the sphere. Thus, the time r. when the cylindrical source finally
coaverges to the axis of the cylinder can be obtained directly from

- oy —L— —8, ' _L_oﬁ t’
v 2¢n2-l (o) e~ffc +2 2 ke® erfk + erfck (29)
and the time rg when the spherical sousce coaverges to the center of the
sphere is obtained from

Va2 3 (p)tetDwrg o Lc\i kek'erfk erfc k (30)
a=0

The first cerms ac the right of (29) and (30) are temperatures due to
original heat.

According to another property of heat conduction we observe that when
solidification in the slab, in the cylinder, and in the sphere has proceeded
an equal distance from the respective boundary, the distributions through
the molten region of total temperature and of Vg sad (Vp)g individually
will be equal. Mathematical proof is obtained with the known soluwtions

(Vun =% = | sin(20+Dex ~(20+ 1'w'n/4
-3 o Za+l 22 B1)
(Ve =2¢ 5 Jolraw)  e—sa'rc. (32)
=0 J 1 (‘.)
(Vg)g = 200 = (=" L84 Dar ~(a+])n'rg (33)
- n§0 n+l a
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These solutions give temperature distributions throughout the three
geometries being considered, neglecting heat of fusion. With any gives
gradient (Vg), in a range

5 _x_<2.-x!.
a - a- a

we can always find particular values of r, and r, such that the chree
discributions coincide at all points within ranges

l—fz_x_‘_

a a
as shown in Figure 4. The three distribuions will aever cross each
other regardless of the values r), r. and r,.

The distributions of total temperature through corresponding moltea
raages coincide because they depend on the temperature at the limiting
surfaces. This temperacture is V, the melting point of the material for all
three cases.

The distributions of (V, ), coincide because they reflect delay in .
cooling due to the heat of fusion evolved during solidification. At the
limicing surfaces or sources (V; )¢ is equal to V| while the ratio of flews -
at points outside the ranges is the same for the three cases.

Finally, since the distributions (V; ), are continuous across the
sowrces opposite their origin, we find that at the limiting surfaces

x/aed -0
a

(Vg) = (Vg)e = (Vg), (34)

For solidification at a given poiat, x,/a in the slab 2a, we evaluate
r from che two formulas of (22), and obtain from (31) the Vg correspoading
to this distance from the boundary. In (32) and (33) we substitute Vg
as obtained from (31), and r, as obtained from (a —r,)/a = x./n, and solve

for r.

Numerical examples of solidification in slab, cylinder, and sphere
are shown in Figwre 3.



Conference of Arsenal Mathematicians 167

The principle of constant ratio of flows throughout che solid regions
can be applied to aay slab, cylinder, or sphere cooling by radiation into
a medium at constant temperature. Comparison of the distributions V
and V, with the distribution obtained originally for the slab shows that
the property of coincident distribution through the molten ranges applies
also for these cases. The thermal properties of a container may be given
in terms of a heat transfer coefficient and the solution for the freezing
material obtained by the method outline above.

4. The Finite Cylinder and the Paralielepiped

Solidificatioa at a point P(r,z) in the finite cylinder 1, a, with center
at the origin, will occur when the temperature Vg is equal to that obtained
for the slab with the smaller of the two quantities

lfl (33)

a-—=r
a

This method results from a comparison of the finite cylinder with the
infinite cylinder and the slab. Initially, at & point z=0 aadrSa
solidification will proceed as in an infinite cylinder. ‘At & point z w ]
and r = 0 ic will proceed as in a slab 21.

‘A numerical example computed with

Vg-8 3 Jola) a'r 2 (S cop(a+Dz e-(2.4,1)'..-(_'.;.)%
" ael Rlila) g 28+l 2l 2

is shown ia Figure 6.

Solution for a parallelepiped is obtained similarly.
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i

Temperature Distributions During Solidification in a Semi-Infinite Mass. |

1

Fig
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ABSTRACT

One of the necessary design features of a projectile rotating band is
that it must not be discarded {n flight by virtue of the centrifugal forces
aoting., One of the common methods of reteining the band consists of util-
ising undercut band seats thus in effect, restraining the band from outward
movement. In the present paper the elastic stresses in a band, thus con-
strained, are determined for both the quasi-static loading condition (i.e.,
slowly applied eentrifugsl forces) and for the dynsmic case (i.e., suddenly
applied centrifugal forces). As expected, the dynamic case yields stresses
Just twice the quasi-static case. In both these analyses the band is con-
sidered as a beam on an elastic foundation.

As a limited extension of these elastic snalyses, the non-elastic case
of an unoconstrained band (applicable also to a long constrained band) is
analysed sssuming a stress-strain curve of the form o = ke", giving rise to
a npon-linear differentisl equation. A hodograph is plotted and the required
information related to failure or retemtion of the rotating band is obtained.
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I
I
da
D

D,

= Poisson's ratio

Young's modulus

JNOMENCLATURE

Constants in the stress-strain law
Radial deflection of mean radius of band

Longitudinal position along band

D’

= Moment of inertia of cross-section of beam of width%Aa. s -z—‘—A'a.

3
=1'/Aa= -;:z‘—

2 Angle subtended by beam element

= Instantaneous mean diameter of band

p(x,t)=
a(x, t)= Centrifugal contribution to p(x,t)

= Initial mean diameter of band

Loading on beam (1bs/inch)

b(x, t)= Restoring load contribution to p(x,t)

o(x,t)= Inertial conmtribution to p(x,t)

q
Qi

h
P
€
t

to

1
= Centrifugal loading (lbs/in.2) = - ﬁ-:'lu'

= Qeneralized coordinate

= Time

= Time for g-y— (or

Thickness of band
Density of band material

Gravitational constant

du
d_t-) in Case III to initially become sero

*Subscripts L and P indicate longitutinal and tangential, respectively; subscripst Max indicates

saxinus value Of stress.
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@ = Rotational speed of band (radians/seoc.)
M, N = Constants (see. Eq. 8) .
.
Dy‘h 2
¢ = Radisl distance from middle surfsce
P.E. = Potential energy

K.B. = Kinetio energy
q = Generalised force

2 :". Reh? 8 8"‘6
Py i "4(-;) X

ﬁ R
&, 120
2y
U = Displacement parameter = (1 + 5

) 2“2
A. = Load paramster '-zﬂ“—-
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I DUCTION

The present paper is concerned with the problem of the failure of
rotating bands during the firing of projectiles, The primary function of
such bands is to engage the gun tube rifling and impart its twist to the
projectile in order to maintain stable flight. Inherent in the satisfac-
tory fulfillment of this primary function is the creation of centrifugal
loading of these bands. Figure 1 shows the nature of the band deformation
and some of the pertinent notation. The resulting stresses may then cause
undesirable premature failure of the band upon emergence from the gun tube,
i.e., a8 soon as the constraints of the tube are no longer applied. Fre-
quently, this failure is characterized by rupture and the band takes leave
of the projsctile.

In many applications, this "fly-off" is not desirable and various
attempts have been made, oconsequently, to prevent it. All of the common
methods of accomplishing this end involve a "bonding" of the band to the
projectile. In most instances where this bonding is attempted, it is re-
stricted only to the ends of the band (as in undercut seats); in other
cases, the bonding is effected at closer intervals, as exemplified in the
practice of using dovetails in plastic bands; in other instances, this
"bonding™ is continuous as by depositing the band material by welding onto
the projectile (as in welded overlay bands). Figure 2 shows common "bonding"
techniques.

To a great extent, the "fly-off" problem is minimized or eliminated by
the use of the latter methods of bonding. However, it is expected that
this latter method may not a’ways be feasible; considering the extensive
use of the first method of "bonding™, it would therefore seem desirable to
understand the nature of the stresses induced in such bands in order to
minimize the chance of fly-off.

In the present paper,* attention is accordingly focused upon a smooth,
unrifled band which is permitted to be constrained only at its ends. The
band is assumed (a) to be thin enough to allow use of "thin wall® theory
and (b) to be long emough so that ordinary beam theory is applicable to a
segment of the band.

It is evident that, as the band becomes long with respect to its other
dimensions, the effects of the end constraints become negligibly small at
regions remote from its ends, so that the central portion of the band can
be considered as a band without end constraints, i.e., as & "hoop", wherein
the only significant stresses are the tangential stresses. On the other
hand, short bands (i.e., bands in which the end constraints are the primary
reactions to the applied centrifugal loading) are subject primarily to
longitudinal bending stresses. There is also considered to exist an inter-
mediate geometry of the band in which both tangential and longitudinal
stresses are significant.

®fAe results presented in the current faper Mave besn culled from the following Vatertown Arsenal

Laboratory reports: a. ‘'On the Iuﬂuz: of ind cmmmﬁm ltrn{u in ;%tat( Bands ::ior

Centrifugal Porces”, WAL No. 760/580-2; b. “Blastic Stresses in a Rotating Band subjected to o

B T Wolating Band’ Baded by o’ Subaansy 1ot iod Conbrirusar Forme 30 fhe THLIE olnt dni
n

Loaded by o Suldenly dpplied Intarnal essures Vs qo 7 /8%3. ¥ 4
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In the following analysis, the differential equation is first presented
and is then specialized to apply to each of three specific cases as follows:

Case I: Static State - Elastic Behavior
Case II: Dynamic State (Suddenly Applied Load) - Elastic Behavior
Case I1I: Dynamic State (Suddenly Applied Load) - Inelastic Behavior

These three cases are distinguished, one from the other, by the nature of
the response, of the band material, to load and by the time rate of appli-
cation of this load. The effect of time will be adequately covered later
in the paper, so we consider here only the significance of the material
properties, best characterized by the representative stress-strain curve
shown in Figure 3. Figure 3a shows the general behavior of many engineer-
ing materials; it will be observed that for small loads the material behaves
elastically and linearly. Cases I and II conform to response restricted to
this region of elastic behavior of such materials. Case III, on the other
hand, is aimed at the response of a completely inelastic material such as
shown in Figure 3c. Several characteristics of the behavior of materials
stressed into the plastic state are of interest and are pertinent to the
present problem. We note in Figure 3a, for example, that the nominal stress
reaches a maximum value and that an instability ensues in that the strain
continues to increase with diminishing stress. This instability, which is
accompanied by a localized contraction of the specimen, is known as "neck-
ing" and is associated with the fact that the rate of strain hardening is
inadequate to compensate for the decreasing cross-section of the specimen.
When such stress-strain curves are plotted in terms of true stress and
natural* strain, the curves can generally be expressed in the form o = ke"7**
for monotomically increasing o and necking or ige instability point can
then be shown to be governed by the criterion o€ =@ Applying this ori-
terion to the suggested stress-strain law leads to the conclusion that
necking occurs when the natural strain € equals the strain hardening coef-
ficient 7, i.e., € = 7. Fipure 3b shows a conventional stress-strain curve
in which premature fracture has precluded the necking possibility.

_ FORMULATION OF DIFFERENTIAL EQUATIONS

Consider the longitudinal element of the band shown in Figure 1.***
Treating this as a beam on an elastic foundation subjscted to static load-
ing p(x) directed radially outward, we may express the deflections in terms
of the following familiar differential equation:

dy(x) _ 1-v?
dx* EI'
*frug stress is the load divided by the instantaneous area rather than the original ares, and

natural strain i{s defined by the relation € = {n'f/&o where £ and 'Co are the instantaneous
and initial infinitesimal gage lengths respsctively.

PIX) v e i e i e e e (a)

**fhis form with k> 0 and 0 < 1< 1 has been desonstrated to apply to most engireering materials,
particularly for the plastic state.

***fhe rifling shown is so very shallov with respect to the thicmess of the band; hence is neglected.
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where I' is the moment of inertia of the beam

E is Young's modulus

v is Poisson's ratio

More generally, if the external loading is a funotion of time, this equation
should more appropriately be written

My(x,t) - 1-p?

3’ BT’ p(x’t) e o 6 e o s 8 8 8 8 8 e s e s e s (1)

whére p(x,t) may be expressed in the fornm
pix,t) = [alx,t) + b(x,) + olx,4)] Aa

and the quantities a, b, ¢ are respectively the centrifugsl, restoring and
inertial contributions to p(x,t) and Aa is the angular width of the beam
as noted in Figure 1.

We now specialize the general differential equation (Eq. 1) to conform
with the specific cases described earlier. In the next section, we shall
solve these resulting explicit differential equations for the motion of the
band and derive therefrom the general behavior of the band.

