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SUMMARY 

Weight efficiency when using thin plates in aircraft structures 

requires increasing load carrying capacity beyond buckling load. In 

this respect flat plates supported along their edges differ favourably 

from columns and curved plates. 

The aim Is to find the relation between the edge displacements of a 

panel and its load, including the relation between the Increments of 

both buckling and stiffness;. 

The physical characteristic feature is that the deflec'^i&i.ö are 

finite, from which the equations are non-linear. Even with simple 

boundary conditioru- exact solutions are missing. Approximate solutions 

based upon energy theorems are available. Solutions established for 

flat plates at constant temperature and for thermal loading will be dis- 

cussed and compared with available experimental evidence. 

Prom a recent investigation it appears that the post buckling behsviour 

of narrow cylindrical panels can present the unstable explosive charac 

tsr, known with full cylindrical shells, at least at deformations clost- 
to those at which buckling starts. 
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SOMMAIRE 

L'omploi de plaquettes minces dcmande dos structures capahles do r^sister 

aux charges superieures a la change de flambago A cet egard les plaquettes 

minces supportees le long de leurs bords presentent des caract4ristiques 
favorables vis-a-vls celles des colonnes et des plaquettes courb6es. 

On cherche a etablir la relation entre les deplacemontsde bord d'un 
panncau de revetement et la charge subie, y compris le rapport entre une 

augmentation de flambage et de rigidite. 

La particularite pnysique est que les deflections sont finies, donnant 

ainsi des equations non lin^aires. Memo dans des conditions de 1 invite 

simples, des solutions precises ne sont pas possibles. On dispose dc 

solutions fondees sur des theoremes energetiques. Des solutions 

etablies pour des plaquettes planes a temperature constante soumises a 

des sollicitations thermiques sont etudi^es et comparees avec les resul- 

♦:ats experimentaux disponibles. D'apres une etude recente il parait 

que le comportement apr^s flambage de panneaux cylindriques etroits 

peuvent presenter le caractere instable explosif bien connu dans le cas 

de coquilles cylindriques, tout au moins lors des deformations voisines 

k celles provoquant le flambage. 
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NOT KTIOH 

A ptraln euorgy 

P load 

R radius of cylindrical panel 

T totnperature 

1) panel width 

!'.. effective width 

a 

7 

e 

e 

as a suffix denotes the quantity concerned at buckling lornl 

edge displacement 

coefficient of thermal expansion 

overall shear of a panel, following from edge displacement 

overall longitudinal compressive strain, edge strain 

curvature parameter defined by Equation (9) 

compressive stress 

edge stress 

shear stresi 

y/yh 

(aT)av 

P.  e 

'i 

strain ratio 

strain ratio 

average value of aT over plate width 

P, e in isothermal condition 

forces (with suffix) 

vi 

"-"—  .i-CSB     *" 

' 

-*rt& 



HOST BUCKLING 2EHAVin»jR OF STRUCTURES 

A. van der Ncut* 

1. INTRODUCTION 

Engineers have for a long tl«e been Interested in the buckling of structure«, but 

they did not pay attention to the behaviour of structures after the onset of buckling. 

The accepted idea «as that the buckling load was the ultimate pcrfomance of the 

structure, that for reasons of safety the actual load had to be kept far below what 

was called the critical load and that research on post-buckling behaviour had no 

practical Importance. 

The experience that some structures, such as axially compressed cylindrical shells, 

failed at loads far below the theoretical buckling load was attributed to inevitable 

imperfections in the shape. This seemed to support the apprecle.tion of critical 

loads and mis answered hy the introduction of an ample factor of safety. On the 

other hand the experience that other structures, for instance, plates supported at 

their edges, were able to sustain loads far in excess of their buckling load, was 

considered with suspicion and did not upset the belief that the loads should be kept 

below the critical load. 

AeronaatittuJ engineers, however, could not close their eyes, either to the 

treacherous characteristics of shells or to prcsilslng phenomena of plates, since they 

were living under the ever Increasing demands of weight economy in structures which 

were highly liable to buckling. 

When applying plates as structural elements of aircraft, these plates tend to be 

thin and consequently buckling stresses are much smaller than the allowable stre»ses 

for more solid sections made from the sane material. The most economical solution 

is to rearrange the distribution of material so that by having nnmerous supporting 

elements the buckling stress of the reinforced plate is well up to the material 

strength. With heavily loaded aircraft structures this can be achieved, as in the 

cases of the maifi structure of large aspect ratio wings and of thin wings for large 

wing loading and load factor. However, with plites, where the load per unit of length 

is relatively small, a design in which buckling would be admitted only at the ultimate 

load would be uneconomical. 

Such conditions are present with lightly loaded wing structures and the majority 

of fuselage structures. Here plate buckling has been accepted, in many cases even 

in horizontal flight, since this type of buckling is not catastrophic and, moreover, 

the plate takes its share in supporting load increments due to manoeuvres and gusts. 

Such a plate can be regarded as remaining a structural element even after buckling. 

To exploit this favourable characteristic, aeronautical engineers had to investi- 

gate this 'post-buckling behaviour' of plates. 

No knowledge acquired by other branches of engineering was available. Although 

civil engineering was confronted with the same type of prob1  , for Instance deep 

'Professor,   Technische Hogeschool Delft Vliegtuigbouwkimde,  Delft, Nederland 



I-beams In brldite», the nwd for »eight ecomw WM not. so presBlng thera that poat- 

birkllne use »äS acknowledged to p-esent a sound engineering phllcwophy. 

It cannot be denied that some dawn of conscloiumess of poat-buckllng theory 

existed In nuval architecture, then the steel «kin of ships was reinforced by 

longltudlnajs, a snail width of plate was conpldered to be effective as an addition 

to the rectlon of the longitudinal. However, due to the Classification Rules, strength 
(uialyst« could not lead the way to weight saving structures and the Investigation of 

post-buckling behaviour was not undertaken. So, as in other caaes, to aeronautics 

fell the honour of penetrating the brairble-bushes and awakening Sleeping Beauty with 

its sclentiric kiss. If this metaphorical language calls for a personification there 

Is no doubt that this rcmiantlc part taw be attributed to H. Wagner, who publlalied in 

1929 his wellknown work on the tension field of spar webs1. This paper Indeed is the 

charter legitimating the use of buckled plates as structural elements for carrying 

shear loada in spar webs and in the skins of wings and fuselages. 

In the early thirties  the American aircraft industry introduced a new and highly 
Important application of post-buckling with jo-called stressed-skin structures. 

