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THE MECHANICS OF THE TRIAXIAL TEST FOR SOILS*

R. M. HAYTHORNTHWAITE*•

Abstract

Stress distributions at failure are not uniquely defined in terms of

equilibrium and a failure criterion such as the Coulomb law which is commonly

used for soils. This fact is illustrated in the paper by constructing alterna-

tive, non-uniform stress distributions for the triaxial test which lead to

different apparent angles of friction. A suitable flow rule is introduced and

complete solutions are obtained in which the external pressures causing failure

are uniquely defined. Several alternative velocity fields are developed and the

extent of the deformable zone is established. The analysis is used to discuss

the significance of tests on sand where the specimens are caused to fail with

axial extension rather than with the more conventional axial compression.

* This paper reports work sponsored by the Land Locomotion Research Branch,

Ordnance Tank-Automotive Command, Detroit Arsenal, under Contract
DA-19-O20-ORD-4566.

Associate Professor, Division of Engineering, Brown University,
Providence 12, R. I.
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Introduction

It is customary to base both the analysis of the stability of soil

masses and the interpretation of soil tests upon the Coulomb theory of internal

friction, This theory provides what in the terminology of plasticity theory is

called a yield or failure surface and, together with the equilibrium conditions,

it enables the failure loads to be computed whenever the problem is statically

determinate. Other problems which are not intrinsically so can be rendered
- -,[11

statically determinate by invoking the hypothesis of Haar and v.Karman , which

asserts that the intermediate principal stress is equal to either the largest or

the smallest principal stress. This hypothesis is particularly useful in axially

symmetric problems.

The conventional approach outlined above suffers from the drawback that

the solutions so obtained are not necessarily unique. To ensure uniqueness, a

stress-strain relation of a particular type is required and the establishment of

such a relation, if it exists, is one of the most important of the unsolved pro-

blems of soil mechanics.

This paper is concerned with an examination of the so-called triaxial

test in the light of a particular stress-strain relation which would ensure both

stability and uniqueness of the stresses if its validity could once be established

by means of tests. The analysis is used to discuss the significance of tests on

sand in which the specimens are caused to fail with axial extension rather than

with the more usual axial compression.

The triaxial test. A detailed account of the triaxial test has been presented by

Bishop and Henkel E2 ] in a recent monograph. The essentials of the device are

indicated in Fig. 1. A cylindrical specimen of soil is enclosed within a rubber

membrane and mounted between stiff end plattens, Hydrostatic pressure is applied

by means of an enveloping fluid, which is isolated from the specimen by a rubber

membrane, and an extra axial thrust or pull can be exerted on the end plattens.
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During a test, the relative displacement of the end plattens is observed, and

sometimes the change in volume of the specimen and its change in diameter at a

particular height are also observed. Testing proceeds by varying the axial load

or the lateral pressure or, quite commonly, by imposing axial displacement of a

platten and observing the resultant axial loads.

This apparatus now occupies a central position among the devices used

to measure the strength of soils. It appears to have developed from a machine

designed at the Prussian Waterways Experimental Station for the purpose of study-

ing the consolidation of clays under conditions of negligible side friction[31.

In this first apparatus the surrounding liquid was entirely confined, and tempera-

tures and leakage had to be closely controlled to obtain consistent results.

Several investigators recognized that the apparatus could be used to measure the

ratio of the axial and lateral pressures both prior to and at failure, the first

results being apparently those published by Stanton and Hveem[41 in 1934. Posi-

tive control over the lateral pressure was developed independently by Rendulic[51

working in Berlin, and by Housel S at the University of Michigan.

Throughout the literature, it is assumed that a homogeneous state of

stress is produced in the triaxial soil specimen. This point of view appears to

have been taken over from the earlier studies of rocks by von Karman and others

and does not appear to have been questioned since that time. Strictly speaking,

however, the problem posed by the test situation is statically indeterminate be-

cause only the total thrust on the end plattens, not the pressure distribution,

is given as a boundary condition. Even allowing circular symmetry and similarity

of conditions on every normal cross-section, there are still three unknown stresses

ar aoa and az (see Fig, 2) and only two equilibrium equations:

r ar. - a

dr r
\. (1)

daz
- = 0

dz
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If now ae is equated arbitrarily to ar , or is then constant by the first of

(1) and the stress is homogeneoub. This step has never been established a priori,

but it has seemed reasonable in view of its correctness in the elastic range

(at sections remote from the ends of the specimen). Moreover, some such assump-

tion has been necessary before information about yield could be extracted from

the test.

