NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Specific Authority; 1 Apr 41. Other requests shall be referred to Office of Naval Research, Naval Research Lab., Washington, DC.

AUTHORITY
<table>
<thead>
<tr>
<th>AD NUMBER</th>
<th>AD219603</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>CHANGES</td>
<td></td>
</tr>
<tr>
<td>TO</td>
<td>unclassified</td>
</tr>
<tr>
<td>FROM</td>
<td>confidential</td>
</tr>
</tbody>
</table>

AUTHORITY

OCA; September 26, 1955 IAW document markings.
NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE ILEIVED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DIRECTLY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY LICENSING OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.
NAVAL RESEARCH LABORATORY
REPORT

1 April 1941
TEST OF UNDERWATER ACOUSTIC
DETECTION OF LOW FREQUENCY RADIO SIGNALS

by F. C. Isley

Navy Dept. No. 1717
UNCLASSIFIED

NAVY DEPARTMENT
OFFICE OF NAVAL RESEARCH
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C.
Report

on

Test of Underwater Reception of Low Frequency Radio Signals.

NAVAL RESEARCH LABORATORY
ANACOSTIA STATION
WASHINGTON, D. C.

Number of Pages: Text - 11 Tables - 8 Plates - 28

Date of Test: 20 December 1940 to 12 February 1941.

Tests Conducted by:
F. C. Isely, Assistant Physicist

Reviewed by:
E. Toth, Associate Radio Engineer
T. L. Davis, Radio Engineer, Chief of Section.

A. Hoyt Taylor, Head Physicist, Superintendent, Radio Division.

Approved by:
H. G. Bowen, Rear Admiral, USN, Director.

Distribution:
Bureau of Ships (10)
OPNAV (2)
Comdt. Hyd. Div. (2)
C. O. USS S-30 (1)

CONFIDENTIAL
TABLE OF CONTENTS

Authorization of Test .. 1
Object of Test .. 1
Abstract of Tests .. 2
Conclusions .. 2 a
 Recommendations .. 2 d
Material Under Test ... 3
Method of Test .. 4
Data Recorded During Tests 6
Probable Errors in Results 6
Results of Tests .. 7
Conclusions .. 9

APPENDIX

Electrical Constants of Loop Input Transformer Table 1
Measurement of "Q" of Step up Ratio at 15.44 Kc. 2
Electrical Constants of Loops on USS S-30 3
"Q" of Loops on USS S-30 4
"Q" of "Yard" Loop with Submerged Depth 5
Sample Set of Readings ... 6
Results of Changes in Forward Clearing Line Loop 7
Noise Survey ... 8

- 15.44 Kc. S-30 at Smith's Point Plate 1
- 17.8 Kc. S-30 at Smith's Point 2
- 32.8 Kc. S-30 at Smith's Point 3
- 24 Kc. S-30 at Smith's Point 4
- 32.8 Kc. S-30 at Smith's Point 5
- 32.8 Kc. S-30 off Virginia Capes 6

Signal Strength with Depth
- 15.44 Kc. S-30 at Smith's Point 7
- 17.3 Kc. S-30 at Smith's Point 8
- 24 Kc. S-30 at Smith's Point 9
- 32.8 Kc. 30 at Smith's Point 10
- 15.4 Kc. S-30 off Virginia Capes 11

CONFIDENTIAL
Relative Field Strength as Function of Depth in Bay Plate 12
Relative Field Strength as Function of Depth in Ocean 13
Field Strength in Air vs Depth of Receivable Signal
 Comparison of Loops in Bay 14
 "Yard" Loop in Bay .. 15
 "Yard" Loop in Ocean .. 16
 "D" Loop in Bay ... 17
Aft. Clearing Line Loop in Bay 18
Forward Clearing Line Loop in Bay 19
Effect of Sea Bottom on Received Signals 1544 kc 20
Effect of Sea Bottom on Received Signals 3248 kc 21
Bearing of NR with "Yard" Loop 22
Location of Loops on USS S-30 23
Construction of "Yard" Loop 24
Construction of Loop Coupling Transformer 25
Circuit Diagram of Coupling Unit 26
Block Diagram of Complete Test Equipment 27
Consideration on the Design of Underwater Loops 28

CONFIDENTIAL
Authorization of Test

1. The tests herein reported were authorized by Bureau of Ships letter, reference (a) and (b). Additional pertinent information was given in references (c) to (j) inclusive.

References: (a) BuShips ltr. S67/46 (10-18-DR6) of 23 Oct. 1940 to Director, NRL.
(b) BuShips Ltr. S67/46 (10-18-DR6) of 17 Dec. 1940 to Director, NRL.
(c) BuShips ltr. S67/46 (12-31-DR6) of 9 Jan. 1941 to Chief of Naval Operations.
(g) Comsubrolfor dispatch 131543 of Nov. 1940 to Comsubrolfor.
(h) BuShips ltr. S67/46 (12-31-DR6) of 2 Jan. 1941 to Opnav.
(i) BuShips ltr. S67/46 (12-31-DR6) of 15 Feb. 1941 to Opnav.
(j) NRL Report R-1669.

Object of Test

2. The object of the test herein reported was to investigate the practicability of equipping submarines with means and equipment to receive low frequency transmissions while completely submerged. To determine this, it was necessary to make the following tests:

(a) The signal strength and signal to noise ratio received by various types of antennas at various depths and for various frequencies.

(b) The best type of coupling device (input transformer and tuning unit) to transfer the received signals from the antennas to the receiver equipment.

In order to obtain other pertinent information other tests were made as follows:

(1) Underwater bearing of transmitter by null method.

(2) "Q" of loops.

(3) Effect of Sea bottom on signals.

