AD NUMBER

AD222471

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Jan 1949. Other requests shall be referred to Pitman-Dunn Lab., Frankford Arsenal, Philadelphia, PA.

AUTHORITY

AFA ltr, 18 Jul 1967

THIS PAGE IS UNCLASSIFIED
Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Disclaimer Notice

This document is best quality available. The copy furnished to DTIC contained a significant number of pages which do not reproduce legibly.
FUNGUS TESTS ON POLYVINYL CHLORIDE FILMS PLASTICIZED WITH THREE PLASTICIZERS

by

Sigmund Berk

SECOND REPORT

PROJECT TMI-15360

PITMAN-DUNN LABORATORY
FRANKFORD ARSENAL
PHILADELPHIA, PA.
January 1949
REPORT NO. R-989

FUNGUS TESTS ON POLYVINYL CHLORIDE FILMS PLASTICIZED WITH THREE PLASTICIZERS

SECOND REPORT

PROJECT TM-1-5360

PREPARED BY:

SIGMUND HERK
Chemist

REVIEWED BY:

MAX FRÄGER
Chemical Engineer

APPROVED BY:

C. G. FANGERT
Director
Pitman-Dunn Laboratory

FOR:

W. E. HECKER
Colonel, Ord Dept
Commanding

Previous report

R-69 T

bob
OBJECT

To determine the susceptibility to fungus growth of polyvinyl chloride films plasticized with dibutyl sebacate, dioctyl phthalate, and butadiene-acrylonitrile, and to determine the effect of the fungus growth on the tensile strength and percentage elongation of the plastic films.

SUMMARY

Fungus resistance and tensile strength tests were conducted on polyvinyl chloride plastic films formulated with three plasticizers. The film with dibutyl sebacate as the plasticizer was very susceptible to Aspergillus flavus and to a species of Penicillium and Trichoderma. The dibutyl sebacate plasticized film which was inoculated with the species of Trichoderma showed a large increase in the tensile strength and a significant decrease in the percentage elongation. The increase in tensile strength is attributed to the removal of the plasticizer from the film by the mold.

The polyvinyl chloride films formulated with dioctyl phthalate or butadiene-acrylonitrile as the plasticizers showed only slight susceptibility to the species of Trichoderma used. At the end of a 6 weeks' incubation period, the two plastic films exhibited only insignificant changes in the tensile strength and percentage elongation.

Insofar as resistance to fungi is concerned, it is concluded that dioctyl phthalate and butadiene-acrylonitrile are satisfactory plasticizers for this polyvinyl chloride plastic formulation.

AUTHORIZATION

00 471.873/636, ORDTM: FA 471.8732/5635, 20 Oct 1948
Initial Distribution of This Report

1 - Chief of Ordnance
 Dept Army
 Washington 25, D. C.
 Atttn: OHTX-AR

1 - OHDIM

1 - OHDTM

1 - OHDTS

1 - Commanding Officer
 Picatinny Arsenal
 Dover, N. J.
 Atttn: Tech Group

1 - Commanding Officer
 Rock Island Arsenal
 Rock Island, Ill.
 Atttn: Tech Group

1 - Commanding Officer
 Watertown Arsenal
 Watertown, Mass.
 Atttn: Tech Group

1 - Commanding Officer
 Springfield Armory
 Springfield, Mass.
 Atttn: Eng Dept

1 - Commanding General
 Aberdeen Proving Ground
 Maryland
 Atttn: Lab Serv Div

1 - Commanding General
 Ordnance School
 Aberdeen Proving Ground
 Maryland
 Atttn: Tech Intell Br

2 - OHTS (2 copies for Prevention
 Deterioration Center)
TABLE OF CONTENTS

I. INTRODUCTION 1

II. METHODS AND RESULTS 1

A. Susceptibility to Mold Growth and Fungistatic Properties of a Polyvinyl Chloride Film Plasticized with DIBUTYL SEBACATE (Test 1) 1

B. Susceptibility to Trichoderma sp. and the Effect of the Mold Growth on the Tensile Strength and Percentage Elongation of Polyvinyl Chloride Films Plasticized with Three Plasticizers 2

1. DIBUTYL SEBACATE (Test 2) 2

2. Dioctyl Phthalate (Test 3) 4

3. Butadiene-Acrylonitrile (Test 4) 5

III. CONCLUSIONS 5

Table I

" II
" II a
" III
" III a
" IV
" IV a

Figs 1, 2, 3
I. INTRODUCTION

Plastic films were cast from three formulations containing a mixture of polyvinyl chloride resin, plasticizer, polarized oil, light inhibitor, and methyl isobutyl ketone. These dispersions were prepared by a new method involving electronic heating. The polyvinyl chloride dispersion is used hot (80°C-100°C). After casting, the films were aged for two weeks at room temperature to allow the escape of solvents.

