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SUMMARY

Weight efficiency when using thin plates in aircraft structures
requires increasing load carrying capacity beyond buckling load. 1In
this respect flat plates supported along their edges differ favourably

from columns and curved plates.

The alm is to find the relation between the edge displacements of a
panel and its ioad, including the relation between the increments of
both buckling and stiffness.

The physical characteristic feature is that the defleclicis ave
finite, from which the equations are non-linear. Even with simple
houndary conditions exact solutions are missing. Approximate solutions
hased upon energy theorems are available. Solutions established for
flat platesat constant temperature and for thermal loading will be dis-
cussed and compared with availeble experimental evidence.

From a recent investigation it appears that the post buckling behsviour

of narrow cylindrical panels cen present the unstahble explosive charac
ter, known with full cylindrical shells, at least at deformations close

to those at which buckling starts.
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SOMMATIRE

L' emploi de plaquettes minces demande des structures capables de résister
aux charges supérieures & la change de flambage A cet égard les plaquettes
minces supportées le long de leurs bords présentent des caractéristiques
favorables vis-a-vis celles des colonnes et des plaquettes courbées.

On cherche a etablir la relation entre les déplacementsde bord d’ un
panneau de revétement et la charge subie, y compris le rapport entre une
augmentation de flambage et e rigidite.

La particularité pnysique est que les deflectinns sont finies, donnant
ainsi des équations non lindaires. Méme dans des conditions de limite
simples, des solutions precises ne sont pas possibles. On dispose de
solutions fondées sur des théorémes eénergetiques. Des solutions
4 A} 0 [}
etablies pour des plaquettes planes a température constante soumises a
des sollicitations thermiques sont etudides et comparées avec les résul-

ro, . [} 4 ’ q A
tats experimentaux disponibles. D'apres une etude recente il parait
que le comportement aprés flambage de panneaux cylindriques étroits
4 1 o
peuvent presenter le caractere instable explosif bien connu dans le cas
de coquilles cylindriques, tout au moins lors des déformations voisines
4 celles provoquant le flambage.
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NOTATION

p

b

11

(aT)av

fal

strain energy

load

radius of cylindrical panel

temperature

panel width

effective width

as a suftix denotes the quantity concerned at buckling load
edge displacement

coefficient of thermal expansion

overall shear of a panel, following from edge displacement
overall longitudinal compressive strain, edge strain
curvsture parameter defined by Equation (9)

compressive stress

edge stress

shear stress

strain ratio

strain ratio

average value of aT over plate width

P, € in isothermal condition

forces (with suffix)
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POST BUCKLING Z2EHAVINJR OF STRUCTURES

A. vapr der Neut*

1. INTRODUCTION

Engineers have for & long time been interested in the buckliug of structures, but
they did not pay uttention to the behaviour of structures after the onset of buckling.
The accepted idea was that the buckling load was the ultimate performance of the
structure, that for reasons of safety the sctunl load had to be kept far helow what
was called the critical 1oad and that research on post-buckling behaviour had no

practical importance,

The experience that some structures, such as axially compressed cylindrical shells,
failed at loads far below the theoretical bucxling load was attributed to inevitable
imperfections in the shape. This seemed to support the apprecistion of critical
loads and was answered by the introduction of an ample factor of safety. On the
other hand the experience that other structures, for instance, plates supported at
their edges, were able to sustain luads fur in excess of their buckling load, was
considered with suspicion and did not upset the belief that the loads should be kept
below the critical load.

Aeronautic.l engineers, however, could not close their eyes, either to the
treacherous characteristics of shells or to prcaising phenomena of plates, since they
were living under the ever Increasing demands of weight economy in structures which

were highly liable to buckling.

When appiying plates as structural elements of aircraft, these plates tend to be
thin and consequently buckling stresses are much smaller than the allowakble stre:ses
for more solid sections made from the same material. The most economical solution
i{s to rearrange the distribution of material son that by having numerous supporting
elements the buckling stress of the reinforced plate is well up to the material
strength. With heavily loaded aircraft structures this can be achieved, as in the
cases of the main structure of large aspect ratio wings and of thin wings for large
wing loading and load factor. However, with plites, where the load per unit cof length
is relatively small, a design in which buckling would be admitted only at the ultimate
load would be uneconomical.

Such conditions are present with lightly loaded wing structures and the majority
of fuselage structures. Here plate buckling has been accepted, in many cases even
in horizontal flight, since this type of buckling is not catastrophic and, moreaver,
the plate takes its share in supporting load increments due to manoeuvres and gusts.
Such a plate can be regarded as remaining a structural elemen’ even after buckling.
To exploit this favourable characteristic, aeronautical engineers had to investi-
gate this ‘post-buckling behaviour’ of plates.

No knowladge afcquired by other branches of engineering war available. Although
civil engineering was confronted with the game type of prob' , for instance deep

*Professor, Technische Hogeschool Delft Vliegtuigbouvkunde, Delft, Nederland
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I-heams in bridges, the need for weight economy was not so0 prezsing thero that post-
tuckling use wes acknowledged to pesent a sound engineering philosophy.

It cannot be deried that some dawn of consciousness of post-buckling theory
existed in nuval architecture. When the steel skin of ships was reinforced by
longitudinals, & small width of plate was coneidered to he effective as an addition
to the cection of the longitudinal. However, due to the Classification Rules, strength
analysis could not lead the way to welght saving structures and the investigation of
post-huckling behaviour was not undertaten. So, as in other cases, to aerconautins
fell the honour of penetrating the bramble-bushes and awakening Sleeping Beauty with
1ts scientific kiss. If this metaphorical language calls for a perscnification there
{s no doubt that this romantic part way be attributed to H. Wegner, who publisned in
1929 his wellknown work on the tensicn field of spar webs'. This paper indeed is the
charter legitimating the use of buckled plutes as structural elements for carrying
shear loads in spar webs and in the skins of wings and fuselages.

