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1. Values of ca(r,:x) end ¢, {r,a) such that

[cl(r,a) 'S’r’n, cair,a) ar,n’l ere 100 (1-a) percent ccnfidence

{ntervals for the meen life ® based on the first r failures from an
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Humerical ex-mple for taoles 4{a) through i(e) 3.91



TARLES

5. .Tables 5(a) - 5(e)
Values of

1+(§-f_%) P (ere2, 2n-2r)

for v = ,01,.0%,.10,.25,.50.

n = 1000,5000, 10600, 50000, 100600, 500000, 1,000,000 and
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Prohiems of Estimation

I% ie frequently important that one make estimatez of mean jife,
rates of failure, probability of survival for a given time, etc, on the
basis of data arising from life tests. The data may be generated in
meny wvays; ¢.g., they may arise from trimcated, censored; sequential,
replacement,, non-replacesent, interrupted, or combined experiments;
we may or may uot know the exact times to failure. We sball try in
what follows t0 give rules and procedures which epable us to give point

and interval estimates vhich are in soms cenmse optimum.

Section 1.

Estimation in the Censored One Ssmple Case. (Number of failures is

fixed. Items vhich fail »ay or may not be replaced).

Basic Cousideratioms. Point and Interval Estimates Zox 6 .

Let us make the fulloving sssuaptions:

(1) n 1tems are drawva at racdon froa & demsity function of the

form £(x;0) = %e"x/e, x>0, 9>0;

(14) the n 1items crs pleced on life test at time zero and
failure tinmes become availsdle in oxder. That is to say,

N nS¥X S SX pa S S% 0 vhere by x 1s meent the

,n - 1,!
time vhen the i'B failure cccurs, (measured from the beginning of the

life test).
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i’ A (1311) the experiment ic discontinued us soon 85 « ~.n bae become
available (i.e., after the first z observations sre made).

We wish umder assumptions (i), (41), apd (111) to find a “good"
estimate of 9 and to give the distridution of this esstimate in botd
the non-replacement case (where failed items are mot replaced) and in
the replacement cese (where falled items are replaced immediately by

nev items). This is given by the following theorenm:

Theoren: Under (i), (4i), cnd (114) an estimate based on the
first r ordered observations which is "best” in the sense that it 1s
maximum likelihood umbiesed, minimum veriance, efficlent, sndi sufficient
iz given by

A

¢
1) er,ﬁ ® Tr/r

) vhere Tr is the total iife of items cn tent cbservad up to the time

of the B faflure. iIn the non-replacement case:
(2) T, = nx, + (n-l)(&z-xl) +oaee + (n-iJ.—l)(xi- g1) * et (n-r+l)(xr-xr-1)
r .
\ -y x, + (B-T)x_ ,
el -

snd s0 the "best" estimate (1) becomes

(3) 8 {zf; (n-v)x_| /
3 en ® x + (ner)x | /ro.
k4 {-1-

L]
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In the replacement case:

(%) ’l'r_n nx, + n(x2~xl) +o.e + n(xrcxr_l) . nx,
and 80 the "best” estimate (1) becomes

(5) 3r,n L nxr/r .

The probebility density function of é‘r n in eitber the replace~
. 4

ment or non-replacement case is givea by
1 T r~l_-ry/@
(6) £.(y) = 07 (rf€)’y e s Y20
a 0 , elsevhere.

The proof of this theorem is given in Appendix 3B.

From (6) it follows at once that W = 2r 31_, Jo =2t jo 1s
distridbuted as X2(2r). Consequently if the constent Xﬁ(ak) is
defined as Pr(}C(2k) > >§(2k) = ), then a 100(1-a) percent two-

sided confidence interval for & is given by

- 2rd 2rf

(7 s L nt
Blar) ~ E  far)
5 1' § ‘

| b e
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2T, :
equivalently [. 2(. -;_, co)'ui;'.l cover the true bui unknown value of 6, 100(1-a)
X-(2r) -
mE2

percent of the time.
Let c3(r,a) = 2r/)§(2r) , then a 100(l-0) percent one-sided. confidence

‘ A
interval for 6 cen be written as {<:3(r,<3z)9r o’ @) . In Teble 2 we give
p ]

the values of c3(r,a) for a » .01, .05, .10, .20, .25, and .50 eod

rw (1) 20(5) 30{10) 50(25) 100 .
For large r (say > 50) Xz('ar) is approximately normally céistridbuted

wvith pean 2r and varience ¢ . Comsequently, the two-sided 100(1l-ar)

percent confidence ‘nterval becomes {for large r)

A A
(10) “"'"‘g'a"“' » "‘9"'&"‘
14— 1--5
It v
vhere e, » 2.576 ' i o= 0L
L < 1.»960 - n05
% 1.045 w .10
« 1.202 = .20 _
= JOTh ’ . 50 .

In the one-sided cace thz 100(1l-0) percent confidence inter sl becomes

(11)
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where d,a = 2.326 ir O e L0L
= 1.645 ' = .05

= 1.282 w ,10

= 6T - .25

w0 = .50

Estimavion of Other Quantities:

(&) In meny practical problems one does pot wish to find point or
interval estimutes for the mean life &, but rather for a quantile xp,
wherce x 5 is that life such that

(12) EUZ%)‘p.

For the exponentisal p.d.f. this means that

- 6
xp/ .

(13) e

b -3 1

=p or xp-dlos

It is therefore clear that the maximum likelihood estimate of xp

iz givea by 8 103% . Murthermore, two-sided and onc-sided 100(1-¢x)

percent conndencg intervals for xp ar::

A
( 2r3 log i 2ré log L )

B P I,n
@) R (er)

3 ]

(1) or equivalently -
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- 1 1 -t
[ log = 27 log -~
i'j;r 6p , Z 8 \i
\Xa :2!‘) " a{?r} i
2 ]
and
2ré 1og & [2v_10g% |
{1%) i 2, » orl ?-———2 s m)
| X (2r) \ X ter)
respactively.