Supporting the skin by numerous longitudinal stringers the skin, though buckled, could 

be made effective in carrying longitudinal compression. Knowledge of the behaviour 

of this type of structure started by being empirical but was soon supplemented from 

analytical sources. This paper gives a .survey of the state of science in the field. 

It must be admitted that the importance of post-buckling is past its prime of 

life. As previously stated, many modern aircraft  structures are so heavily loaded, 
or need so much stiffness, that their compactness yields high buckling stresses. 

Smoothness of surface required for aerodynamic per'ormance of high-speed aircraft can 

be another reason for the expurgation of buckled elements,. However, some bright hopes 

for the participation of post-buckiing behaviour in the supersonic age are coming 

from the complications to structural engineering caused by kinetic heating during 

transient conditions. Temporarily high compressive stresses are being generated in 

wing skins, which, added to the aerodynamic loads, can bring the skin into the post- 

buckling range. Since this situation is present only during a small percentage of 

the total flight time (the heating-up period), drag increase by surface waviness is 

possibly not prohibitive, provided this waviness does not give rise to violent vibra- 

tions. Aerodynamlcists will have to supply the structural engineer with data on the 

amount of surface waviness which can be tolerated. 

2, VARIETIES OF POST-BUCKLING BEHAVIOUR 

^l 

- 

■ - 

„Buckling can occur only in structural elements having at least one dimension 

which is much smaller than its other dimensions, as, for instance, in the case of a 

column, plate or shell where the thickness is small compared to the length or width. 

These structures are liable to buckling only when their external load is such that 

the internal forces act in the direction of the large dimensions, for example, a 

normal force in a column, or normal or shear forces in plates and shells. This type 

of load deforms the structure in the direction of the large dimensions and no dis- 

placement occurs In the direction of the small dimension. In other words the type of 

load which can bring about buckling does not cause deflections before buckling starts. 

- 
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. 

At the buckling lomd th<» «Ute of strain ts no longer unamblRiously detemlnod. 

Besides the pre-buckling deformtlon another defons»tlon mns occur, the hockllnic node. 
The characteristic difference bet»een thi» defenuation and the pre*buckllng defoma- 

tlon Is that displacewentrfln the direction of the saall size occur, e.g. the structure 

•leflects. 

According to the classic theory of buckling the magnitude of this deflection is 

not unanbigiously deteralned. Any deflection, provided it Is of the first order of 
magnitude, is In equllibriua »ith the buckling load. This means that the tangenf to 

the load-vs-deflection curve Is horizontal (Pig. 1). Post-buckling behaviour now 

relates to the character of the load-deflection curve at finite buckling defloctioiis. 

In Figure 1 the various possibilities of behaviour have been schematically r^presentod. 

Curve a applies to columns, «here the load is constant over a wide range of deflec- 

tions provided no plastic deformation occurs at the point of maxlmur stress. Due to 

the deflection, the ends of the column are approaching each other. This end dis- 

placement is a quadratic In the deflection. Figure 2a represents the load-vs- 

shortening of the column. With Increasing compression of the column the end load 

remains constant. As soon as plastic deformation starts the load required for 

fci^illibrium decreases, and the column collapses (dotted line In Figures 1 and 2). 

This last type of behaviour has something in common with type b, which applies to 

shells, where with increasing deflection the load required for equilibrium decreases. 

It has appeared from studies on the stability of equilibrium at buckling load that 

the classic theory Is wrong In its statement that the structure at the buckling load 

is In equilibrium when the deflections are infinitely small. H.L. Cox2  and von K^rman 
and Tslen3 discovered that some non-linear effect, overlooked so far, was of vital 

importance. The tangent to the load-deflection curve is not horizontal4; therefore 

as soon as deflections occur under a load equal to the buckling load Pu, the positive 

difference between P^ and the equilibrium load accelerates buckling, resulting in 

explosive collapse. Only after attaining very large deflections does the equilibrium 

load pass through a minimum. The highly unstable character of the structure at the load 

Plj means that Its post-buckling behaviour is structurally useless. 

The last possibility represented by curve c shows that the equilibrium load increases 

with increasing deflection. Since the load increment as well as the edge displacement 

Increment are proportional to the square of the deflection, the load-vt/j-rfdge displace- 

ment curve shows a positive slope at Pb.  This case applies to flat plates supported 
at their edges and to slightly curved panels. 

So far it has been assumed that the structural members under consideration are 

perfect, which means that they do not deflect at loads below P.. When the structure is 

initially imperfect - for example, the column not absolutely stiaight, the plate not 

absolutely plane and the shell showing analogous deviations, it delfects before the 

loa Pjj is reached. The behaviour of the three types of structures is illustrated by 
Figures 3 and 4. There is no longer a critical load at which buckling starts. P^ 

for the perfect structures a and b are replaced by a load which is close to P^ in the 

case of the column but much smaller than Pb in cas? b.  Case c on the contrary shows 

a gradual Increase of loan with increasing deflection or edge displacement. The 

transition point between pre-buckling and post buckling behaviour vanishes.  Moreover, 

at loads far beyond Pb thr curve approaches the curv^ for the perfect structure. 

; ■„   ,..,.::,..,.,  .      ...,_.^ ^....v.nu M;b'--.-;«--^^^^"---^'^ri.«.*«--t-^**itIlrt®^-v^^«!. ■^^;-. -= . ■■ <-* ^..-^t^i*«^;^^,. 



Since iwperfectloo» cannot ^e coapietely avoldwl In »ctual «tructure» the llfttolllty 

of type b to laperfeetIons Is a »arnlng to keep actual load» far belo« P^. This puta 

the use of structures In the buckled state still further out of consideration. 

However, with type c, iwperfectlona do not alter the conclusion that these structures 
are useful In the post-buckled ranjee. 

Further attention will be restricted to the study of structure type c. 

3. THE PHYSrCAL CONCEPT  OF POST BUCKLING BEHAVIOUR 

Consider a perfect structure, such as a flat plate loaded up to the buckling load 

?b. Then the stresser In the plate are ob and Its edge dlsplacenents In the plane of 

the plate are u^.    Jtow let the edge displacements Increase proportionally, yielding 
u - X-ULJ. Then the plcte remaining flat has the stresses cr = \crb and the required 

edge load is P = kP^. 

This state of stress ».nd strain In unstable. Allowing the plate to deflect 

decreases the strain energy and therefore thf> undeflected cannot he maintained and 

the plate buckler ".n such a pattern that the equilibrium in stable. The stability 

criteria for prescribed edge displacement is that the strain energy is a minimum; 

any state of strain adjacent to the stable one yields larger strain energy. Hence 

the problem when investigating post-buckling behaviour is to find for given edge 

displacements the buckle pattern with the least strain energy. Denoting the strain 

energy as A, this condition yields SA = 0 for any variation of the displacements 

which is continuous and complies wltn the kinematic boundary conditions. This varia- 

tional problem yields equations which are identical with the equations of equilibrium 

for the deformed element of the plate. 