In the early thirties the American aircraft industry introduced a new and highly
{mportant application of post-buckling with so-called stressed-skin structuras.
Supporting the skin by nuwmerous longitudinal stringers the skin, though buckled, could
be made effective in carrying longitudiral compression. Knowledge of the behaviour
of this type of structure started by being empirical but wus soon supplemented from
analytical sources. This paper gives a survey of the state of science in the field.

It must be admitted that the importance of post-buckling is past its prime of
life. As previously stated, many modern aircraf! siructures are so heavily loaded,
or need so much stiffness, that their compactness yields high buckling stresses.
Smoothness of surface required for aerodynamic per ‘ormancc of high-speed aircraft can
be another reason for the expurgation of buckled elements. However, some bright hopes
for the participation of post-buckiing behaviour in the supersonic age are coming
from the complications to structural engineering caused by kinetic heating during
transient conditions. Temporarily high compressive stresses are being generated in
wing skins, which, added to the aerodynamic loads, can bring the skin into the post-
buckling range. Since this sftuation is present only during a small percentage of
the total flight time (the heating-up period), drag increase by surface waviness is
possibly not prohibitive, provided this waviness does not give rise to violent vibra-
tions. Aerodynamicists will have to supply the structural engineer with data on the
amount of surface waviness which can be tolerated.

2. VARIETIES OF POST-BUCKLING BEHAVIOUR

.Buckling can occur only in structural elements having at least one dimension
which is iruch smaller than its other dimensions, as, for instance, in the case of a
column, plate or shell where the thickness is small compaired to the length or width.
These structures are liable to buckling cnly when their external load is such that
the internal forces act in the direction of the large dimensions, for example, a
normal ferce in a column, or normal or shear forces in plates and shells. This type
of load deforms the structdre in the direction of the large dimensions and no dis-
placement occurs in the divection of the small dimension. In other words the type of
load which can bring a&bout buckling does not cause deflections before buckling starts.



At the buckling load the atate of strain is no longer unambiglously determined.
Besides the pre-buckling deformation another deformation may occur, the huckling mode.
The characteristic difference between this deformation and the pre-buckling deforma-
tion is that displacerentain the direction of the small size occur, ¢.g. the structure

4eflrcts,

According to the classic theory of buckling the magnitude of this deflection is
not unambigiously determined. Any deflection, provided {t is of the first order of
magnitude, is in equilibrium with the buckling load. This means that the tangent to
the load-vs-deflection curve is horizontal (Fig.1). Post-buckling behaviour now
relates to the character of the load-deflection curve at finite buckling deflectious.
In Figure 1 the various possibilities of behaviour have bsen schematically represented.
Curve a applies to columns, where the load is constant over a wide range of deflec-
tions provided no plastic daformation occurs at the point of maxinum stress. Due to
the deflection, the ends of the column are approaching each other., This end dis-
placement is a quadratic in the deflection. Figure 2a represents the load-vs-
shortening of the column., With increasing compression of the column the end load
remains constant, As soon as plastic deformation starts the load required for
e¢3milibrium decreases, and the column collapses (dotted line in Figures 1 and 2).

This last type of behaviour has something in common with type b, which applies to
shells, where with increasing deflection the load required for equilibrium decreases.

It has appeared from studies on the stability of equilibrium at buckling load that
the classic theory is wrong in its statement that the structure at the buckling load
is in equilibrjum when the deflections are infinitely smali. H.L. Cox? and von Kdrmen
and Tsien® discovered that- some non-linear effect, overlooked so far, was of vital
importance. The tangent to the load-deflection curve is not horizontal®; therefore
as soon as deflections occur under 2 load equal to the buckling load Pb' the nositive
difference between Pb and the equilibrium load accelerates buckling, resulting in
explosive collapse. Only after attaining very large deflections does the equilibrium
load pass through a minimum. The highly unstable character of the structure at the load
Pb means that its post-buckling behaviour is structurally useless.

The last possibility represented by curve c shows that the equilibrium load increases
with increasing deflection. Since the load increment as well as the edge displacement
increment are proportional to the square of the deflection, the load-vi-edge displace-
ment curve shows a positive slope at Pb. This case applies to flat plates supported
at their edges and to slightly curved panels.

So far it has been assumed that the structural members under csonsideration are
perfect, which means that they do not deflact at loads below Pb. When the structure is
initiaily imperfect - for example, the column not absolutely straight, the plate not
absolutely plane and the shell showing analogous deviations, it delfects before the
loa Pb is reached. The behaviour of the three types of structures is illustrated by
Plgures 3 and 4. There is no longer a critical load at which buckling starts. Pb
for the perfect structures a and b are replaced by a load which is close to Pb in the
case of the column but much smaller than Pb in case2 b. Case c on the contrary shows
a gradual increase of losa with increasing deflection or edge displacement. The
transition point between pre-buckling and post buckling behaviour vanishes. Moreover,
at loads far beyond Py the curve approaches the curve for the perfect structure.
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Since {mperfections cannot ve completely avotded in actua) structures the liability
of type b to isperfections is a warning to keep actual loads far below Pb. This puty
the use of strustures in the buckled state still further out of consideration,
Howaver, with type ¢, imperfections do not alter the conclusion that these structures
are useful in the post-buckled range.

Further attention will be vestricted to the study of structure type c.

3. THE PHYSICAL CONTCEPT OF POST BUCKLING BFHAVIOUR

Consgider a perfect structure, such as & flat plate loaded up to the buckling load
Pb. Then the stresser in the platc are oy, and its edge displacements in the plane of
the plate nre u,. Now let the edge displacements increase proportionally, yielding
u = Kub. Then the plete remaining flat has the stresses o = )\ab and the required
edge load is P = }\Pb.