Ta Tedle "3 we give values of log % for various useful valuss of p .
Twe-cided and one-sided confidence iutervals for xp can be found by weing
Tabies 1, 2, and 3 and 'substitutmg apprepriately in equations (14) and (15).

Femars 1: Formala (1’5) can be interpreted as follows.. (n ihe bastis of
the estimate 3r, a Ve cen be 100(1-a) percent confident «f the assertion

that the protabliity of zurviving

21'5; n 1
T e ;{-Jm log = time unitse
x(2r) °

iz >p . Thie is a tolerance interval statement in the sense thai if we
vbserve 31_’" for & nample we can de 100(1-¢c) pereent confident of the
correctness of the assertior zbat the fraction of items in the population
surelving ¥ or more time units iz >p .

Remark 2: It should also be notied that if we chserve B, then

formulae (1k) end (15) give one and two-sided 100(1-a) percent coafldence

Yapos for the entire distribution.
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(b) Prequently we wish to make confidence statements sbout the
proportion of iteme surviving some preassigned time t%, on the basis
of the first r failure times. Gince the probability of surviving
for a fixed time t% is given by -

(16) Pys = PriX>th) = e""/"

it 18 clear that the maximrz likeliihood estimate of P is given by

‘ A
t/Crn .

(27) Pye e
From (7) it follows immediately that a 100{1-t) percent two-sided
confidence interval for Py» is givean by

( -x;(er)t’/arér, n -»xi- g(er)t‘/aré‘r’ n)
F3 2 I

sy €

(18) or equivalently

3 2

Som o »
(w,:xﬁ(ar)t far, (e /2'r,)
e - ’ e .
t'l‘
One-sided 100(1-cx) percant confidence intervals for e © are particularly
important. It is an immediate consecquence of (9) that this confidence inter-

val is given by
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"g(ar)tbfﬁg . | | " l X5 (2r)t¥/en )
(19) (e a ra ,l) or squivelently. exﬁ roul .
fhe question may be acked: how large should the cbserved 6r o lor
* 5

equivalently T_ ) be in order that ve be 106(1-c) percent: confident

that

»
Py = et /G?_V ?

¥roa (39) this izplies that

2 PAIA
-x{er)s /2"91»,:. .

(20) . e 2

mhiz is equivelent to
A * 1 . © 1
.92':!1 > Xg(ar)t /2r log ¥ °or T, :_:.Xigar)t /2 log 5

The mesalag o° the inequallity is as followe:

I the total life cbaerved in getting ‘r fallures exceeds
#o(er et/ 103% , thea us can be 100(1-0) perceat comfideat that the
probability of surviving the time t¥ is >Y . These values are

readily computed from Tables 2 and 3.

Nuperical Examples

Note: It is assumed throughout that the underlying distribution of

1ife is sxponential.
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Example 1: 20 electron tubes are placed on test.

A tube which fails
is repisced at once L o new tube. The fifth failure is observed to occur

407 hours after the start of the life test.

(a) Estimate the mean life ¢ and give cne and two-sided 95%
confidence intrrvals for 8 . .

(b) Estimate x 9’ where x 9 is such thet

Pr(X > x.g) = .9

Give one and two-cided 95¢ confidence intervals for x 9 -

(¢) Make & one and two-sided 95% confidence statemeut for the
probability of surviving 100 hours.

Solution:

(a) Ve are dealing with a replacement situstion vith n = 20 T =%,

Xg w 4OT . The total life observed is given by 'I.‘5 . 20x5 = 20(407) = 0140 .

Thus 1t follows from (3) L. .t

i B 2 LT R m;@&%*&@“?mg‘“ 3 ,

8w T /5 n 1628 .

To find a two-sided 95% confidence interval we use (7) with 12‘025(10) = 20.483
end Xajg.w(lo) # 3.247 . This gives the tuwo-sided interval (795,501k) . To
find a one-sided 35 confidence interval ve use (9) vith X2'05(10) = 18.307 .

This gives the one-sided interval (889,c0) . The values can also be obtained
directly from Tables 1 and 2.

bl 4
1




®

o T

W

T ey S T

e BT

"‘34 ,-.1"

~ {b) The solution is found by multiplying throvgh by log % = log -"59 - 103,

Thus we get ?_9 = (16283(.105%) = 172 . '
A 9% tvo~sided eooﬁ.deneg interval is given by (83.8,528) and & 95%
one~sided confidence interval is given by (93.7,®) -

(¢) The maximum likelihood estimate of Py» , the probability of surviving

¢* = 100 bours is given by B,» « e(200)/2628 | -.061% | cnoy " giatlerly

a two-sided 954 confidence interval for p.# 1is giveu b’y )

(e-100/795' e'mo/ﬁom) " (e"1258, e"0199) w (.8817,.9802) and a one-sided

(e--1125

95% coanfidance interval for Pgv i given by (e'loo/ 889 »1) = 1) =

(.8936,1) . o R
Example 2: 20 electron tubes are placed on test. Tubes which fail
are not replaced. The first Zive observations to failure were
X),20 ™ 25 Xp o = 64, X3 o = 119, X, 5 @ 145, and x5 5, w 182 .
Estimate tbe mean 1ife € and give a one and two-sided 904 confidence
interval f°r, 6 based on the data.
Solution: This is a non-repiacement situstion with n = 20 and
rw= 5 . The total chserved life is éivenby '1‘5:-;11 + 15:5-

5% + 2730 » 3266 . Thus 1% follows from (3) that 6 e Tof5 = 3266/5 = 653
A two-sided 90% confidence inteérval for 6 1s given by (357,1657) and a
cus-sided 90% confidence intervel for 6 is given by (409, ) —. ;nnte
values arc obtained using Tebles 1 and 2 .