The Coulomb yield criterion. The weight of evidence from the triaxial test

supports the friction criterion of Coulomb [7], although minor departures are

common. In this criterion the shear stress -o causing slip on any plane is taken

as the sum of a constant value, termed the cohesion, and an additional amount

which is proportional to the normal pressure acting across the plane; thus

S= c - atanq (2)

where c is the cohesion and a the tensile stress across the plane. The angle (p

is called the angle of friction of the material. This relationship follows a

straight line in the a - T plane (Fig. 3), in which the representation of stress

at a point due to Mohr [8) can also be drawn. A stress state for which yield is

incipient on some plane will be represented by a circle touching the failure line,

such as that shown in the Figure. From the geometry of the triangle ABC,

(a 3 -a 1 )/2 = [c cot(P- (a,+a 3 )/2] sinq) where a, 'a 3 are principal stresses;

hence after rearrangement

aI = a 3 tan (2 +J) - 2c tan +1) (3)

It is a property of the Mohr circle that the angle subtended at B, Fig.3,

represents twice the angle of inclination of the plane on which the corresponding

stresses act. Thus the critical condition represented by point C in Fig. 3 occurs

on a plane the normal of which subtends an angle (• + 2-) with the normal to the

plane on which a, acts.
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When the stresses in the triaxial specimen are assumed to be homogeneous,

the lateral and axial pressures can be related at once through (3). It will be

shown in the section on Limiting Equilibrium States that this solution is not

unique.

Stable plastic flow. Lack of uniqueness can be resolved by introducing

a stress-strain relation. It is not known whether a stress-strain relation exists

for any particular soil: the purpose here is to make an initial assumption and

then to examine the consequences, with a view to obtaining predictions that can

be compared with experiments.

We shall assume an isotropic, stable soil which yields at stress com-

binations that are constant and not a function of the strains or of the stress

history. This is the specification for a so-called Sideally plastic' material.

By a stable material is meant one from which work cannot be extracted in any

loading program, and it follows from this definition[ 91 that the yield surface

of the material is convex when drawn in a space with the stress components as

the axes. Also any plastic strain increment vector superimposed on the stress

space with corresponding axes matching will lie in the direction of the outwards-

drawn normal to the yield surface. If the yield surface has corners, the vector

may lie between adjacent normals0

When the yield surface has a continuously turning tangent, the stresses

in a deforming body are uniquely definedE183 . If it contains flats, there may

be some latitude, although the choice may often be restricted by the requirements

[19]
of equilibrium1. For a body with specified surface velocities which are uni-

form, as in the case of the triaxial specimen deforming between rigid plattens,

it may be shown that the external tractions are unique despite the ambiguity in

the internal stressing (see the Appendix)*

The nature of the ideally plastic material which follows the Coulomb

yield criterion has been investigated by Shield l10 and certain results are
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quoted here for reference.

Figure 4 shows the intersection of the yield surface (3) with a plane

ab = const., where ab is one of the principal stresses (not necessarily the

intermediate principal stress). The regions corresponding to various orderings

of aa , ab and a are indicated. The strain rate vectors will lie in thea b c

directions of the outward drawn normals to the sides of the cross-section

shown provided the components are related in the manner indicated in Table I. In

this Table, the values Xl, X . . . are constants and N = tan (" + To.

In each line of Table I, the sum of the strain rates is proportional to

N2 - 1 and the sum of the absolute values to N2 +1; hence

&a + ÷% +c ( ÷ b I+b1*Ic I ) sinýp ?-o

At least one of the three components is positive and at least one negative.

Denote the positive component by e. and the negative by eT. When the third

component ep is positive

ea + 6 T tan2 (+ ÷ 2) =0 (4)

and when e is negative,

e tan2  - ) +t + o0. 5)

At the apex, the rate of energy dissipation D = ZLai i is

D = c cot ( 61 + e2 + C3 ) - c 8 cot ( (6)

where 6 is the dilatation rate per unit volume. Expression (6) also applies at

all other points on the pyramid because the projection of the stresses in direc-

tions normal to the sides is always the same.