(4) Noise survey of ship.
Except for the preliminary tests on the coupling transformer unit, the tests were performed on board the USS S-30, on which ship the test equipment had been installed. The electrical tests conducted to determine 2, above, were as follows:

(a) Characteristics of loop input transformer.
(b) Electrical characteristics of antenna systems.
(c) Loop "Q"'s and overall "Q"'s.
(d) Microvolts input to loops, microvolts input to the receiver, and signal to noise ratio for various depths of submergence for each antenna.
(e) The same as (d) for different radio frequencies.
(f) The same as (d) for bay water and ocean water.
(g) Effect of depth of ocean bottom on received signals.
(h) Directional effect of "Yard" loop on received signals.
(i) Noise survey of ship's superstructure.
CONCLUSIONS

(a) The results of this investigation show that underwater reception of low radio-frequency signals is feasible. With the equipment used, signals of 1000 microvolts per meter in air should be readable to a depth of 34 feet (above loop) in ocean water and 38 feet (above loop) in water of less salinity (similar to Chesapeake Bay water at Smith's Point). This, as pointed out by Bureau of Ships (reference (i)) would be the approximate depth for usable signals from NSS(17.8 Kc) at 2000 miles, predicated on the basis of no atmospherics. Further at periscope depths (loop depth 10 feet), a field strength of only 30 microvolts per meter in air would be needed for this same frequency, which would be a distance for NSS of 7000-8000 nautical miles, again predicated by the absence of static. These calculations have been made on the basis of a one to one signal to noise ratio and are therefore near the limit of readable signals; however, as indicated above, static has not been considered, and will be the limiting factor for summer time conditions and in the tropics and will materially reduce the range for readable signals either on the surface or submerged; on the other hand, as indicated below in (c), the ship's noise was the limiting factor, reduction of which would make for a greater depth of readable signal under ideal atmospheric conditions. In considering static as a limiting factor it is assumed that the ratio of signal to static will not materially change whether reception is accomplished from a submerged, or an above water, loop collector.

(b) The concentrated loops, "Yard" and "DQ", although not supplying as many microvolts to the receiver as the clearing line loops, were more efficacious because of the lower noise level. The "Yard" loop was the better of the two.

(c) With the equipment used, the ship's noise was the limiting factor for depth of submersion. For a given receiver sensitivity (high enough to produce noise on all loops), the grounded aft. loop had the greatest noise, next being the forward loop, and then the "Yard" loop, with slightly greater noise than the "DQ" loop. This is as might be expected, considering the relative coupling of the various loops to the hull, in which there is known to be large induced currents. This induced current could be expected from the use of the powerful d.c. machinery inside the hull. Another source of this induced hull voltage might possibly be from the electrolytic action set up by dissimilar metals of the ship with in salt water. For instance, the difference in potential between copper and iron in sea water is 0.13 volts and between brass and iron, it is 0.17 volts. Inasmuch as the limiting noise was worse in the ocean than in the bay, there may be some basis for this
last premise. It might be possible with improved positioning of a concentrated loop and with shorter, better shielded leads, to reduce the noise pick-up. Probably the noise factor would be a problem for each type of submarine, if not for each individual vessel.

The input coupling transformer is of satisfactory design. It gives a coupling of about 70 to 85%, which, combined with its high "Q", gives a very good overall "Q" and voltage step-up for the whole system. It was found that a slight mismatch of the input impedance (lower impedance than loop) gave an improved "Q" x step-up ratio with a decreased "Q" of loop, as in submergence. An improvement of "Q" x step-up ratio might be secured by a better molybdenum-permalloy core; on the other hand, a well designed transformer with a commercial iron-dust core might give somewhat poorer results at an appreciable saving in cost but an increase in size.

The depth of sea bottom seems to have practically no effect on the received signal strength.

The directional effect of the "Yard" loop (presumably the same with the other loops) is quite pronounced. Signals from 264 show a very marked minimum with the plane of the loop at 90° from the station bearing. Bearings can be taken with good accuracy. In this connection, it is to be noted that maximum submergence for a given station can be secured only when the loop is on the "maximum" of the station or within approximately ± 10° or + 180° ± 10° of this bearing. The loops on the USS S-30 were fixed in position, and mounted with the plane of loop parallel to the longitudinal axis of the ship. It also should be noted that it may be possible that the hull of the ship itself may pick up some signal and reflect this into the loop, consequently a rotatable loop cross ways of the ship might not produce in the receiver the signal strength as indicated in this report. Even though this were true, a loop placed well above the deck probably would not be so affected because of the rapid attenuation of the signals by water.

The experimental data checks very well with the theoretical attenuation of signals with depth for various frequencies. The lower the frequency, the lower the attenuation. For the example given in (a) above, (1000 microvolts in air giving a loop depth of 34 feet at 17.8 Kc), 6000 microvolts would be required for the same depth at 32.8 Kc.

The best physical shape of the loop for underwater reception is not the same as in air but is long and narrow, with the long side parallel to the surface of the water. However, the gain in signal strength over that for a conventional loop may not be
worth while because of mechanical considerations. (Plate 23)
Further loop design characteristics were not made in these tests.
However the loop "m"'s, characteristics, and effectiveness com-
bined with NRL Report R-1669 (reference (j)) may be used as a
starting point in the design of the best loop for underwater low
radio-frequency receptions.

(i) It is to be noted that no natural static entered into the re-
sults of the tests.

(j) Summary of factors entering into the underwater reception of
low frequency radio signals.

(1) The lower the frequency, the greater the submergence
possible for a given surface field strength.

(2) Bearing of the loop.

(3) Location of loop for least ship's noise pick up.

(4) Design of loop, including "m", effective height, and
physical shape.

(5) Design of coupling unit, including "m", coupling ratio,
and impedance values.