Exssple 3: An extensive life test bas been rmn ad & § based on
r » 100 failures has been computed. Buppose that & = 1000 . Give ome

o e i e < L s oo e ——— U
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and two-sided 959 coafidence intervals for 6 .
Solution: Frow (10) the two-sgided 95% confidence interval for 6

is given vy

’ 1000 1000 \- 1000 1000
. /160 Y100
= (836,].2%).

Froa (11) the one-sided 954 confidence interval for 6 is given by
bee=- BRI Bl
+

M’ The total life observed in obtaining 5 frilures is 9205

hours. On the basis of this information, can we be 958 confident that the
pirobabllity of surviving for a tine t* = 100 1is > .90 1

Solution: From (20) it is known that in order to be 95% confident

that the probability of surviving for & time t* w 100 1s3.9 , it is
necessary that the total observed life

1
Tg 2 1?05(10)100/2 log T 8689 .

Since the total life observed in cbtaining 5 failures is 5205 hours, we
can ansver in tae affirmative.

¥ e e e
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1, .

£ ' Example 5: Suppose that ve want to keep & mechanism containing

2 T tubes in continuous operation for 1000 bours. Suppore that all
we kuov sbout the tube 1ife i based on the data contained in Example 1.
Based on these dats, hov many tubes should we expect to put in as
replacements for those which fail during the 1000 hour periocd? -Find
a two-sided and one-sided 9% confidence interval for the expected
nuber of replacements needed.

Solution: We are in effect observing a Foisson process witi failure

R

rate A, = 1000/6 . The maximm likelihood estimate of A is, from

the solution to (1), given by 3‘. - 1000/3 w 1000/1628 « 614 . Therefore

the expected number of replacements over 1000 hours is given by 1000\ = 61k.
In exemple (1), ve computed {795,5014) as the two-sided 9% confidence

PRt 198 T R N

‘ i interval for 6 . This gives the two-sided 95% confidence interval for

. : the expected number of replacexeants:

T aawha HfE G

6 6
N o ‘{\3-15%; ) 355 ) = (199,1258) -

f In example (1), we computed (889,00 ) as the one~sided 9%% confidence inmter-
¢ vol for . Therefore a ons~-sided 95% counfidence interval for the expected

number of replacements is givea by
. (0, %) ~ (o,uz:») .

mmumnum,ucmemuumofcé\wunﬂwu,
but they do give us some ides of what ve may expect to get.

g e -
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Remark: More generally suppose we want to keep a mechanism conteining N
tubes in continucus operstica. To do this N good tubes sust be in operation
at all times. Suppose that we vant tbis condition to hold for a time interval
of length T . nwmmomweexpectwinsertun;lumuma
time ‘f, basing cur estimates ou one or more previous life tests?

As indicated in exaxple 5 we are in effect observing a Poisson process
vith paremeter ), = B/0 . Therefore, the expected nusber of replacements
if we wish to Xeep N items functioning at all times in an intervel of length T
is given by Q.o'f - u'r/3 .« "I (01 <6< 92) is a 100(1-a) percent two-sided
confidence interval for 6 , then & 100(1-x) perceat confidence interval for
the expected number of replacewents is given by (NT/O,,NP/0)) . If (65,m),
is & 100(1-q) percent ome-sided confidence interval for 6 , then & 100(1-a)

percent confidence interval for the expacted number of rexilaceunta is given

by (0, %?3. .
' In example 5, @ = .05, N = 1000, T = 1000, § = 1628, 6 = 795,6, = 0Lk,
amd 0 -89 .

Exsmple 6: Given the data in problem 1, find a number 7 such that we
can assert vith 0% confidence that at least 90% of the population survives T .
(Note that this is s tolerance statement).

Solution: Ve noted in Remark (1) following our discussion of interval
estinates for the qumt.iic b 4

) 4
stataments regarding X are also tolerence statemsuts in vhich we can have

that one-sided 100(1l-C) percent confidence

100(1-a) peroent confidence. Hence using the solution to 1(b) we cen assert
that 7w 93.7 . Based co the dats we can assert vith 9% confidence that
at least 90% of the population survives < = 93.7 hours.
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To solve {b) graphically in the two-sided case we see wl';ere
the horizontal line x = 1000 meets the two lines x w 795 log %
apd 5014 log% . The two values of P obtained are .2§ and
.82 . Thus & 95% two-sided confidence interval for Pet . 1000 ®
= e'lwo/ 9 (i.e., the probability of surviving 1000 hours) is given
by (.28, .82) . 1In the one-sided case the horizontal line x = 1600
intersects the line x -‘889 log % at p e .32 . Hence we can

state that (.32,1) is & 95% confidence interval for Pe* o« 1000 ®
- o-l000/6
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getion 2.
An Estimation Prcblem (Fixed time of truncation. Items which fail are
replaced bi nev itews.)
Froblem: n items are placed on life test at time t = O . As the test
procaeds, items which fail are replaced by new items. Life testing is terminated

at time t¥ . It is assumed that the underlying p.d.f. of life is given by

-t/e

We wish to do the following:

(1) Estimate o .

(11) Make one and two-sided confidence statements about 6 .

(111) Make probability statements about the proportion of items having
life greater than t* .

Solution: In what follows let r « number of items which fail in (0,t"),
then the solutions are as follows:

(1) The maximum likelihood estimate for 6 +s given by at*/r .