Using the ideally plastic material described above, it is possible to

obtain a unique solution for the applied pressures in the triaxial test. This

will be done below, but first the lack of uniqueness of the so-called 'limiting
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equilibrium statess will be demonstrated by exhibiting alternative solutions°

Limiting Eguilibrium States

A limiting equilibrium state will be defined as an equilibrium stress

distribution in which the soil reaches failure at a sufficient number of points

for slip to appear possible. In the case of the triaxial test, limiting equili-

brium states can be based on a homogeneous stress distribution, but there are

alternatives, based on non-homogeneous distributions, which meet the hypothesis

of Haar and v. Karman and a still wider class of solutions that does not.

For the purposes of illustration a general class of solutions is devel-

oped below in which the principal stresses remain in constant ratio at all points

in the specimen, although the stress level may vary from point to point in the

radial direction,

Failure with axial compression. Shortening of the specimen will occur

when the average axial pressure -z exceeds the lateral pressure p = ©rrr =a.

Assuming % > c , (3) becomes

Cr a N2 -2cN (7)

r z

where N = tan + I ). The position of the intermediate principal stress a.

can be expressed by the coefficient k where

ae = k a + (l=k) az (8)r

and 1 ?>-k >-O, Substituting (7) and (8) in the first of (1), integrating and

making use of the boundary condition [arl r = a 3 p

ar =C cot p - (p+c cot p)(r) (9)

and

az = c cot P = N2 (p + c cotcp)().N2-1)(k-l) (10)
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It is confirmed that or > az 3 because N2 > 1. On integrating a. over the normal

cross-section, the expression for the mean axial pressure 7 becomes

2 [N2p + (l+k)Nc] (i)

(l-k)N2 + 1 + k

Setting k - 1 (aCe ar), the stress distribution is homogeneous and (8) reduces

to the well-known result

-p tan +~ + 2c tan(' + (12)

while on setting k 0 (ae ),

*= (l + sin v) p * c cos c (13)

The stress states giving rise to (12) and (13) both meet the hypothesis of Haar
-I

and v. Karman, in that the intermediate principal stress is in each case equal

to one of the extreme stresses. In addition, any number of alternative expres-

sions may be obtained from the stress distributions associated with other values

of k.

Failure with axial extension. Analogous results can be obtained for

the case where the lateral pressure p exceeds the average axial pressure and

axial extension occurs during failure. In this case it is assumed that ar < az

and (3) becomes

a = N2 - 2 CN (14)
z r

Integrating the first of (1) after substituting (14),

Or - C cotP- (p + c cot ( )() (15)

and

- c cot (- - (p + c cot ()(1)( 1 ) (16)

Here N• <1, so cr < az. 'On integration of (16) over the cross-section
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2 [p - (O+k)Nc]q= (l+k)N2 + 1- k (17)

When k - 1(ae = ar), (17) gives the usual formula for the homogeneous stress

distributions:..

q=p tan2(" 2c tan(" (18)

while on setting k = 0(ae = az

q= (I - sin 9)p - c cos (p (19)

Again both (18) and (19) satisfy the hypothesis of Haar and v. Kaormn, intermedi-

ate formulae being obtained by using other values of k.

The ranges of possible values of q represented by (11) and (17) are

illustrated in Figure 5 for the particular case c = 1 and ( = 200.

In the case of axial compression, the usual formula (12), represented

by the upper boundary of the shaded zone, gives the highest possible values of q.

Loading paths which start at a hydrostatic pressure state (q = p) must cross a

zone in which, according to limiting equilibrium theory, failure is possible with

a non-uniform stress distribution.

In the above illustration of alternative stress states, it is assumed

that the principal stresses are in constant ratio, although there is no obvious

reason why this should be so. If the assumption is abandoned and k made a func-

tion of the radius, many other stress distributions all satisfying the yield

condition and the boundary conditions become possible.