The strain energy of the buckled plate consists for one part of 'extensional' 

energy - the work done by the membrane stresses over the extensions of the middle 

surface of tha plate, - and for another part of 'Inextensional' energy - the work done 

by tl:e bending moments ovf the curvatures of the deflected plate. 

In the undeflected state the strain energy is completely extensional, 'therefore 

since the total strain energy in the buckled state is less, buckling is the way in 

which the plate gets rid of much of its extensional energy. This is the general trend 

governing the buckle patten: preferred by the plate; at the expense of some bending 

energy the extensional energy is kept down. The more the plate proceeds In the post- 

buckling range the more the ratio of extensional energy to inextensional energy 

decreases. The wave pattern tends towards a developable surface5. 

The suppression of extensional energy means that the membrane stresses are kept 

down. 

The statements are illustrated in Figure 5 by the case of a plate strip (width b) 
simply supported at its longitudinal edges and longitudinally compressed. With 

increasing overall strain e the relative magnitude of the membrane stresses decreases, 

the centre part of the plate where the membrane stresses are small becoming wider. 



Thin Scans that the tackling pattern flattens »ore and asore with Increasing strain 

ratio c/fjj. This is evident fro« Figure 6. Shortening of a longitudinal fibre of 

the plate is accomplished without excessive conpression of its centre line Just by 

following a curved course. This shortening effect is a consequence of the finiteness 

of the deflections and Is a quadratic in the amplitude of the waves. Since the 

longitudinal edges of the plate are supported they cannot escape compression by 

deflecting are! they have to carry large coeipressive stresses. 

Due to the continuity of the deflection this edge effect extends over some width 

of plate. Here the membrane stresses are larger than tv    buckling stress. This 

explains why P exceeds Pb. A further conclusion is tha. ehe distribution of P over 

the plate width depends on the degree of buckling;  therefore "iMvsis of pct- 

buckllng behaviour, cannot start from given edge stresses buf must start from .Jven 

edge disolacements or from a given edge load. 

The favourable behaviour of plates after buckling proves to be a consequence of 

the fact that the edges are supported. If the longitudinal edges were free to move 

they would deflect as well as the centre part and the load carried after buckling 

would be constant, just as in the cose of a column. 

When the plate Is distorted In shear the same general trend applies. The shear 

angle y formed by the ödges of a rectangular plate Is composed of two parts of 
different origin (Pig.7). For one part it is the shear of the middle surface of the 

plate due to Its membrane stress. For the other part it follows from the oblique 
wave pattern. By folding a rectangular plate in oblique waves the length In '.he 

direction normal to the wave crest is decreased; this makes the length of tie 

diagonals of the rectangle unequal and the rectangle changes into a parallelogram. i 

Figure 7 does not account for edge support by which the waves are being suppressed in 

the edge region. Figure 0 shows how the plate manages to make the transition betweeri 

Its straight edges and the washboard pattern of its centre part. Whereas in Figure 7 

the wave formation is such that the plate is still a developable surface this is no 

longer the case when the edges are kept straight. The main part of the plate is a 

developable surface, but the edge region is not, but near the edges the membrane 

stresses vary rapidly yielding a double curved surface. This is evident from the 

fact that plate sections parallel to the sides of the plate differ in developed 

length. In tne case where the plate is  supported by completely stiff edge members 
the projected length of the plate section does not change. Hence the true length of 

a buckled plate strip is longer than that of the edge strip, its extension being 

p. Dportional to the square of the amplitude. Therefore the buckle pattern induces 

tensile stresses in the plate parallel to the edges, these stresses falling off 

towards the edges. 

If the plate were to remuin flat it would sustain at the given strain y the very 
large membrane stress 0>, yielding large extensional energy.  In changing over to a 

buckled shape it does not completely get rid of membrane stresses, but it brings them 
down to a lower level with correspondingly smaller extensional energy. 

Another characteristic feature of the tendency to keep extensional energy down can 
be noticed, namely, the constant level of membrane stresses over a large part of the 
plate. Since the strain energy has something to do with the square of the stresses 

and Jcr2dx > /a"fvdx the strain energy is beir^ reduced when a keeps close to the 

■ 



avormip Htn»«». fferc ftKaln the edge support Is the basic condition hjr »htch the 

plate cm sustain loads in excess of Pb. Without edge-support the panel could be 

sheared according to Figure 7 by oblique waves. With vanishing bending stlffnesa the 

si ar deformation could be obtained without any shear force. In the case of Figure 8 

the strain ratio y/y^  Is large and the plate has got far Into the post-buckled range. 
When the ratio is close to unltjr the buckle pattern is quite» different and tends to 

tho buckle pattern at Pb, Then the surface has double curvature everywhere and the 

derelopahle central part vanlsiioa. 

Returning now to general considerations some further statements can be made. 

.Since at given edge displacements the strain energy Is smaller In the buckled state 

than In the flat state the external load required for this edge displacement Is 

actually smaller than In the absence of buckling. It follows that Lne post-buckllng 

stiffness, being the ratio between load and edge displacement. Is smaller than the 

pre-buckllng stiffness. This Is demonstrated by Figure 8. The ratio of the incre- 

ments of load and edge displacement defines the stiffness of the buckled structure 

with respect to Incremental deformation. It Is still smaller than the post buckling 

stiffness. This Incremental stiffness Is Important when considering the stability 

of the complete structure, namely, general stability and aero-elastic stability. 

When loading a plate in the post-buckling it may happen that the wave pattern 

changes with explosive violence. Obviously the preceding pattern contained more 

energy than the final one, the excess energy causing the bang. This seems to be in 

contrast to the statement that the way in which a structure distorts is governed by 

least energy. The following explanation of this phenomenon can be given. 

■ 

With increasing edge displacements the buckle pattern changes continuously. It 

starts off with a pattern corresponding to the buckling mode and the shape of the 

wave modifies gradually. The tendency toward? reduction of extenslonal energy at the 

expense of more bending energy Involves a tendency towards reduction of wave length. 

The wavelength however cannot change freely due to the edge conditions Imposed. For 

instance, with a rectangular plate of aspect ratio 4 loaded in compression the 

buckling mode comprises 4 half-waves. Thus number of waves cannot change continuosly, 

the only choice being an Integral number of half-waves. Therefore, while increasing 

the edge displacements the plate sticks to 4 half-waves, even when at a certain strain 

ratio 5 half-waves would yield less strain energy. The panel will jump into the 

pattern with lower energy level only when Its equilibrium gets unstable. This will 

not necessarily occur at the intersection of the strain energy curves of Figure 10. 