(11) A one-sided 100(1-c) percent confidence interval for 0 is given

by

A two-sided 100(1-c) percent confidence interval fo&: 8 1s given by

(2) 2nt* , 2nt” ) | _
( Clars2) ~ X _(2r) ,
3 15 |

(141) PFrom the results in (i1) rog#rd:hg the one-sided 100(1-a)

percent confidence intervals for 6 we can be 100(1-t) percent confident that at
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least 1u0 b% of the population survives t* bhowrs, with

-x§ (2r+2)/2n
(3) bee .

In other words a 100(l-t) percent one-sided confidence interval for

’- .
peet/% {4 given by

2 (2r+2)/2n
) e_a(ﬂ)/ .

From the results in (ii) regarding the two-sided 100(1-a) percent
confidence intervals for 0 , ve can say that if wve cbserve r failures

in (0,t") then a two-sided 100(1-a) percent confidence interval for
o ~t'/0

bw is given by
—xg (2re2)/2n o o ()20
3 -3
(5) e , @ /.

Proof: Essentially ve are observing & Poisson process with parsmeter
A' = n)\, . vhere Xa% .« If we observe r failures in (o,t') then the

maximum ukeuhood estimate for A' 1s given by

AT
(6) A=
Thus
"
A"
(M 'i-;cw

et mei RATe
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Therefore

(8)

and this establishes (1) .

It can bec shown that the probability of cbserving r or fever

_failures in (0,t") t& given by

*
(9) Pr(k < r|6) = i e "B /0(ne* o)k /x
x=0

='pr(x2(2r+2) > i’%ﬁs) .

Thus, 1f 6 gant*/xg(emz) then Pr(k <»]6) <a . Tais implies
that if we cbserve the evant k = r, then we are 100{l~a) percent
confideni of the correciness of the sssertions ibat 8 > Znt' ,us \¢r+2)

In a similar vay it cen be shown that if 8 < 2nt /1(21(21'-».) then
‘ 2
Pr(k< r|9)< end if 6 > 2nt"/ (2r) then Pr(k > rlo) < - .
J_.. ._

From this it follows that if we observe the event k = r, then we are

100(1-a) percent confident of the cométneu of the assertion that
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2nt” <o< 2t .
g'(arfi‘) ?» o {2r)
3 1-3

Remark 1: Define § ac 6 = 3(—;& e nt’'/r+l . Then one ean

vrite the one-sided 100(1-a) percent confidence interval for ¢ as

2Ar#l) 8 | &) and the two-sided 100(1-a) percent confidence interval
Llars2]

for 6 as

ggréla Zr{?\ .
E(ers2) ¥ (er)

a
2

1-5

Thue & is involved in computing the cne-sic.d intervel and in
finding the left-hand end point of the two~-sided interval. 3 is N
invelved in finding the right-hand end-point of the two-sided
interval. It is now cléar that we car use Tedles 1 and 2 in order
to compute the confidence intervals.

Remark 2: If r = 0, only the estiiaror ] mekes sense cnd
only one-sided intervals of the form (1) should be used.

Remark 3: The two-sided confidence intervals r 6 given by
fornul'n. (2) are direct consequen-es of formulae for two-sided con-
fidence intervals for the parameter A in a Poisson process given
by F. Garvood in Biometrika 28, 437-442, 1936, This question is
also treated in E.S. Pearson and H.0. Hartley, Biomstrika Tables

for Statisticisns, Vol.I, pp.Ti-T7, Ceabridge University Preas,)95k.
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‘ 1 | 1
(13) ;.__M'l 5, ot lgs
Clar2) X (ar)
H -3
o[ (2s2) F10: 2rBaogl |
Blors) | (2r)
H -3

F"o‘r-n‘e‘(l.a) and (13) given 100(1-q) percent one and two-sided
confidence bands for the entire distributica.
Remark 7: It follows from {12) that 1f

*

ant ' 1
(lh) ) To -xﬁ-z-r—:z—)—- 5

then ve can assert with 100(1-c:) percent confidence tbat (7,00 ) is
a 100 p percent tolersnce interval. More precisely, if one observes
r failures in (0,t*) (vhere n items are constantly kept on test)
then ve can be 100(1-c) percent confident that the probability of
surviving for at least time t 1s > p (or thet the fraction cf
the population surviving T or more hours is >p). In terss of

?, (12) can also be written as

L

(15) ra%m%ﬂ-

[+ 3

m-wmlitmywmto' 7 fyom Tables 2 snd 3.
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Remark 8: In the scotico devoted to the testing of hypotheses
W-thﬁmtmeuotmdmor&afoum
kind. n items aye placed on test, and it is decided in advence that

the experiment vill be terminated at min ('r I!;f."'), vhere .o I8
o’ o’

& rendom varisble equal to the time at vhich the r W8 failure occurs
and t% is a truncation time, beyond which the experiment will not be
rin. Both Ty and et are assigned in sdvance before lifs testing

starts. If the experiment is terminated at <

l.e., if
P CLY

[+
failures oocur before time t'), then the sction in terms of hypothesis A
testing is the rejection of some specified mull-hypothesis. If, howvever,
the experiment is terminated at time t* (i.e., the ro*-h fallure does
not occur before time '), then the action in terms of hypothesis
testing is the acceptance of some specified null-hypothesis.