A choice between all these solutions can be made by introducing a stress-

strain relation such as that described in the Introduction. The particular stress-

strain relation which has been selected narrows the choice to the point where the

external tractions become uniquely defined and a rational comparison with test data

becomes possible. With the aid of this relation, several possible velocity fields

will be found which are associated with the homogeneous stress state,
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Plastic Solution for Plane Strain

Suppose a single plane slip band of width t forms across the width of

the specimen (Fig. 6). For plane strain &2 = 0 and el, &3 are given by

Substituting in either (4) or (5),

y = tanp (20)

Thus the direction of motion of one side of the slip band relative to the other

subtends an angle P with the direction of the band. The corresponding velocity

field is

ux = tI

(21)
Yuo

in the slip band (t >, y >,0). Both in the case of axial compression (Fig. 6 a)

and of axial extension (Fig. 6b), velocity fields have now been found that are

associated with the (7) and (14) respectively. The remainder of the specimen is

not stressed above yield and the solution is complete.

Extent of the deformable region. The extent of'the deformable region

can now be found by using the theorem due to Bishop, Green and Hill which

states that any region shown to be necessarily rigid for a particular stress field

(by arguments based solely on the geometrical and other properties of that field)

must be rigid in all complete solutions. The slip lines form the characteristics

both for the stress (12] and the velocity equations, and they serve to isolate

regions at the ends of the specimens (as indicated in Fig. 7) which are neces-

sarily rigid because the velocity will be continuous across the surface of the

plattens. Figure 7 can represent any diametral cross-section, so the necessarily

rigid zones are conical.
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Dilatation. The total dilatation can be computed from the strains (20)

or directly from energy considerations. By adopting the latter method, the dila-

tation rate can be shown to be independent of the precise nature of the velocity

field. It is most convenient to consider separately the action of the hydrostatic

pressure p and the excess axial load P. Equating the work done by the external

forces during unit axial compression to the internal energy dissipation computed

from (6),

P - pA c cot q 6dv = c A cot P (22)

where A is the dilatation of the entire specimen per unit axial compression.

In the case of failure by axial compression, (7) applies, and it can

be rewritten

P
p = - c cot (P (23)

hence, comparing (22) and (23),

A = na 2 (N2 .1) . (24)

In the case of failure by axial extension, (l4) applies, and it can

be rewritten

P
p 2 1 c cot (P (25)

R a (7,2l
N

so in this case

A , a - 1) (26)

The above plane strain solution establishes a possible velocity field

for the homogeneous stress distribution (obtained by setting e -- r ) but,

although it establishes unique external pressure values, it does not ensure

uniqueness of the stress distribution, due to the presence of flats on the yield

surface.
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Plastic Solutions for Axial Symmetry

The analysis given below follows closely that given by Shield[13 ] for

the case of a metal ((P = 0).

Due to the assumption that the material remains isotropic, the principal

directions of strain will coincide with the principal directions of stress; hence

0, or, denoting the radial and axial velocities by u and w respectively,

au + LW = (27)az ar

Other strain components are

au U aw
Cr " ; ee i ; ez a (28)

Now consider possible stress states, Fig. 4, for definiteness setting aa = ar P

b = ae and a - a

c z

Failure with axial compression. In the case of failure by axial com-

pression, a > a and, when ae is the intermediate principal stress, onlyr z

state points on side AF, Fig. 4 need be considered, On side AF, except at A and

at F, ee - O by Table I, then C - 0 by (28) and Cz = 0 by (4) or (5); hence
r

no solution is possible. Possible solutions are thus immediately restricted to

the state points A and F.

At F C0 is positive from Table I, so (4) applies. Recalling (27) and

writing (4) in terms of the velocity components by means of (28), two simultaneous

partial differential equations for the velocities are obtained:

+r u + awtan2 ( Z+2o

u + au_ 1 2(29)

a..u C8w =0

Shield has solved these equations for the particular case N=1 and solutions for

N 4 1 can be found along exactly the same lines. A first deforming zone is shown

in Figure 8a, which illustrates one half of the cross-section. Continuity of
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velocity is assumed across OB so that u = w = 0 on OB except at o. Neither (29)

nor the boundary conditions involve a fundamental length, so u and w will be

functions of * only (soe Fig. 8a), and (29) reduces to

-u'sin* + usec*+ wtan2r(4÷)cos* =0 (

u' cos*- w' sin 0

where the primes denote differentiation with respect to • . The dependent

variables can be separated by the substitution x = tan ' , leading to the

solution

u~ = tan2Q f. I S) - tan2 *

(31)2 tn2ta(1  -i
w 2-- + j)cot 2

tan/tan(.

where the inverse tangent lies between 0 and n . The strain rates are in the

ratio

r: 88 :& z= tan2 * : tan2 (- +2)-tan 2  : -1 (32)

so it is confirmed that e and eo are positive when e is negative. The

angle * varies from zero to (' + 2) and the resulting velocity vectors cover

the entire range of permissible directions at the point F, as indicated in Fig. 4.