(6) Coupling to receiver.
The tests as herein recorded indicate that the equipment, as installed on the USS S-30 is capable of satisfactory underwater reception of low radio-frequency signals. There are certain improvements that might be made. With this in view, the following recommendations are made:

(a) That underwater reception of low radio-frequency signals be considered as practicable and useful for communication if due regard is placed on depth limitations, which are governed by the frequency employed and the field strength at the surface.

(b) That in such installations a loop of optimum electrical characteristics compatible with the necessary mechanical features be designed, the "Yard" loop being used as a reference from which to start.

(c) That consideration be given to the desirability of rotating said loop both for bearing, purposes and for obtaining the maximum signal strength without the necessity of turning the ship.

(d) That consideration be given to the design of the input coupling transformer as to whether maximum efficiency must be had or if a lower efficiency can be tolerated with a possible decrease in the unit cost.

(e) That consideration be given to the input circuit design of the receiver used, in order to maintain a high overall "S" of the system.

(f) That consideration be given to the possible methods of reducing the interfering "ship's noise".

[Confidential]
The material under test consisted of the following:

(a) **One - Input coupling device.** The input coupling unit to the R.F. receiver was essentially a tightly-coupled transformer with the secondary tuned by a 1000 micromicrofarad variable condenser. In order to get the most signal strength possible out of the loop system, it was necessary to keep the "r." and coupling coefficient as high as possible; for this reason high permeability iron (Western Electric 2-81, molybdenum permalloy) was used as the transformer core. The primary and secondary consisted of pie windings alternated to give as near unity coupling as possible. Universal-wound litz wire coils were used. The transformer was thoroughly impregnated in Superla wax. The primary was tapped so that an input impedance of either 22 or 114 microhenries could be obtained to match the loops. The secondary inductance was 303 millihenries. Due to the high impedance-ratio, a reasonably small variable capacitor could be used to tune the loop. The output of this system coupled to the grid of the first R.F. tube of the R.F. while the ground return was made through a 5 megohms resistor to the grid return of this tube, made by the Naval Research Laboratory. (Tables 1 and 2 and Plates 26, 27, and 28).

(b) **One - R.F. receiver.** This was a standard type R.F., with the input coupling transformer connected to the grid of the first tube. (No. RV 46044 Serial 512) manufactured by E.C.A. (Plate 28).

(c) **One - Clearing Line Loop (grounded to the hull).** Referred to henceforth as the aft Clearing Line Loop, it was made of rubber covered wire secured by marlin line to the aft clearing line. The wire was No. 6 with approximately 3/16 inch insulation (1/2" O.D. approx.). It was well rounded to the ship's hull at the foot of the aft stanchion while the "high" end was brought down from the clearing line to the regular ship's radio lead-in insulator. The approximate length was 55 feet with the height of the high and low ends of the flat top portion being respectively 10 feet and 4 feet above the deck. (Plate 23, Tables 3 and 4).

(d) **One - Clearing Line Loop (unrounded)** Referred to henceforth as the Forward (Fore) Clearing Line Loop, it was regular submarine loop cable secured by porcelain clamps to the forward clearing line. This was seven conductor No. 10 wire with approximately 3/4" rubber insulation, the outside diameter being approximately 2 inches. The "high" end was brought down from the "A" frame to the ship's radio lead-in insulator while the "low" return was laid along the deck (secured thereto by marlin line) and brought up through the conning tower structure to the ship's radio lead-in insulator. The approximate length was 69 feet with the heights of the high and low ends of the flat top portion being...
respectively 14 feet and 5 feet above the deck. (Plate 23, Tables 3 and 4)

(e) **One - "D." Loop.** This was a standard Naval Direction-finder loop mounted on the starboard side of the ship just aft of the conning tower. This loop is made of 3 turns of stranded wire (equivalent to \#16 B S gauge), having a mean diameter of 20.5 inches. (Plate 23, Tables 3 and 4).

(f) **One - "Yard" Loop.** This loop was made by the Radio Laboratory of the Washington Navy Yard to the suggested specifications of the Naval Research Laboratory. It was made up of 21 turns of No. 10 rubber covered wire (.021 packard cable) in a loop of 21 inches, outside diameter, 10 inches - inside diameter. This was placed inside of a loop shaped box made of 1" oak boards 22 inches in overall dimensions with cross section of 3 - 1/2 inches. This box was placed inside a second loop shaped box made of 1" oak boards, 30 inches in overall dimensions with a cross section of 9 inches. The space between was filled with Ozite. This loop was mounted similarly to the "D." loop but on the port side of the ship. The lead-in wires, as in the "DQ", passed into the conning tower through a specially made stuffing box. The lead-in wires then going through the conning tower hatch into the control room and to the receiving equipment located on the gyrosopic compass table. (Plates 23 and 24, Tables 3, 4 and 5).

METHOD OF TEST

5. The following instruments or apparatus were employed in conducting the tests described herein:

(a) **Standard Signal Generator, General Radio, model LN CAG 60004 - Serial 18.**

(b) **Output Meter, General Radio Company, 483C - No. 92.**

(c) **Output Meter, Ballantine, model 300 - No. 14.**

(d) **Oscillograph, Dumont, model 168 - No. 927.**

(e) **"Q" Meter (Modified for 17 Kcy.), Boonton Radio Company 100A - No. 177.**

(f) **Condenser Bank, No. 14, Pattern 1797 - No. 2073.**

6. The loops were installed on the USS S-30 by the Radio Laboratory of the Washington Navy Yard. The lead-ins for the "Yard" and "DQ" loops were brought into the ship through a special stuffing box in the conning tower, while, for those of the clearing line loops, use was made of the ship's regular radio lead-in insulators. On the S-30, these are mounted
7. During these tests the USS S-30 operated out of Baltimore, Maryland. A preliminary test was made on 20 December 1940 to determine if any changes or further equipment were necessary for the tests. (Plates 23 and 24).