This state of stress r.nd strain in unstable. Allowing the plate to deflect
decreases the strain energy and therefore thn undeflected cannot he maintained and
the plate buckles 'n such a pattern that the equilibrium in stable. The stability
criteria for prescribed edge displacement is that the strain energy is a minimum;
any state of strain adjacent to the stable one yields larger strain energy. Hence
the problem when investigating post-buckling behaviour is to find for given edge
displacements the buckle psttern with the least strain energy. Denoting the strain
energy as A, this condition yields 8A = 0 for any variation of the displacements
vhich is continuous and complies witn the kinematic boundary conditions. This varia-
tional -problem yields equations which are identical with the equations of equilibrium
for the deformed element of the plate.

The strain energy of the buckled plate consists for one part of ‘extensional’
energy - the work done by the membrane stresses over the extensions of the middle
surface of tha plate, - and for another part of ‘inextensional’ energy - the work done
by the bending moments ove~ the curvatures of the deflected plate.

In the undeflected state the strain energy is completely extensional. Therefore
since the totsl strain energy in the buckled state is less, buckling is the way in
which the plate gets rid of much of its extensional energy. This is ths general trend
governing the buckle patteri. preferred hy the plate; at the expense of some bending
energy the extensional energy is kept down. The more the plate proceeds in the post-
buckling range the more the ratio of extensional energy to inextensional energy
decreases. The wave pattern tends towards a developable surface?.

The suppression of extensional energy means that the membrane stresses are kept
down.

The statements are iliustrated in Fi-ure 5 by the case of a plate strip (width b)
simply supported at its longitudinal edges and longitudinally compressed. With
increasing overall strain € the relative magnitude of the membrane stresses decreases,
the centre part of the plate where the membrane stresses are small becoming wider.
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This means that the Luckling pattern flattens sore and more with increasing strain
ratio fffb. This is evident froam Pigure 6. Shortening of n longitudinal fibre of
the plate {8 accomplished without excessive compressinn of its centre line just by
following a curved course. This shortening efZect is a consequence of the finiteness
of the deflections and is a quadratic in the emplitude of the waves. Since the
longitudinal edges of the plate are supported they cannot escape compression by
deflecting and they have to carry large compressive stresses,

Due to the continuity of the deflection this edge effect extends over some width
of plate. Here the membrane stresses are larger than t* bhuckling stress, This
erxplains why P exceeds Pb. A further conclusion is tha. che distribution of P over
the plate width depends on the degree of buckling; therefore ~nnlysis of post-
buckling behaviour, cannot start from given edge stresses bul must :tart from given
edge disolacements or from a given edge load.

The favourable behaviour of plates after buckling proves to be a consequence of
the fact that the edges are supported. If the longitudinal edges were free to move
they would deflect as well as the centre part and the load carried after buckling
would be constant, just as in the case of a column.

When the plate is distorted in shear the same general trend applies. The shear
angle ¥ formed by the edges of a rectangular plate is composed of two parts of
different origin (Fig.7). For one part it is the shear of the middle surface cof the
plate due to its membrane stress. For the other part it follows from the oblique
wave pattern. By folding a rectanguler plate in oblique waves the length in vLhe
direction normal to the wave crest is decreased; this makes the length of tte
diagonals of the rectengle unequal and the rectaigle changes irto a parallelogranm,. i
Figure 7 does not account for edge support by which the waves are being suppressed in
the edge region. Figure 8 shows how the plate manages to make the transition between
its straight edges and the washboard pattern of its centre part. Whereas in Figure 7
the wave formation is such that the plate is still a developabhle surface this is no
longer the case when the edges are kept straight. The main part of the plate is a
developable surface, but the edge region is not, but near the edges the membrane
stresses vary rapidly yielding a double curved surface. This is evident from the |
fact that plate sections parallel to the sides of the plate differ in developed
length. 1In thne case where the plate ims supported by completel; stiff edge members
the projected length of the plate section does not change. Hence the true length of
a buckled plate strip is longer than that of the edge strip, its extension being
r.oportional to the square of the amplitude. Therefore the buckle pattern induces
tensile stresses in the plate parallel to the edges, these stresses falling off
towards the edges.

If the plate were to remuin flat it would sustain at the given strain 7y the very
large membrane stress Gy, yielding large extensional energy. In changing over to a
buckled shape it does not completely get rid of membrane stresses, but it brings them
down to a lower level withcorrespondingly smaller extensional energy.

Another characteristic feature of the tendency to keep extensional! energy down can
be noticed, namely, the constarnt level of membrane stresses over a large part of the
plate. Since the strain energy has something to do with the square of the stresses
and Jo2dx > ﬁvgvdx the strain energy is beirs reduced when o keeps close to the
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average stress.  Here again the edge support is the basic condition by which the
plate can sustain londs in excess of Py.  Without edge-support the panel could be
sheared nccording to Figure 7 by oblique waves, With vanishing bending stiffness the
s} ar deformation could be obtained without any shear force. In the case of Figure 8
the straln ratio 7/’b is large and the plate has got far into the post-buckled range.
¥hen the retio is cloge to unity the buckle pattern is quite different and tends to
the buckle pattern nt Py.  Then the surface has double curvature everywhere and the

developahle centrai part vunisnes,
Returning now to general considerations some further statements can be made,

Since at given edge displacements the strain energy is smaller in the buckled state
than in the flat state the external load required for this edge displacement is
nctunlly smaller than in the absence of buckling., It follows that lpe post-buckling
stiffness, being the ratio between load and edge displacement, i+, smaller than the
pre-buckling stiffness. This is demonstrated by Figure 8. The ratio of the incre-
ments of load and edge displacement defines the stiffness of the buckled structure
with respect to incremental deformation. It is still smaller than the post buckling
stiffness. This incremental stiffness is important when considering the stability
of the complete structure, namely, general stability and aero-elastic stability.

When loading a plate in the post-buckling it may happen that the wave pattern
changes with explosive violence., Obviously the preceding pattern contained more
energy than the final one, the excess energy causing the bang. This seems to be in
contrast to the statement that the way in which a structure distorts is governed by
least energy. The following explanation of this phenomenon can be given.