Lage I: Static State - Elastic Behavior

In this case y and p are functions only of position x; hence, the in-
ertial contribution to the external loading is absent and remaining contri-
bution a(x) and b(x) can be shown to be given by

a(x) = 222

blx) = -== y(x)

where q is the centrifugal loading per unit area, h is the beam thickness,
and D, is the initial mean diameter of the band. It will aleo be obvious
that ghe partial derivative

3'y(x,t)
ot

can be replaced with the complete derivative. Then Equation 1 can be shown
to reduce to the form

d4y(x) _(1-v?) | qD 2Eh
axy - Bl [;Eg' - D° Y(x) Aad v v s ¢ s o ¢ o v s .(3)
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Case I]: Dynamic State (Suddenly Applied Load) - Elastic Behavior

For this case, we observe that y and p are functions of both position
x and time t, and it is necessary to include the inertial contribution in
the loading term p(x,t). It can accordingly be demonstrated that

D
alx,t) = 12-9.

blx,t) = 2=y x, 1)
(]

dy(x,t)
=-— L

whence Equation 1 becomes

tylx,t) _ 1-v? Elzg S ity - EDeR ﬁg‘iﬂm. oo (3)

x' BI'| 2 D, 2g %
Case III: joc State (Suddenl lied load) - Inelastic Behavior

Here we restrict our attention to a long band, i.e., a band of suffi-
oient length so that end constraints, if present, do not significantly in-
fluence the maximum deflections of the band. Consequently, we note that in
the oritical region of the band, i.e., away from the ends, the loading term
p and deflection y are functions only of time ¢t and are independent of
position x.

We further depart from the earlier simplifying conditions of elastic
behavior and permit extensive plastic deformation of the band. In the
present case, it i1is assumed that the material obeys the exponential true
stress-natural strain law o = ke” (for monotomically inoreasing o). It
will be recalled that such materials exhibit the so-called necking or in-
stability phenomenon at a strain € governed by the result ¢ = 7,

Within the scope of the above restrictions, it can be shown that

iy(x,t) _
= °

a(x,t) = EEL

b(x,t) = -kh I:lm (1+ MEI

LM alyly)
2g dt

c(x,t)
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where D is the instantanecus mean diameter of the band, i.e.,

o

Equation 1 may then be expressed as

1t o - 2y(t)]"7  pDh - uly(s) ( *
0= 3;"“‘["“-‘“ ] B~ L

(%>(9 S £ 1Y)

Noting, then, that q may be vritton% -;—-’ZD »?! this becomes

gy I
2y] b 2kg M-(l"'n—') aty(s) .
o=1+. 2| 20w -2 [_E‘J -—-’—-,,,.(4\’)
[ n,] 2 PD, (“'6' as® - o

dy \
— >, O
(%)
Equations 2, 3 and 4 have been summarized in Table I, along with the ap-
propriate boundary and initial conditions.

GENERAL ANALYSIS

We proceed now with the solution of Equations 2, S and 4 for the per-
tinent boundary conditions shown tabulated in Table I.-

Cage I;
3
We had (Equation 2), (recalling that I' = —Ds_—)
o -y -y ‘
d&’:‘) ’ ‘:%TT) y(‘) s 18(%) q [ ] [ ] L4 L L [ ] * . [ ) - (8)

*Squation (Va) s not the exact differential equstion of equilidriue in thes I8 ls assumed
Bebinthe tm.f'!. where B 4s twice the centrdadal redins of en o lesentery section,
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Solution for the case of simply supported ends leads to the oxpreuion"

Dgzq 2rx 3yx

=S+ 0 4' ¢+
y(x) = M cos T ah Ns 1n-—;— -wa—z- 1] ()
where
M= - ¢os ¥ oosh ¥
ainly sinhly + cosly coshly
and
s . sin ¥ sinh ¥
‘sinly sinhly + cosYy coshyy
and
¢ 1
ys - lzgi-v ) ;C_
D, n? 2
Stresses

The strains in the longitudinal and tangential directions at a dis-~
tanoe £ from the mjiddle surface of the band are then given by

o = - z(x £ !

. 2y(x)
7= —

D,

The corresponding stresses follow direotly, i.e.: ., . .. ... |

= - K diyx)
T et

_ 2Ry(x) vE _ d%y(x)
D T8 Tal

*It should be noted Aere that x {3 mgaswred from the center of the band,
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The maximum value of the stresses ococur at the band surface at mid-
span and can be shown by appropriate substitution to be given by

o ='\r3' D sin y sinh y
Lma 1.p2  sin’y sinh’y + cos’y cosh’y
and ..-....(6)
“V3v
. “Dea |, Vi-»? siny sinh y - cos y cosh y
Tmax  2h sin‘y sinh’y + cos’y cosh’y

To facilitate interpretation of Equation 6, it is convenient to normal-
ig6 oy gaex 804 OTg,, With respect to the corresponding value obtained utilisz-
ing simple wide-beam theory and "boiler" theory, respectively. We conse-
quently define the ratios 3, and S; as follows:

o
8§ = L..x
L
Lbom
and
o
8 = T..x
T T
hoop

where o is the stress computed using conventional (wide beam) theory, i.e.

o 24
Lbu. 4 -hT 9
and
= D°
Thoop el

Appropriate substitution then yields the following equation for 8, and 8.
2 sin y sinh ¥

8, ".yz sin‘y einh@ + oos"r oosh"y
-qsv -o.ooooo(")
8y =1+ -\ll-v’ in y sinh ¥ - cos ¥ ocosh ¥

sinly sinh ¥ + cosly ocoshly
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These quantities, plotted in Figure 4* for vy = 0.3, may be used as
correction factors for determining the actual stresses in a band by multi-
plying the appropriate normalizing stress by the factor. For example,
suppose a band such that S, and S; are O and 1.1 respectively; then, the
tangential stress is the skmply computed hoop or boiler stress multiplied
by 1.1. Obviously, the longitudinal stress is zero in this case. (This
merely means that the band is quite long, and behaves essentially like an
unconstrained hoop.)

Case II:
We had (Equation 3)

'y(x,¢) _ 1-v2 | qD, _ 2Eh yixt) - pD,h  3%y(x,t) (3)
1Y — — ’ ' & e s o
2 x EI' 2 D, 2g ot

Using the method of generalized coordinqteu"we'write

E q; sin i_ﬂ)&_

where ?J is the generalized coordinate and x is measured from the end of the .
band®¥¥ we form the potential and kinetic energies thusly:

ol ~ 3 qi ] l
44 2Dy Sy

i=l

K.E. pD°hAa E q,

i=1

Substitution into LaGrange's equation then yields the following differential
equation for q;:

dzq 1" Eghz . (2). % 48 Q
—l + —]]i* + 4 [= = L
at? ¥ \12e 7l V1% " Bt Ra
where Q, is the generalized force corresponding to the coordinate q;.

In the present case, we assume an external running load (centrifugal
loading) of intensity q!,n. Aa suddenly applied at time t = O and there-

3ome ’“5" tnaccuracy s intraluced in the dashed region dus to shear deforsation of the beas.

Por length to thicMmess ratio greater than 5, howsuver, this ervor s less than 10%, .
v I;;la;,%v_l’hob b”ubmﬁon Problems in Pngingering”, D *¥an Nostrand Co., Inc., 8nd 84.,

""In Case I, x was measwred from the’ midspan position. .
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after maintained constant. Under these conditions, Q; can be shown to be
given by

Aa&
Q - ———— - .
i= 0 (cos im - 1)

The general solution then for this case may be written

qD,Aalt [cos (im)- 1] Eos Py t -jl imx
yix, t) = —E'%.—FZI ) [1‘ R “‘) -y'] sin

4
2
p? = :: (m)E" +4 H 7]

Appropriate substitution into the stress-deflection equation (a) leads to
the following meximum stress formulations at x = 4/8, and t = w/Pi;

i[1 -cos 11a
aL.“ = (l-vz)h’n’: .. “‘,. ‘)‘J ein

o o(a)

where

and
_ QGQ{. E -008‘1‘")] 1‘1’_
o',T.“- Dﬂh:1[+4 1n2

24ql?y f 1E1 -cos i"] in

+mi.].—-El+‘(%)'7]ein? e & o o o 0(9)

Evaluation of Equation 9 and comparison with Equation 6 show that the
stresses are just twice the former stresies. This is as should have been
expected for the sudden loading of an elastic system. The curves of PFig-
ure 4 are therefore directly applicable, provided the normalization is
recognized to have been taken in this case with respect to the dynamic
loading stresses in a wide beam or simple hoop.

Cage III:
Pinally, we had (Equation 4b)
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_x
D, |2 n +_X) IrTLE
Do
dy (t)
for =%~ >0

2
Letting U = (1'+1§L ), and rearranging, this becomes
-]

7
alu 4k im.U
-E;T.'-p_n% U —U“,z:o--o.. ,(40)
(]

du
for 0 < t < to where to is the first time for which.E;-= 0.

The complete solution of this non-linear equation is not readily ob-
tained by ordinary methods; however, by single integration, the velocity-
displacement relation is readily obtained and considerable insight to the
characteristic behavior of the band may be derived therefrom. We thus
obtain by the initial integration of Equation 4¢ (with the initial ocondi-
tion

4y
m =0at U=1)

+1
1 au _ 2 2 [ta.u) " .
= I (u -1)-1TF0_+_Jl.r.—- R 6 ¢

for 0 < t < t4

A
where the loading term, & is defined as follows:

pDo 2,2
&k

1
4

A plot of this velocity-displacement relation is shown in Figure 8
for a fixed value of U] (i.e., a given material) and for a range of values
of the load parameter /A The arrows indicate the direction of increasing
time. Only the plastic behavior of the band is presented. (The dash lines
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indicate the start of elastic vibratory behavior, but we shall not discues
this aspect of the band motion here.*) It will be noted that for small
values of the load parameter /A (i.e., A <Aorit) the band expands but
eventually slows down to a halt at some finite value of displacement.U, ...
On the other hand, at higher values of A (i.e., A2l orit), the band’
becomes unstable and extends indefinitely until fracture occurs. This
instability is attributable the necking phenomenon discussed earlier.

We designate the value of X attained at A orit as U orit. In Figure 6,
we plot the displacement U max against the load parameter 4\ for different.
values of 7. The end points of these curves shown by the dash line represent
the oritical conditions AA erit and U orit. In Figure 7, we have plotted

this critical load perameter for different materials as defined by the stress-
strain relation o = ke". We recognize in Figure 7 that for loads or speeds
less than A orit the band is retained; for higher loads or spéeds, failure
oan be anticipated.

®Por detatle, ses VAL Repors o, P00/538, "Stresses bayond the Iiald Point in: @) 4 bong
Roteting Bend Londed Vy o Suidenly Applied Centrifugel Porce, 3) A bong PAin Cylinder boaded
by o Suldenly Applicd Intermal Presswre.”



ROTATING BAND GEOMETRY

A.M. 1820
5-21-36

FIGURE |



NECKING POINT 199

TENSILE

STRENGTH FRACTURE POINT

LIMIT OF ELASTIC BEHAVIOR
o

€
Q)ORDINARY ENGINEERING STRESS—STRAIN CURVE SHOWING NECKING

-l
FRACTURE POINT

LIMIT OF ELASTIC BEHAVIOR

€
b) ORDINARY ENGINEERING STRESS—STRAIN CURVE - NO NECKING

X FRACTURE POINT

CURVE APPROXIMATED CLOSELY BY
”
o=ke (0<M<1)

NECKING POINT; CRITERION

€
C ) TRUE STRESS—TRUE STRAIN CURVE

STRESS-STRAIN CHARAGTERISTICS OF BAND MATERIALS
AM 1821

5-21°5¢ FIGURE 2



201

7 7 (q)

SIMPLE SWAGED ON BAND

2 (b
. 77 (b

UNDERCUT SEAT — SWAGED ON BAND

777777 (C)

DOVE -TAIL SEAT — CAST BAND

(d)

WELD

WELDED OVERLAY BAND

METHODS OF BONDING BAND TO SHELL

A M 1822
5-21-86

FIGURE 3



¥ 34N914 | 95-12-§

€28t NY
&
Z .wr 2! 20 > y SAONVE ONILVION Q3ILNOdNS
J (z2-h2 ATdWIS HLOONS NI SISSIULS JILSVII WANIXYW
LNIVYLSNOD | A

GN3 ON ONINNSSY

ANVE JIY1IWWAS b £ 2 ! 0
ATIVNOLLVLON NI SS3¥1S ~ et '
TVILNIONVL XvW= dOOH 1, g
"ANVE JINLIWWAS | . €0
ATIVNOILVLOY NI SSINHLS / vo
IVILNIONVL ‘XvW = T13HS 7, co
aNVE SV SNOISNIWIG / 90
379v21ddv IWVS 70
ONIAVH Wv38 NI SS3Y1S : S
TUNIGNLIONOT XV = WV3E T, 80
60
ANVE JIML3IWWAS S e

ATIVNOILVLOY NI SS3M1S W o
TUNIGNLIONOT XYW = T13HS 1, lJ..Hm:jv/ Il

{

EELECTY M._

dOOH 1L L 1

3
T3HS L, °
wv3ag 1, e
TI3HS 1,

ONTOIT



D5

A>ACRIT

B

SACRIT

—

)

RIS
w af A
0—/}‘ 7 U
umaxia)] 1 1
2
UMAX(A « P Do¢ 2
21| T
UMAX (A3)
UCRITAcpiy

TYPICAL VELOCITY

(FOR GIVEN

-~ DISPLACEMENT CURVES
MATERIAL )

AM. 1824
- 5-21-86

FIGURE



9 3uNn9ld oo.zc

8

gesl ‘WY

{ IN31D133300 ONIN3QMVH NIVY¥LS 3HL 40
S3IMIVA SNOIYVA ¥0J V- ¥313INVHVd QVOT GNV GNVE 30

"XVN N INIWN3OVIdSIA IVIAVE NNWIXVIN N33M138 NOILVI3Y

Vv
O 60 80 20 90 SO 0 €0 20 10 O

o=u - >
¥ l.«w =~ 2
H%,. s o LN
.m.u#«/ 14
SCr=o | \
"o \ 81 "XVWN N
MY _ )
2'?0g =V €6
o 02
Aﬂdivﬂb \
- rs 3
AN3931
ve




1.0
2
Acrit=L00" oferiy
0.9 k
49

0.8 7)= STRAIN HARDENING COEFFICIENT IN O'=h e

o d o

06} FAILURE
Acrit 05l

04}

0.3}

o0zl RETENTION

Ol

0 i 1 1 | | 1 | | | ]
0 (o]} 02 03 04 05 06 07 08 09 1.0

Y,
VARIATION OF THE GRITICAL LOADING ( OR SPEED) PARAMETER A

WITH STRAIN HARDENING COEFFICIENT 7

AM. 1826
5-21-56

FIGURE 7



THE EFFECT OF PARTICLE SUSPENSIONS ON THE FLOW OF A GAS
Hugh N. Brown*

. ’

A suspension of small particles in a gas may produce important changes
in the flow of that gas by virtue of the drag forces exerted on the particles
and of the exchange of heat between the particles and the gas. Of particular
interest is the propagation of a shock wave in such a medium.