The transition point depends on the power of the disturbance which forces the plate 

out of Its stable n-wave configuration through intermediate configurations into the 

stable configuration with more waves. Such disturbances are present in the form of 

inu^fections of the plate. Dependent on the magnitude of the imperfection the jump- 

over occurs at a smaller or larger edge displacement. When the imperfection is very 

weak It may be that the transition is retarded so much that the (n+l)-wave pattern is 

passed over and the wave number changes from n Immediately Into n+2 or more. 

Summarizing: 

(a) Edge support is the basis of plate performance beyond buckling. 



(b) Annlysls of post-bucklln« behaviour «ust »Urt fro« Rlvi»n «Kl«ik dlsnl»ci»«rnt» «rwl 

not from glvpn p-dge strpssea. 

(c) The equilibrium equations are non-linear In the deflection. 

(d) For given edge displacements the wave pattern Is such that strain enerio- Is a 

minimum. 

(c) The platp disposes of much of Us strain pnorgy by buckling. 

(f) Kxtenslonal energy Is kept down at thn expense of Inejctcnslonal energy the (rorc 

the plate proceeds Into the post-buckling range. This reduces the membrane 

stresses. 

(g) The buckle pattern changes with Increasing edge displacements, tending to a wide 
centre part with constant small membrane stress and developable surface, to 

narrow edge regions with large membrane stress and double-curved surface, 

and to a short wavelength. 

(h) With finite plate length explosive changes of wave pattern towards Increasing 

wave number can occur. 

(i) The stiffness reduces the more the plate proceeds into the buckled ranRe. 

4. THE EQUATIONS GOVERNING POST-BUCKLING 

BEHAVIOUR OF FLAT PLATES 

Denoting by u, v, w the displacements in the directions of the axes of x, y, 7. 
respectively, where the axis of 2 is normal to the plate, the equations of equilibrium 

of a plate element, comprising the full thickness t, are 
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Equatlona (la) and (lb) are quadratic and Equation (Ic) is cubic in w. When T 

is not constant, one coefficient of Equation (1c) is a function of x and y.    Exact 
solutions of th.»se equations are in general difficult to obtain and approximate 
solutions must be established. 

Introducing the stress function P defined by 

3 ZF d2F 
..- 7)

7
F 

3y? 3x? 3x3y 

Equations (la)  and  (lb) can be replaced by the compatibility condition 

VV + EaV2T- E 
VwV     3?w   3?w 'I 
 =   0 

ox2 3y2 J i^x^y 

Then  (1c) becomes 
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- 

r. 

These equations are known as the von Karman-Tsien-equations3'^7,    As in the case of 
the previous group they are non-linear and can not be solved exactly.    When edge dis- 
placements u,  v are given,  as is usual in this type of problem,   the boundary conditions 
for P must be derived from the following stress-strain relations: 
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3 x By 
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3 2P        B 2P 
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Since approxlB»te solutions can be obtAlned on the basis of the principle of 
olnliairai strain energy the expression for strain energy per unit area »HI be given. 
It la* 

_üf(c_ + e )» - 2(1-1/) Uxcy - i>?) - 
2(1-«'*) I » '     4 

2(l+v) aT(tx ♦ ty) * 

+ 2(l+v)a2T2 + ~- 
J — 

(V7w)? - 2(1-^)1 
-■ 

x7  dy1     \dxdyj ) 
(3) 

5.   METHODS  FOR  SOLUTION 

Approximate solutions always start with some assumption about the function 
representing the deflection w.    Apart from mathematical reasons it is the most spec- 
tacular component of the displacement and therefore the least difficult one to 
estimate.    The assumption of w contains at least one and preferably more undetermined 
parameters p. 

Cue method of solution is along the following lires,  using the Equations (2). 
Substituting w into (2a) this equation is a linear fquation in F and can be solved 
exactly or if necessarily approximately,  taking due account of the boundary condi- 
tions.    Then P is known as a function of the parameters.    Thereupon w and P are 
substituted in (2o).    The solution being an approximate one the lefthand side of (2b) 
cannot be madt to vanish b:  choosing a finite number of parameters [J and some method 
must be devised for determining the parameters such that (2b)  is satisfied in the 
average. 

Por this the Ritz-Galerkin method Is preferable.     It yields the equations 

// qz:p dxdy    =   0 (4) 

the number of which is equal to the number of parameters.  If P is the exact solution 

of (2a) this method is equivalent to the Ralelgh-Ritz method.  It yields those values 

of the parameters p for which the strain energy is  less than with any other choice of 
parameters. Since the solution is an approximate one the energy is larger than the 

actual amount when the plate would be free to find the wave pattern corresponding to 

minimum energy. Therefore the stiffness obtained in this way is larger than the 

actual stiffness. 

It is a pity that exact solutions for F can be obtained only for very simple functions 

of w, and that even then their computation is tedious8. 

When P is an approximate solution of (2a) nothinR can be concluded about the 

nature of the approximation. Since the compatibility condition is not satisfied the 

strains are not compatible, whereas the Raleigh-Rltz method applies to compatible 

strains only. Approximating F by using the minimum comp]emontary energy theorem, 

the approximation obtained for the extensional energy is too small. This is only 

one part of the ene (jy; the other part is being overestimated by us im; Fquation (4). 
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So with the eixture 01 the theorcÄ» of leant conpltwentary eneroy and least strain 

eneny In an uirigorou» way no definite conclusion 1» poaslble on the nature of the 

approximation. 

In this respect a method »hlch 1» based an one theorem onl.; la preferable, the 
theorem of iHnimal »train energy. This solution starts fron Equations (1) and applies 

the Rltz-Galerkln method, or It starts from Equation (3) and applies the Ralelgh- 

Rltz method. These aethods are mechanicalIj Identical.  Besides an assumption for 

w, assumptions have to be made for u and v. These assumptions Include some parameters 

p. Then the strains can be computed and consequently from Equation (1) the 'addi- 

tional forces' qx, qy. qu or from Equation (3). the strain enerja. 

UslnK the RalelRh-Ritz method, the equations from which the parameters p can bo 
solved are 

jjiid^ = (5) 

Using the Rltz-Galerkln method, the equations for the determinations of the parameters 

p are 

4^57 +   'av + F) dxdy = 0 (G) 

Qx, q y q    are the afidltlonc! forces per unit area required for equilibrium at the 

approximate displacements u, v, w. The condition expresses that the potential energy 

of this additional load system does not change when the parameters vary. It can be 

shown that this condition is equivalent to the minimum potential energy theorem, which 

forms the basis of Bquation (5). 