8. Regular tests were made during January and February 1941 as follows:

(a) January 6-9. Near Smith’s Point in Chesapeake Bay. Area 76° 11' W between 37° 43' N and 37° 51' N.

(b) January 13-17. Off the Virginia Capes. Area 76° 11' W 36° 35' N on a bearing of 133° for a distance of 25 nautical miles.

(c) February 17-20. Near Smith’s Point in Chesapeake Bay. Area 76° 11' W between 37° 43' N and 37° 51' N.

9. Tests were made on special transmission from stations NBA-24 Kcy., and NSS-1544, 17.8 and 32.8 Kcy., as well as tests on these stations and on CI-16.4 Kcy. during their regular schedules.

10. By means of a switch on the coupling device, any of the loops could be coupled to the proper input impedance of the input transformer. A second switch made it possible to insert the terminals of the signal generator in the circuit of the loop under test or connect them directly to the receiver terminals. This switch also permitted the coupling of the "Q" meter to the secondary of the input transformer for making secondary "Q" measurements.

11. The "Q" of the loops was measured, using the "Q" meter as a source of 17 Kcy. r.f. and the Ballantine meter to measure the input and loop voltages. The "Q" was taken as the ratio of loop voltage to the input voltage. A condenser bank of 2 microfarads total capacity was used to tune the loop to 17 Kcy.

12. An output meter with 600 ohms termination was used to indicate the standard output and the noise level of the receiver. It was also used in conjunction with the r.f. sensitivity control to measure the attenuation of signal with submerged depth.

13. It was found in the preliminary tests that the best receiver (R.C) adjustment for all conditions as follows:

(a) R.F. Trimmer -- 30.
(b) Regeneration Control - 2.
(c) AVC - Off.
(d) ... Tuning - On, 770 - 1300 position 3.
14. In measuring the microvolts to the loop and to the receiver, readings for a given test (frequency and station) were taken for all loops at a given depth and then for other succeeding depths. (See Table 7 for a condensed sample of readings.) Actually the ship, when submerged, might not maintain a given depth for all loop readings so that the actual depth was recorded when adjustments of the receiver were made. The complete list of readings taken are as follows: Date and Time; Bearing; Signal Identification; Signal frequency; Tuning Unit - Selector Switch (Loop), and Dial Setting; Receiver-Band, Frequency Dial, Regeneration Control, Sensitivity Control, R.F. Trimmer, and A.F. Tuning; Output-Signal and Noise on Tuning, Noise only on tuning, Signal and Noise with S. G. in Primary and Noise only with S. G. in Primary; Signal Generator-Primary Reading and actual microvolts and receiver reading and actual microvolts; Location of submarine; "Q" meter - Secondary "Q", Capacity and "Q" meter Dial.

15. Though the method used in 14, above, would give the attenuation of signal with depth, separate dives were also made in which the output signal was read on the output meter for every 2-foot depth from the surface down to the limiting noise level. Then the output volts dropped off by an order of 10, the sensitivity of the receiver was readjusted so that the run could be continued. In calculating the resultant output the noise volts were subtracted from the signal and noise reading.

16. In the test of the effect of the sea bottom, the ship traveled at a constant submerged depth (periscope depth ± 2 ft., loop depth 9 ± 2 ft.) for a distance of 25 nautical miles which covered a sea bottom depth of 20 to 500 fathoms. Output meter readings were taken continuously, the submerged depth being recorded for each reading.

17. In testing for the bearing of the transmitting station, the ship was moved through a 360° arc.

18. A noise survey was made of the ship's superstructure by utilizing a loop, connected by a long two wire shielded microphone cable, to the input coupling transformer. The test loop was coupled as closely as possible to the metal of the deck and superstructure to determine any particular noise spot. In this test various speeds (electric drive) were tried. Also during actual diving operations, a test of noise was made under different actual diving procedure.

19. Complete data were recorded for all tests conducted. This information is contained in Tables 1 to 8 and Plates 1 to 28, inclusive.

PROBABLE ERRORS

<table>
<thead>
<tr>
<th></th>
<th>± 1'</th>
<th>± 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microvolts received Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal/Noise ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Meter Reading</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL - 6 -
21. Microvolts to the receiver with submergence depth. The clearing line loops, due to their large size, supplied a greater value of microvolts to the receiver than the small concentrated loops; however, due to the greater noise pick-up in the clearing line loops, reception of signals was not as satisfactory at as great depths as on the small loops. This was true both in the bay and ocean. Unfortunately, in the ocean tests, the ship's batteries were low so that the receiver voltage was down 30%. A later check indicated that, with normal voltage, the microvolts to the receiver should be increased by 14% with no increase in the signal/noise ratio. The results for the ocean tests have been corrected for this. The limiting noise was of two main types - commutator noise and crashes. The commutator noise was present only occasionally while the crashes were present on high receiver sensitivity on the clearing line loops and to a lesser extent on the small loops. (See Plates 1 to 11, inclusive.)

22. Field Strength in Air with Depth of Periscope Signals. These curves were calculated from Plates 1 to 11, inclusive, and from the known field strength of NBA in Chesapeake Bay, assuming a possible readable signal having a 1 to 1 signal to noise ratio. (Plates 14 to 19, inclusive).

23. Experimental Proof of the Theoretical Attenuation. The experimental results of attenuation with depth and frequency check with experimental error with the theory (reference (j)). (Plates 12 and 13).

24. The Effect of the Depth of the Sea Bottom. The depth of the sea bottom seems to have practically no effect on the strength of the signals. (Plates 20 and 21).