With increasing edge displacements the buckle pattern changes continuously. It
gtarts off with a pattern corresponding to the buckling mode and the shape of the
wave modifies gradually. The tendency towards reduction of extensional energy at the
expense of more bending energy involves o tendency towards reduction of wave length.
The wavelength however cannot change freely due to the edge conditions imposad. For
fnstance, with a rectangular plate of aspect ratio 4 loaded in compression the
buckling mode comprises 4 half-waves. Thus number of waves cannot change continuosly,
the only choice being an integral number of half-waves. Therefore, while increasing
the edge displacements the plate sticks to 4 half-waves, even when at a certain strain
ratio 5 hnlf-waves would yield less strain energy. The panel will jump into the
pattern with lower energy level only when its equilibrium gets unstable. This will
not necessarily occur at the intersection of the strain energy curves of Figure 10.

The transition point depends on the power of the disturbance which forces the plate
out of its stable n-wave configuration through intermedinte configurations into the
stable configuration with more waves. Such disturbances are present in the form of
imp~rfections of the plate. Dependent on the magnitude of the imperfection the jump-
over occurs at a smaller or larger edge displacement. When the imperfection is very
weak it may be that the transition is retarded so much that the (ntl)-wave pattern is
passed over and the wave number changes from n immediately into n+2 or more.

Summarizing:
(a) FEdge support is the basis of plate performance beyond buckling.



(b)

(e)

(d)

(e)

(1)

(g)

(h)

(1)

4,

g

-3

Analysis of post-buckling behaviour must start froa given edee displacesents and !
not from given edge stresses,

The equilibrium equations are non-linear in the deflection.

For given edge displacements the wave pattern {s such that strain energy is a
minimum,

The plate disposes of much of {ts strain energy by buckling.

Extensional energy is kept down at the expense of inextensional enerpgy the more
the plate proceeds into the post-buckling range. This reduces the membrane

stresses.

The buckle pattern changes with increasing edge displacements, tending to a wide
centre part with constant small memhrane stress and developable surface, to
narrow edge regions with large membrane stress and double-curved surface,

and to a short wavelenzth.

With finite plate length explosive changes of wave pattern towards increasing
wave number can occur.

The stiffness reduces the more the plate proceeds into the buckled range.

THE EQUATIONS GOVERNING POST-BUCKLING
BEHAVIOUR OF FLAT PLATES

Denoting by u, v, w the displacements in the directions of the axes of x, ¥y, =z i

respectively, where the axis of 2z is normal to the plate, the equations of equilibrium

of

a nlate element, comprising the full thickness t, are
- L
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Equations (la) and (1b) are quadratic and Equation (lc) is cubic inw. When T
is not constant, one coefficlent of Equation (lc) is a function of x and y. Exact
solutions of these equations are in general difficult to obtain and approximate

solutions must be established.

Introducing the stress function F defined by

_ 0% _ 0% _ 9%
e B g=e oy = T = -
dy? ox? dxdy

Equations (1a) and (1b) can be replaced by the compatibility condition

iy |
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These equations are known as the von Kérmén-Tsien-equations:" 67 As in the cose of
the previous group they are non-linear and can not be solved exactly. When edge dis-
placements u, v are given, as 1s usual in this type of problem, the boundary conditions

for F must be derived from the following stress-strain relations:
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Since approximate solutions can be obtained on the basis of the principle of
minimum strain energy the expression for strain energy per unit area ={l1! be given,
It s®

o= 2 e 4 €y)? - 2(1-v) (€, - -:-)“?) - 2(141) aT(e, + ) ¢

2(1-v?)

2 32, 32 A 1
+2(1h)aT? + | (VI ? - 2a-mf &8 s L (3)
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5. METHODS FOR SOLUTION

Approximate solutions always start with some assumption about the function
representing the deflection w. Apart from mathematical reasons it is the most spec-
tacular component of the displacement and therefore the least difficult one to
estimate. The assumption of w contains at least one and preferably more undetermined

parameters p.

Cue method of solution is along the following lires, using the Equations (2).
Substituting w into (2a) this equation is a linear equation in F and can be solved
exactly or if necessarily approximately, taking due account of the boundary condi-
tions. Then F is known as a function of the parameters. Thereupon w and F are
substituted in (20). The solution being an approximate one the lefthand side of (2h)
cannot be made to vanish by choosing a finite number of parameters 1 and some method
must be devised for determining the parameters such that (2b) is satisfied in the

average.

For this the Ritz-Galerkin method 1s preferable. It yields the equations
dw _
/I qzﬁ dxdy = 0 (4)

the number of which is equal to the number of parameters. If F is the exact solution
of (2a) this method is equivalent to the Raleigh-Ritz method. It yields those values
of the parameters p for which the strain energy is less than with any other choice of
parameters. Since the solution is an appreximate one the energy is larger than the
actual amount when the plate would be free to find the wave pattern corresponding to
minimum energy.. Therefore the stiffness obtained in this way is larger than the

actual stiffness.

It is a pity that exact solutions for F can be obtained only for very simple functions
of w, and that even then their computation is tedious®.

Wthen P is an approximate solution of (2a) nothing can be concluded ahout the
nature of the approximation. Since the compatibility condition is not satisfied the
strains are not compatible, whereas the Raleigh-Ritz method applies to compatible
strains only. Approximating F by using the minimum complementary energy theorem,
the approximation obtained for the extensional energy is too small. This is only
one part of the ene._gy, the other part is being overestimated by using Fquation (4).
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So with the mixture o) the theorems of least conplementary energy and least strain
energy in an uarfgorous way no definite conclusfion is possible on the nature of the

approximation.

in this respect a method which is based on one theorem onl, is preferable, the
theorem of mSnimal strain energy. This solution starts {rom Fquations (1) and applies
the Ritz-Galerkin method, cr it starts {rom Equation (3) and applies the Raleigh-
Ritz method. These rethnds are mechunically identical. Besides an agssumption for
v, assumptions have to be made for u and v. These assumptions include some parameters
p.  Then the strains can be computed and consequently from Equation (1) the ‘addi-
tional forces' Qg Gy. 9, OF from Fquation (3), the strain energy.