When u, v, w do not satisfy the dynamical boundary conditions, equilibrium requires 

additional edge forces.  In that case the left hand side of Equation (6) should be 

complemented by the contour integral of the product of this additional edge force and 

the derivative to p of the corresponding edge displacement. 

The difficulty with these methods is that an appropriate guess of u and v has to 

be made. Of course the adaptibility of the guess can be improved by increasing the 

number of parameters, but this soon leads to a prohibitive number of non-linear 

simultaneous algebraic Equations of the form (5) or (6). For this prectical reason u 

and v must be constructed by means of the parameters adopted for v». The best way to 

do this is to make assumptions on the distribution of the strains e,, ev, y,  from 
A    J 

which u and v car be derived, taking into account the given edge displacements. 

This procedure comes close to the procedure which is applied when (2a) is solved 

approximately.  Then appropriate stress functions F have to be chosen and this is 

essentially a guess of stress distribution or strain distribution. Then however the 

possibility exists of combining a certain number of these stress functions, which 
gives the approximation more adaptability, provided the coefficients of the stress 

functions become simple functions of the parameters p.  Unfortunately this latter 
condition is usually not satisfied, which means again that the evaluation of the 
equations is getting prohibitively laborious. 

- 
■ 

■ 

. 
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6.   AVAILABLE  SOLUTION   FOR  BDiAVIWR  AFTER DUCKLING 

6.1    Longitudinal Cnntpression (Effective Width) 

6.1,1    Flat plates 

A longitudinally compressed plate carries the load 

P   =    t jU 
When the edge strain (compressIve) Is e the stress In the edge stlffener is ee = Ee. 
Now the 'effective width'   be  Is defined by 

Hence 

P   =   Vbe 

i ^e '- (y/b) 

ca.i be called the post-buckling effectiveness of the plate. 

Von Kdrman answered the urgent need for knowledge on effective width by devising 
and engineering guess based on very much simplified considerations.    Although this 
was an ingenious close guess,   giving (Fig. 11) 

i' 

V, 
(7) 

its reliability is not self-evident. 

The first thorough investigat?;n is due to Marguerre and Trefftz8'9. They assumed 
the wave pattern 

f sin — sin -— 

where f and L are the parameters. This wave form comprises the buckling mode, so it 

will yield a good approximation for small jtraln ratios t/^. However, for e/c^ - ^ 

it yields be/b = 1/3, whereas fo'- physical reasons be/b should vanish. This dis- 

crepancy is a consequence of expressing the wave form as a function of y, which does 

not permit flattenin,,' at larger strain ratios.  H.L. Cox10 accounted for this effect, 

assuming over the centre part a constant wave depth and sinusoidal deflection In the 

edge region. His parameters are the wave amplitude and the width of the edge region, 

the wave length being constant. His application of Raleigh's method Is not rigorous, 

since part of the extensional energy is neglected. In this respect the energy is 

being underestimated; however, the approximation of the wave form has the opposite 

effect. 

_. 

.jg— 
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The (Kj«t advanced Invpjitlgatlon ha« been done by ».T. Kolter11. Unfortunately, 
thtM »ork has only been published In Dutch, «o that It Is little knuvn. Kolter 
followed tVjx*» auggea^lon for the fave pattern, allcialn« the *ave length, however, 
In addition to the wave uepth and the width of tne edge region, to be a pariwieter. 
Also, he did not neglect part of the energy. 

Several oasuaptlons were made for the displacement functions: for the simply 
supported plate (4), one of thea having continuous 97w/öy2 at the transition of the 
centre part and edge region; for the clAinped plate (2); and for the elasttcally 
restrained plate (3). 

The good agreement between the results obtained with different wave forms Indicates 
that the approximation Is satisfactory and that the results are not sensitive to 
slight alterations in the wave form assumed. Moreover, the effective width as a 
function of the strain ratio proved to bo practically im" ?pendent of the boundary 
conditions. Hence the effective width for simply supported, plastically restrained, 
or clamped edges can be given by the same function of t/e^, viz. 

?/s     / *   \ <*/ $ /^ \ «/s 

(8) 

where e^ is the buckling strain pertaining to the actual boundary conditions. 
Equation (8) gives a representation of this function with no more than 1% error. 
Figure 11 shows that the agreement between experimental results for various edge 
restraints and Kolter*s analytical results Is quite satisfactory.  Sines the approx- 
imation must yield a too large effective width It is somewhat surprising to find 
that most of the experiments fall above the theoretical curve. The most acceptable 
explanation will be that in actual panels the wave length reduction #lth increasing 
strain ratio will be retarded, whereas Kolter's computations apply to the infinitely 
long plate, where noting prevents a gradual change of wave length. 

Kolter's theory has the advantage that It holds for any strain ratio between 1 and 
,:E.  More accurate Investigations hive been made by Hemp1?, applying to strain ratios 
a little over 1.  They are not discussed here, because the inevitable imperfections 
of plates affect the behaviour of plates In this region sensibly (compare Figure 4), 
reducing the practical importance of more accurate knowledge. 

During the last few years the Netherlands Aeronautical Laboratory has proceeded 
with Its Investigations on effective width, extending it to the behaviour of plates 
In the plastic range by experiments on 24S-T and 75S-T, cladded and uncladded13' l*. 
The range of strain ratios was 1 < e/tb < 50 and t'p/e^ was in the range 1.5 < tp^h 
<  20, where e    is the strain at which the elastic limit of the material is exceeded. 
Referring the effective width to the edge stress cr = E e, the results suggest the 
empirical conclusion that Kolter's Equation (8) may be extrapolated into the plastic 
range.  Some representative results are shown in Figure 12. 

Some series of tests were also carried out on 2S-^ H material so as to investigate 
post-buckling behaviour with materials having a more gradual transition between the 
elastic and plastic parts of the stress-strain curve111.  In this case the effective 
width In the plastic range Is greater than that given by the theoretical curve for 
elastic materials.  Some results are shrwn in Figure 13. 
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ß.t.Q   Sarrov ci'lindrtail panels 

QuUe recently Kolter Investigated the initial post-buckling behaviour of narro» 

cylindrical panels such as occur In *lng'< and fuselages »Itt; longitudinal stiffeners19. 

All constraining effects of thr atlffenns other than the coaplete suppression of 

radial deflection were neglected. 