25. Determination of Station Bearing by "Swinging" the Loop Antenna. A test of the bearing of NBA with the "Yard" loop, both on the surface and at periscope depth (13' to loop, 45' to keel) checks perfectly with the true bearing and is indicated by a very sharp minimum. (Plate 22)

26. Test of Forward Clearing Line Loop. In order to determine the best type of clearing line loop, measurements were made of microvolts input to the receiver with the Forward Clearing Line Loop as originally installed, with the loop cut and grounded to the hull at the forward end, and with the loop cut and left open at the top of the forward stanchion. Best results were had in the original method as more noise and less signal were received in the other cases. When used open as a flat top antenna the signal strength was down to one tenth of the original. However, in this latter case, proper matching was not obtainable; when connected directly to the receiver without the loop transformer, no signals could be heard at 60 feet (keel depth, 27 feet, loop depth). (Table 7).

27. Noise Survey. A test was carried out to try to determine the source of the ship's noise but this was inconclusive in results. A test loop, connected to the receiving equipment by a two wire shielded line, was...
carried about on the ship's deck and superstructure. It was coupled as closely as possible to the metal structure but no change in noise was noted for various positions on this structure or with various speeds (electric drive). Further test with the loop closely coupled to the inside of the hull was made during a dive. With the receiver adjusted to give over one half volt of noise, no change was noted during various diving operations. These operations included various speeds, operation of diving vanes, operation of steering, rudder motor, operation of ballast pumps, and a complete stop of all equipment. The diving of this ship is very old and continuous checking is made to eliminate extraneous "rounds" consequently as none of the severe "crashes", obtained in the ocean tests, were present it may be possible that these crashes arose from some intermittent "round". However, it is felt that the results as indicated above are not conclusive in any way. (Table 3).

2b. Theoretical considerations of the design of a loop for underwater reception suggested by reference (j) indicate that a narrow loop with its long side parallel to the water surface is best. This is more pronounced the larger the loop. (Reference (j) and Plate 22).
29. The results of this investigation show that underwater reception of low radio-frequency signals is feasible. With the equipment used, signals of 1000 microvolts per meter in air should be readable to a depth of 34 feet (above loop) in ocean water and 38 feet (above loop) in water of less salinity (similar to Chesapeake Bay water at Smith's Point). This, as pointed out by Bureau of Ships (reference (1)) would be the approximate depth for usable signal from NSS (17.8 Kcy) at 2000 miles, predicated on the basis of no atmospherics. Further, at periscope depths (loop depth 10 feet), a field strength of only 30 microvolts per meter in air would be needed for this same frequency, which would be a distance for NSS of 7000-8000 nautical miles, again predicated by the absence of static. These calculations have been made on the basis of a one to one signal to noise ratio and are therefore near the limit of readable signals; however, as indicated above, static has not been considered, and will be the limiting factor for summer time conditions and in the tropics and will materially reduce the range for readable signals either on the surface or submerged; on the other hand, as indicated below in 31, the ship's noise was the limiting factor, reduction of which would make for a greater depth of readable signal under ideal atmospheric conditions. In considering static as a limiting factor it is assumed that the ratio of signal to static will not materially change whether reception is accomplished from a submerged, or an above water, loop collector.

30. The concentrated loops, "Yard" and "DQ", although not supplying as many microvolts to the receiver as the clearing line loops, were more efficacious because of the lower noise level. The "Yard" loop was the better of the two.

31. With the equipment used, the ship's noise was the limiting factor for depth of submergence. For a given receiver sensitivity (high enough to produce noise on all loops), the grounded Aft. loop had the greatest noise, next being the Forward loop, and then the "Yard" loop, with slightly greater noise than the "DQ" loop. This is as might be expected, considering the relative coupling of the various loops to the hull, in which there is known to be large induced currents. This induced current could be expected from the use of the powerful d.c. machinery inside the hull. Another source of this induced hull voltage might possibly be from the electrolytic action set up by dissimilar metals of the ship when in salt water. For instance, the difference in potential between copper and iron in sea water is .13 volts and between brass and iron, it is .17 volts. Inasmuch as the limiting noise was worse in the ocean than in the bay, there may be some basis for this last premise. It might be possible with improved positioning of a concentrated loop and with shorter, better shielded leads, to reduce the noise pick-up. Probably the noise factor would be a problem for each type of submarine, if not for each individual vessel.

32. The input coupling transformer is of satisfactory design. It gives a coupling of about 70 to 85%, which, combined with its high Q, gives a very good overall "Q" and voltage step-up for the whole system.
It was found that a slight mismatch of the input impedance (lower impedance than loop) gave an improved "g" step up ratio with a decreased "g" of loop, as in submergence. An improvement of "g" x step up ratio might be secured by a better molybdenum-permalloy core; on the other hand, a well designed transformer with a commercial iron-dust core might give somewhat poorer results at an appreciable saving in cost but an increase in size.

33. The depth of sea bottom seems to have practically no effect on the received signal strength.

34. The directional effect of the "Yard" loop (presumably the same with the other loops) is quite pronounced. Signals from NIA show a very marked minimum with the plane of the loop at 90° from the station bearing. Bearings can be taken with good accuracy. In this connection, it is to be noted that maximum submergence for a given station can be secured only when the loop is on the "maxima" of the station or within approximately + 10° or + 120° ± 10° of this bearing. The loops on the USS 6-30 were fixed in position, and mounted with the plane of loop parallel to the longitudinal axis of the ship. It also should be noted that it may be possible that the hull of the ship itself may pick up some signal and reflect this into the loop, consequently a rotatable loop cross ways of the ship might not produce in the receiver the signal strength as indicated in this report. Even though this were true, a loop placed well above the deck probably would not be so affected because of the rapid attenuation of the signals by water.