Suppose mow that such a test has been run and that we would like to
use the data odtained not only for testing, but also for estimation. It
is gemarally recognized that there are difficulties assoclated with
using such data, since the stopping rule usually affects the estimates
vhich cen be cbtained. It is interesting to point out that for the
truscated 1ife test under discussion the following rule gives 100(1-a)
percent one-sided confidence intervals: i
(1) 12 < >t*, 1.e., 1f the mmber of cbeerved failures k in

*
(o,t) 18 0,1,2, ... 3Ty 1, then a one-sided 100(1-a) perceat con-

fidenos iaterval is given dy
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(16) ( 220# »y ®
Xa(2k+2)
( 1) 12 T, £ "t , 8 ope~sided 100(1-c) percent confidence intervel
°
iz given by
| | ; 2n1ro :
Q)

In Appendix 3 E we prove thet equations (16) and (17) generate
100(1-q) percent one-sided confidence intervels. ‘
Cuoe might conjecture that tvo-sided 100(1~a) percent confidence

intervals cen be definsd in an analogous vay 8s:

*
(18) %‘L y@ | it keo
(2}
» *
28t 2ut I k=1,2, ..., r -1
; X(2ks2) X (2k) o
2 ]
and
2n'tr 2n-tr
[+]
(19) {?— » =3 9 it 1 < t*.
\ Q(ar ) X a(zr ) ro -

We have, up to now, not been able to gstablish this conjecture rigorously.

e e e - - [ - [ § e e nm———r A et
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Numerical Examples

t

Pyoblem 1: 30 items are placed om test. Iteme which fail are
replaced. ‘The lLife test is swopped efter 100 hours have eiqpsed,
Five failures are observed in the course of the experiment. Assmiqg,
that the mderlyi.ng' distribution of life is exponential, find .

(a) An estimate of the nean life 8 . Give one and two-sided 9%
mmtidejme intervals for € .

(v) Make one and two-sided 95 confilence statements for the
Probadbility of surviving 100 hours.

(¢} Make one and tvo-sided $5% confidence stutewents for the

srobability of éurviving 50 bours.

Salution: |
{a) In this problem n = 30, t™ = 100, the cbserved numver of
failures i1s r = 5. Thus the maximm likelihood estimate for 2 is
tren by 8= st%/r = 3000/5 - €00. Cubstituting in formula (1) amd
using Xz_)oj (12) = 21.026, one gets the one-sided.95% confidence
interval (285, @) . Substituting in formula (2) and using x'f’oe5(12)-23.337
andxg_élo) «3.2k7 oue gets & 95§ two-sided confidence intervel (257,1648).
(b) A one-nided 95% confidence interval for surviving t" = 100
nours 1s given by (e 2L-026/60 1y (o=350% 1y ( won1).
- A two-sided 95% Iconﬁdence interval for surviving t*« 100 hours
is given by .
(e723-337/60, 3.2MT/60) (o389, 03Ky | (677, ou73) -

{e¢) One’end two-sided 95% confidence intervals for the probability
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of surviving T = 50 hours are given by (e~1772,1) = (.8393,1) and
(e~-1915, e-.OETJ.,) = (<8232, .9733) respectively.

Problem 2: Given the data in example 1. Ectimate 7t so that we
will be 954 confident that the probebility of surviving T hours is
at le@t 9.

Solution:

nw 30, t =100, r=5 C= .05, and p= .9 . Thus substituting
in (14) we have
- 622 100) (1 osh) = 30.1.

o JE

' ) — A \
More directly, using tables 2 and 3 apd notipg that 8 = —= 6 = gggc_Q =500,

r+l _
one gets 1= (500){.5T1)(.1054) = 30.1 .

On the basis of the data we can be 95% coafident that the probability of
surviving 1 = 30.1 hours iz > .9 .

Problem 3: A truncated replacement test consists of placing 30 items
on test for at most 100 hours. If 3 fsllures occur before 100 hours, the
life test is stopped at oncc and the lot is rejected. If, however, 3 items
bave not yet failed by the ¢ime 100 hours have elapsed, the test is termi-
nated at 100 hours with acceptance. Items which fall are replaced at once
by nev items. Give a 95§ one-sided comfidence interval for 6 if one
observes exactly one failure.

Solution: We use fcrmula (16) with k = 1, hence & one-cided 95%
confidence interval is given by

e i, o et
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[ 2nt* 6000 ‘
(1205(,‘) co) X (m 3 (D) = (632, @) .

Problem 4: Suppose it happaned that the third failure was

observed to occur at 50 hours. Give 99% one end twvo-sided confidence

intervals in this caee.

Solution: We use forsula (17} wvith k& » j,

flance a one-sided 95% confidence interval is given by
2n7t :
, @] s {g{%r,m - (238, ) .
®55(6)
Substituting in formuls (19) wve geb

[

lﬁ:ﬁé) ,, o75(®) | \ ) {%m" ’ %9’3%?")" (208,2425)

as 2 two-sided 9% confidence intervei.

13’30 L 50 . t
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SECTION 3
AN BRTIMATION PROBLEM
(Fixed time of truncation t*; failed items are not replaced)

Problem: 1 items are placed on life test for s time t*. At
the end of this time one counts tue number of 1tes.ix§ that bave failed in
the tine interval [0, t#]. Items tuat feil are mot replaced. We wish
t6 do the following:

(1) Give an estimate for the probability of surviving for &
length of time t#* and further estimate the mean life 6, if the
underlying- distribution is exponential.

{ii) Make one and t“wo-sided confidence statements about the
probability of living for more than t*. Stated 1n‘ reliability language
we wish to make probability stetementis about the i'elinbility of items
in LO, t*J .

{1i1) Make one and two-sided confidence statements about the mean
life © 1in the case where the underlying distribution is exponential.

Solution: In what follows let r = number of items which fail in
[0, t*], then the solutions are as follows:

(i) The maximum likelihcod estimete of the probability of sur-~

viving more than +* time units is given by

A -,
(1) P - (2= ).
9/8
1f the underlying distribution is exponestial, then ’13 - a’t' g and hence
A n )
(2) G-t*/log(n_r .