The tangent to the post-buckling curve at buckling load has been established. It 

la given by 

P - Pb 

^ - p + i^r (9) 

where      0   =    -L  [i2(l - v2)]*  b(Rt)"^ 
£71 

<P0)    = I - Iß* - tYliin2  + I)"2 + (n2 + l)^-* -  I - ^n 
n=i 

Pb = Ebt(l + 9'i)eb     for 0 $  1 

and Is shown in Figure 14. 

In wing panels the values of d are usually considerably smaller than 0.5 and as 
appears from Figure 14 the post-buckling behaviour is very similar to that for flat 

plates, where 6=0. 

In fuselage panels the values of 6  range from approximately 0.4 to about 2, so 

that usually the initial post-buckling behavioir differs considerably from that of a 

flat plate. 

For (9 < 0. 3 dP/de is practically equal to that for 6 = 0;    curvature does not 
affect the post-buckled behaviour. For (9 > 0. 5 dP/de starts to decrease rapidly with 

increasing 6,  passing at 6 =  0,65 through zero and becoming negative. 

The horizontal tangent represents the limiting case of a stable post-buckled 

behaviour for a prescribed load. At 6 =  0.77 the tangent is vertical and at 0 = 1 
the behaviour is very close to that of a full cylinder. 

These figures apply to the panel the edges of which are simply supported.  It may 

;.e expected that inltla,1 post-buckling behaviour with clamped or elastically restraint 
edges will be stable up to higher values of 6,  but the general trend will be the 
same. 

The effect of initial sinusoidal imperfections at small deflections has been 

investigated. Then the lead up to which the behaviour is stable Is lowered 
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considerably when & > 0.65 (corapttrp PiRure 4b).    This  'buckling load' depend» on the 
ratio of the aaplltud«! a of the InlMal waires to plate thickness.    Figure 15 shows this 
for two values of 0. 

As for thj more advanced post-buckling stages It seems reasonable to expect that 
It approaches that of a flat plate of equal width. 

Considering a free panel simply supported at its edges,  the Initially curved ilate 
tends in Its centre part to becowe a developable surface,  as with the Initially tiai 
plate.    Supposing that the curved plate when buckled has the same shape as the 
initially flat plate,  tae strain energy per unit length in the first case is 
H Sbt Q**^    ^b is thp huckllnK strain of the flat plate) greater than that of the 
flat plate,  where It  is n Ebteb

2[i + | (t7cb)3/a]  in the initial post-buckling stage 
and in the advanced stage even more than that.    Hence when e/e^ » 1 the strain 
energies In these two cases are approaching one another,  yielding equal  effective 
widths. 

With a shell running continuously over regularly spaced stringers the Individual 
panels are not free to assume the wave pattern of the flat plate,  since this would 
imply a discontinuity of the slopes at the stringer,  the discontinuity being 
b/R =  277$2eb

1'2.    The condition of continuity means that the adjacent panels are 
restraining each other,  the effect of which is an increase of stiffness. 

• 

Starting from the buckle pattern of the single panel, the edges have to be 

rotated through the constant angle Tidie^1'7.    This angle is of the same order of 
magnitude as the slope of the wave pattern with the free panel, when e/£b Is small. 

However, with a large strain ratio e/e^ the slope with the free panel Is about 1.7e1/2; 

then the correction required for coitinuity is relatively small and so Is the 

additional energy originating from this edge restraint. 

The conclusion Is that the load sustained by a curved panel Is for the same edge 

strain somewhat greater than the load carried by a flat panel of the same width and 

tends to become equal at large strain ratios. 

" 

m- 

■ 

■ 

Figure 16 shows schematically the load-strain curve for plates which are unstable 

in the initial post-buckling range. Since imperfections cut off the peak of the 

load-strain curve, near the buckling load the curve for the actual plate will be still 

closer to that for the flat plate. So for practical purposes It is justified to 

identify post-buckling behaviour of narrow 0 4-  1) cylindrical panels and flat plates 
In spite of the initially unstable post-buckling behaviour when 6 > 0.65. 

6.2  Flat Plates Under Shear Load 

As stated before, the first analytical investigation on post-buckling behaviour of 

plates loaded in shear was made by H. Wagner1.  Its object is the 'complete tension 

field', where the plate is supposed to be unable to carry compressive membrane 

stresses. This means that y^ -  0, or more precisely that the strain ratio (to which 

this investigation applies) y/y^ - 'X).     So it represents the limiting case. 

Wagner's work has been of much importance in the design of spar webs, etc., but It 

yields conservative design since the performance of the plate is underestimated. The 
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analytical Inrentltfatlon of the  'IncoBiplcte tension field', »here the plate can 
sustain coiBpresalve as well as tensile stresses,  »tarts with a paper by Krone and 
Warguerre* applying to the sioply supported plate strip. 

They assumed the wave forra 

f sln nl Lln Ü^-U^l (10) 

where f, L and m are the parnmeters. 

This wave pattern Is an approximation of the buckle mod«;.  Its nodal lines are 

straight, whereas the tangent of the exact nodal line Is perpendicular to the edge. 

The buckling strain y^  obtained frjm this approximate wave form is 5.7% too large. 

The data obtained for post-buckling behaviour are good at strain ratios not too 

much greater than I. At large strain ratios the wave pattern flattens in the centre 

part, which phenomenon is not represented in the pattern (10). &> It Is evident 

that Reference 9 does not yield Wagner's results In the limitir^ ca«e of infinite 

strain ratio. This first attempt was improved by Kolter16, assuming, as In the case 

of the effective width problem, constant wave amplitude in the centre part (develop- 

able surface) and double curvature in the edge regions. This adds a fourth parameter 

to those of Equation (10), namely the width of the centre part. 

Several assumptions were made for the wive pattern In the edge regions: for the 

simply supported plate (4), one of them having continuous curvature at the transition 

of centre part and edge region, another one with nodal lines ending perpendicularly 

to the edges; and for the clamped pl&te (2). 

This theory yields for y/ju = ^ results which are in agreement, with Wagner's 
complete tension field theory. The differences between the results obtained from 

the various wave patterns were not very Important. One of them applying to the simply 

supported plate was chosen for evaluation of Kolter's equations, which has been 

established in References 17 and 18. 

Reference 17 contains diagrams from which the relation between the overall strain 

ratios -j/eb, ^2/^, 7/% ^d the average stress ratios a^Ee^, cr,/Eev, T/ECJ, can be 

read. The indices 1 and 2 apply to the longitudinal and the lateral direction 

respectively. Each diagram applies to one of the r/1^^  ratios 0.5, 10 45, 50; 

the coordinates are e/'e^' S^b'  the ^iaKrams Sive curves of constant a^Ee^, 
a?/Eej) and r/Gy.   Thus at <?iven c./^jj. e

?/
eb the corresponding stress ratios a /Ee., 

a^/Ee^  and the corresponding shear rigidity reduction r/Gy   are found by Interpolation 

The field of application of these data Is not limited to weLs loaded In shear. 