35. The experimental data checks very well with the theoretical attenuation of signals with depth for various frequencies. The lower the frequency, the lower the attenuation. For the example given in (a) above, (1000 microvolts in air giving a loop depth of 34 feet at 17.8 Kcy), 6000 microvolts would be required for the same depth at 32.8 Kcy.

36. The best physical shape of the loop for underwater reception is not the same as in air but is long and narrow, with the long side parallel to the surface of the water. However, the gain in signal strength over that for a conventional loop may not be worth while because of mechanical considerations. Further loop design characteristics were not made in these tests. However the loop characteristics and effectiveness combined with NIA Report N-1669 (reference (j)) may be used as a start, point in the design of the best loop for underwater low frequency receptions.

37. It is to be noted that no natural static entered into the results of the tests.

38. Summary of factors entering into the underwater reception of low frequency radio signals

(a) The lower the frequency, the greater the submergence possible for a given surface field strength.

(b) Bearing of the loop.
(c) Location of loop for least ship's noise pick up.

(d) Design of loop, including \(h \), effective height, and physical shape.

(e) Design of coupling unit, including \(k \), coupling ratio, and impedance values.

(f) Coupling to receiver.
TABLE 1

Electrical Constants of Loop Input Transformer

<table>
<thead>
<tr>
<th>Transformer Section</th>
<th>Connections</th>
<th>Resistance Ohms</th>
<th>Inductance Microhenries</th>
<th>"Q" x 1000 Cycles</th>
<th>17</th>
<th>Coefficient of Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-2</td>
<td>.080</td>
<td>114</td>
<td>7.2</td>
<td>47</td>
<td>.858</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>.040</td>
<td>22</td>
<td>2.4</td>
<td>--</td>
<td>.71</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>.040</td>
<td>41</td>
<td>4.3</td>
<td>26</td>
<td>.744</td>
</tr>
<tr>
<td>B</td>
<td>1-2</td>
<td>.060</td>
<td>114</td>
<td>7.0</td>
<td>46</td>
<td>.865</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>.037</td>
<td>22</td>
<td>2.5</td>
<td>--</td>
<td>.715</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>.043</td>
<td>41</td>
<td>4.0</td>
<td>26</td>
<td>.91</td>
</tr>
<tr>
<td>A + 3</td>
<td>1-2+1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>75.2</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Section A 1-3 used for low impedance loops ("D7", etc.) and Section A 1-2 used for higher impedance ("Yard" loop).

TABLE 2

Measurement of "Q" x Step-up Ratio at 17 Kcy.

<table>
<thead>
<tr>
<th>Transformer Pri. Inductance Microhenries</th>
<th>"Q" x Step-up Ratio No. added R, R Added</th>
<th>Res. Added Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114*</td>
<td>660</td>
<td>190</td>
</tr>
<tr>
<td>41</td>
<td>670</td>
<td>300</td>
</tr>
<tr>
<td>22</td>
<td>500</td>
<td>320</td>
</tr>
<tr>
<td>22</td>
<td>380</td>
<td>300</td>
</tr>
<tr>
<td>123</td>
<td>114</td>
<td>1200</td>
</tr>
<tr>
<td>41*</td>
<td>1160</td>
<td>600</td>
</tr>
<tr>
<td>22</td>
<td>1100</td>
<td>640</td>
</tr>
<tr>
<td>22</td>
<td>1680</td>
<td>880</td>
</tr>
<tr>
<td>114</td>
<td>1000</td>
<td>480</td>
</tr>
<tr>
<td>22</td>
<td>1560</td>
<td>720</td>
</tr>
</tbody>
</table>

*Condition used in Tests on USS - S-30

CONFIDENTIAL
TABLE 3

Electrical Constants of Loops on USS S-30

<table>
<thead>
<tr>
<th>Loop</th>
<th>Inductance Microhenries</th>
<th>Resistance to Ground Megohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Yard"</td>
<td>550</td>
<td>1400 - 1800</td>
</tr>
<tr>
<td>"DQ"</td>
<td>90</td>
<td>5000 - 8000+</td>
</tr>
<tr>
<td>Aft. CL. (grounded)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>For. CL</td>
<td>70</td>
<td>4.2</td>
</tr>
</tbody>
</table>

TABLE 4

"Q" of Loops on USS S-30

<table>
<thead>
<tr>
<th>Loop</th>
<th>"Q"</th>
<th>Air</th>
<th>Submerged</th>
<th>Effective Secondary "Q"*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Submerged</td>
<td>Ocean</td>
<td>Air</td>
</tr>
<tr>
<td>"Yard"</td>
<td>74</td>
<td>50</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>"DQ"</td>
<td>6.7</td>
<td>5.4</td>
<td>3.7</td>
<td>30</td>
</tr>
<tr>
<td>Aft CL (gr.)</td>
<td>11</td>
<td>**</td>
<td>3.3</td>
<td>40</td>
</tr>
<tr>
<td>For. CL</td>
<td>16</td>
<td>7.85</td>
<td>7</td>
<td>50</td>
</tr>
</tbody>
</table>

*Measured in secondary of coupling transformer. Readings below 30 were estimated. -- Readings too low to measure.