The intended use of the polyvinyl chloride dispersion is as a hot dip to close perforations in cartridge cases. Since it is desired that the plastic be fungus resistant, the film plasticized with dibutyl sebacate, the first film available, was tested for susceptibility to mold and possible fungistatic properties (Test 1). Additional polyvinyl chloride plastics plasticized with dioctyl phthalate, or butadiene-acrylonitrile were also rated for their susceptibility to Trichoderma sp. and the effect of such mold growth on the tensile strength and percentage elongation of the films (Tests 2 to 4, inclusive). The plastic formulations containing dibutyl sebacate or dioctyl phthalate had 20% solids. The third formulation containing butadiene-acrylonitrile plasticized had 15% solids.

Dumb-bell specimens 6" long (Fig. 2), having a constriction 1/2" wide and 2" long, were cut from the cast films with a metal die. (1) The dumb-bell specimens were then conditioned at room temperature for an additional two weeks prior to exposure to mold tests.

II. METHODS AND RESULTS

A. Susceptibility to Mold Growth and Fungistatic Properties of a Polyvinyl Chloride Film Plasticized with DIBUTYL SEBACATE (Test 1).

Forty-ml portions of mineral salts agar (2) with and without 1% dextrose were poured into 16-ounce square bottles. The bottles

(1) Federal Specification ZZ-R-601a, 25 June 1940, "Rubber Goods; General Specifications (Methods of Physical Tests and Chemical Analyses)."

(2)K_2HPO_4 0.7 g. FeSO_4·7H_2O 0.002 g.
K_2HPO_4 0.7 ZnSO_4·7H_2O 0.002
MgSO_4·7H_2O 0.7 MnSO_4·H_2O 0.001
NH_4NO_3 1.0 Agar (Difco) 15.0
NaCl 0.005 Distilled water 1000.0 ml
containing the medium were sterilized at 15 lbs pressure for 20 minutes and placed on their sides. The pH of the autoclaved dextrose-free medium was 6.4. Six-inch tensile specimens of the plastic film plasticized with dibutyl sebacate were placed on the solidified medium in the bottles (Fig 1A).

Three day old cultures of Penicillium sp. U.S.D.A 1336.2, Trichoderma sp. FA 69, and Aspergillus flavus SN-3 growing on Difco potato dextrose agar were used as a source of inoculum. Spore suspensions were prepared by scraping the sporulating surface of the culture with a flamed platinum needle and depositing the spore charge into flasks containing glass beads and 25 ml sterile distilled water. The flasks were agitated to break up spore clumps, and the specimens were inoculated by pipetting 1 ml of the pure suspensions onto the surface of the specimen and the agar medium. Four samples were used with each type of agar and four samples served as uninoculated controls. The bottles containing the samples were incubated for 3 weeks in a constant temperature room maintained at 29.4°C ± 0.6°C.

Table I shows that the polyvinyl chloride plastic plasticized with dibutyl sebacate is very susceptible to 3 species of fungi when incubated on a non-nutrient mineral salts agar. In this test, the source of carbon for the growth of the fungi is furnished by the plastic sample. The National Bureau of Standards and the British Ministry of Supply (3) have reported that pure polyvinyl chloride resin is not susceptible to fungal growth. Dibutyl sebacate has been reported by the National Bureau of Standards and the Naval Research Laboratory (3) as moderately susceptible to fungi. The extreme susceptibility to fungus growth of this plastic formulation is attributed to the plasticizer.

The specimens incubated on the mineral salts agar with 1% dextrose produced no inhibition of fungus growth on the medium or on the edges of the specimens. This plastic formulation is therefore considered not fungicidal.

B. Susceptibility to Trichoderma sp. and the Effect of the Mold Growth on the Tensile Strength and Percentage Elongation of Polyvinyl Chloride Films Plasticized with Three Plasticizers.