Since tj/e^ and e /e^ are arbitrary they apply as well to the case of stiffened 

plates loaded in shear and in compression or tension longitudinally and laterally. 

They make It possible to establish for simply supported plates: 

(a) From given edge dlsplarements the edge loads 
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(b) Pro« given edge loads the edge dlaplaceaent» 

(c) P«o« a «ixture of three given edge dlaplaceBeiits or loads the other displace- 

cents and loads 

(d) The; stiffness of the plate 

(e) The stiffness with respect to load Increments, for Instance the change of 

shear stiffness resulting from a change of longitudinal compression. 

These data are strictly valid only when the stresses are below the proportional 

limit. The stresses can be derived from the wave form. This has been evaluated In 

Reftrence 18, which establishes the greatest effective strain ee  according to the 
Huber-von Mlses-Hencky criterion, again In diagrams applying to constant T/E^. where 

the coordinates are ^Z^.  c2/
cb &n^ curves of constant tg/e^ are given. 

The former data apply to simply supported edges. The evaluation of plates with 

clamped edges has not been done systematically. It has been found that, contrary to 

the effective width problem, post-buckling behaviour of plates loaded in shear is 

not merely dependent on y/yu  but on the boundary conditions as well. For the same 

strain ratios y/y^  the clamped plate is closer to the complete tension field than is 
the simply supported plate. This difference with the effective width problem can be 

physically understood as follows. 

At large strain ratios the strain energy of the compressed plate is mainly confined 

to the edge regions (large membrane stresses, large curvatures), whereas in the tension 

field the centre» part as well contains much strain energy since the normal and shear 

stresses in the centre part and near the edges are equally important. 

"v- 
The wave form flattens at some distance from the edge, which means that the effect 

of boundary conditions has damped out when getting at the centre part. Therefore the 

strain energy of the centre part is almost independent of the boundary conditions. 
On the contrary the buckling strain depends on the boundary conditions. Hence the 

total strain energy cannot be merely a function of the strain ratio. At very large 

strain ratios the edge regions are narrow, so that the total strain energy is almost 

equal to the energy of the centre part.  Then the strain nnergy would be almost 

Independent of the boundary conditions. This means that for large strains the post- 

buckling behaviour of clamped plates Is almost the same us  that of the simply 
supported plate at the sajne strain. 

An experimental check of theory was not possible with the tests by Lahde and 

Wagner1", since they Investigated the plate with clamped edges. Tests on spar webs 
are usually confined to shear load and slight additional bending, and usually the 

support of the plate by stiffeners provides some restraint. So the Netherland 

Aeronautical Institute undertook a test program on plaLc. loaded In compression and 

shear, without restraint at the supoorting manbers. The resüts have been communi- 

cated ,21.  The result showed consHer»»h1f> scatter, more in particular at the 

smaller strain ratios. Obviously the imperfections of the plate have much effect on 

post-buclillng behaviour and this scatter prevented an accurate comparison of theory 

and tests.  However, the tests provide sufficient evidence chat Kolter's theory gives 

an adequate picture of post-buckling behaviour over the whole range of strain ratios 



«ta——— 
»mini ■y«-lliinillir» 

-<.M>|iiiii!«W»i<»<i'»''>*i' ■W-*'** — -- 

17 

and cofliblnatlons of normal and shear loads, more In particular for panel« having 

large aspect ratio. In vie» of scatter in post-buckling behaviour of actual plates 

there seems little point In further refinement of analysis. So far Koiter's theory 

is the only one with this wide range. Several authors made valuable contributions, 

like Denke"'?3, Levy7*''5 and Bergmann'6, applying to the sfjuare plate or the 

rectangular plate *lth length to width ratio not larger than 2. However, the 

validity of these theories Is restricted to small and moderate strain ratios and to 

panels loaded In shear only. 

The practical importance of a satisfactory theory after evaluation Is that it 

provides knowledge on stiffness of buckled plates. From this knowledge the stress- 

strain relations of a complete structure, composed of plates and other elements like 

springers and frames, can be determined. Arart from that a satisfactory theory 

enables L*" to establish the edge displacements at which permanent wrinkling starts. 

However, theory Is unable to predict the edge displacements at which failure occurs. 

When the structure falls In rivet Joints before permanent wrinkling starts, the 

failure could be predicted by analysis. But usually rivet joints will be made 

stronger and their failure will be preceded by plastic deformation In the plate. In 

view of the complexity of the problem there are no hopes for analytical Investiga- 

tions on post-buckling behaviour in the plastic range. Another possible cause of 

failure is stiffener failure due to the combined action of normal load and flexiire 

and torsion imposed by plate wrinkles. This phenomenon too is beyond the possibili- 

ties of analysis. Therefore knowledge of ultimate load of stiffened plates in the 

post-buckled range must be acquired empirically. In this respect much has been done 

at N.A.C.A. by Kuhn, Peterson, Levin and other. Kuhn has summarized this work in 

his recently published text book27. These data enable us to predict ultimate loads 

with no more than 10% error. 

6.3 Flat Flntes Under Tiermal Stresses 

In supersonic flight the temperature of the structure rises due to kinetic 

heating. When flight has been maintained at constant speed during some length of 

time the temperature differences in the structure are small and so are the thermal 

stresses. However in transient conditions heat flow produces temperature differ- 
ences and consequently thermal stresses, which affect both buckling and post-buckling 

behaviour. The skin Is heated by the air, but at the plate edges part of the heat 

input is transferred to the interior structure, such as webs of multi-web wings. 

Therefore the edges have a lower temperature than the centre part. Since the longi- 
tudinal strain of the plate strip is constant throughout the width of the plate and 

the resultant force should vanish, compressive stresses occur In the centre part and 

tensile stresses occur near the edges. To this stress distribution is added the 

stress due to the mechanical loads on the aircraft. 

Since we are interested in post-buckling behaviour, the part of the skin which 

should be examined is the side which is loaded in compression. Here the skin plate 

presents before buckling a stress distribution of the type represented in Figure 17. 