L — e - - -
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(11) There is & confidence of 100(1 - ol ) percent attached to
the statement that at least 100 b% of the population survives for a

length of time t# with b - given by the formula

(3) b
1*(,,.1-)!&(2"'*2:2“"2’)

In other words the one-sided 100(1 - oL ) percent confidence interval for

the probability of surviving t¥% time units is given by

1 .
S l

r+1 *

1+ (a—:—;) Fd(2r+2, 2n - 2r)

(37) .
Py (nl, n,) 1s defined in such a vay that Pr(I*(nl, ne) 2 Fo (nl, n,)) = o,
vhere PF(n., na) 1s the ¥ distribution with oy degrees of freedom in
the numerator and n, degrees of freedom in the dencuinator.

. A two-sided 100(1 - eL) percent confidence interval for the

probablility of purviving t%* time units ig given by

1 1
(2&) — . " *
T+l g r
1o (Fp) rg (o2, 2nen) T 3w (grag) 7, (o, 2neeree)
. . 2 2 ‘

These results are completely distribution free.
(1i1) In the case where the underlying distribution is exponent ial,

one obtains

e
) | 103{11-(::5 Pd(2x-+2,2n42r))’m)

as a one-sided 100(1 - @) percent confidence interval for © and

k]

o a,
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’

(6) — lt* ~ ; 2 _,
log {1 +(532) F%(2r+2, an.-ar)} log { 1 +(n 1) Fl%(er,an-anay

es a two-sided 100(1 - oL) percent confidence interval for 6.

‘Proof: (1) Formulae (1) and (2) are obvious.
(1i1) Suppose that we observe r failures in the time
interval [0, t%] and that p = probability of failing in [0, t*] and
=1l ~p= probabil*ty of surviving in {0 tj*]. Suppose that Py is

such that
f ny ko on-k
m LG re -

then we can state that Pr(k<€rfp)g o if p 27p,- Hence i we observe

"k =r, wecan be 100{1 - o) percent confideni that p g P, or that

qQ=1-~-p>1 - Py = Yy The question arises as to how one computes 9,-
This can be done very easily by expressing (7) &5 an incomplete Beta Func~
tion and then using the well-known relationship between the Beta and F

distributions. If this is done, one discovers that

(6) % = r+l .
14+ )FOL(&-+22n or)

vhere F, (nl, n2) is defined in such a way that Pr(F(nl, na) z2F, (nl, n2)>

= ol., and vhere n, and n, are the number of degrees of frecdom in the

nunerator and denominator respectively. Thus (3) is established. In this

connection one should also read S. Tekada and S. Shimeda, Part 1, July 1954,
Pp- 147 and 151. See bibliography given in the Appendix., .
In Table 4 we give the values of g o for

n = 1{1)20(5)30(10)50(25)100(50)200(100)500; for ol = .01, .05, .10, .25, .50

D e vy o o



- .

¢

«3.31-

and r = 1(1) min (n, 20). In Table 5 ve tabulate g, for n = 1000,
5000, 10000, 50000, 10000V, 500000, 1000000; for ol = .01, .08, .10,
.25, .50 and r‘= 1{1)20(10}100, 200, 500.

| !;‘wo-aiéed'éanfidence results are obtgined by finding p = Py and

P = pe‘ sﬁch that,

Ir
3! k n-k . ob
(9) PR AR Nl T~
k=0
and
(10) " ®) 5 E g E e L
2 G)ry 9 =

g
s

Hence if k = r is observed we can ve lOO(_i - ¢l) percent confident that
Py & P < Dy or that 9 € 3 <
The computation of g, and g, involves expressing (9) and {10) as an

incomplete Beta Function and then using the well-known relationship be-

tween the Bete ard F distributions. If this is 'done, it turns out that

G KN XSy -
1*(‘5'2'?)F (2r + 2, 2n - 2r)

3

and

qE’ T 1 N
l+(§-r+ F‘(ar,'an-‘ar+2)
1-x

" Thus (4) is established.

Tables for ql and 2 are being computed fc;r, the values ‘of n,

o, r used in Tables 4 and 3.
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In the particular case where the underlying distribution happens
to be exponential, (8) implies that (5) 15 a one-sidad 100{1 - ¢l) percent
confidence interval for © and (11) implies that (6) iz & two-sided
100{1 - ob) percent confidence interval for .

Remark: One and two-sided 100{1 - ol) percent confidence intervals
for the probability of sux.'viving an arbitrary time T not necessarily =

t* are given, in the exponentiel case, by

r+ 1
(12) [1+(n_r Fd(ar+2,2n-ar

| | X
(13)[1 -—"-——-"1 P (are2, ?-&’t’«,[l —E ) F, afr, a—awa)’ t*
(+ )4 o A 22 1‘3‘_ :

respectively.

Remark: It happens sometimes that n 18 very large and r is

very smmll. It is useful &~ note that in this cese {3) becomes

(14) - ’ b~ &
1+ (E-E-!*—) Fy (2r + 2, @)

In other words, the one-gsided 100(1 -~ d.) percent. confidence interval for

the probabllity of surviving time t* is given by

(15)” L 2O = L o ’
1+ (E_E_}.) Fylexr + 2, @) ) (l+x2|(:+2),

Similarly & two-sided 100(1 - of) percent confidence interval for the

probability of survival is given by
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8) T +1 : ! T v
l+(—3--)1%(2r+2,m) 1+ (E) 7 g(er, o)

1 1 :
L+ [xé(zr +2)fa] 1+ [Xig (21')/211]) '

In (15) and (16) ve use the fuct that E, (n, ®) = X S(z)/n.