For simpligity, let us assume that the particles are spherical and of
uniform size. The drag forces and heat transfer properties can then presumably
be calculated from experimental data on single spheres. (Refs. 1 and 2) This
assumption will be most questionable for large dust concentrations and/or high
Mach numbers. If the dust concentration is not too high, the effect of particle
collisions may be ignored and the volume occupied by the particles neglected.

In this case, the equations for plane flow may be written as

n,+un +ou =0, (1)
u tuw -2=0, (2)
py + VO, + PV, =0, (3)
p(vt+wx)+px+nD-o. , o ()
mep(T, +ul) +K(T - 0) =0, (5)
pO(St + "Sx) -nK(T -0) =0 . (6)

The symbols used above are

n = number of particles per unit volume,
u = velocity of dust particles,

.D = drag force on a single particle,

m = mags of a single particle,

p = gas density,

v

P

gas velocity,

gas pressure

¢p = specific heat of a particle,

dust particle temperature,
effective heat transfer coefficient,
= gas temperature,

= gas entropy .

T
K
°)
8

¥ Ballistic Research Laboratories



212 Conference of Arsenal Mathematicians

Subscripts x and t denote differentiation with respect to x and t. The gas
will, in the following, be assumed to be an ideal polytropic gas whose equation
of state 1is

S ‘

P=Ae~g’7=R’0

vhere ¢ v is its specific heat at constant volume, R is gas constant, and y is
the raviaBof specific heats.

Equations (1) and (3) are, of course, simply mass conservation equations for
the dust and gas respectively. (2) equates the rate of change of momentum of a
particle along its streamline to the drag force D acting on it. Similarly, (&)
relates the rate of change of gas momentum along a gas streamline to the pressure
gradient force and to the reaction of the dust on the gas caused by the drag.
Equation (5) states that the rate of loss of heat by a particle along its stream-
line is proportional to the difference between the mean internal particle tempera-
ture and the surrounding gas temperature. The last relation, (6), simply equates
the heat given up by the particles in a unit volume to that gained by the gas in
the same volume.

These equations can be transformed into the characteristic form (Ref. 3).
Let o0 be a characteristic curve parameter. Then the characteristic equations C
and compatibility equations [* are

c+-::xa-(v+c.)t°-0, ‘ A (8)
r+:pcvo+pu+n[Dc-K(7-l)(T-O)]t‘,-O, (9)
c-:xa-(v‘-c)toso, (10)
r—:pCva-pa4n.[D§+K(7-l)(T-O)]ta-o, (11)
Cpt X, - Vi, =0, (12)
rg:so-'f—.g(r-o)to-o, (13)
Cp:xo-uto-o, (14)

u -2t =0, (15)
[ 'ro+;§;(1'-o) t =0, (16)

n,+ou t =0 a7
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Here, ¢ is the velocity of sound defined by ¢ - (%2) R
P8 = const.

Note that, unlike the others, equation (7) cannot be reduced to uni-
directional derivatives. This is a consequence of the two-fold nature of the
particle path X, - uta = 0, i.e., the parabolic nature of this path.

Let us apply the preceding results to a specific flow problem. Consider
the case of a plane, step function shock in free air impinging upon & semi-
infinite mass of stationary air in which dust particles are uniformly distributed.
In the mixture, the shock-front jump conditions for the air variables will be
the same as in pure air. The dust concentration n, velocity u, and temperature
T will be taken to be continuous through the front, since drag forces and heat
transfer rates remain finite through the front. The conditions to be imposed
at a shock front in the mixture are, therefore, for initially stationary air,

151 2 v
3— =] + -7—-+Ll (-c—? - l)} (18)
° o
\'4 e
1 2 U ()
o (5 - =) (19)
do 7 + db u’
P Y ’
'p_: =1 - ﬁ£ ’ (20)
w=u =0 |, (21)
n, =n, , ' (22)
Tl = To , (23)

where subscripts o and 1 refer to quantities ahead of and just behind the shock
front respectively, andUrefers to the shock-front velocity.

Figure 1 gives the flow process in the X,t plane. For t € O, the region
to the left of the origin Q contains pure air, while that to the right contains
an air-dust mixture at the same temperature, pressure, and gas density as the
pure air. The path of the incident shock front is along the shock-line. For
t 2 0, the air-mixture boundary, originally at x = 0, begins to move along the
dust streamline C_, through .Q, while the shock velocity begins to change steadily
due to the 1nfluegce of the dust.

Consider a point A on the shock line as shown. The unknowns here may be
approximated by use of the jump conditions and the relation (9) applied along
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the forward sound path C+ drawn to A from a poinf B on the x-axis in the
dust-free air. Equation (9) shows that, under the assumed conditions, the
shock strength initially decreases from Q to A. In fact,(%%). may be cal-
culated from (8) and (9) and the shock conditions. It must be remembered,

in integratin (9), that n = 0 to the left of the air-mixture boundary. Hence,
from (8) and (9),

)
Q
chQ(vA - VB) + (pA - pB) = - nQ[DQ‘Q - KQ(7 - 1)(TQ - OQ)J ;’E-"'_- 8t. (215)

“Q

Here, pé, cQ, vq, etc. are the values at the origin appropriate to the initial

shock velocity UQ'

Now, since the incident shock is a step function, vy
the differences above may also be expressed in terms of the rate of change of U

along the transmitted-shock line from Q to A!

= vq, etc. Therefore,

Wl [av ;
Va-Vp=Va- Vo ulam o 8t , Aapproximately, (25)
Q Q
! au roximately, '
dv dpl
vhere gm= and g~ are evaluated from (18) and (19). Substituting these expres-

sions into (24), we find that

(dU) . UQ_ nQ[DQ"Q - Q(7 - l)(TQ - OL]_. ' (27)
at Q Vot q v,

Pelq (a’ﬁ')q *(;;E)Q

Now since T is continugus through the shock front, according to (23),

T, = TQ< °Q and so (%—g )Q 18 negative.

For a typical case, let us assume & dust particle radius of a = 10'“ cm,
a dust density (n m) equal to that of the undisturbed air, p , and incident
shock velocity of°1.k ¢ (corresponding to a 1.12 atmosphere®overpressure).
Taking suitable values Por air viscosity, specific heat, dust thermal conducti-
vity, ete., it is found that

1 ( du) -0.014/
- Tnd by = L] paeCo
ulat/,
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Thus, the shock relaxation time is of the order of 7O usec.

An idea of the early behavior of the flow may be obtained from a first-
order series approximation. Expanding the shock velocity as a function of
time in a series

and the dependent variables in series such as

v(x,t) = E VLV t# x¥

MV

The equations of flow, (1) - (6), may be solved correctly to first power
terms in x and t. It is necessary to employ different series in each of the
flow regions I, II, and III indicated in Figure 1, imposing the initial and
boundary conditions in each domain. The flow in domain IV is known.

The value of Ul 8o obtained is the same as (-g-g ) determined above from

the characteristic equations. For a given small time &t after the shock enters
the mixture, the first-order solutions give the results shown in Figure 2. The
numerical values indicated are for the same example mentioned previously; i.e.,

4

a=10  cm U

= 1.4 c_, nm=p . The ordinates are distorted for the sake of
clarity. 0 °

Q

It 18 seen from these curves that, at the origin, the pressure and density
increase to a value greater than that in the incident shock even though the shock
front has decayed in strength. Clearly, a compression wave is set up which will
travel backward into the shocked pure air, eventually developing into a second
finite amplitude reflected shock at a point near the backward sound path C- through
Q. The flow up to this point can be calculated once the solutions on the air-
mixture boundary C are known, since all the backward characteristics extending
into the pure air Fé&ion are straight. The point of origin of the reflected
shock may be estimated by finding the limiting point of intersection cf an arbi-
trary C- with the C- line through Q using the first order approximation already
obtained. That is, for a given time &t, the C- line originating on the air-
mixture boundary at E is extended to its intersection with C-Q as shown in Fig. 1.

The limiting position of this intersection is then determined when &t approaches
zero. Provided that higher order terms do not change the result too radically,
it appears that the reflected shock forms far enough from the origin that it can
be ignored while starting a numerical integration of the problem. For example,
in the special case already considered, the estimated point of origin of the
second shock 1s at t = 40 usec and x = 0.7 cm, whereas the time and space
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increments used in a numberical solution should be less than 2 psec end
.0%5 cm respectively. .

Hence, a numerical solution to this problem might proceed as indicated
in Figure 3, which illustrates a finite difference scheme which could te used
in the mixture region. Assuming that all quantities are known as a function
of x at a certain time t, the solution may be advanced to t + 5t by chcosing
a point A on t + &5t and extending the four characteristic paths, C+, C , C_,
and C- back to intersect the line t = constant at the points B, D, E,F3 P
These four unknown values of x plus the six unknown dependent variables at A
may be approximated by solving the ten finite difference equations based on
equations (8) through (17). Of course, modifications must be made whenever
one of the characteristics intersects the air-mixture boundary or the shock
line., If, for instance, point A is on the shock line, only equations (8) and
(9) need be used in conjunction with the shock~front jump conditions.

An alternative scheme would be to replace the independent variable x by
some quantity Z, say, which could be the mass of the gas or of the dust con-
tained between & fixed streamline and the one through an arbitrary point (x,t).
Then Z is constant along a streamline so that, in the Z, t plane, the particu-
lar streamlines in question are straight, vertical lines. Thus, the integration
net could be simplified without greatly complicating the remaining characteris-
tics.

For the case of a plane, step shock incident upon the mixture, it is con-
celvable that an asymptotic condition might be approached wherein a wave of
constant profile propagates into the mixture at a constant velocity. (Ref. 4;

A consideration of the requirements of conservation of mass, momentum, and energy
across such a wave shows that, for sufficiently large asymptotic pressure, a

wave consisting of an air shock followed by a continuous pressure rise to the
final total pressure would be possible. The continuous part of the wave would
correspond to the interval required for the dust to come to thermal and dynamic
equilibrium with the gas. The strength of the "air shock" would be such that
its velocity would be equal to the velocity of the wave as a whole as determined
by the total pressure rise, thereby maintaining a constant profile. Whether the
equatiors of motion discussed above actually lead to this situation is not known.

For total pressure rises less than a certain amount, the velocity of a
constant profile wave would have to be less than ¢ _, the ambient sound speed.
Hence, no preceding air shock would be possible, a8 in the foregoing case, and
the wave cannot maintain its shape; the wave would probably be a continuous
pressure rise whose "thickness" increases with time.

Under the conditions of the numerical example given previously, the critical
overpressure in the mixture is 1.51 atmospheres which corresponds to an incident,
pure air shock of 1.26 atmospheres. The assumed pure air shock was only 1.12
atmospheres, which means that the asymptotic wave in the mixture would be con-
tinuous; the discontinuous "air shock" front would decay completely to zero
atrength.
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DETERMINATION OF ELASTIC STRESSES
IN CHAMBER SECTION OF RECOILLESS RIFLES

ABSTRACT

From the results presented in this report one may, in general, de-
termine the elastic stresses, strains and displacements in arbitrary, but

rotationally symmetric, thin shells,

The linear theory of thin shells is

used in this development, This theory is sufficiently described in the
appendices to indicate how all the results are obtained, As an illustrative
example, the surface stress distribution is presented for an idealised
bell-shaped chamber section (106MM T137) of recoilless rifles,

Membrane stresses, given‘ by a solution which neglects the shear-
ing stresses and bending moments, are presented for comparison pur-

poses,
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I. INTRODUCTION

A considerable amount of effort has been made in recent years
towards lighter ordnance materiel, In many cases, this has resulted
in making component parts, such as gun tubes and chamber sections,
thinner,

It is well known that the maximum stresses in tubes or chamber
.sections will, in general, increase as the thickness with respect to a
reference radius decreases, Thus, it is useful to know the stress dis-
tribution, a priori, in these component parts so that under- as well as
over-designing may be avoided, In this report mathematical results
are given which may be used to determine such stress distributions in
thin, elastic, isotropic shells (1) which are axisymmetrically loaded, are
.of known axisymmetrical shape, ' and have small deformations,

While much work has been done on the elastic theory of shells, (2)
the greatest progress in the development of its application has been
accomplished only in the pa(-t few yeafs, Most previous applicationl(:”
have been of the membrane (4) type, where bending and shearing stresses
have been neglected. This latter analysis, in general, is theoretically
valid only for paper-thin shells of revolution (i.e,, paper-thin in com-
parison to the least radius of curvature), However in many instances
this analysis does give sufficiently accurate results for thin shells 'ﬁich.
are not paper-thin, In the case of chamber sections of recoilless rifles
the membrane solution is questionable, for here the curvature changes
sharply and the chamber wall is not paper-thin,

In this report a more refined thin-shell theory is applied to deter-
mine the stress distribution oicurring in chamber sections of recoilless
rifles, This thin-shell theory 1) s presented in the appendices, A
solution of the equations derived from this theory is presented in Appen-
dix C_and ia valid for manv tvpes of thin shells. "These appendices
are given in WAL Report No. 731/107.)