1. Dibutyl Sebacate (Test 2)

To determine the effect of fungus growth on the tensile strength of the polyvinyl chloride film plasticized with dibutyl

sebacate, 18 six-inch dumbbell test strips of the plastic film were placed on solidified non-nutrient mineral salts agar in square bottles, as described under Test 1. Inoculation of the test strips was effected by pipetting one ml of an aqueous spore suspension of Trichoderma sp. FA69 onto the specimens (Table II, Group A).

An experiment was also conducted to determine the effect of the incubation method, in the absence of fungus growth, on the tensile strength of the plastic strips. A pellet (approximately 0.13 gms) of paraformaldehyde, a volatile fungicide, was placed in a 10 ml beaker and added to each square bottle containing the solidified mineral salts agar (Table II, Group B). The 17 plastic samples comprising this group were not inoculated. Both groups of plastic strips were incubated for 41 days in a constant temperature room maintained at 29.4°C ± 0.6°C.

Table II shows that the strips of polyvinyl chloride plasticized with dibutyl sebacate (Group A) are very susceptible to the species of Trichoderma. Maximum mold growth on the samples incubated without a fungicide occurred after a two week period of incubation. Figure 1B shows that the dibutyl sebacate plasticized film is covered with a dense fungus mat after 3 weeks' incubation.

The fungicide, paraformaldehyde, was not completely effective in inhibiting the growth of contaminating molds present on the plastic strips. Five of the samples had slight to heavy mold growth. More recent work with propylene oxide as a mold-inhibitor for electrical paper tapes incubated in square bottles shows this chemical to be a more effective volatile fungicide.

At the end of the incubation period both groups of samples were removed from the bottles. The dumb-bell test pieces were dipped in a 0.1% aqueous solution of mercuric chloride for 2-3 minutes, rinsed in tap water, and dried at room temperature for 24 hours. After conditioning for 48 hours at 25°C ± 1°C and 50% ± 2% relative humidity, the tensile strength and percentage elongation were determined with a Scott Tensile Tester. Table II lists the tensile strengths and percentage elongations of the plastic samples. The dumb-bell strips inoculated with the species of Trichoderma (Group A) had a mean tensile strength value of 3462 lbs per square inch, as compared with 2119 for the uninoculated, unincubated controls (Group C), and 1833 for the uninoculated controls incubated with paraformaldehyde (Group B). In terms of percentage change, Group A had increases of 68.6% over Group B controls (incubated with paraformaldehyde) and 66.4% over Group C controls (not incubated). The large increase in the tensile strength of the specimens with mold growth is probably due to the removal of plasticizer by the species of Trichoderma used. Based on Student's t table, all these gains are significant at the .01 level. Additional evidence that mold growth produces an increase in tensile strength may be seen in Table II (Group B). The plastic strips that had mold
growth in Group B also had the highest tensile strength values. The increase in the tensile strength of the plasticized with the species of Trichodorus may be attributed to the destruction or absorption of the plasticizer or some other constituent of the plastic film by the species of mud used.

The plastic disk-ball specimens associated with the paraformaldehyde had a loss in tensile strength of 12.9% as compared with the unincubated and unincubated controls. Based on Student's t test, this loss is not significant at .05 level as P.95. However, if only those samples which did not have mild growth (Table II, Group B) are included in the calculations, the loss in tensile strength is 16.9% over the unincubated controls. This loss is significant at the .01 level and it appears that the paraformaldehyde did have an effect on the tensile strength of the plastic film.

The plastic disk-ball specimens associated with the species of Trichodorus had a mean percentage elongation of 15.8% as compared to 35.0% for the unincubated controls and 30.9% for the unincubated controls incubated with the paraformaldehyde. In terms of percentage change, Group A had a loss of 39.2% over Group 3 controls and 47.1% over Group C controls. The specimens incubated with the paraformaldehyde had a loss of 35.3% over Group C controls. If only those samples from from mild growth (Table II, Group B) are included in the calculations, there is a loss of 18.8% in percentage elongation. Based on Student's t test, all the losses are significant at the .01 level. The increase in percentage elongation of the plastic film incubated with the species of Trichodorus may be attributed to the removal of plasticizer by the fungi.