**No reading taken.

TABLE 5

"Q" of Yard Loop with Submerged Depth (Bay Water)

<table>
<thead>
<tr>
<th>Loop Depth</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>0'</td>
<td>55 ± 5</td>
</tr>
<tr>
<td>4'</td>
<td>50</td>
</tr>
<tr>
<td>9'</td>
<td>43</td>
</tr>
<tr>
<td>10'</td>
<td>47</td>
</tr>
<tr>
<td>10'</td>
<td>50</td>
</tr>
</tbody>
</table>

waves breaking over loop,

CONFIDENTIAL
TABLE 6
Sample Set of Readings

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Loop</th>
<th>Sensitivity</th>
<th>Output Volts</th>
<th>Sig. + Noise</th>
<th>S.G. Noise</th>
<th>Signal Generator Reading Volts</th>
<th>Primary Actual Reading Volts</th>
<th>Secondary Actual Reading Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>"Yard"</td>
<td>8.3</td>
<td>1.9</td>
<td>0</td>
<td>1.73</td>
<td>0</td>
<td>930</td>
<td>4.05</td>
</tr>
<tr>
<td>"DQ"</td>
<td>8.5</td>
<td>1.9</td>
<td>0</td>
<td>1.8</td>
<td>0</td>
<td>280</td>
<td>1.22</td>
<td>1400</td>
</tr>
<tr>
<td>ACL</td>
<td>6.1</td>
<td>1.9</td>
<td>0</td>
<td>1.76</td>
<td>0</td>
<td>5300</td>
<td>23.1</td>
<td>98000</td>
</tr>
<tr>
<td>"Yard"</td>
<td>8.8</td>
<td>1.9</td>
<td>.3</td>
<td>1.7</td>
<td>.2</td>
<td>270</td>
<td>1.16</td>
<td>670</td>
</tr>
<tr>
<td>"DQ"</td>
<td>9.0</td>
<td>1.9</td>
<td>.1</td>
<td>1.65</td>
<td>.1</td>
<td>130</td>
<td>.57</td>
<td>550</td>
</tr>
<tr>
<td>ACL</td>
<td>8.3</td>
<td>1.9</td>
<td>.7</td>
<td>1.7</td>
<td>.6</td>
<td>400</td>
<td>1.74</td>
<td>2000</td>
</tr>
<tr>
<td>"Yard"</td>
<td>8.0</td>
<td>1.9</td>
<td>.1</td>
<td>1.8</td>
<td>.2</td>
<td>450</td>
<td>1.91</td>
<td>2000</td>
</tr>
<tr>
<td>50</td>
<td>"Yard"</td>
<td>9.2</td>
<td>1.9</td>
<td>.3</td>
<td>1.8</td>
<td>.3</td>
<td>63</td>
<td>.27</td>
</tr>
<tr>
<td>48</td>
<td>"DQ"</td>
<td>9.6</td>
<td>1.9</td>
<td>.3</td>
<td>1.75</td>
<td>.1</td>
<td>20</td>
<td>.087</td>
</tr>
<tr>
<td>48</td>
<td>ACL</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>62</td>
<td>"Yard"</td>
<td>9.8</td>
<td>1.9</td>
<td>.8</td>
<td>1.8</td>
<td>.7</td>
<td>14</td>
<td>.061</td>
</tr>
<tr>
<td>60</td>
<td>"DQ"</td>
<td>10.0</td>
<td>.7</td>
<td>.3</td>
<td>.7</td>
<td>.3</td>
<td>4</td>
<td>.017</td>
</tr>
<tr>
<td>60</td>
<td>ACL</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>60</td>
<td>"Yard"</td>
<td>9.0</td>
<td>1.9</td>
<td>.4</td>
<td>1.7</td>
<td>.3</td>
<td>55</td>
<td>.24</td>
</tr>
<tr>
<td>70</td>
<td>No signals any loop</td>
<td>9.0</td>
<td>1.9</td>
<td>0</td>
<td>1.73</td>
<td>0</td>
<td>930</td>
<td>4.05</td>
</tr>
</tbody>
</table>

CONFIDENTIAL
TABLE 7

Result of Changes in Forward Clearing Line Loop

\((*C - 18.4 \text{ No. in Day -- Bearing } 0^o *) \)

<table>
<thead>
<tr>
<th>Loop</th>
<th>Depth to keel</th>
<th>Sensitivity Reading</th>
<th>Output Volts</th>
<th>Only Volts</th>
<th>Noise to Loop</th>
<th>Noise to Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete loop</td>
<td>40</td>
<td>7</td>
<td>6.7</td>
<td>1.9</td>
<td>0</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>27</td>
<td>7.3</td>
<td>1.9</td>
<td>.1</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>17</td>
<td>7.8</td>
<td>1.9</td>
<td>.2</td>
<td>4.35</td>
</tr>
<tr>
<td>Cut and grounded</td>
<td>40</td>
<td>7</td>
<td>7.3</td>
<td>1.9</td>
<td>0</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>27</td>
<td>8.0</td>
<td>1.9</td>
<td>.3</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>17</td>
<td>8.3</td>
<td>1.9</td>
<td>.8</td>
<td>.78</td>
</tr>
<tr>
<td>Cut and open</td>
<td>40</td>
<td>7</td>
<td>8.1</td>
<td>1.9</td>
<td>.15</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>27</td>
<td>8.8</td>
<td>1.9</td>
<td>.9</td>
<td>-</td>
</tr>
</tbody>
</table>

* Keying dots

Note: With open loop connected to secondary of transformer (grid of tube) no signal obtained at 60 feet (to keel).

TABLE 8

Noise Survey

Test Loop Outside

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Sensitivity</th>
<th>Operation</th>
<th>Output</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Slow speed</td>
<td>.7</td>
<td></td>
<td>Same over all parts of deck and superstructure</td>
</tr>
<tr>
<td>9.</td>
<td>Normal speed</td>
<td>.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Loop Inside

9.	Normal speed	.6 - .9
9.	Fast speed	.6 - .9
9.	Stop	.9
9.	Slow speed	.6 - .9
9.	Trim pumps	.6 - .9
9.	Diving vanes	.6 - .9

* Closely coupled to metal hull.
CIRCUIT DIAGRAM FOR MEASUREMENT OF Q.x STEP-UP RATIO

TRANSF 1

SECI

PRI.