(1)) shail 4s said to de thin if its thichmess A &s small in comparison to its least
radius of curvatwre. :

(28)
An exact three-dimensional anglysis of thin shells, generalldy smux. {s not
practical, Decause o thin-shell amalysis &3 usually more expedient and uswally
fives answers which are sufﬂcu'ntly’:ccumta for their intended purposes.

"'” Vhether or not a shell is o mendrane depends, not only on the stress-free form of the
shell, dut also on the nature of the load,

”)I‘M appendices list the conditions, as formulated by £. Reissner, of thin.shell theory.
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The solutions(l) for sections of conical, cylindrical, and toroidal
(donut shape) shells are extracted from the appendix and are presented
more explicitly in the body of this report, These solutions may be used
for determining the stresses in conical, cylindrical and bell-shaped
chamber sections, The case of the bell-shaped chamber section is con-
sidered here in some detail (the 106MM T137 chamber section was chosen
as an example),

One of the great values of thin shell theory (linear) is that, under
certain restrictions, component sections, such as cones, tori, etc,,
can be considered separately for analysis purposes and then pieced to-
gether, The results of the analysis for each component section can be
written down as the sum of a) terms which include the loading conditions
on the surface of the shell (called the particular solution) and b) terms
which are used to satisfy the end or junction conditions (called the homo-
geneous solution),

II, SUMMARY OF FORMULAE, CONVENTIONS AND NOTATIONS

In this section, a summary is made of results, gathered in the Ap-
pendix, that are necessary for calculating stresses, strains and displace-
ments in shells of various shapes, In particular, these results may be
applied to determine the stress distribution occurring in various types of
chamber sections, These results are based on a linear theory of shells,
which is sufficiently described in the appendices of Section II, The infor-
mation that is of importance in applying the contents is the geometry of
the shell, loading and end conditions, This application is illustrated in
Section III for bell-shaped chamber sections by means of a numerical
example in Section IV,

A, Geometry:

The middle surface of a shell, illustrated in Figure 1, can be
represented by

r = r(£), z = z£),

so that { together with the angle & in the (x, y) plane determine a point on
the middle surface, It is convenient to define £ in terms of the arc length
of a meridianal curve of the surface in the (r, z) plane, as follows:

or

a2 =(g8)? - ()% + ()
and

U ’ .
r=acos¢, 2 =a 8lng,

(1 ppq extracted solutions are walid for other types of shells provided that, over the
considered region of the shell, (a) therq exists no tangent perpendicular to the
centar line and (b)" the thickness (s constant. fhe cases {nwoluing o tangent perpen~
t:’f:ual;;"tlg‘tha centar line and/or a non-constant thickness are discusscdniricﬂy in

X.



231

FIGURE 1
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where tan ¢ is the slope of the tangent line to the meridian as illustrated
in Figure 1 and primes designate differentiation with respect to £ , It is
assumed that £ is such that a is of the order of magnitude of a reference
dimension of the shell, such as a reference radius of curvature of the
middle surface of the shell, The coordinate { with axis directed along
the inward normal to the middle surface is used to determine points
relative to the middle surface,

B. Notations and Conventions for the Strains, Stresses and
Displacements:

The strains, stresses and displacements are defined more
explicitly in Appendix A; but for the purposes of determining the same,
only the following are needed:

(1) Strains

E x circumferential strain

Eee = 0op -va§
E x meridianal strain

Eg- =0§ - vop

(2) Stresses

Ny 12 _ _
% “h + h3§M9 = circumferential stress

2
og =% + ELMS‘ meridianal stress

r =(3Q)/(2h) shearing stress

where

a) Stress Resultants (taken in accordance with Figure 2)

N, = -(l;ErH)'-f raPH:] , a2 = ()2 + (£)2
1 ! z’
Nf = :E (rH) +-;(rVH .
‘ ’
Q = %E-:—(:-H)-f%(r\lﬂ
rV =

-;[randé

b) Moments (taken in accordance with Figure 2)
Mg = 2 (£ +v4)
M. =2 (44 v':",B)

o a

-
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FIGURE 2



(3) Displacements

u = % (Ng -vNQ:) = radial (horizontal) displacement

f['(zf’(Nf -vN) - r'ﬁ]df = vertical displacement,

w

(4) Constants

E Young's modulus

Poisson's ratio

<
u

= Eh
Eh3/mz

12(1-12)

o o
"

()
]

m

h

thickness

The quantities P, .and P, denote the components of load
intensity in the r and z directions, respectively; while H and g8 are the
horizontal stress resultant and the angle enclosed by the tangents to the
deformed and undeformed meridian of the middle surface at one and the
same material point, respectively, '

C. Solution of the Basic Differential Equation:

The basic differential equation of the linear theory of thin
elastic shells and a general solution, which is valid for a large class of
thin shells, are presented in Appendix B and C, respectively, For the
problems at hand (i.e,, chamber sections), solutions are extracted from
this general solution and are presentedinthis section for aclass of shells
that have the following properties over the considered region of ¢ :

1) the thickness, h, remains constant

2) there exists no tangent perpendicular to the axis of
rotation
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An approximate solution of the differential equations for the class
of shells having the above properties is -

B= (% /Z({,)l“{cxp (P B° cos u§- B, sin u!]
+ exp (-p.l)[Al cos p!+ Blv lin#ﬂ}
and
= g‘-hz (rH) = (;)1/2(_;9 1/4{exp (y.!)[Bo cos pI + A sin uﬂ
+ exp (-MI), EBI cos F!'Al sin #!]
+ r.:_t:Z :r' rvV

where Ag, Bg, A) and B] are constants that are to be determined from
the surface loading, junction and/or end conditions, Here

expm = ekX
exp(-pnze"‘!
) we=dSm azo 1) M= 3

and LY |
W2, =~ f €3) 'ty
;)I‘j;( d¢, ,‘})é A 4,)‘&7“*0
where £, is an arbitrarily chosen point that is usually chosen in the
considered region of £,

, o« ¥0

D. Membrane Solutian:

The membrane nolution“), as mentioned in the intréduction,
is obtained by neglecting the bending and shearing effect, This implies
that Mg = Mg = Q = 0; the equivalent would be the following

'rH'z %, rV, B= ﬂ'=0.

The stresses, that result from the above and the relations
given in Section II B, would have the simplified form

1
%= Ng/h = ¢ [(rﬂ)' + "‘pn]

and

a
% = Ng/b = grp V.
(1)ghere are a number of so-called sembrans theorias of which the one adove is
posaidly the simplest. *



236

" In general, junction and end effects contribute little, if anythin..
to the stresses at points whose distances are greater than (R h
from the particular junction or end, that is being considered, (R, is
a representative dimension of the shell). Hence, in general, the above
so-called membrane solution is usually valid for points whose distance
is greater than (Rg h!/2 from junctions and ends,

. I11, Application of Results to Bell-Shaped Chamber Sections:

A, Geomefrx

A typical bell-shaped chamber section (see Figure 3) of
constant thickness, h, is8 composed of two truncated cones and segments .
of two toroidal{l) shells. These truncated cones (2) and segments of
toroidal shells are assumed to be joined soas that there exists a contin-
uously turning tangent across each of the junctions z = 2j,

The middle surface of the shell can be represented as follows:
- -~ 94 .1

r=plrl§+rl .dr P

2=T) ¢ +77) » 2] 2 ¢

(Note(z): We have a cylindrical section, when p; = 0)

[

rp - S cosf
g3 + S sin¢é ,7252523

r3 + R sin¢

A

—
N =
nn

23 - R cos¢§ , %3 <z
- - dz _ 1
r p4r4§+ Ty dr P4
2=T,¢e+ '2'4 , 4<z<_z'5.

(Note: We have a cylindrical section when p, = 0)

The terms with a subscript i will imply that they are to be
evaluated in the region T;<z<%; ; | .

(1)ehe case of o toroidal shell Aaving b <. g, whera b is the radius of the crass:
sectional circle and a is the_distance from thc center of the circle 8o $he center
line, was studied by Clark [9]. Pfhe case waen b > o wus solved indegendently by
author and Naghdi (8], Fumbers in brachets refer to the Bidliography.

(Z)rhe analysis presented here assumes that the comes are not shallow.
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MIDDLE SURFACE OF A TYPICAL
BELL-SHAPED CHAMBER SECTION

L -1

(r3, 23)

(rge %))

o I J :

-

Fl
IGURE 3 AM-IT78-6

I1-4-88
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B, Lo&din! Conditions

This chamber is assumed to be subjected to internal pressure,
P, and a supporting tension at the end s = ¥, In addition it is assumed

that
MfsQSOltlIrs
and ‘
ﬁ=,B'= 0, atz=T¥;.

As mentioned in the introduction, one of the great values of
thin-shell theory (linear), is that under certain restrictions component
sections, such as cones, tori, etc,, can be considered separately for
analysis purposes and then pieced together, These certain restrictions
are the so-called junction conditions, which are obtainable from the con-
ditions of equilibrium and continuity (compatibility) that must exist across
the junctions of the component sections, These latter conditions may, in
general, be reduced to the following four conditions at the junctions, for a
continuously turning tangent (as is the case here):

a) equality of radial displacements for the middle surface,

b) a continuous tangent is maintained across the junctien
(i.e, B is continuous), .

c) equality of shear resultants (i,e, Q)

and .
d) equality of the meridianal moments (i,e, M f).

It can be shown that the preceding four conditions are equivalent
to the following conditions (1) imposed on B and ¥ at the junctions:

Bi=hBi+1l » Yiz=¥a4
[
Bilay=Bi4 tlas4 1, ¥ilag =¥y t/ag 4 1 for x=0 4 1, i=1,2,3,

(1ppgge conditions asswme that 52 43 5ot negative on one side of the jumction point
and positive on the other side.



239
C. Solution (Method of Specifyin! the Constants)

Now, the strains, stresses and displacements, in view of Sec-
‘tions IIIA and IIIB are dependent on the quantities 5 and ¥, These quan-
tities are defined in Section II C, where for convenience the constants
Ay, Bo, A) and By are now replaced by the constants Agir Boiv A4 By
(i =1,2,3,4), respectively, (The subscript i has the same implication
as mentioned previously, see IIIA), Since all other terms are defined,
the stresses, strains and displacements are determined once the above
sixteen constants are specified,

From the conditions given in Section III B, it is easily seen
that there are four equations for the end conditions and twelve equations
for the junction conditions, This is in agreement with the fact that we
have sixteen constants to specify; that is, we have a system of sixteen
equations to solve, . These equations can be solved by the classical method
of iteration [l], and in many instances by Crout's method [l] , if the
system of equations can be arranged to get a dominant diagonal, If the
diagonal is not dominant, then a scheme devised by O, Bowie [2] may be
used to'get the required dominance, Further numerical techniques may
be tou[!;il in a text by Hildebrand [i]or in a Bureau of Standards Reference
List .