In all of the results obtained wp to this point in this section,
wve have not made any use of the failure times of those items which did
indeed fail. Because of this we were able to state a certain number of

non-parametric results. However, in the event that the underlying dis-

s~ o R AT S R Yy

tribution of life really is exponential we are clearly losing some informa-

k tion, at lea_at vhen n, ‘the number of items originally placed on test is
',‘. t srall. We éay this because of the fact that if n were very large, then
we would be effectively dealing with a replacement situation. In this
case, the knowledge of actual times to failure is irrelevant if the
underlying distribution is really exponential. It is only for small or
moderate sizes of n that it would mmke a difference whether or not we
use our knowledge of the actual times to failure of those items which
, did fail.

Throughout we essume, as before, that we gtart the life test with
n items and that we do not replace falled items. Iet r = pnumber of
items which fail in (0, t*) amd let 0, £ T, < ... < T glhe the
feilure times. We assume further that the underlying distribution is
exponentisl. An exmct solution to the problem of finding 100(1 - ol)
percent confidence intervals for @ 1s easy in principle, but difficult

“to carry out. Hence we give, without proof, some approximete procedures
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which are good enougli in most practical problems. The first result is -

that approximate one-sided 100(1 - J.) percent coafidence intervals for

[

9w are given by

. * ‘
() Il @) for r=0,1,2, ..., n-1
P4 > F

X ler + 2) ’

T
where T(t*) = Z T, + (o -r)e*
i=l

MT) )
2 2 %
xa_(an) - -

n
T(Tn):'-jz_‘i?;., if r =n,

and

where

Approximate two-sided 100(1 - o) percent confidence Intervels foi.;

¢ are given by

/ .
(18) 2., w) if r=0
X2(2) ‘
by ‘
Z(w)  _ener) 1f r=1,2 .,n-1
X2 + 2) xi_%(ar)
z B

and by . -
(T > (7))
y-] ? b4 "
X%(ax) X 1-%(2n)
Formulse (17) and (18) should be coupsired with (5) and (6) respectively.
‘ ‘ { ' A T{L#
Remaxrk: It is'couvenient to define 3' as 'Qe’-.- G Ewer 1’.&..). s
‘ L T+l r+1l
’ ~ A
for *=0,1,2 ...,n-1 andas 6=8="T(% )/n forr =n. Formla

% if I = n.

I
o

{17) then becomes

< aegaae L -
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__i{%ll__ ) tor r =G, 1, 2,
X {2r + 2) /

evey, B ~ L and

(174

o

7(&(2!1), co/ for r:-n‘

and formuia {18) becomes

o
Xg?)’m) for r =20

2

d",

{(18*) . ~ a
2(*1‘*'19 - .;::'9 ' for v =23, 2, seep, n =1
Xglar+ 2y g aler)
\ 2 2
and -
A A\
) gne P ,_,ane for r =n.
Xotea) KT al2a)
z 2/

As was done bafore, let us <efing the quantile xp es that life
such that #r(X = x ) = », i.e., X, = 8 log %‘- . Thern mpproxinete cne-
and two-gided 100(1 - ob} percent tonfidence intervale for x_  are obtaiped

’ . 1
by multiplying the formulae in (17), (17'), (18), {18') vy log =« Further-

more it follows thet if

’ r~
. o _
(19) t 24.?__*‘__‘:.2_9__10&.3;, r=0,1,2, «~., n~1
P Xferv2)y F ‘
o 206 1
= log > for v -1
Xd,(an) P

then wo cen be approximately 100{1 - ol) percent confident of the corract-

ness of ‘ahe assertion that the fraction of the populaticn surviving & or

®
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more hours is 2 p. As before,one-sided confidence intervals on quantiles

are ec...-lent to one-gided tolerance statements about the populatio:

with the sams confidence. -

1
If wve want to place eprroximete one and two-sided 100(1 ~ &)

CEEET 4 l
percent confidence intervals on p’l‘ e ! ® , the probabllity of sur-

viving T hours, the results are as follows:

TE(eg) N |
(20) |, 2fr+18 1) N é T3 + 2 9

for r=0,1,2, ..., 0~1

for » =n

and
- XXE(en) LTy o
C e » 1/ or é a,_(2n)/2'1‘(’l‘n),. 1

are approximate 100{1 -~ ol) percent one-~siced confidence intervals on

Py and
TR
{21) e ent¥ , 1 for T =0
2
- ———— - 2 for r = 1,2,...,n-1
2{r + 1)& e
and \ e s €
0 ,
/ *mc%L (20) Txi_%{em
Le- S ’ e- -—-2—3-9-—-—-'—- for r=n

are approximate 100{1 - ol) percent two-sided contidence intervals on p. .




S‘uppose that the data are originally obtained in the course of
N F
running a truncated non-replacement life test wita preassigued truncation

t;.me t* a.né maximum allowable mimbar of failures ro.{ j.‘he stopping
rule is ‘niin(’t'ru:n;t*) vhere T, o iz a random variable equal to the
time at which the ro'th‘ %a.ilure gccurs. Then the followi:r;g rule ‘3ives
approximte 100(1 - 64.) percent confidence intervals §'9_1j he_

(L 1 7 > t*, 1i.e., if the number of observed failures k
in (O t*} dia O, l 2, cuey r, - 3 then an approxinate one-sided
100{1 - o) percent. confidence interw}al is given by

(22) (-—%r—(t—*l_- ) kK=0,1,2 oy -1

{2k + 2)

where
X

T{t*) = 12171 + {a, = KE®

or equivalently as

v

’ where o = T{t*)/k + 1.