Using the Raleigh-Ritz method, the equations from which the parameters p can be
solved are

a
jj-a-—:-dxcty =nig (5)

Using the Ritz-Gulerkin method, the equations for the determinations of the parameters
p are

{ du dv ow
oy gy s wdy) e = o 2

ax, 4y, q, are the additions! forces per unit area required for equilibrium at the
approximate displacements u, v, w. The condition expresses that the potential energy
of this additional load system does not change when the parameters vary. It can be
shown that this condition is equivalent to the minimum potential energy theorem, which

forms the basis of Equation (5).

When u, v, w do not satisfy the dynamical boundary conditions, equilibrium requires
additional edge forces. In that case the left hand side of Equation (6) should be
complemented by the contour integral of the produact of this additional edge force and
the derivative to p of the corresponding edge displacement,

The difficulty with these methods is that an appropriate guess of u and v has to
be made. Of course the adaptibility of the guess can be improved by increasing the
number of parameters, but this soon leads to & prohibitive number of non-linear
simul taneous algebraic Equations of the form (5) or (6). For this prectical reason u
and v must be constructed by means of the parameters adopted for w. The best way to
do this is to make assumptions on the distribution of the strains €pr ey,'y, from
which u and v car be derived, taking into account the given edge displacements.

This procedure comes close to the procedure which is applied when (2a) is solved
approximately. Then appropriate stress functions F have to be chosen and this is
essentially a guess of stress distribution or strain distribution. Then however the
possibility exists of combining a certain number of these stress functions, which
gives the approximation more adaptability, provided the coefficients of the stress
functions become simple functions of the parameters p. Unfortunately this latter
condition is ucvally not satisfied, which means again that the evaluatior of the
equations is getting prohibitively laborious.
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6. AVAILABLE SOLUTION FOR BEHAVIOUR AFYER BUCKLING

6.1 Longitudinnl Compression (Effective Width)

6.1.1 Flut plates

A longitudinally compressed plate carries the load

p = L{ft?dy

fthen the edge strain (compressive) is € the stress in the edge stiffener is Co = Ee,
Now the ‘effective width’ be is defined by
P = Oetbe

Hence
b s
= = Ji G (y/b)
b 5 Oe

ca. be called the post-buckling effectiveness of the plate.

Von Karmdn answered the urgent need for knowledge on effective width by devising
and engineering guess based on very much simplified considerations. Although this
was an ingenious close guess, giving (Fig.11)

%
b 7, (7)

its reliability is not self-evident.

The first thorough investigation is due to Marguerre and Trefftz® ®. They assumed
the wave pattern

W = fsinﬂsinz—x—
b L

where f and L. are the parameters. This wave form comprises the buckling mode, so it
wiil yield a good approximation for small strain ratios e/eb. However, for e/eb = ®
it yields be/b = 1/3, whereas for physical reasons be/b should vanish. This dis-
crepancy is a consequence of expressing the wave foim as a function of y, which does
not permit flattening at larger strain ratios. H.L. Cox'® accounted for this effect,
assuming cver the centre parf a constant wave depth and sinusoidal deflection in the
edge region. His parameters are the wave amplitude and the width of the edge region,
tte wave length being constant. His applicution of Raleigh's method is not rigorous,
since part of the extensional energy is neglected. 1In this respect the energy is
being underestimated; however, the approximation of the wave form has the opposite

effect.

4



The sost advanced investigation has been done by ¥,T. Koiter'!. Unfortunately,
this work has only been published in Dutch, so that {t is little knuwn., Koiter
followed Cnx's nuggea®ion for the wave pattern, allowing the wave length, however,
in addition to the wave uepth and the width of tne edge reglon, to be a parameter.
Also, he did not neglect part of the energy.

Several assumptions were made for the displacement functions: for the simply
supported plate (4), one of them having continuous 3%w/ 0y at the transition of the
centre part and edge region; for the clamped plate (2); and for the elastically

restrained plate (3).

The good agreement between the results obtained with different wave forms indicates
that the approximation {s satisfactory and that the results are not sensitive to
slight alterations in the wave form assumed. Moreover, the effective width as a
function of the strain ratfo proved to be practically ind~pendent of the boundary
conditions. Hence the effective width for simply supported, elastically restrained,
or clamped edges can be given by the same function of €/€h, viz.

2/5 u/s 6/5
be €h /"*t; €h
— = 1,20\ — . n.ns\—_ + 0.45| — (8)
b t 3 €

where €y is the buckling strain pertaining to the actual boundary conditions.
Equation (8) gives a representation of this function with no more than 1% error.
Figure 11 shows that the agreement between experimental results for various edge
restraints and Koiter’'s analytical results is quite satisfactory. Since the approx-
imation must yield a too large effective width it is somewhat surprising to find
that most of the experiments fall above the theoretical curve. The most acceptable
explanation will be that in actual panels the wave length reduction w#ith increasing
strain ratio will be retarded, whereas Koiter’'s computations apply to the infinitely
long plate, where noting prevents a gradual change of wave length.

Koiter's thecry has the advantage that it holds for any strain ratio between 1 and
%, More accurate investigations huve been made by Hemp‘?, applying to strain ratios
a little over 1. They are not discussed here, because the inevitable imperfections
of plates affect the behaviour of plates in this region sensibly (compare Figure 4),
reducing the practical importance of more accurate knowledge.

During the last few years the Netherlands Aeronautical Laboratory has proceeded
with its investigations on effective width, extending it to the behaviour of plates
in the plastic range by experiments on 24S-T and 75S-T, cladded and uncladded!? !¥,
The range of strain ratios was 1 < E/eb < 50 and € /eb was in the range 1.5 < ep/eb
< 20, where €, is the strain at which the elastic limit of the material {s exceeded.
Referring the effective width to the edge stress Op = Ese, the results suggest the
empirical conclusion that Koiter’s Equation (8) may be extrapolated into the plastic
range. Some representative results are shown in Figure 12.