The solutions of this system of equations are then substituted
into the relations for 8 and ¥, which in turn are substituted into the re-
lations for the stresses, strains and displacements given in IIB,

IV. Stress Distribution in the 106MM T137 (Bell-Shaped) Chamber
Section

As an illustrative numerical example, the 106 MM T137 chamber
section was idealized to fall into the class of so-called bell-shaped
chamber sections, (See Figure 4), The length of the chamber is 24
inches, wheres = 0 is assumed to be at the muzzle end of the chamber,
In view of Section III; the pertinent values 1) that are needed for the
analysis are as follows:

For the regioni = 1, we have

P, = 0.103187, (¥, ¥,,) = (2.96330,11,4), T, = 17,32, a; = 2,97903
and
Z 2
!=fE’a¢=;7;; [F-17]

(1)3ince the n’im of intarest is near the toroidal sections, the analysis is restricted
to Z 2 Z 1.4,
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For the regioni =2
(ry 2,) = (6.26532, 17,0262) S = a, = 2,830270, T3 = 18,85

The values of & for this region were obtained by numerical i.nte-
gration,

For the regioni =3
(r3. 33) =(1,66340, 20,9043) R = ay = 3,187840 e 20,82

The values of & for this region were obtained by numerical
integration,

For the regioni = 4, we have

Pg = 0.0274869, (?4, 1'4) = (.4. 85, | 20, 82), 'l'5 = 24 a," 4,85184

and

p4J"[FJ_4]

l‘rom the normal surface loading, P we obtain

raP, =-Pr’fa_, rV-(- rzlﬂg-f C,
er fori=1 P

raPy =rzP-rlP fori= 2,3
'!"4rP, fori= 4,

Since the chamber is supported at z = 5, the condition at s = 0

would essentially be that of a free end, Hence from the condition that
rV = 0Oatz s 0, we find

r2
Cies = — = -2,62,
2 _Jr = 2,289
The needed physical constants are as follows:

-\ﬁZ(I-V )

E = 30x106

“Y® = 0,285

h = 0,43228 = average thickness,



The preceding relations and values are to be substituted into
the expressions for 8, Y and their derivatives, which in turn are to be
substituted into the end and junction conditions, This latter substitution,
as previously mentioned will result in a system of sixteen equations with
sixteen constants AOi' BOi' Ali' Byjpi=1,23,4, This system of
equations was solved by a reordering of the equations to get a partially
dominant diagonal and then applying Crout's method, The following
results were obtained:

Agy = -2.06 x 1077 A = 2,06 x 1077
By, = 6.86 x 10-10 Aj; = 4.81 x 1079
Agy = -1.12 x 1077 A, = 1.52 x 10°7
By, = 2.01 x 10°7 Bjz = 2,94 x 10°7
Agz = -1.69 x 10-8 Ayz = 9,15 x 10-6
Bos = -2.75 x 10-9 By =-4,03 x 1076
Ag, = -2.46 x 10-10 Ay = 3,66 x 10”7
04 14
Bog = -2.83 x 10°9 Bi4 = 6.52 x 10°7

These values were then used to evaluate 5, ﬂf Y and ¢!
which were in turn used to evaluate the resultant stresses and moments,
IIB, These latter values were then used to evaluate the surface ntnuel‘“
as presented in Figures 5, 6,

The membrane stresses (IIID) for the chosen example have
» been evaluated and are presented in Figure 7,

(1)3tressas obtained from experimental firing results for o 10NN appear to agres
titatively ot {;c points where s{mtu" fouges uic attached. ":: lcfc:‘mlcc

15) iéated in the didliography.
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CIRCUMFERENTIAL STRESS DISTRIBUTION AT THE SURFACES OF A
RECOILLESS RIFLE CHAMBER SECTION (I06MM TI37)
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MERIDIANAL STRESS DISTRIBUTION AT THE SURFACES OF
A RECOILLESS RIFLE CHAMBER SECTION (106 MMT 137)

NOTE: HERE Z REPRESENTS DISTANCE
FROM BREECH END OF
AMBER SECTION.
= MERIDIANAL STRESS
P « PRESSURE

= , ’o-\‘
B /
b t OUTER SURFACE
i ‘ / STRESS .
'
v — MIDDLE SURFAGE OF
- CHAMBER SECTION
L- -
b TS —
= ‘ .
; r
- SURFACE '
s ]
- \
L \
\
= \ ,’
| | L1 A [ I
! 2 . 4 8 6 7 8 9 0 . 12
Z (INCHES) -~y

FIGURE 6



2Ls5

. L IANDA
o-2001-0¥ (S3HON!) 2

a 11 o 6 8 )4 9 S ¥ 3 4 I

1 { i i | I ] i ] i 1

NUNSSRId = d /
SSIULS VUNRIIINNON = §
SSIIS TVNVIRGN - 3, /
NOLLIIS ANISNVHD

40 ON3 HO3INE NOWS
JONVISID SIN3ISHRIN Z NI 110N /

(ZS1LNN90I) NOIWLI3S YIGNVHI
F4IY SSITNO0O3Y Vv NI NOLLNGIMLSIA SSIYLS INVISNIN




jo.

11,

12,

247

BIBLIOGRAPHY
F., B, Hildebrand, "Numerical Analysis', McGraw-Hill
Book Company, 1 January 1956,

O, L, Bowie, "Practical Solution of Simultaneous Linear
Equations", Quarterly of Applied Mathematics, January 1951,

G. E, Forsythe, '"Simultaneous Linear Equations and the

Determination of Eigenvalues', National Bureau of Standards
Applied Mathematics Series 29, 31 August 1953,

E, Reissner, '"On the Theory of Thin Elastic Shells'', Reissner
Anniversary Volume, J, W, Edwards, Ann Arbor, Michigan,.
1949,

E, Reissner, '""On Axisymmetrical Deformations of Thin Shells
of Revolution," Proceedings of Symposia in Applied Mathematics
Volume III, McGraw-ill Book Company, 1950,

R, A, Clark and E, Peissner, "A Problem of Finite Bending
of Toroidal Shells", Quarterly of Applied Mathematics, January
1953,

F, B, Hildebrand, "On Asymptotic Integration in Shell Theory",
- jbid Reference 5, -

P, N, Naghdi and C, N, De Silva, "On the Deformation of
Elastic Shells of Revolution', Quarterly of Applied Mathematics,
January 1955,

R, A, Clark, "On the Theory of Thin Elastic Toroidal Shells",
J, Math, Phys, 29, (1950),

R, E, Lar;ger, "On the Asymptotic Solution of Ordinary Differen-
tial Equations", Trans, Am, Math,, Soc, 33, 23-64, (1931),

R, E, Langer, '"On the Asymptotic Solution of Ordinary Differen-
tial Equations, with reference to the Stokes' Phenomenon about a

Singular Point", Trans, Am, Math, Soc. 37, 397-416, (1935),

R. A, Clark, "Asymptotic Intejration of a Non-Homogeneous
Differential Equation'', OOR-DA-33-019-ORD 1193, June 1954,



248

Bibliography (Continued)

13,

14,

15,

16,

R, A, Clark and E, Reissner, '""Bending of Curved Tubes',

Advances in Applied Mathematics II, Academic Press; pp 93-122,
1950,

E, Reissner, ''On Some Aspects of the Theory of Thin Elastic
Shells', Journal of the Boston Society of Civil Engineers,
Volume XLII, No, 2, April 1955,

Aberdeen Proving Ground, Maryland, '"Firing Record. No
No, M-74445", "Chamber Stresses, 106MM Rifle M40",
TS 4-4020, 18 thru 25 August 1954,

P, N, Naghdi and C, Nevin De Silva, '"Deformation of Elastic
Ellipsoidal Shells of Revolution", Proceedings of the Second
U, S, National Congress of Applied Mechanics, A,S,M,E,
333-343, 1954, ‘




LINEAR PROGRAMMING AND HIGH SPEED
COMPUTER APPLICAT I ONS

by C. Tompkins

Prepared under the sponsorship
of the Office 4 Naval Research,

the Office of Ordnance Research, U. 5. Amy,
and the University of California

Reproduction in whole or in part is permitted
for any branch of the U, S. Government

Numerical Analysis Research
University of California
Los Angeles 2, California

15 June 1956



LINEAR PROGRAMMING AND HIGH SPEED
COMPUTER APPLICATIONS

1. Introduction
In writing of linear programming and high speed computer applications,
I have several excellent works from which I can draw material -- the prelimi-
nary material relating to the increasing practical importance of linear
programming, the mathems tical background of methods of solution, and computa-
tional aspects of these mathematical ideas, I shall refer mainly to three
such sources here, but I must note that I limit my references to these
sources only with the understanding that additional references are available
in the bibliographies they print. The sources are:
The activity analysis volume edited by T. C. Koopmans [1],
The symposium proceedings edited by H. A. Antosiewics [2]%,
The expository book by A. Charnes, W. W. Cooper, and
A. Henderson [3].
I shall set myself the task of describing in a gensral way the
generation of problems of linear programming; then I shall proceed to des-
oribe these problems in their abstract mathematical and econometric settings;

*1t night be remarked that one of the papers most interesting for the
present purposes in [2] is that of A, J. Hoffwan, p. 397-42l, and that many
of his bibliographic references are numbered one lower than they should be,
20 that his references to his [34], (39], and [36] (as they are numbered in
the bibliography) frequently appear as references {33], [34], and [35], res-
pectively in the text.
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finally, I shall report some numerical attacks on such problems using large
machines, indicate some victories and admit some defeats in these computa-
tions. In the course of the exposition, I shall allow myself to wander a
little afaeld, particularly with regard to computations requiring integral
solutions, and I shall reject other tempting excursions into the interesting
work involving efficient sets with respect to several functions to be
optimized; my guide in each case is a combination of computational feasibility
(or convenience) and economic application.

In particular, I shall limit myself to a single numerical utility functionm,
rather than many such functions (or a vector function) because of the dominat-
ing importance of these problems in the present applications which have been
reduced to computation. Economically it is true in times of stability that
the only item in short supply is money and that the value of every other item
can be stated completely in terms of money. Hence the money value is a sound
utility function under these (idealized) conditions. In other times other
goods are in short supply (thus requiring ration coupons or other items not
completely exchangeable for money in order to provide a complete abstract
set of values -~ hence a vector value rather than a scala.f value), but even
in these times campetitive decisions must be made, and theses decisions require
ordering of various possible courses of action so that a most desirable one
can be chosen. Hence, even in the case of Vector utilities each decision may
pave to be reduced to one based on a (possibly temporary) scalar utility.

2. Qeneration of linear programming problems

In describing the generation of linear programming problems, I shall
look at the matter from the poimt of view of an administrator — not a
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mathematician, The words I use will be those of an administrator, and we
shall have to provide a slj;ght translation in arder to get them into their
mathematical equivalents -- in which the same words unfortunately have dif-
ferent meanings.

The administrator is faced with a problem in which he must cause
accomplishment as highly remunerative as possible to his fimm,

If he is a true administrator as opposed to a directly produc tive member
of society, his tools for accomplishing this are a few departments of his
firm, each functioning with some degree of autonomy. His technique for usirg
these tools is to relay to each a set of gensral assigmments (which it
develops into explicit assigmments and carries out). In this assignment,
since the administrator is unable to monitor the whole operation of each
department (otherwise there would be only one department with the administrator
as head), he mist suggest general ocbjectives and a means whereby each depart~
ment can estimate the value of any detailed accomplishment compatible with
these general objectives.

In order to do this, the administrator sets some minimal goals of
suitable results for each departmsnt. Any accomplishment not meeting these
minimal standards is to be rejected either because it is not of enough
intrinsic value in itself to justify the operation of the department or
because it may leave undone pome task essential to the integrated accomplish-
ment of the firm and not explicitly assigned to any other department. These
minimal standards are lknown as suitability restrictions, at least to military

administrators,
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. Similarly, the administrator must allocate the resources of the firm,

He makes assignments to his various departments in terms of money, shop
facilitlies, labor force, and other means available to the firm. These assign-
ments carry with them implicit restrictions that the courses of action taken
by the departments will in no case generate requirements exceeding the means
assigned to these departments. These restrictions are known as feasibility
restrictions to military administrators.

Now, if the administrator were omniscient and prescient he could carry
out his own calculations concerning the best course of action by each depart-
ment. However, there is a considerable amount of uncertainty involved in the
size of & priori planning factors and in the effect of various actions. Since
I am discussing linear programming and not organization theory here, I shall
not discuss the sources of these difficulties, but rather jump directly to
the abstraction.

The department head can, then, expect to receive from his superior a
rule of utility -- what various accomplishments mean to the firm. He has
himself a set of rules of tactics -- what various activities he can set up
in his departmsnt will ultimately mean in terms of accomplisghed output. He
has two types of restrictions -- sultability restrictions which have been
arbitrarily imposed by his superior to guarantee proper accomplishment of
the whole firm, and feasibility restrictions which have been similarly
.1mposed to prevent the firm from taking action which would generate require'-
ments exceeding the means available., To a considerable extent, each of us
has such assignments imposed on him explicitly and implicitly, amd each of
us must plan to maximize the utility of his actions subject to the
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prescribed reatr'ictions. In the case of linear programming, the assigrments
and the rules are stated explicitly, aad they are all assumed to be linear.
Thus, each department may have several activities which it can conceivably
carry out at various levels, It is assumed that the levels can be stated

explicitly and that they are denoted by non-negative activity levels Xgs where
the index a ranges over the set of allowable activities: a = 1(1l)m. (The
notation immediately above indicates that a may take on several values, the
lowest being 1, the highest being m, and successive values differing by the
increment 1 found in the parentheses.)

It is further assumed that there is a set of partinent effects mentioned
in the suitability restrictions, the feasibility restrictions, and the
utility function. These effects will be numbered by a greek letter, say
o, &= l(l)p. The planning rule which the department head (or his superior)
uses is based on planning factors p o 8} the level of each effect expected to
follow from any scheduls of activity is denoted by Vo » and is given by the
formula

(1) Yo '?peuxa .

It is essential in the generation of linear programming problems that the
effects be at least approximated by such a linear homogeneous fornmj how-
ever, devious techniques are allowed in the generation of this formula, and
some will be mentioned later.