The velocity field can be associated with one and only one stress point, so that

for the velocity field (31) the stresses are uniquely defined despite the presence

of flats on the yield surface. As a consequence it is not necessary to investi-

gate state point A as a possibility. (If this is done, it is found that the

strains have incorrect signs.)

The total dilatation rate has been found previously by energy consid-

erations; it can also be found by integrating the sum of the strain rates over

the deforming region.

The nature of the deformation (31) is indicated in Figure 9a, which
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shows the deformed shape of an initially square grid obtained by assuming the

initial velocities are maintained for a finite deformation.

Failure with axial extension. In this case Ur <% and failure states lie on

side CD of Figure 4. Except at C and D, &0 = 0 by Table I, and no solution is

possible. At C, 88 is negative, so (5) applies, which with (27) gives

3u u aw677 + 7 + TZ tan( "2 ) 0 ~ S w=(3

au aw
rz+ S =0 0

Adopting the deforming region indicated in Figure 8c and proceeding exactly as in

the axial compression case, the velocities are found to be

2 jta2q7__T1 ta2 (34)
w 2 - -tan-i tan(n - .2)cot2* -1

where again the inverse tangent lies between 0 and n. The strain rates are in

the ratio

: = _tan28( -_T tan2 :1

which is consistent only with the state point C, Figure 4. Thus the homogeneous

stress state is the only possible one with the velocities (34). The nature of the

deformation is indicated in Figure 9b.

Other solutions. The above solution serves to identify the homogeneous

stress state with an axially symmetric mode of deformation. That the mode con-

sidered is not unique is established by the alternative solution given below.

This second field also follows closely a field used by Shield[ 1 33 for the case

of a metal (c - 0). The deforming region is indicated in Figure 8b, which shows

half the cross-section. We shall consider only axial compression, for which the

differential equations to be solved are (29). In the region OAB the field used is

ru r a t an (.'4R +

z (35)w tan(I -_)
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which satisfies (29) and the boundary condition w = 1 on AB. The velocity across

OA is proportional to the distance R from O, so it is assumed that in AOC the

field is of the form

u = RF(*) ; w = RG(*) (36)

where F and G are functions of 4 only. The condition that the normal velocity

across OA be continuous (OA is a slip direction for the stress field being con-

sidered) requires

F tan(. + )G = [1+Vtn(n+I]/ a2 +R +1

on OA and F = G = 0 on OC. Substitution of (35) in (29) gives

F(cos4+ sece) -F'sin4+ Gtan2(n+ ( sin

+ G'tan2 ( + )cos 4 0 [ (37)

Fsin* + Flcos* + Gcos4 - G'sin 4 = 0

where the primes indicate differentiation with respect to 4 . The variables are

separated after making the substitutions F = A(*)cos4 ;• G = B(4)sin 4 and the

solution satisfying the boundary conditions on F and G is found to be
R [tan( )cs tan-1 2 (

R~tan(.JT) Cos* tan n 2(.t+)cot24-1 - sin* jtan2( -)tan2 )

u•RF= 2na tan(" + /(38

RL~cos*4ta2n--a2 sin4 tan.-1l ta2~~)o 2 4~
tan"2C(t+)ctan14

w=RG- na tan(.4+)

where the inverse tangent lies between 0 and .o The strain rates are in the

ratio

+ 1 -2 tan2.-
rz cos-i y cosI 2

where = tan(P + -2)/tan 4. This is consistent with point F on the yield
4 2

surface, Figure 4.
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All the solutions given above are associated with the homogeneous stress

distribution, the axially symmetric modes being associated with that distribution

and no other. While it cannot be proved that other stress distributions are im-

possible, in view of the flats on the yield surface, they appear highly unlikely.