It has been shown29 that a good approximatikn of the buckling mode is given by the 
buckling mode for uniformly stressed plates. This is a guide for post-buckling in- 

vestigations. So the buckling pattern appropriate to non-thermal conditions, assumed 
in Reference 11, can be applied to thermal conditions. 
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In Referenc»' 29 po«t.-bucltlin« bebftvlour has irt»en Invpjttlrated for plate« loaded 
In ccwpreaslon and by the folloüln« tfaperature distribution: 

T    a T0 ♦ T »in •" y/b HI) 

or by a tewperaturp distribution In which T Is constant ove- part of the plate width 

In the centre and falls off towards the edRcs according to a power n (Pig. 18). 

Conclusions fron this investigation can be given in a very simple for», since the 

loftd-strnln curve appears to have the same shape as that for the non-thermal condi- 

tion. Denotln»; by P and e  the loud and coaipresslve edge strain for the non-thermal 
condition, the relation between P and (.  in the thermal condition follows from: 

i 2 vy 
+ -l. f aT cos ^^^  dy 

Ebt Ebt      bJ b 

1 b.   _/, 277y \ 
-jaT(l -cos— )dy 

(12) 

The edge stress is cra = E(e + a/TJ, 

i 

So the P-c curve is &B shown in Figure 19; it fillows from the P-e curve simply 

by sliding the axes over a distance, which depends on the temperature distribution. 

The buckling load decreased by thermal stresses. However the load increment in the 

post-buckled range is Independent of the temperature, it depends only on the incre- 

ment of edge strain beyond the critical strain. This statement is incorrect in so 

far it does not consider the effect of temperature on the modulus of elasticity. It 

must be complemented by the instruction that the P-e curve refers to the modulus of 

elasticity for the temperature level under consideration. 

The integral over T in Equation (12) shows, that the buckling mode across the 

width Is proportional to sin rry/h.    When allowing for flattening of the centre part, 
as applied in Reference 11, the P-e curve Is only slightly different for e/6b > 4. 

With the temperature distribution (11) the temperature effect is rather pronounced; 

nevertheless the difference between P computed from (12) and P computed from the 

flattened wave shape was well within 1%.  Equation fi2),   therefore, can be considered 
to hold for the whole range of strain ratios. 

The simplicity of the conclusion that the relation between load and strain incre- 

ment is almost unaffected by thermal conditions suggests that some physical evidence 

must exist. The following explanation can be given. 

Consider two equal plates 1 and 2 differing only in temperature distribution - the 

temperature of plate 1 being constant, plate 2 having varying temperature - longitudinally 

compressed up to their respective buckling loads. 

At the buckling load Pb the stresses are crb.  Since the strain energy is a minimum 

for any variation By of the strain y,  which is accompanied by the longitudinal edge 
displacement LSe, 

■ 
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/Z(obfry)dT    -    PbLic (13) 

for both plates 1 and 2. «here o^ and Pb are different. No» consider the pistes both 
to be conpressed loirnltodlnaHj the same amount Ac beyond their cospressive strain 
tjj and assuae that the nvt pattern of plate 2 Is the saae as that of plate 1. e.g. 
the assuaptlon Is that the wave pattern la affected negHßlbly by the difference ot 
thermal conditions. Then the stniss Increfflents Ao follofflng from A« are equal for 
plates 1 and 2. The load increment Is AP. Since plate 1 Is in rqull Ibrlum in Its 
deflected shape 

JlUabl* Aa^dv   =    (Pbl+ APi)Lbt (14a. 

for any compatible system of strain variations by.    The approximation for the load 
upon plate 2 is found from the condition that the work done by P is equal to the 

Increase of strain energy when e increases with Be.    The strain variations between 
the states of compression e  and e + ke are Sy. Hence 

/I[(ob2 + Aa?)57]dv = (Pb2 + Ap?)LSc (14b) 

Substitutihg (13) into (14a) and (14b), and rememberi-ig that Ao^ = Acr? it follows 

that AP1 = AP2 for equal compressive strain increment Ae beyond buckling strain. 

This conclusion has been based upon the assumption that the wave pattern of the non- 

thermal case is a good approximation for the wave pattern in the thermal case. This 

restricts the validity of the statement that AP/Ae is unaffected by thermal condi- 

tions, but the impression is that these restrictions is not important. 

Our reasoning was given with respect to the longitudinally compressed plate. How- 

ever, any other edge displacement could have been taken. Heiy e we can extend the 

validity of the statement to any case of thermal load and mechanical load in shear 

and compression, provided the wave pattern is affected only slightly by thermal 

stresses. 

This widens the statement to: the relation between load increment P-P. and overall 

strain increment e-eb is not influenced by thermal stresses  When the post-buckling 

behaviour is known for non-thermal conditions, the problem of post-buckling for 

thermal conditions is solved as soon as the buckling load Pb has been established. 

For the time being the only available literature on post-buckling behaviour of 
thermally loaded plates is contained in Reference 7, The case considered there was 

devised so that experimental check of the analysis was possible. 

Since the temperature distribution is far from actual conditions with kinetic 

heating of aircraft the results need not be discussed in detail.  It suffices to 

say that the theoretical and the measured wave patterns agreed satisfactorily. 

Furthermore, Reference 7 establishes an interesting method for computing the correc- 

tion of the deflections following from initial Imperfections, which are of the sfi-ne 
form as the wave pattern. 
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Fig.1      Schematic representation of eqyilibrlum load versus buckling deflection 
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Fig.2     Schematic representation of equilibrium lond versus edge displacement 
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Pig.4     Schematic representation of the effect of initial imperfections 
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Pig.8  Shortening of a plate due to buckling 
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Pig. 7  Shear angle of a rectangular plate following from oblique waves 
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Fig.8     Wave pattern for large strain ratio y/yh 
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Fig.9  Stiffness of buckled panels 
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Pig.10  Explosive change of buckle pattern 

^.»T 
Koiter 

Cox       
qS^ von Kafman 

fmarjiuL.tr re 
iKromm 

0,8 i.o 
—'fuyA 

Pig.11      Effective width 



39 

O 0,1 O.l        0.3        OA QS        0,6 0.7 0,9 1,0 

ibV4 
U ) 

Pig.12     Effective width in the plastic range with 24S-T (+) and 75S-T (0) cladded 
and unc1added Material 
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Fig.13     Effective width in the plastic range with 2S-%H cladded material 
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Pig.14     Tangent to post buckling curve at buckling load for cylindrical panels 
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Pig.15  Effect of imperfections on maxinuin load in the initial post buckling range 
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Pig.17  Direct stresses of a skin plate by thermal and mechanical load 
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Fig.18     Temperacure distribution in the plate 
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Pig.19  Load strain curve with thermal conditions. P, e  applies to non-thermal 
conditions. P £ applies to thermal conditions 
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