2. Diethyl Phthalate (Test 3)

Since the polyvinyl chloride plasticized with diethyl phthalate became very susceptible to aging growth in Test 2, a formulation containing diethyl phthalate as the plasticizer was obtained. The National Bureau of Standards found diethyl phthalate resistant to mild growth. Disk-ball disk-ball tensile specimens of the plastic film were placed on mineral salt agar and incubated with Trichodorus sp. F169, as described in Test 1 and 2.

Table III shows the susceptibility of the polyvinyl chloride plasticized with diethyl phthalate to mild growth after the 6 week period of incubation. The content of mild growth on the film varied from none to slight (Fig 8). The susceptibility of diethyl phthalate for diethyl phthalate decreased the susceptibility of the polyvinyl chloride to mild growth.

Tensile strength tests were conducted on the conditioned plastic strips, as described in Test 3. Table III lists the tensile
growth in Group B also had the highest tensile strength values. The increase in the tensile strength of the plastics inoculated with the species of Trichoderma may be attributed to the destruction or absorption of the plasticiser or some other constituent of the plastic film by the species of mold used.

The plastic samples incubated with the paraformaldehyde had a loss in tensile strength of 13.5% as compared with the uninoculated and unincubated controls. Based on Student's t table, this loss is not significant at .05 level as P=.08. However, if only those samples which did not have mold growth (Table II, Group B) are included in the calculations, the loss in tensile strength is 26.9% over the uninoculated controls. This loss is significant at the .01 level and it appears that the paraformaldehyde did have an effect on the tensile strength of the plastic film.

The plastic dumb-bell specimens inoculated with the species of Trichoderma had a mean percentage elongation of 112.9% as compared to 342.9% for the uninoculated controls and 280.9% for the uninoculated controls incubated with the paraformaldehyde. In terms of percentage change, Group A had a loss of 59.6% over Group B controls and 67.1% loss over Group C controls. The specimens incubated with the paraformaldehyde had a loss of 18.1% over Group C controls. If only those samples free from mold growth (Table II, Group B) are included in the calculations, there is a loss of 18.6% in percentage elongation. Based on Student's t table, all the losses are significant at the .01 level. The losses in percentage elongation of the plastic film inoculated with the species of Trichoderma may be attributed to the removal of plasticiser by the fungi.

2. Dioctyl Phthalate (Test 3)

Since the polyvinyl chloride plasticised with dibutyl sebacate was found very susceptible to mold growth in Test 2, a formulation containing dioctyl phthalate as the plasticiser was obtained. The National Bureau of Standards(3) found dioctyl phthalate resistant to mold growth. Six-inch dumb-bell tensile specimens of the plastic film were placed on mineral salts agar and inoculated with Trichoderma sp. PA69, as described in Test 1 and 2.

Table III shows the susceptibility of the polyvinyl chloride plasticised with dioctyl phthalate to mold growth after the 6 week period of incubation. The extent of mold growth on the films varied from none to slight (Fig 2). The substitution of dioctyl phthalate for dibutyl sebacate decreased the susceptibility of the polyvinyl chloride to mold growth.

Tensile strength tests were conducted on the conditioned plastic strips, as described in Test 2. Table III lists the tensile
strength and percentage elongation of the plastic strips uninoculated and inoculated with the species of Trichoderma. The dumb-bell tensile strips inoculated with mold had a mean tensile strength value of 2124 lbs per square inch, as compared with a value of 2264 for the uninoculated and unincubated controls. In terms of percentage change over the uninoculated controls, the plastics inoculated with the mold had a 5.2% loss in tensile strength. Based on Student's t table, this loss is not significant at the .01 level but significant at .05 level. There was a 4.8% loss in the mean percentage elongation of the specimens inoculated with mold. This loss is not significant at the .05 level.

3. Butadiene-Acrylonitrile (Test 4)

The plastic film plasticized with dioctyl phthalate also had properties which were undesirable for its intended use. A formulation was, therefore, obtained which had about 50% polyvinyl chloride and 50% butadiene-acrylonitrile as the plasticizer. The solids were 15%. No information is available on the fungus resistance of this plasticizer. Dumb-bell tensile specimens of this plastic were inoculated with the species of Trichoderma and incubated on mineral salts agar, as described in Test 2.

The substitution of butadiene-acrylonitrile for dioctyl phthalate as a plasticizer did not increase the susceptibility of the plastic films to mold growth (Table IV). In Fig 3B, the tensile plastic strip has a trace of growth of the species of Trichoderma. Table IV also lists the tensile strength and percentage elongation of the specimens uninoculated and inoculated with mold. The mean tensile strength of the specimens inoculated with the Trichoderma was 9.9% higher than the unincubated controls. This gain in tensile strength is significant at the .05 level but not significant at the .01 level. There was no significant difference in the mean percentage elongation between the inoculated specimens and the controls.