Moreover, their identification, if they exist, would serve no useful purpose

because the present solutions give unique values for the external pressure ratio

and the dilatation and serve to show that both plane strain and axially symmetric

deformation modes do in fact exist for an ideally plastic material that fails

according to the Coulomb yield criterion.

Experimental Evidence

The above analysis enables the triaxial test to be used to check the
, .

validity of the hypothesis of Haar and v. Karman by a comparison of the results

of extension and compression tests. The complete plastic solutions are of value

in that greater significance is now placed upon the Haar and v. Karman hypothesis,

for its validity becomes a necessary (but not sufficient) condition for the soil

to behave as an ideally plastic material.

Several series of tests on sands under extension have been described in

the literature, and the results are summarized in Figure lO The theoretical lines

in this Figure were computed by means of (15) and (16) and represent the extremes

of Wp theoretically possible while ae remains the intermediate principal stress

and the ratio of the principal stresses is constant. The test results are plotted

under the assumption that oe = r in the compression test. They lie in the

expected zone, but there is a considerable discrepancy between the results ob-

tained by Habib[14] ' [15] in 1951 and 1953 and those obtained by Bishop and

Eldin [16 and by Kirkpatrick [17 in 1953 and 1957 respectively. A series of

tests was undertaken in an attempt to obtain more information, and these new

results are also indicated in Figure 10.
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The new series was run on a crushed quartz from Lantern Hill, Mystic, Conn.,

U.S.A. The quartz was almost pure, being of glass making quality. The fraction

used in the tests was that retained on a No. 50 sieve (opening 297 microns) and

passing a No. 45 sieve (opening 350 microns). The sand was placed dry by tamping

in three layers, and was then saturated with water before testing. The mean

relative density achieved by this process was 70%.

The detailed results are given in Table II and in Figure 11. Two

methods of reaching the failure state were used -- varying the axial load and

reducing the lateral pressure. In each case failure was deemed to have occurred

when the modulus was reduced to 10 kg/cm2 , in terms of whichever pressure was

being varied, The direction of approach to the failure point is indicated in

Figure 11 by a short line running out from each point. A mean line has been

drawn through the compression test results, and the angle of friction computed

from this line (35.60) was used to compute the two theoretical lines shown for

the extension test using (18) and (19). The experimental results for the exten-

sion tests fall in between the theoretical lines, the tests with failure by

reducing the axial pressure showing some scatter and those with failure by

reducing the lateral pressure very little. Typical points are also plotted in

Figure 10 where they fall close to those established by Habib.

Rates of volume increase per unit axial compression are also given in

Table II. These are the average values at failure. It should be noted that in

series C and D the specimens were extending, so negative values of the dilata-

tion per unit axial compression represent an expansion of the specimen. Theore-

tical values of dilatation based on (24) for compression and (26) for extension

are 28 cc/cm. and -7.4 cc/cm. respectively. Thus it is seen that the actual

dilatations were much smaller than predicted using an ideally plastic model. No

allowances have been made for the elastic compression of the specimens, which

would probably vary according to the intensity of the hydrostatic pressure, and
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would in all cases tend to decrease the dilatation.

The specimens deformed either in thin slip bands, as indicated in Figure 6,

or by a general axially symmetric deformation, as in Figure 9. In the case of

failure with axial compression,, it was usually easy to decide which method of

failure had occurred by examining the specimen at the conclusion of a test. In

axial extension tests it was much more difficult to decide, a typical specimen

being that shown in the photograph (Figure 12). In the case illustrated an axially

symmetric neck has formed but there is also some, evidence of a shear plane running

from top left to bottom right of the sheared zone. In all the extension tests

shear was confined to a relatively small zone similar in size to that illustrated

in Figure 9b. In compression, however, shearing frequently extended the entire

length of the specimen between the plattens. This result is as expected: changes

in geometry tend to reduce the critical cross-sections in extension, leading to

increased stresses on planes which have slipped, while in compression the cross-

section will tend to be increased and slip may well be transferred to a smaller,

and hence weaker, plane.