Some series of tests were also carried out on 2S-% H materiul so as to investigate
post-buciling behaviour with materials having a more gradual transition between the
elastic and plastic parts of the stress-strain curve!“. 1In this case the effective
width in the plastic range is greater than that given by the theoretical curve for
elastic materials. Some results are shewn in Figure 13.
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6.1.2 Narrow cylindrical ponels

Quite recently hofter investtgated the initial post-buckling behaviour of narrow
cylindrical pancls such us occur in winge and fuselages witl longitudinal sti{ffeners
Al)l constraining effects of the stiffenvis other than the complete guppression of
radial deflection were neglected.

1%

The tangent to the post-buckling curve at buckling load has been established. It
i1s given by

D=y
= +
Ebte Py (9)
whe re g = % [12¢1 - v1)]% bRty

[+4]

HE = 1 - 20" - g‘z__‘_,[(n2 $ ) Eruna e e | 26 &
n=t

P, = Bbt(1+8%¢ for 6%

and is shown in Figure 14.

In wing panels the values of & are usually considerably smaller than 0.5 and as
appears from Figure 14 the post-buckling behaviour is very similar to that for flat
platez where 6 = 0.

In fuselage panels the values of & range from approximately 0.4 to about 2, so
that usually the initial post-buckling belaviotr differs considerably from that of a

flat plate.

For € < 0.3 dP/de is practically equal to that for € = 0; curvature does not
affect the post-buckled behaviour., For & > 0.5 dP/de starts to decrease rapidly with
increasing 6, passing at 8 = 0.65 through zero and becoming negative.

The horizontal tangent represents the limiting case of a stable post-buckled
behaviour for a prescribed load. At & = 0.77 the tangent is vertical and at & = 1
the behaviour is very close to that of a full cylinder.

These figures apply to the panel the edges of which are sinply supported. It may
t.0 expected that initial post-buckling behaviour with clamped or elastically restraint
edges will be stable up to higher values of &, but the general trend will be the

same.

The effect of initial sinusoidal imperfections at small deflections has been
investigated. Then the lcad up to which the behaviour is stable is lowered
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considerably when & > 0,65 (compare Pigure 4b). This ‘buckling load’ depends on the
ratio of the amplitude a of the ifni%ial waves to plate thickness. Pigure 15 shows this

for two values of &

As for the more advanced post-buckling stages it seems reasonable to expect that
it approaches that of a flat plate of equal width.

Congidering a free panel simply supported at {ts edges, the initially curved »late
tends in fts centre part to become a develc,able surface, as with the initially tiau
plate. Supposing that the curved plate when buckled has the same shape as the
initially flat plate, tie strain energy per unit length in the first case is
¥ &bt 8'6b7 (€, is the buckling strain of the flat plate) greater than that of the
flat plate, where it is % Ebtebzfé + % (e/eb)ai’] in the initial post-buckling stage
and in the advunced stuge even more than that. Hence when e/eb >> 1 the strain
snergies {n these two cases are approaching one another, yielding equal effective

widths.

With a shell running continuously over regularly spaced stringers the individual
panels are not free to assume the wave pattern of the flat plate, since this would
imply a discontinuity of the slopes at the stringer, the discontinuity being
b/R = Znﬂzebl/z. The condition of continuity means that the adjacent panels are
restraining each other, the effect of which is an increase of stiffness.

Starting from the buckle pattern of the single panel, the edges have to be
rotated through the constant angle 1792eb‘/2. This angle is of the same order of
magnitude as the slepe of the wave pattern with the free panel, when e/eb is small.
However, with a large strain ratio €/€, the slope with the free panel is about 1.7¢t2
then the correction required for continuity is relatively small and so is the
addit fonal energy originating from this edge restraint.

The conclusion {s that the load sustuained by a curved panel is for the same edge
strain somewhat greater than the load carried by a flat panel of the same width and

tends to become equal at large strain ratios.

Figure 16 shows schematically the load-strain curve for plates which are unstable
in the inftial post-buckling range. Since imperfections cut off the peak of the
load-strain curve, near the buckling load the curve for the actual plate will be still
closer to that for the flat plate. So for practical purposes it is justified to
identify post-buckling behaviour of narrow (£ € 1) cylindrical panels and flat plates
in spite of the initially unstable post-buckling behaviour whem & > 0.65.

6.2 Flat Plates Under Shear Load

As stated before, the first analytical investigation on post-buckling behaviour of
plates loaded in shear was made by H. Wagner!. TIts object is the ‘complete tension
field', where the plate is supposed to be unable to carry compressive membrane
stresses. This means that Ty = 0, or more precisely that the strain ratio (to which
this imvestigation applies) 7¢7b = ®, S0 it represents the limiting case.

Wagner' s work has been of much importance in the design of spar webs, etc., but it
yields conservative design since the performance of the plate is underestimated. The
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analytical {nvestigation of the “incomplete tension fileld’, where the plate can
sustain compressive as well as tensile stresses, starts with a paper by Rromm and
Varguerre’ applying to the sim iply supported plate strip.

They assumed the wave form

w f sinn % sin . '.@¥2] (10)

[‘

vhere f, L and m are the paramelers.

This wave pattern is an approximation of the huckle mode. Its nodal lines are
straight, whereas the tangent of the exact nodal line is perpendicular to the edge.
The buckling strain 7, obtained frim this approximate wave form is 5.7% too large.

The data obtained for post-buckling behaviour are good ot strain ratios not too
much greater than 1. At large strain ratios the wave pattern flattens in the centre
part, which phenomenon is not represented in the pattern (10). So it is evident
that Reference 9 does not yield Wagner's results in the limitirg coce of infinite
strain ratio. This first attempt was improved by Koiter", assuming, as in the case
of the effective width problem, constant wave amplitude in the centre part (develop-
able surface) and double curvature in thc edge regions. This adds a fourth parameter

to those of Equation (10), numely the width of the centre part.