The feasibility conditions imposed by the administrator may then be
written as

(2) Yo 6D % € @



£56 Conference of Arsenal Mathematicians
where ¢ is the set of effects which constitute expenditure of the means
assigned to the department and where the quantities b, , % € (0, represent
the assignments of these means to the departmemt.

The suitability conditions imposed by the administrator may similarly be

written as

(3) Yo ®Co o € o

1
|

where o~ is the set of effects in the list of minimal suitable accomplish-
ments required.
Finally, the utility is given by a formula

(L) us P odyye -
x

Here it is assumed that the summetion takes place over the whole range
o = 1(1) 3 ay inconsequential effects may be omitted more easily by setting
the corresponding coefficients equal to zero than by modifying the formula.

It is also Gonvenient , for mathematical reasons, to combine the sets
of inequalities (2) and (3) into a single set. I do not want to spend time
in details here, but I simply note that all the inequalities may be made to
go in the same direction by multiplying those in (3) by -1, and that by
suitable expansion of the range of of or by including meaningless inequalities
(with zero coefficients) which will disappear later we can replace p_ . by

vhere for some valnes &, 9 and for other &, q

Ak a a " Pyas «a " Paa’

Following all this, we can combine formulas (2) and (3), throw in formula (1),
and add formula (4) with the following results:
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the feasibility and the suitability restrictions

are represented by the formula
(5 ) ‘ ; q o & xa € f o ]
and the utility function is represented by the formula

(6) u= Pggx, o
a

'As was stated initially, the activity levels x, are restricted to be non-

negative:
(7) x, *0 .

The problem of maximizing a form of the type (6) subject to linear
inequalities of type (5) and of type (7) is the standard problem of linear
programming .

I note here quickly that several other problems oan be reduced to this
form. If same restrictions ae of the form of equalities rather than inequali-
ties as indicated in (5), then each equality may be replaced by two competing
inequalities which have the effect of the equality restriction. If some
variables are not restricted to be non-negative, they may be replaced by the
difference of two non-negative variables. S8imilarly, by adding non-negative
residue variables, it is possible to change the whole set of insquality
restrictions (5) to equality restrictions., These are matters of technique
wvhich will not enter seriously into the discussion here but which may have
considerable effects on actual computations which are carried out. The
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simplex method, which figures prominently in computation is usually based on
the equality formulation, using non-negative residue variables rather than
the inequality formulation stated explicitly above.

3, Qeometric aspects of the linear programming problem

In a coordinate space of m dimensions, the inequalities (5) and (7) describe
a convex polyhedral set, or they have no solution at all. We call a convex
polyhedral set a convex polytope. The form defined by (6), no matter what
the nature of the coefficients g,, is maximized in this set at one of its
vertices, or it may have no maximum at all, If there are solutions to the
restricting inequalities but no maximum to u, then the function u grows without
bound in the (infinite) region described by the inequalities. Such conditions
are not consistent with properly set ecaromic problems; despite the complaints
of various rabble rousers, almost no one — not even mathematicians -- has
access to infinite wealth.

8o we may admit that the utility function u in any interesting problem
actually attains a maximum in the polytope described by the inequalities and
that this maximum is attained at a vertex. A vertex of the polytope is a
point with the property that mo line segment containing it as an interior
point lies in the polytope.

Our problem is to find the right vertex.

Actually, the recognition of a vertex is not easy computationally, and
finding one is even harder., G. B. Dantsig has pointed out that one can
identify many points as not being vertices by observing that no vertex has
more than p non-gero coordinates. This follows immediately from an observa-

tion that only those inequalities from (5) and (7) which restrict as



Conference of Arsenal lMathematicians 259
equalities at the point in question can enter into the determination as to
whether a point satisfying all inequalities is or is not a vertex, If fewer
than n of these restrictions are satisfied as equalities (remembering that

all inequalities are satisfied at any point of the polytope), then an infinite
number of solutions exist and contain a line segment according to standard
algebraic theory; then the point considered cannot be a vertex. 8ince only p
of these equalities can be from the set (5), and since at least m must be
satisfied at any vertex, the remaining m - ) must come from the set (7), vhich
as equalities specify zero coordinates. The observation of Dantzig follows
immediately. The statement is clearly valid also if the restrictions of

type (5) are stated as equalities instead of inequalities.

The geometric interpretation given above is complete in principle, but
in practice it still gives little hint of ways of arriving at the numerical
solution of any problem. In this we are helped by what may be a less standard
or more subtle geomstric interpretation. Without regard to standards,
subtlety or ingenuity, however, I want to stress here that it is a differemt
geomstric approach, Alone, it might not be any more productive than the
first geometric interpretation I indicated, but the two iﬁtorpretationo used
together have been remarkably effective in producing numerical results. The
joint use of the two geowstric interpretations and the introdwtion of the
following interpretation seem to be due to G. B. Dantsig (although the power
pf the combination in Dantsig's method was first explicitly pointed out —
at least to me — by D. Gale, H. W, Kuhn, and A. W. Tucker). I do not feel
competent here to comment further either on Dantsig's remarkable insight
and ingenuity or on the deep research done by Gale, Kuhn, and Tucker in
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various joint and individual works in making this insight and ingenuity
clearer -- again, at least to me,

The second geometrical approach uses a coordinate space of ) dimensions —
not m dimensions, In this space the rectangular array q‘=k o from the inequali-
ties (5) is considered to be a set of m vectors, one for each value of the
index a with components Qogr X = 1(1) );. The non-negative multipliers x,
in inequalities (5) act on these vectors. For all admissible (that is, non-
negative) x,, the left hand members of inequalities (5) generate the coordinates
of points of a polyhedral cone in this p-dimensional space, and the inequalities
(5) are satisfied by points of this cone which lie in an orthant of the );-d:llun-
sional space lying "below and to the left" (in a multi-dimensional sense) of
the point with coordinates f“ .

It should be noted that in this interpretation the utility function is
not a point function. Thus, if the vectors Qy g AT® not irdependent for all
a, there may be several representations of any one point of the polyhedral
cone described by the left members of inequalities (5). This means that
several different sets X, may correspond to the same point. Furthermore, in
formla (6) these various values of x, may give different values to u, and
in order to determine u it is necessary to know not only the point of the
)x-dimenaioml space at which it is to be determined but also the representa-
tion of this point in the polyhedral cone described by the left members of (5).

It might be worth noting briefly in passing that the m-dimensional set
described by inequalities (5) and (7) might just as well bef described as a
convex region with prescribed vertices, using multipliers similar to those
used in the description of the convex polyhedral cone in J-space. 8imilarly,
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it is true (but nt’ quite obvious) that the convex polyhedral cone in
J-space represented by (5) and (7) might also be described as an intersection
of closed half spaces with boundaries passing through the origin. (A closed
half space is a hyperplane and all the points lying on one side of it.)

Mxch of the recent analysis leading to powerful computational attacks
on the linear programming problem is based on this possibility of desoribing
these sets in two different ways. I shall not go into this in detail here,
however.

4. A problem whose variables are permutations — the assigmment problem

I now turn from the main course of my paper to mention a famous problem
whose variables are permutations and which may be rodti:od to a linesar program-
ming problem. This is a problem of maximizing a function of permutations on
n marks; the function to be maximized is from one particular set of functions
which contains many utility functions of problems important in econametric
applications.

In principle, a problem of maximizing a function of permtations is
even easier to slve than the linear programming problu,. for there are
only & finite number of permutations and one need only try them all. This
finite number may, however, become forbiddingly large if the number of
marks n is large. For example, the number of permutations on 12 marks is
about 4.8 X :I.O8 , but a manufacturer might reasonably inquire as to which
of twelve different products he should make each month during the year in
a single plant. The number of permutations of 20 marks exceeds 1018.

I shall describe a method used to reduce some permutation problems to

linear programming problems, and thus I shall describe by implication the
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type of function which must appear as the utility to be maximised. The
permutations are first written as matrices. A permutation on n marks may be
represented by a mitrix with n rows and n columns subject to the condition
that each row and each column contains exactly one element which has value 1
and exactly (n - 1) elements with value zero., If such a matrix is r, then
it can be interpreted as representing the permutation which takes the mark i
into the mark j for all (4, J) for which ria # 0.

This representation of permutations may be embedded in the set of douwbly
stochastic matrices; these are matrices, also denoted by Pygs whose elements
satisfy the following linear restrictions:

(8) rid » 0 ’
(9) EJ r“ =1 ,
(m) 2 1 rij -1l ,

We might note that one of these last equalities is dependent on the others,
for each of the two sets (9) and (10) inpl!.e.a that the sum of all the
elements of the doubly stochastic matrix is n.

This set of doubly stochastic matrices, then, may be considered as
representing a convex polyhedral set in a space of n2 dimensions. The
matrices which represent parmutations belong to this set. They are, in fact,
f:h. only vertices of the set. This fact has long been known, but Dantsig
points out that a simple inductive proof follows from his observation (noted
sbove) that no vertex of the region has more than (2n - 1) nm-sero coordi-

nates. (Here the observation that one of the inequalities of (9) and (10)
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is redundant has been used.) Not every row of a matrix representing a vertex
can have as many as two elements differing from zero, for this would give 2n
non-sero coordinates in the array; hence at least one row must have a sirngle
non-sero component, which must have the value 1 because of relations (9).
Because of (8) and (10), all other elements of the column in which the element
with value 1 appears must be sero , and the original matrix less this row and
ooluﬁn must be a doubly stochastic matrix with (n - 1) rows and columns.
Purthermore, if the point in question is a vertex of the original matrix,

the new (n - 1)x(n - 1) matrix mwst also represent a vertex, and the inductive
proof follows easily.

Thus, the introduction of doubly stochastic matrices permits the
permutations to be represented as the vertices of a convex polyhedrel set;
'4f the utility function to be maximized can be extended to be a linear
function over this set, which is the case for an important class of probleams,
the problem can be stated as a linear programming problem.

An exmmple of this kind arises when n objects are to be assigned to n
positions under a suitable utility ruls. These objects may be people
assigned to jobs, they may be factories assigned to areas, and so on. The
restriction on the utility function is that there is a number describing
the value of each cbject in every possible location and that this value is
independent of the assignments of the remaining objects to the remaining
pod.tionl. In short, there is to be an array 81.1 of utilities to be
achieved independently if the i-th object is assigned to the j-th position.
The permutations in question are those relating the ordered set of objects
to their assigned positions, If these permutations are represented by their
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matrix in the manner described above, the total worth of any arrangemant is
given by the utility function

(11 - .
‘ ) v 213 815 Ty

This function extends naturally to become a linear function defined (according
to the same formula) over the space of doubly stochastic matrices, and the

linear programming problem is thus set.
5. Economic eouilibrium and a duality theorem

This section will be devoted to a proof, from the point of view of cost
and utility, of a theorem which is really geometric in its content. The
theorem itself was recognized implicitly by Dantzig and explicit algebraic
statements and proofs have been supplied by Gale, Kuhn, and Tucker in various
‘papers, The proof which will be developed here is a specialiszation of a study
of some conditions of economic equilibrium contained in other work to be
published by R, E. McS8hane and the author.

I again consider the major problem stated in terms of the inequalities
(5) and (1), Z, Qqa %y € Ty
that the utility function expressed in (6) u = I

and x & 0, respectively, and the requirement
a & X, be maximised subj.t')t
to the above feasibility restrictions.

I shall here assume that the numbers f, in restrictions (5) represent
gctual investments in plant or other facilities and that these restrictions
are obtainable under a rental agreement., It will be convenient notationally
to consider that fo 18 a particular set of restrictions which has been
bought or rented and that competitive sets have values denoted by 'fo‘ or by

other similar marks deviating from f .
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The rent corresponding to a set of restrictions 1'“ (expressed in the
scale used in (6) for the utility computation) will be denoted w(¥). In
some particular cases I shall be interested in a function w which is a
linear form; I shall reserve the symbol v for this function, and I shall
always use the marks s, as coefficients in this form, so that

(12) Vs 8qz“1'q N

-

Now, the point of view will be that a set of facilities abstractly
denoted by f, has been rented at a rate of w(f), Under optimal operations
this will yleld a utility u'= I, g, X,, vhere X, 1s an optimal choice of
activity level admissible with the given feasibility restrictions. Some
other set of facilities abstractly denoted by ?q could be rented at a rate
w(¥), An obvious question to eamine is the question of whether there is anm
economic force in favor of changing the feasibility restrictions rented,

I shall here point cut that for some choices of ¥ there may be no
solutions at all to the inequalities (5) and (7), I shall rule these candi-
dates out as not admissible. Other choices might' conceivably lead to
possibly unlimited utility, btut I shall ignore these on the same basis as
above —- namely, lack of interest., (Actually it will become clear that
there is no vay a problem with a finite maximum attainable utility can be
deformed into one with possibly unlimited utility without changing the
coefficimts qq ,.) In order to avoid tedious detail I shall omit most
reference to admissibility and to the possibility of unlimited utilities,

However, I shall establish some formal descriptions of terminology in
order to esase the job of expressing the ailble for extensive remarks which
will be pertinent.
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DEFINITION. A set of restrictions ¥ will be said to be admissible if

there exist activity levels : which satisfy the feaaibilitz restrictions

(5) and (7) with the values Tq inserted in the right members of (5):

(5) - Eqd‘ x“rq (]

(7’ X, 0 .