The present series of tests tends to support Habib's conclusion that the

effective angle of friction in extension tests may sometimes differ from that in

compression. Independent tests by Bishop and Eldin and by Kirkpatrick show that

the angle is identical for some sands. A considerably greater volume of experimen-

tal evidence is of course needed before any strong assertions can be made. On

the evidence to date it does appear, however, that the mechanical behavior of sands

may vary in some fundamental manner, governed by such factors as grading, particle

shape, porosity, etc. It may be necessary to make many investigations before a

clear picture emerges,

Meanwhile it is disturbing to find some sands which do not meet the

condition of yield as predicted by plastic theory. In such sands the standard

limiting equilbriumn approach would not necessarily result in conservative esti-

mates of carrying capacity. Previously, there was a distinct possibility that

18



all limiting equilibrium states would prove to be equal to or to underestimate the

actual carrying capacity, as if the soil were an ideally plastic material.

The need for further investigation is clear. One interpretation of the

results of the current series and also of Habib's would be to speculate that the

intermediate principal stress adopted a value corresponding to k = 0.4 in (8).

This estimate is based on the assumptions that the principal stresses remain in

the same ratio at all points and that the Coulomb yield criterion applies. Neither

assumption has been subjected to any conclusive empirical test, and there seems

little doubt that a fuller understanding of the results of the triaxial test must

wait upon an independent investigation of the influence on yield of the intermedi-

ate principal stress.
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APPENDIX

Uniqueness of applied surface forces when the yield surface is not strictly convw•x

but contains flats,

Theorem:--* If the prescribed surface velocities acting on a body composed of stable,

ideally plastic material are uniform in magnitude and direction, then the component

of the resultant surface force in the direction of motion of the surface is uniquely

defined.

Proof Consider a body for which the velocities ui are specified over the region

AU and the tractions Ti are specified over the region AT of the surface. Suppose

a solution with stresses ckij, strain rates &ij and resultant surface force Fi on

Au. Let a"', etc., refer to any equilibrium state that does not violate the

yield condition and satisfies the traction condition on AT. By the principle of

virtual work

(Ti - T)uidA = (ij - Fj ) . dVv 11 1

The flow rule for a stable material (see [9) ) requires that

(Cri j - a . .) . >

When the stress state c*, lies on the same flat on the yield surface as aij,ij

the equality holds and

r
,3 (Ti - T*)uidA = 0
Au

The velocities ui are constant in magnitude and direction on APu, so

FlUi = F~
F F Q.E.D.

This theorem has been proved by Hill [18] for the rmore restrictive case of a
strictly convex yield surface.
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Table I

"a c

A ( + X6)N2

2, 2

AB X2N2 *(X + 2 2 N

1 61

B02N
2

22

o X t - 2(X2 X2)N2

3 3

D -(X X2 )XN X2N

DE M +X2 X 2N2  0 N

E -X2 2 + X2 )N2  2

EF 0 x N

F6 5 6

~FA 6 0x

1 . are constants- tn~~
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Table II

Initial Lateral Mean Axial Dilatation
Porosity Pressure p Pressure q Rate

Test % kg/cm2  kg/cm2  cc/cm

Al 49 o.6 2.4 4.9
A2 49 0.7 2.7 3.7
A3 51 1.0 3.7 2.6
A4 47 1.4 5.4 2.7
A5 51 1.6 6.0 2.0
A6 - 2.1 8.4
A7 49 2.6 10.6 2.2
A8 51 2.6 9.6 1.2
A9 49 2.6 9.8 1.6
Alo 50 2.8 10.7 2.3
All 49 2.8 10.5
A12 50 3.0 11.5 1.8
B1 51 0.6 2.4 5.3
B2 50 1.2 4.4 4.7
B3 49 1.8 7.0 -
B4 50 2.4 8.4 1.8
CI 49 1.0 0.3 -1.4
C2 50 2.0 0.6 -
C3 51 3.0 1.2 0
C4 50 4.0 1.3 0
C5 48 5.0 2.1 0
Dl 51 1.6 0.6 -0.3
D2 50 3.2 1.2 0
D3 50 3.7 1.2 -0.1
D4 50 4.7 1.6 0
D5 51 5.6 2.1 -
D6 52 6.4 2.4 +0.3

Table II Results of triaxial tests on crushed quartz (Lantern Hill)

Compression tests

Series A - failure by increasing axial pressure
Series B - failure by decreasing lateral pressure

Extension tests

Series C - failure by decreasing axial pressure
Series D - failure by decreasing lateral pressure
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