ADDED R

MMW

TRANSF 2

PRI.

SEC.

0.4 OHM

Q-METER TERMINALS

USED TO SIMULATE REDUCED Q AS IN SUBMERGENCE
MICROVOLTS TO RECEIVER VS SUBMARINE DEPTH
NBA-24-TK
S-30 AT SMITH'S POINT
APPROX 355 μVOLTS/METER IN AIR
(DOTTED LINE ESTIMATED)

SUBMARINE DEPTH IN FEET (TO KEEL)

PLATE 4
 SIGNAL STRENGTH WITH DEPTH
NBS - 15,44 KCY
S-30 AT SMITH'S POINT

O-NO NOISE
X-10 SIGNAL/NOISE
D-1/2 SIGNAL/NOISE

SUBMARINE DEPTH IN FEET (TO KEEL)
SIGNAL STRENGTH WITH DEPTH
NBS - 178 Kcy
S-30 AT SMITHS POINT

dB BELOW MICROVOLTS/METER IN AIR

SUBMARINE DEPTH IN FEET (TO KEEL)

○ - NO NOISE
X - 1/4 SIGNAL/NOISE
□ - 1 SIGNAL/NOISE

PLATE 8
SIGNAL STRENGTH WITH DEPTH
6335 MICROVOLTS/METER
HBA-24 KCY.
S-30 AT SMITHS POINT

db BELOW MICROVOLTS/METER IN AIR

0 20 40 60 80 100

SUBMARINE DEPTH IN FEET (TO KEE)
SIGNAL STRENGTH WITH DEPTH
WCI - 18.4 KCY
5:30 AT SMITHS POINT

0 - NO NOISE
X - 10% SIGNAL/NOISE
O - 1/4 SIGNAL/NOISE

PLATE 10
SIGNAL STRENGTH WITH DEPTH
NSS - 32.8 KCY
S-30 OFF VIRGINIA CAPES

AIR

0
8
16
24
32
40
48
56

dB BELOW MICROVOLTS/METER IN AIR

SUBMARINE DEPTH IN FEET (TO KEEL)

X - 10% SIGNAL/NOISE
□ - 3/4 SIGNAL/NOISE

PLATE II
RELATIVE FIELD STRENGTH AS FUNCTION OF DEPTH
CHESAPEAKE BAY (SMITHS POINT)
YARD LOOP
NBA-24 KCY

DEPTH IN FEET (TO CENTER OF LOOP)

PLATE 12
RELATIVE FIELD STRENGTH - DEPTH
OFF VIRGINIA CAPES
(CORRECTED FOR NOISE)
NSS - 15.4
32.8
NBA - 24.0
WCI - 18.4

F = FATHOMS

THEORY
10 KY
15 KY
20 KY
30 KY
40 KY
50 KY
60 KY
70 KY
80 KY
90 KY
100 KY

LOOP DEPTH IN FEET (YARD)

PLATE 13
FIELD STRENGTH IN AIR VS.
DEPTH OF RECEIVABLE SIGNAL
YARD LOOP OCEAN WATER
(1:1 SIGNAL TO NOISE)

CENTER YARD LOOP AT SURFACE

FIELD STRENGTH IN AIR
MICROVOLTS/METER

100,000
10,000
1,000
100
10

SUBMARINE DEPTH IN FEET (TO KEEL)

2K, 3K, 5K, 10K
FIELD STRENGTH IN AIR VS.
DEPTH OF RECEIVABLE SIGNAL
OD LOOP IN WATER
(1:1 SIGNAL TO NOISE)

 Feld Strength in Air
Microvolts/Meter

Submarine Depth in Feet (to keel)

PLATE 17
FIELD STRENGTH IN AIR

VS.

DEPTH OF RECEIVABLE SIGNAL

FOR C.L. LOOP GAT WATER

(1-1 SIGNAL TO NOISE)

FIELD STRENGTH IN AIR - MICROVOLTS/METER

100,000

10,000

100

10

SUBMARINE DEPTH IN FEET (TO KEEL)

PLATE 19
COUPLING BETWEEN CONSTRUCTION

24 m. h. SECONDARY

22 m. h. PRIMARY

CORR.
WESTERN ELECTRIC
2-FARADAY
FE-MALLOY
2% MOLYBDENUM
81% NICKEL
17% IRON

APARENT PERMIABILITY 26

PRIMARY -
2 PIES # 2 1/2
24 INCHES EACH
TAPPED AT 14

SECONDARY -
3 PIES # 2 1/2
450 TURNS EACH

PLATE 25
Assume: Inductance approximately same for every case

7 signal/ft at top of loop

Frequency 52 kc.

From Plate 12 attenuation is (a) 16 ... (o) 5.731...4.54...

<table>
<thead>
<tr>
<th>Loop</th>
<th>Attenuation of signal at bottom</th>
<th>Voltage at bottom of loop</th>
<th>Net Voltage at fluid</th>
<th>Net Voltage in loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.73 DB</td>
<td>0.9</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>4.75 DB</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>1.58 DB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Naval Research Laboratory
Technical Library
Research Reports Section

DATE: 10 January, 2000
FROM: Mary Templeman, Code 5227
TO: Dr. Shumaker, Code 5508
CC: Chuck Rogers, Code 1221.1
SUBJ: Review of NRL Report(s)

Dear Sir/Madam:

1. Please review NRL-FR-3605, FR-1669 and FR-1717 for:
 - [] Possible Distribution Change
 - [] Possible Change in Classification

Thank you,

Mary Templeman
(202)767-3425
marytlibrary.nrl.navy.mil

The subject report can be:

- [x] Changed to Distribution A (Unlimited)
- [] Changed to Classification ________
- [] Other:

Edward J. Kennedy 1/28/00
Signature Date