III. CONCLUSIONS

1. A polyvinyl chloride film plasticized with dibutyl phthalate is highly susceptible to mold growth. The mold growth produces a large increase in the tensile strength and a large decrease in the percentage elongation of the plastic film.

2. Polyvinyl chloride plastic film plasticized with dioctyl phthalate or butadiene-acrylonitrile may be considered mold-resistant. The films plasticized with these two plasticizers had no appreciable change in the tensile strength and percentage elongation after 6 weeks' incubation with the species of Trichoderma.
Table 1

Susceptibility to Mold Growth of a Polyvinyl Chloride Plastic Film Containing Dibutyl Sebacate as the Plasticizer and Incubated at 29.4° ± 0.6°C for 3 Weeks on Mineral Salt Agar Without and With 1% Dextrose

<table>
<thead>
<tr>
<th>Inoculated with</th>
<th>Medium</th>
<th>Extent of Mold Growth<sup>1</sup> (Average of 4 samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninoculated Control</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>Penicillium sp. USDA 1993.2</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>Trichoderma sp. FA69</td>
<td>M</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3-4</td>
</tr>
<tr>
<td>Aspergillus flavus SN-3</td>
<td>M</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

¹ Code for fungus growth:

1 = up to 10% of surface moldy
2 = 10% to 40% " " "
3 = 40% to 75% " " "
4 = 75% to 100% " " "

<table>
<thead>
<tr>
<th>Sample</th>
<th>Width</th>
<th>Average Tensile Strength</th>
<th>Tensile Elongation</th>
<th>Sample</th>
<th>Yield Stress</th>
<th>Average Tensile Strength</th>
<th>Tensile Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>1442</td>
<td>267.5</td>
<td>25</td>
<td>4</td>
<td>14.5</td>
<td>1145</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>577</td>
<td>350</td>
<td>25</td>
<td>4</td>
<td>16.5</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2183</td>
<td>287.5</td>
<td>25</td>
<td>4</td>
<td>18.5</td>
<td>1250</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2450</td>
<td>62.5</td>
<td>25</td>
<td>4</td>
<td>20.5</td>
<td>1125</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>38.34</td>
<td>50</td>
<td>25</td>
<td>4</td>
<td>22.5</td>
<td>1120</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>4779</td>
<td>25</td>
<td>25</td>
<td>4</td>
<td>24.5</td>
<td>1050</td>
</tr>
<tr>
<td>7</td>
<td>16.5</td>
<td>3273</td>
<td>12.5</td>
<td>25</td>
<td>4</td>
<td>26.5</td>
<td>950</td>
</tr>
<tr>
<td>8</td>
<td>22.5</td>
<td>2755</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>28.5</td>
<td>850</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>3393</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>30.5</td>
<td>750</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>3506</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>32.5</td>
<td>650</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>3655</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>34.5</td>
<td>550</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>3810</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>36.5</td>
<td>450</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>3955</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>38.5</td>
<td>350</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>4123</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>40.5</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>4295</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>42.5</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>4479</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>44.5</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>4655</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>46.5</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>4833</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>48.5</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>5011</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>50.5</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>5195</td>
<td>32.5</td>
<td>25</td>
<td>4</td>
<td>52.5</td>
<td>50</td>
</tr>
</tbody>
</table>

n = 18

n = 17

1 Case for fungus growth: 0 = no visible growth
0 = up to 10% of surface moist
1 = 10 - 40% of surface moist
2 = 40 - 75% of surface moist
3 = 75 - 100% of surface moist

2icknesses are those of specimens before exposure.
Table II a

Comparison of mean Tensile Strength and Percentage Elongation of Polyvinyl Chloride Film Plasticized with Dibutyl Sebacate and Incubated on Mineral Salts agar

<table>
<thead>
<tr>
<th></th>
<th>Group A compared to</th>
<th>Group B compared to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(mean) \bar{x}</td>
<td>\bar{x}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significance</td>
</tr>
<tr>
<td>Tensile Strength (lbs/in2)</td>
<td>3.62±3</td>
<td>13.3±6</td>
</tr>
<tr>
<td>% Elongation</td>
<td>112.9</td>
<td>283.9</td>
</tr>
</tbody>
</table>