DEFINITION. A set of activity levels x, will be said to be admissible
with ¥, if they satisfy the fessibility conditions (5) and (7) as stated

above.

DEFINITION, For some fixed fq let 'i‘ be 3' set g£ activitﬂ levels

maxinizing the form (6) w = 3, g, x, subject to the feasibility restrictions
(5) 2 q, o X, € L and (7) x, » 0. Dencte by 8 the subset of these restric-

~ tions (5)_and (7)_which are satisfied as equalities by Xq+ A 80t of
restrictions ¥, 1is weakly adeissible relative to 8 if it admits a set x,
satisfying the inequalities of 8 with the numbers I'Q substituted in the
right mesbers of (5). .
DEFINITION. A st of activity levels is weakly admissible with

respect to restrictions ¥, which are weakly admissible relative to S
(associated with 1’q
which ?‘l have been appropriately substituted in the right members.

Then, attention will be restricted to a set (implicitly defined) of

and X,) if it satisfies all the inequalities of 8 in

admissible or weakly admissible values l'q , and functions t(¥) and ¥(T)
will be defined implicitly for these values;

DEFINITION., The functdon t, defined for every admissible set ¥, as

argument,is the maximum attainable utility in expression (6) associated

-
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with the restrictions fq in the right members of inequalities (5) when these

inequalities are used with (7) to define admissible activity levels.

DEFINITION. The function ¥(¥), defined for every weakly admissible set

T, relative to mme set S of inequalities (5) and (7) is the value of the

maximum attained by the utility expressed in the linear form (6) among weakly

admissible activity levels relative to S.

LEMMA 1. For ay f-t and x, the function ¥(¥) is defined for all fq
 for which t(T) is defined, T(¥) » t(T), and T(f) = t(2).
Proof. The inequality is an obvious result of removing admissibility

restrictions from the admissible set to create the weakly admissible set. The
final equality follows from the non-restrictive nature of the dropped inequali-
ties at the optimizing solution X,.

LR 2. The set of admissible or weakly admissible activity levels

associated with any admissible or uukly agiuiblo set of restrictions { is

the vector sum of any solution of the set plus the set of solutions of the

sot with ¥, = 0.
Broof. This is a standard result of linear algebra,

LB 3. If x, is an admiseible or weakly admissible set of activity
levels for some admissible or weakly admissible . ,
or weakly admissible set of restrictions f' neighboring ?Q admits or weakly
admits activity levels neighboring x,.

Proaf. The proof is a etandard exercise in linear algebra using

then every admissible -

lemma 2, : .
LD#A 4. If any feasible ¥ _or weakly feasible Yo sxists for which (T) or
T(¥) exists and is finite, then t(¥) and T(T) exist and are finite for every




268 Conference of Arsenal Mathematicians

feasible or weakly feasible 1‘0‘ and in particular t(0) = ¥(0) = 0.

Proof. The proof follows immediately from the linear homogeneous
nature of the utility u, and from lemma 7 below.

With the definition of t(T), it is easy to describe a condition of
economic equilibrium in which there is no economic force to change an assign-
ment of feasibility means from the values fq to some new values !'q .

DEFINITION. A feasibility assignment f, 1is an equilibrium assignment

«
if and only if for every admissible T
(13) w(T) - w(f) » (1) - t(£) .

This definition says in effect that the cost of changing the feasibility
means is no less than the gain which could be attained by the change in
potential utility which would be implied,

Several ocbvious statements will be made about functions which cause fq
to be an equilibrium assigmment. They will lead to the duslity theorem which
will say in effect that in any problem it is possible to give an example of a
linear homogeneous function w = v which renders a particular feasible f.‘ an
equilibrium choice. This abstractly rossible rent is useful in computation
whether it is a realistically attained rent or mot.

Lo 5. If w(¥) = t(T), then fo i3 3n equilibrium assigmment.

Proof. Under the conditions of the lemma, (13) is satisfied identically
as an equality. .

LRMA 6. If w(f) = t(f) and w(f) » t(f) for every ¥, , then f, 1is an
oquilibrium assigrment.
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Proof. Under the conditions of the lemma, inequality (13) is satisfied
immediately.

The development will now follow a course in which it wl 1l be proved that
t(Y) is a convex positive homogeneous function of weight one and that a sup-
porting linear homogeneous function will serve as w(T).

LA 7. If T, 1is feasible and if p 1s a positive number, then PTa

is feasible and t( f!') = pt(T); that is, t(f) is positive homogeneous of

weight one.
Proof. If X, is an optimal solution for %y » then p X, is clearly a

feasible set of activity lsvels for restrictions p!’q and hence, since the
utility of any set of feasible activity levels is expressed by a linear
homogeneous form and since the particular feasible solution p:?. isa
compstitor for the optimizing solution, it follows that t(p Iq) » (Ty).
Howsver, if an eptimising solution x", for the feasibility restrictions Ply '
is selected, the same argument with multiplier p'l gives t[p-l(pf)] 2

P'l t(pf), and the equality follows. This completes the proof of the
lemma.

LEMMA 8., The statement of lemma 7 is valid for the function T and

weakly admissible restrictions T,

Proof. The proof is that of lemma 7.

LB 9. If T is weakly feasible relative to fo and X, then
fa " Lo + P(rq_ - fq) is feasible for all P > 0 &d'ﬂfq + f(!'q - fq)] -
f(tQ)'-r PE¥Ty - t)-

z_:;»_t. The proof is that of lemma 7.
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LEMMA 10, The function t(T) is convex; that is, for any admissible
restrictions Tq and f', and for any numbers A and p which are both non-

negative and vhose sum is one it is true that AT, + Af'q 1is admissible

and that
() WAT + pr') 3 AS(E) « p(e!) .

Proof. The admissibility of AT, + pfy 1is olear, for if X is
‘admissible with To and if x', is admissible with f's , then A X, + X, is
admigsible with Afx + }:.t'q 3 this follows immediately by multiplying the
inequalities (5) and (7) (with appropriate choices for X, = §‘ or :r." apd
fo ® ;(or I'Q) by the non-negative numbers A and B+ If the two sets of
activity levels are optimising, each for its associated restrictions, then
the utility associated (by (6), which is a linear form) with the admissible
aotivity level AX, + x', subject to the new restrictions qu + ':.t'q 1s
AUD) pH(£'), and inequality (1) follows immediately, This completes
the proof of the lemma.

LROU 11, The function ¥(¥) is comvex.

Proof. The proof is that of lemma 10.

These lemmas prove that t(¥) and T(T) are convex functions which are
positive homogeneous of weight one., Readers with an intimate imowledge of
such functions and who may be familiar with recent work on econometric theory
based on considerations of suh functions may jump to immediate conclusions
which will be established in the next theorem. Those who are willing to
apply Euler's theorem on homogeneous functions ignoring the possible lack
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of the required partial derivatives may prove the next theorem shortly by

(?) = (a r“> ,

and applying the lemmasabove.

setting

THEOREM I. There exist numbers z ., assoclated with any feasible f

¢

the function w(I) = v(T) =2_ 32 T

such that if for this choice of z o Tole

o
then the restrictions fq are equilibrium restrictions.

Proof. First consider the possible case that t(f) = 0 and t(T) € 0 for
all Tq . In this case the coefficients may be taken 3 o = 0. With this
choice the value of v is identically zero and the theorem follows by
lemnma 6. |

Otherwise consider the following castruction. Find the set F' of
values Y,‘ at which T(T) = t(f) + h, where h is a small positive constant.
It will be shown later that F' has content and that it 1s closed, Choose on
F* & point closest in the sense of euclidean metric to f, j call this point

f'q . Writes, = "(f'q - f“) and choose o~ = , Where

(L - £ )7
h 1s the positive number chosen in F.

Before continuing with the proof, note that the positive content of the
set F* follows from the lemmas above. In particular, if t(f) £ 0, some T,
on the ray joining the origin with f (on one side or the other of foc
depending on the asign of t(f)) will 1ie on F* for small enough h, according
to lemma 8, If t(f) = O, and uwsing the assumption already made that there
exists some fq such that ¥(T) » 0, there must exist a point on the ray from

by

o through such Ty on F*, according to lemma 9.
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The fact that F* is closed follows from the continuity of the form (6)
giving the utility function and lemma 3. Hence the point f;,t mentioned
above must exist.

Now, if fo and f'q are collinear with the origin, it follows from
the facts that v(f') ~ v(f) = h, that v(0) = 0, that v(¥) is linear, and
from lemma 8 that v(f) = t(f) and v(f') = ¥(£). If fog and f', are not
collinear with the origin, then the same results can be obtained by noting
that lemmas 8 and 9 guarantee the linearity of T(¥) when Tq is restricted to
move in a single two-dimensional plane containing the segment from the origin
to td.‘

The rest of this proof depends on noticing that the determination of 2z &
is independent of the size chosen for h in determining F*, This follows
immediately from lemma 9 using the same linear reasoning as that employed in
lemma 73 that is, if two different values of h gave two different values of
B then the usual inconsistenoy shows up that neither of these can be good,
for each furnishes a oompetitive rate of change for the determination of the
other.

With this observed an analogue of Euler's theorem, using the g X instead
of partial derivatives (they were computed by formulas suitable for computing
the partial derivatives of a linear homogeneous function from the information
granted) will give the final desired result. This analogue is that with this
choice of 3, used as partial derivatives of T(T), 1t 1s true that T(T) « Is q"!’o‘ .
This result is a natural one, for the inequality may occur when the restrictions
prevent the use of linear interpolation. However, the proof of this theorem
does not follow the usual proof of Buler's theorem. Rather it depends on a

simpler geometrical argument, which will be sketched.
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If the proposition is false, ti.un there must exist a point " o such that
"
B(m) > 2 o2
b « determines a two-dimensional plane, and in this plane the function H(T)

f"«. Now, this point f", along with the origin and the point

is linear according to lemmas 8 and 9. Since the function v = 3 o ® d_l'e‘:l.s
linear and since the values of T and v agree at fo s it follows that T must

exceed v at all points along the ray from fo through £ Now, if this

o *
ray intersects or is parallel to the hyperplane v = t(f) + h, where h is the
positive value used to determine f'q ; then it must be true that £l is
firther from £, than some other point determined as follows. The point on
the ray at which T(¥) = t(f) + h is determined, and the segment between this
point and f'“ is constructed. By assumption, there is a point on this seg-
ment closer to fq than 1is f'y - By lemma 10 the valus of T at this closer
point is at least t(f) + h, and if it exceeds this value at this point there
is (by lemma 9) a point even closer at which T attains the value £(%) + h.
This completes the contradiction if v is increasing along this ray.

Final#, if the ray from fq through ", is a direction of decreasing
v, then a similar argument relative to the rays from f‘ through a point of
the segment joining f'q and f"q leads to a contradiction, for it is easily .
shown that T exceeds v and increases along such a ray. This completes the
proof of the theorem,

We now turn to the duality theorem.

THEOREM 1I. g&mm(é), u=Z, g, X, is maximized at

x, = X, amorg admissible variables x_ subject to the feasibility restrictions

(5) T, q, x,<f, and (7) x Z0, then the linesr form
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(1) ve zd ftx -1

attains a minimum at some set of values z a % o Among admissible variables

2 subaect to the restrictions

o

(15) By 20

and

(16) Vidae ®a *6a -

Furthermore, ¥4 = O for every o¢ for which Z qq, X, < fo , and X, = 0 for
every a for which I 9ga 2> 8a° Noreover the maximal value of u equals
the mininal valus of v.

Proof. The minimal value of the form v will be shown to be taken at the

valyes z « computed in the proof of the last theorem.

In the first place it is easy to show that these values are admissible
under (15) and (16), Indeed, if v = I B fq 18 a rent which renders f“ an
squilibrium restriction, it is obvious that z4 3 O3 otherwise the rent would
be lowered by increasing the values of 1‘q for any values of & corresponding
to negative s, , and this decrease in rent would not be accompanied by any
restriction in activity; in faoct, it would generally be accompanied by
greater freedom of activity, hence no decrease in utility. This proves that
the coefficients s, developed in connection with theorem I satisfy condition
(15).

Similarly, if condition (16) is violated for some value of a, then the
restrictions should be increased by enough to permit a unit increase of the
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activity level x, for this value of a. This increase will require at most an
increase of Qa of the o ~th restrictions at a total cost of z‘.“qq‘ B8 if
condition (16) is violated the gain from this, g,, exceeds the increase in
rent and hence the levels of restriction are not equilibrium levels. This
completes the proof of the admissibility of the coefficients s . of theorem I.

o

Now, if restrictions (5) are multiplied by the non-negative numbers B
and summed and restrictions (16) are multiplied by the non-negative numbers

t and summed the following inequalities result:

%
ve Nf&'q 2“‘0:.&": 5 Lggx =0 .