Several assumptions were made for the wave pattern in the edge regions: for the
simply supported plate (4), one of them having continuous curvature at the transition
of centre part and edge region, another one with nodal lines eading perpendicularly
to the edges; and for the clamped plate (2).

This theory yields for 777b = @ results which are in agreement. with Wagner's
complete tension field theory. The differences between the resunlts obtained from
the various wave patterns were not very important. One of them applying to the simply
supported platc was chosen for evualuation of Koiter's equations, which has been
estahlished in References 17 and 18.

Reference 17 contains diagrams from which the relation between the overall strain
ratios ¢ /eb, € /6 /€, and the average stress ratios o /E€. © /Eéb, 7/Eg,, can be
read. The 1ndiceb 1 and 2 apply to the longitudiml and the lateral direction
respectively. Each diagram applies to one of the T/E€b ratics 0.5, 10, ..... , 45. 50;
the coordinates are Ex/eb' ez/eb; the diagrams give curves of constant O\/Eeb'
0'2/E€b and 7,'Gy. Thus at given el/eb, 6?/€b the corresponding stress ratios o,/Fe;,
o,/E€y and the corresponding shear rigidity reduction 7/Gy are found by interpolation

The field of application of these data is not limited to welis loaded in shear.
Since el/eb and G?/éb are arbitrary they apply as well to the case of stiffened
plates loaded in shear and in compression or tension longitudirally and laterally.

They make it possible to establish for simply supported plates:

(a) From given edge displacements the edge loads

]
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{h) From given edge loads the edge displacements

(c) Prom & mixture of three given edge displacements or loads the other displace-
ments and lowds

{(d) The stiffness of the plate

(e) The stiffness with respect to load increments, for lustance the change of
shear stiffness resulting from a change of longlitudinal compression.

These data are strictly valid only when the stresses are below the proportional
Iinit. The stresses can be derived from the wave form. This has been evaluated in
Reference 18, which establishes the greatest effcctive strain €o gccording to the
! Huber-von Mises-Hencky criterion, again in diagrams applying to constant T/Eeb, where
, the coordinates are el/eb, ez/eb and curves of constant ee/eb are given.

! The former data apply to simply supported edges. The evaluation of plates with
clamped edges has not heen done systematically. It has been found that, contrary to
the effective width problem, post-buckling behaviour of plates loaded in shear is
not merely dependent on 7753 hut on the boundary conditions as well. For the same
strain ratios 775% the clamped plate is closer to the complete tension field than is
: the simply supported plate. This difference with the effective width problem can be
I | physically understood as follows.

At large strain ratios the strain energy of the compressed plate is mainly confined
to the edge regions (large membrane stresses, large curvatures), whereas in the tension
field the centrr part as well contains much strain energy since the normal and shear
' stresses in the centre part and near the edges are equally important.

The wave form flattens at some distance from the edge, which means that the effect
of boundary conditions has damped out when getting at the centre part. Therefore the
strain energy of the centre part is almost independent of the boundary conditions.

On the contrary the buckling strain depends on the boundary conditions. Hence the
total strain energy cannot be merely a function of the strain ratio. At very large
strain ratios the edge regions are narrow, so that the totel atrain energy is almost
equal to the energy of the centre part. Then the strain energy would be almost
independent of the boundary conditions. This means that for large strains the post-
buckling behaviour of clamped plates is almost the same us that of the simply
supported plate at the same strain,

An experimental check of theory was not possible with the tests by Lahde and
wagner '®, since they investigated the plate with clamped edges. Tests on spar webs
are usually confined to shear load and slight additional bending, and usually the
support of the plate by stiffeners provides some restrajut. So the Netherland
Aeronautical Institute undertook a test program on plaives. loaded in compression and
shear, without restraint at the supnorting members. The resilts have been communi-
cated?®» 2!, The result showed consiiershle scatter, more in particular at the
smaller strain ratios. Obviously the imperfections of the plate have much effect on
post-buckling behaviour and this scatter prevented an accurate comparisor of theory
and tests. However, the tests provide sufficient evidence that Koiter’'s theory gives
' an adequate picture of post-buckling behaviour over the whole range of strain ratios
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and combinations of normal and shear loads, more in particular for panels having
large aspect ratio. In view of scatter in post-buckling behaviour of actual plates
therc seems little point in further refinement of analysis. So far Koiter's theery
is the only onc with this wide range. Several authors made valuable contributions,
like Denke??+?3, Levy?* 2% and Bergmann?®, applying to the square plate or the
rectangular plate with length to width ratio not larger than 2. iHowever, the
validity of these theories Is restricted to small and moderate strain ratios and to
panels loaded in shear only.

The practical importance of a satisfactory theory after evaluation is that it
provides knowledge on stiffness of buckled plates. From this knowledge the stress-
strain relations of a complete structure, composed of plates and other elements 1ike
s:ringers and frames, can be determnined. Arart from that a satisfactory theory
enables o~ to establish the edge displacements at which permanent wrinkling starts.
However, theory is unable to predict the edge displacements at which failure occurs.
When the structure fails in rivet joints before permanent wrinkling starts, the
fajlure could be predicted by analysis. But usually rivet joints will be made
stronger and their failure will be preceded by plastic deformation in the plate. In
view of the complexity of the problem there are no hopes for analytical investiga-
tions on post-buckling behaviour in the plastic range. Another possible cause of
failure is stiffener failure due to the combined action of normal load and flexure
and torsion imposed by plate wrinkles. This phenomenon too is beyond the possibili-
ties of analysis. Therefore knowledge of ultimate lcad of stiffened plates in the
post-buckled range must be acquired empirically. In this respect much has been done
at N.A.C.A. by Kuhn, Peterson, Levin and other. Xuhn has summarized this work in
his recently published text book?’. These data enable us to predict ultimate loads
with no more than 10% error.