1. Group A was inoculated with Trichoderma sp. and incubated on mineral salts agar for 44 days.
2. Group B was not inoculated but incubated on mineral salts agar for 44 days with paraformaldehyde.
3. Group C was not incubated (controls).
TABLE III

Susceptibility to Trichoderma sp. FA69 and the Effect of the Mold Growth on the Tensile Strength and Percentage Elongation of a Polyvinyl Chloride Film Plasticized with Dioctyl Phthalate and Incubated at 29.4°C ± 0.6°C for 6 Weeks on Mineral Salts Agar

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Mold Growth</th>
<th>Average Thickness</th>
<th>Tensile Strength</th>
<th>% Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Mils)</td>
<td>(lbs/in²)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>t</td>
<td>18.5</td>
<td>231.2</td>
<td>375</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>24</td>
<td>216.7</td>
<td>387.5</td>
</tr>
<tr>
<td>102</td>
<td>t</td>
<td>22</td>
<td>227.2</td>
<td>350</td>
</tr>
<tr>
<td>103</td>
<td>t</td>
<td>13</td>
<td>200.0</td>
<td>275</td>
</tr>
<tr>
<td>104</td>
<td>t</td>
<td>27.5</td>
<td>21.7</td>
<td>350</td>
</tr>
<tr>
<td>105</td>
<td>t</td>
<td>19</td>
<td>163.2</td>
<td>250</td>
</tr>
<tr>
<td>106</td>
<td>t</td>
<td>25.3</td>
<td>21.26</td>
<td>425</td>
</tr>
<tr>
<td>107</td>
<td>t</td>
<td>16</td>
<td>22.90</td>
<td>362.5</td>
</tr>
<tr>
<td>108</td>
<td>t</td>
<td>16.3</td>
<td>20.12</td>
<td>325</td>
</tr>
<tr>
<td>109</td>
<td>t</td>
<td>22.8</td>
<td>228.1</td>
<td>375</td>
</tr>
<tr>
<td>110</td>
<td>t</td>
<td>10.3</td>
<td>230.8</td>
<td>325</td>
</tr>
<tr>
<td>111</td>
<td>t</td>
<td>17.5</td>
<td>21.59</td>
<td>350</td>
</tr>
<tr>
<td>112</td>
<td>t</td>
<td>25.5</td>
<td>179.7</td>
<td>287.5</td>
</tr>
<tr>
<td>113</td>
<td>1</td>
<td>27.8</td>
<td>208.6</td>
<td>337.5</td>
</tr>
<tr>
<td>114</td>
<td>1</td>
<td>21.8</td>
<td>229.4</td>
<td>387.5</td>
</tr>
</tbody>
</table>

n = 15

\[\bar{x} = 21.24 \pm 7 \quad \bar{y} = 344.2 \]
\[s = 197.2 \quad s = 46.4 \]

Controls (not incubated)
n = 15

\[\bar{x} = 2264.4 \quad \bar{y} = 361.7 \]
\[s = 155.4 \quad s = 23.3 \]

1 Code for mold growth:
0 = no growth
1 = trace of growth (less than 3% of surface moldy)
1 = slight growth (3% - 10% of surface moldy)

2 Thicknesses are those of specimens before exposure.
TABLE III a

Comparison of Mean Tensile Strength and Percentage Elongation of Polyvinyl Chloride Film Plasticised with Dioctyl Phthalate and Incubated on Mineral Salts Agar

<table>
<thead>
<tr>
<th></th>
<th>Inoculated(^1)</th>
<th>Unincubated Controls</th>
<th>Inoculated Compared to Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (1bs/in(^2))</td>
<td>2124.7</td>
<td>2264.6</td>
<td>Sig (.05)</td>
</tr>
<tr>
<td>% Elongation</td>
<td>344.2</td>
<td>361.7</td>
<td>Not Sig (.05)</td>
</tr>
</tbody>
</table>