Thus, for no admissible choice of x, and 54 is u larger than v. However,
for the existence of no force proved in comnection with the choice of o in
theorem I, there can be no force toward the feasible income of sero connected
with restrictions set at the zero level; that is, there will be force to go
out of business unless u & v, Thus, for the optimal choice of x = X, and
the choice of s, made in the last theorem, it must be true that u = v; this
proves the equality advertised in the last sentence of the statement of the
theorem.

Finally, we need only notice that any strict inehwality among the set
(5) is preserved as a strict inequality if it is multiplied by a positive
nusber s , and is preserved as an equality if it is multiplied by a sero
mmber S » whereas equalities are preserved as equalities when multiplied
by any so . A similar remark applies to the inequalities (16) and multipliers
X In order to have the equality preserved, the condition stated in the next

to last sentence is necessary. This completes the proof of the theorem.
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6. Numerical solution of problems

The application of theorem II above in many ingenious ways has led to
realistic computational attacks on problems. One of the most ingenious and
successful of these is the simplex method which has been developed by
G. B.Dantzig and his coworkers and which is described in some of the publica-
tions already cited.

The description of the simplex method in a short space has defied good
expositors, and there is no Intention of presenting a full or even a workable
account of computational methods in this paper.

However, it should be noted that methods are developed to a point where
they are applicable completely automatically on high speed computers, and
that pi'oblm with a hundred or more variables and a hundred or more restric-
tions are now feasibly attackable through the use of these systematic attacks
on the larger machines now avallable.

I shall include a short example., It will be solved by methods not
generally applied to the numerical solutions of problems, but the solution
will 1{llustrate some of the points of theorem II above.

The example pertains to the function

(n) UeXx) 42+ 3%y + g,
which is to be maximized subject to the feasibility conditions
2314'1!24',.“34-1&‘6 »

(18) 3x) + 2xp + 2%y + 3M, €9 ,
lx1+h:.2+333+2xh‘7 R
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and the non-negativity conditions

(29) x, »0 .
The dual problem to this involves the form

(20) v =63y + 93y + 123
which is to be minimized subject to the feasibility conditions

2:1+3:2+lz3§1

lll + 2.2 + hl3> 2

h|1+2|2+3l353

(21)

»

1s) + 38g + 283 2 Ly

-

and the non-negativity conditions

Before the illustrative problem is convinued, let it be perfectly clear
that the complete unanimity of positive signs among the coefficients is a
great help (but it is a help which may appear in many problems of practical
significance = and unfortunately be missing in many others of at least as
great significance).

8ince it is established that vertices of the regions of feasible solu-
tions will maximise or minimize the functions considered, a first attempt will
be made to find vertices. In the problems at hand, this is easy (again the
positive coefficients help). An initial start for x, is x, = (0, 0, 0, 0).
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This is a vertex of the region (the unique solution of the four equations
got from (19) by rejecting the possibility of inequality), and a simple
test shows that it satisfies all the conditions (18) as strict inequalities.
The value attained by u at this point is O.

Turning to the dual problem, the solution of the three equations which
can be got by rejecting the possibility of inequality in (22) is not feasible;
indeed, it satisfies none of the rdations (21). However, a feasible solution
can be obtained by readmitting one of the inequalities from this set and
extracting an equation from (21). If we set %, = 8y = O artibrarily as the
equations retained from (22), it develops that the fourth of inequalities
(21) is most binding on %3, and we get a vertex at (0, O, 2).'

Now according to theorem II these two vertices would constitute solutions
of the problem and its dual if and only if the value attained by u and that
attained by v are equal. The value attained by v at this vertex, however, is
1, which is greater than the zero value attained by u. Consistent with
theorem II, we note that a non-sero value of s, appears even though the third
of the inequalities (18) is satisfied as a strict inequality rather than as
an equality. This furnishes some guide to a msans of improving the values
obtained.

Since the fourth of the inequalities (21) is satisfied by the z~vertex
in hand as an equality, theorem II would encourage the enlargement of x),.
Thus we replace the fourth of the restrictions (19) by an inequality and
seek an equality among the set (18). The most binding of these inequalities
(18) under this cpnditions, x; = x, = x3 = O 1s the second, and we are led to
a new vertex x, = (0, 0, 0, 3). At this vertex, the value of u is 12,
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S8ince the second of the inequalities (18) is now satisfied as an squality,
we are encouraged to permit the value of zp to become positive in seeking a
better vertex in the z-space. The earlier restriction 2o = 0 will be replaced
by an equality extracted from one of the first three inequalities of (21) —
the fourth of these inequalities is already satisfied as an equality. The
third equality is adequate, and the vertex it gives (with the other restric-
tions) is 3, = (0, 6/5, 1/5)3 for this vertex, v = 61/5,

Again, we do not have a solution of the problem and its dual, but there
is considerably better agreement between the values of u = 12 and v = 61/5 than
¥we had attained before. The discrepancy is still due to the fact that the
third of the inequalities (18) is satisfied as a strict inequality while
s3> 0.

The z-vertex now in hand satisfies the third and the fourth inequalities
(21) as equalities, and hence both x4 and %, are encouraged to seek positive
values. Thus we relax the equality xy = 0 to the inequality Xy » 0, and we
seek to satisfy another of the inequalities (.18) as an equality (meanwhile
satisfying all inequalities, of course). We retain the second eduality
from (18) which is satisfied at the old vertex. The solution obtained by
satisfying the third relation of (18) as an equality satisfies the first
relation as a strict inequality, and we have a new vertex x =

(0. 0, 3/5, 13/5).

Actually, this completes the solution of the problem. This follows

from the evaluation of u = 61/5 at this vertex, a value which agrees with
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the value obtained for v at the last z-vertex, Furthermore, we might notice
that the positive components of the z-vertex correspond to values of the index
for which relations (18) are satisfied as equalities, as theorem II demands,
and that the positive components of the x~-vertex correspond to values of the
index for which rolations (21) are satisfied as equalities.

This completes the example.

C. TOMPKINS
Numerical Analysis Research
Department of Mathematics
- University of Calidrnia
Los Angeles 2L, California

15 June 1956
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The Basic Principles of a Two Dimensional Slide Rule
Clarence R. White¥* .

The primary objective of this paper is to present a Two Dimensional
8lide Rule which combines the features of special purpose graphpaper, nomograms,
slide rules and the like. Such a device will consist of two transparent
surfaces.

The first surface will be called the 'base surface®! or *body* upon which
are drawn appropriate function scales and a set of curves in color, the
rectanguiar coordinates of which are given by

1. (g, log trig )] in figure 1

2. (x, log x) in figures 2, 3, 4, 5
3. (x = log tan @, log trig @) in figure 6

4, (£(@), log trig @) in figures 8, 9, 10, 11
5. (@, log trig #) in figures 13, 1k

This surface corresponds to the *body* of the one dimensional slide rule.

The second surface will be called the *sliding surface' or 'slide* upon
which are drawn sets of scales colored to match not only the co-operating
curves of the base surface but also the quantity under consideration. The
division marks of each scale are perpendicular to the straight line axis
which theoretically is infinite in extent. The index of a scale 1s that mark
vhich denotes the number 1. This surface corresponds to the *slide® of the
one dimensional slide rule. See figures 1 and 12:

The fundamental principle of this Two Dimensional Slide Rule results
when a sliding surface comes to rest upon a base surface in such a way that
the slope of an axis when referred to the coordinate system of the base
surface is 90 degrees, 1.e. perpendicular to the horizontal direction, since
each apparent intersection of a base surface curve with a sliding surface
axis determines a point on curve and on axis. Identification of results is
also accomplished by the introduction of alignment algebra which gives coding
symbols for the location of desired solutions.

The Two Dimensional 8lide Rule may be regarded as a speclal case of
alignhbnt charts vhich is limited to real positive numbers and represent
solutions to x(y) "z = 1. The use of a base surface and a transparent sliding
surface, upon'each of which the horizontal rulings are linear and the vertical
rulings are logarithmic (corresponding to the y-scale and z-scale respectively)
affords a ready means for the comstruction of alignment charts for all values

of n.

#Ballistic Research LaboratoriaQ
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See figures 2 and 3.

It also gives a solution when any three of the four numbers are specified
provided that the sliding z-surface whose index i1s the index of its z-scale
be superimposed upon the base y-surface at the point (n, log x) for n and
x given; at the point (1, log x) for n not given. Consider the following
cases for the solution of x(y )z = 1.

1. Given (n,x,y) = (2, 4, 6) with index location at (n, log x), find z = 9

See figure U4

2. Given (n,x,z) = (2, 4, 9) with index location at (n, log x), find y = 6
See figure

3. Given (x,y,z) = (4, 6, 9) with index location at (1, log x), find n = 2
See figure 5

The index location of the sliding z-surface is thus a two dimensional
parameterization and gives rise to the motion of the sliding surfaces of
the Two Dimensional Slide Rule. The alignment solution for case (1) results
from the alignment of y = 6 on the y-scale with the point (0, log 1) to give
the answer z = 9 on the z-scale. The alignment solution for the case (2)
results from the alignment of z = 9 on the z-scale with the point (0, log 1)
to give the answer y = 6 on the y-scale. The nomographic solution for case
(3) results from finding the point z on the z-surface along the line deter-
mined by the points (O, log 1) and the position of y = 6 on the y-scale at
the point (1, log y). The abscissa of z is the desired value of n = 2 on the
n-scale which is horizontal. It is convenient to insert a plece of thread
at the pivot point (0, log 1) on the base y-surface to serve as the unmarked
straight edge or axis.

The repeated use of such an axis in nomography suggests the introduction
of an algebra of alignment charts which will be illustrated from the Line
Coordinate Chart given in figure L.

The symbolism to be introduced stems from the fact that an alignment
chart is made up of Scales, Axes and division Marks. If now these three
elements be identified by means of the capitalized letters in the order Jjust
given, then symbolically

Si)A(MJ represents a point on the Axis determined
by division Marks on the Scale so that MJ
represents & number which is in one-to
one-correspondence with the points of axis.



Aa

ra

An algebraic symbolization of procedures is made possible by

8, )A(MA & Si)B(MB denotes the horizontal translation of a
point from axis A to axis B

8, )A(MA : Si)B(MB denotes the axis determined by two points

S:'.)A(MA : 81)18(}4]3 1 By )C(Mc denotes the alignment of a third point with

two other points

The designations for axes fall into two categories (1) a number associated
with its intersection upon the horizontal axis and (2) a literal expression based
upon its functional representation. A similar analysis follows for a point on
such an axis: (1) a number associated with its position on the axis which is ver-
tical and (2) a literal expression based upon its functional representation, thus

Si)A(MA - £(x) denotes the value of f(x)
The alignment algebra gives for Case (1) figure 4
/Blue)O(l : /Blue)l(y=6 :: Yellow)l(z=9

Coding symbols for the location of a point on a sliding surface will be
denoted by a number triad, where the first number refers to a function scale;
the second number, to a vertical axis; and the third mumber, to a point on the
axis. The symbolic expression is S, )A(M..

Coding symbole belonging to a Iiaase surface will be preceeded b}'hz symbol .
Horizontal scales will be denoted by three symbols, the first of which is 's';
the second, a number; the third 'c', such as [_3_2_5, [_5_22, etc. A point m, on such
a scale will be denoted by ZS2c§22.

Curves for I-Base Surface-I (figure 1) are constructed from points whose
Ord:lf:atc = log I"n(x) and whose Abscissa = log hav @ or log Hav(@ + 90°) where

Fa(x) =csc @ =(L+8)2VIS

Pb(x) =cot @ = (L -8)2VyI8
Fc(x) =gec # = (L +8)/(L-8)

Fd(x) = one

Fe(x) =cos @ = (L- 8)/(L + 8)
Fo(x) = tan ¢ = 2VIF/(L - 8)
Fg(x) = sin § = 2V18/(L + 8)
Fh(x) = hav @ = 8/(L + 8)

A

Fx(x) = Hav(@ + 90°) = L/(L + 8)

for O 1s less than 8 1s less than L and for 10° 1s less than @ is less than or
equal to 90°,
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Coding symbols for the Two Dimensional Slide Rule

Blue)2(M, /a

 Blue)2 /85¢(50°
Blue)2 Zs5c§50°
Blue)2(20° /a : Blue)2 /s5¢c(50°

Green)1(L /H : Green)1(8 /h
Oreen)1(L /H : Green)1(S8 /h :: Green)L(M /a

Blue)2(20° /a : Blue)2 /s5¢(50° 11 Orange)2(M /a

denotes a point on Axis )2(
determined by the division
marks of its blue scale which
point is on curve /a of base
surface.

aligns axis )2( into a one
dimensional slide ruls movement
along the division 50 of the
horizontal scale, s5c.

also means that the vertical
axis )2( is perpendicular to
the horigonta.l axis of 85c at
point 50" on it.

fixes the position of the sliding
scale )2( by means of a number
on it and the number on scale,
s85¢c.

fixes the position of the sliding
scale )1( by means of two
numbers on it.

determines the answer M at the
intersection of the axis )1(
with the curve /4

determines the answer M at the
intersection of the axis )2(
with the curve /4

Figures 6 through 14 represent Two Dimensional Slide Rule Solutions

to the problems therein defined.

My thanks to co-workers who had a part in the preparation and in the

publication of this paper.
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