6.3 Flat Plates Under Thermal Stresses

In supersonic flight the temperature of the structure rises due to kinetic
heating. When flight has been maintained at constant speed during some length of
time the temperature differences in the structure are small and so are the thermal
stresses. However in transient conditions heat flow produces temperature differ-
ences and consequently thermal stresses, which affect both buckling and post-buckling
behaviour. The skin is bheated by the air, but at the plate edges part of the heat
input is transferred to the interior structure, such as webs of multi-web wings.
Therefore the edges have a lower temperature than the centre part. Since the longi-
tudinal strain of the plate strip is constant throughout the width of the plate and
the resultant force should vanish, compressive stresses occur in the centre part and
tensile stresses occur near the edges. To this stress distribution is added the
stress due to the mechanical loads on the aircraft.

Since we are interested In post-buckling behaviour, the part of the skin which
should be examined 1s the side which is loaded in compression. Here the skin plate
presents before buckling a stress distribution of the type represented in Figure 17.
It has been shown?® that a good approximatikn of the buckling mode i1s given by the
buckling mode for uniformly stressed plates. This is a guide for post-buckling in-
vestigations. So the buckling pattern appropriate to non-thermal conditions, assumed
in Reference 11, can be applied to thermal conditions.
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In Reference 20 post-buckling bebaviour has veen investigated for plates loaded
in compression and by the following temperature distribution:

T = T, *+Tsinw ¥/b (11)

or hy a temperature distribution in which T is constant ove- part of the plate width
in the centre and falls off towards the edges according to & power n (Fig. 18).
Conclusions from this investigation can be given in a very simple form, since the
load-strain curve appears to have the same shape &s that for the non-thermal condi-
tion. Denoting by P and € the loud and compressive edge strain for the non-thermal
condition, the relation between P and € in the thermal condition follows from:

2 b Py
-E- = -f-*--]-faT cos"n} dy
Ebt Ebt l)o
(12)
1 b 7y
€ = c'-—’a‘l’(l-cos—)d.’v
b 4 b

The edge stress is Op = E(e + aTe).

S0 the P-€ curve is am shown in Figure 19; it f-llows from the P-¢€ curve simply
by sliding the axes over a distance, which depends on the temperature distribution.
The buckling load decreasied by thermal stresses. However the load increment in the
post-buckled range is independent of the temperature, it depends only on the incre-
ment of edge strain beyord the critical strain. This statement is incorrect in so
far it does not consider the effect of temperature on the modulus of elasticity. It
must be complemented by the instruction that the P-€ curve refers to the modulus of
elasticity for the temperature level under consideration.

The integral over T in Equation (12) shows, that the buckling mode across the
width is proportional to sin 7y/b. When allowing for flattening of the centre part,
as applied in Reference 11, the P-€ curve Is only slightly different for E/Eb > 4,
With the temperature distribution (11) the temperature effect is rather pronounced;
nevertheless the difference between P computed from (12) and P computed from the
flattened wave shape was well within 1%. Equation (12), therefore, can be considered
to hold for the whole range of strain ratios.

The simplicity of the conclusion that the relation between load and strain incre-
ment is almost unaffected by thermal conditions suggests that some physical evidence
must exist. The following explanation can be given.

Consider two equal plates 1 and 2 differing only in temperature distribution - the

temperature of plate 1 being constant, plate 2 having varying temperature - longitudinally

compressed up to thelr respective buckling loads.

At the buckling load Pb the stresses are Op- Since the strain energy is a minimum
for any variation &y of the strain 7, which is accompanied by the longitudinal edge
displacement L d¢,
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J Hopgndvy = PyLbe (13)

for both plates 1 and 2, where Oy and Pb are different., Now consider the plates both
to be compressed lognitudinally the same amount O¢ beyond their compressive strain
€ and assume that the wav~ pattern of plate 2 is the same as that of plate I, e.g.
the assuaption 18 that the wave puttern i3 affected negligibly by the difference of
thermal conditions. Then the slress increments Ao folloming from A€ are equal for
plates 1 and 2. The load increment is AP. Since plate 1 is in rquilibrium in its

deflected shape
J oy, + Bo peyldv = (P, + BPyLse (14a)

for any compatible system of strain variations &y. The approximation for the load
upon plate 2 is found from the condition that the work done by P is equal to the
increase of strain energy when € increases with 5¢. The strain variations between
the states of compression € and € + 8¢ are &y. Hence

S Zloy, + Bopdyldv = (P, + AP )LSE (14b)

Substitutiig (13) into (14a) and (14b), and rememberi‘ig that Aol = zﬁob it follows
that APl = AP:, for equal compressive strain increment Ae¢ beyond buckling strain.
This conclusion has been based upon the assumption that the wave pattern of the non-
thermal case is a good approximation for the wave pattern in the thermal case. This
restricts the validity of the statement that AP/O¢ is unaffected by thermal condi-
tions, but the impression is that these restrictions is not important.

Our reasoning was given with respect to the longitudinally compressed plate. How-
ever, any other edge displacement could have been taken. Herre we can extend the
validity of the statement to any case of thermal load and mechanical load in shear
and compression, provided the wave pattern is affected only slightly by thermal

stresses.

This widens the statement to: the relation between load increment P-Pb and overall
strain increment €-€}, is not irfluenced by thermal stresses When the post-buckling
behaviour is known for non-thermal conditions, the problem of post-buckling for
thermal conditions is solved as soon as the buckling load Pb has been established.

For the time being the only available literature on post-buckling behaviour of
thermally loaded plates is contained in Reference 7. The case considered there was
devised so that experimental check of the analysis was possible.

Since the temperature distribution is far from actual conditions with kinetic
heating of aircraft the results need not be discussed in detail. It suffices to
say that the theoretical and the measured wave patterns agreed satisfactorily.
Furthermore, Reference 7 establishes an interesting method for computing the correc-
tion of the deflections following from initial imperfections, which are of the sgne

form as the wave pattern.
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