\(^1\) Inoculated with Trichoderma sp. and incubated for 6 weeks
Table IV

Lactosensitivity to *Trichoderma sp.* FAD9 and the Effect of the Mold Growth on the Tensile Strength and Percentage Elongation of a Polyvinyl Chloride Plastic Film Containing Butadiene acrylonitrile as a Plasticizer and Incubated at 29.4° ± 0.6°C for 6 Weeks on Mineral Salts Agar.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Mold Growth</th>
<th>Average Thickness (Wils)</th>
<th>Tensile Strength (1bs/in²)</th>
<th>% Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0</td>
<td>11</td>
<td>2101</td>
<td>500</td>
</tr>
<tr>
<td>25</td>
<td>t</td>
<td>12</td>
<td>1545</td>
<td>477.5</td>
</tr>
<tr>
<td>26</td>
<td>t</td>
<td>19</td>
<td>2000</td>
<td>525</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>19</td>
<td>2052</td>
<td>487</td>
</tr>
<tr>
<td>30</td>
<td>t</td>
<td>18</td>
<td>2166</td>
<td>437.9</td>
</tr>
<tr>
<td>33</td>
<td>t</td>
<td>21</td>
<td>2047</td>
<td>462.5</td>
</tr>
<tr>
<td>35</td>
<td>t</td>
<td>21</td>
<td>2097</td>
<td>462.5</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>20</td>
<td>2130</td>
<td>5.2</td>
</tr>
<tr>
<td>39</td>
<td>t</td>
<td>14</td>
<td>1787</td>
<td>4.13</td>
</tr>
<tr>
<td>40</td>
<td>t</td>
<td>13</td>
<td>2076</td>
<td>3.69</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>14</td>
<td>1571</td>
<td>3.50</td>
</tr>
<tr>
<td>42</td>
<td>t</td>
<td>14</td>
<td>2628</td>
<td>4.20</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>12</td>
<td>1666</td>
<td>4.50</td>
</tr>
<tr>
<td>44</td>
<td>t</td>
<td>12</td>
<td>2285</td>
<td>5.0</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
<td>21</td>
<td>2285</td>
<td>5.25</td>
</tr>
</tbody>
</table>

\[\bar{X} = 2022.9 \quad \bar{X} = 473.3 \]
\[\sigma = 197.3 \quad \sigma = 47.4 \]

Controls (not incubated)

\[\bar{X} = 1240.6 \quad \bar{X} = 470.0 \]
\[\sigma = 203 \quad \sigma = 38 \]

1 Code for mold growth:

- **0** = no growth
- **t** = trace of growth (less than 3% of surface moldy)

2 Thicknesses are those of specimens before exposure.
TABLE IV.a

Comparison of Mean Tensile Strength and Percentage Elongation of Polyvinyl Chloride Film Plasticized with Butadiene-Acrylonitrile and Incubated on Mineral Salts Agar

<table>
<thead>
<tr>
<th></th>
<th>Inoculated</th>
<th>Unincubated Controls</th>
<th>Inoculated Compared to Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{x} Mean</td>
<td>\bar{x}</td>
<td>Significance</td>
</tr>
<tr>
<td>Tensile Strength (lbs/in2)</td>
<td>2022.9</td>
<td>1440.6</td>
<td>Sig (.05)</td>
</tr>
<tr>
<td>% Elongation</td>
<td>473.3</td>
<td>170.0</td>
<td>Not Sig (.05)</td>
</tr>
</tbody>
</table>

1 Inoculated with Trichoderma sp. and incubated for 6 weeks
POLYVINYL CHLORIDE PLASTIC FILM PLASTICIZED WITH DIBUTYL SEbacate

A. Heavy growth of Tetrichromatia sp. on tensile specimen incubated on mineral salts agar in culture bottle for 3 weeks
B. View of specimen after removal from bottle
C. Untreated specimen
POLYVINYL CHLORIDE PLASTIC FILM PLASTICIZED WITH DIOCTYL PHthalATE

A. SPECIMEN INOCULATED WITH TRICHODERMA SP., AND INCUBATED ON MINERAL SALTS AGAR IN SQUARE BOTTLES FOR 3 WEEKS

B. SAMPLE REMOVED FROM BOTTLE SHOWING A TRACE OF MOLD GROWTH

C. UNINCUBATED SPECIMEN
POLYVINYL CHLORIDE PLASTIC FILM PLASTICIZED WITH BUTADIENE-ACRYLONITRILE

A. Specimen inoculated with Tetrachondra sp. and incubated on mineral salts agar in 5°Bare bottles for 9 weeks
B. Sample removed from bottle showing a trace of mold growth
C. Uninoculated specimen