1) If 7, <+ t*, then the appropriate interval is

o

o)
QT( Tr ) 2r 3
[
(23) » @) = | = ) ®
£ (2r,) X(er,)
where
: r
re T{T ) = 2 T, + {fn=r )t*
et ; rO inl 1 ‘ °

. ,
and 8 = fr(?ro)/ro ‘
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In an analogeus way, we can obtain approximate two-sided 100(1 - o)

éarceut confidence intervals for 6.

Remark: We wish to re=m§asize that in the luﬁ few pages ve
bave given results which have not been und probably cannot he rigorously
established. However, they.can be used as good approximations to true

results. Further discussion of this point is deferred to the Appendix.

Numerical Exemples

Probles 1: 20 items ave placed on life test for 100 hours. Tvo
items fail before this time. Items which fail are not repleced.

(a) Make non-parametric 5% confidence st;t.enents (one and two-
sided) about the pro'bab‘ility of items surviving 100 hours.

(b) If the underlying distridution is exponential find one and /
tvo~sided 95% coufidence intervals for 6 , the mean life.

(¢) If the underlying d;étribntion is exponential, give one and
two-sided 9% confidence intervals for surviving T =« S0 hours.

Solution: (a) 1In this problem n = 20, r = 2, a = .05, t" = 100.
Since r_05(6, 36) = 2.36, it follows from (3°) that a one-sided 9%%
confidence interval for the prodability of surviving " - 100 hours
is give;x by (.718, 1). Since !‘.025(6, 3) = 2.79 and
’.9;15(“’ 38) w 1/8.42, 4t follows from (k) that a two-sided 95%
confidence interval for the probability of surviving t.o = 100 hours
1is given by (.683, .988);

(b) From (5) e ocne-sided 95% confidence interval for 6 4s given
by (302, ®) =apd from (6) a two-sided 9% confidence interval is
siven by (262, 805).

(c) From (12) a one-sided 95% confidence interval for the probability

of surviving T = 50 hours is given by (.84%7, 1) and from {13) & twe-sided
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95 confidence interval for surviving T = 50 hours is given by (.826,.994).
Problem 2: Out of 10,000 items tested 5 00 items vere observed to
fail. Give a one-sided 95% ccnfidence interval for the probability of
survival. -
Solu;s;.on: In this case n = 10,000, r =« 0. Bince n is very
large, 1"_05(2, 20000} ~ Foos(g, ) = 3.00,and so the ona-sided 354 con~
fidence interval is given by {.9997, 1). In other words, we have 95%
confidence in the assertion that the trge probability of survival is
Z 9997, if no items are observed to fail in a sample of 10,000. The
anever can alsc be found very easily by using Teble 5.

Froblem 3: Out of 10,000 items tested, 10 items were observed to
b k]

fail. Give one and two-sided 95% confidence interwvals for the probability
of survival.
Solution: In this case n = 10,000, r = 10. Since o is very

:

large F.05(22~' 19980) ~- l“~05(22, @) = 1,58, and so the one-sided 95%

confidence interval for the probability of survival is (.9583, 1). 1In

other words, we have 95% confidence in the assertion that the true proba-

bility of survival is Z .9983, if ten items are observed tc fail in a
‘ sample of 10,000.
l In the two-sided case F e5i22, 19580) = 1.67 and F_g75(20, 19962)
| = 1/2.00 = .500 and so the two-sided 95% confidence interval for the
probability of survivel is given by (.9982, .9995).
Problem 4: A sample of 20 tubes 1s placed on test. Experimentation
18 truncated at time +t% = 500. Items which fail are not replaced. In
this particular sample 6 items fail before t¥ = 500 hours. The total
1ife of the 6 items which failed before t#* = 500 was 956 hours. Estimate
the mean 1ife @ and give one and two-sided 95% confidence statements for

6. the meon 1ife
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Solution: {1) Iet us solve the problem ignoring the information
that the totwl life of the & Tailed thems = 956. Thus wc use Iormule
(5) with % =500, n = 20, r = 6, & = .05. This gives the one-sided

95% confidence interval

s : ) ( )
1log {1 + '1]’1 F o1, 28)} log -(9..06)]
/

f’oo 00
=17 » = (e} =
(105 i_zooaj ; “’) (‘255-7 5’ ) (706, ).
Similarly using formule {6) ve get the two-gided 95% confidence interval
2% ' 300 \

1og { 1+ 1{;3.025(1hj 28,)}‘ " log {l + 35 F (12, 30)}/

£ R

200 500 ,
= <log (2.185) * 1log (1 1357) (‘?fﬁ?; %66 ) (640, 3950).

{(2) If ve use the fact that the total life of the 6 observed
failures = 956 we can use (17) or (17') to find a one~sided 95% confidence
interval. In this probdlem

Tlt*) = Z T, + Wt* = 956 + 7000 = 7956.
i=1

Lod L
. Further € = -T-%—)- = 1137. VUsing (17') and Table 2 we get the one-gided
95% confidence interval ( {1137)(.591), 00) = (672, @). Substituting
- in {18') and using Table 1 we get the two-sided 95% confidence interval

((1137)(536)', (1326)(2.725)) - (60§, 3613). The confidéncs' intervals

P i
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obtained by fhe two methods, one of which ignores the actual faiiuré

times are surprisingly close considering the smellness of the sample

and the fact that wve are dealing with a specific experiment. |
Problem 5: Given the data of Problem 5, find one and two-sided

95% confidence ’int,ervals for x'9, the time which is such that 90 per-

cent of the items in the population live longer than x 94
Solution: We multiply the numbers obtained as 95% confidence

4

limits for © by 1log ls Thus the cne-sided 95% confidence interwmal
D :

for x 9 is given by {71:, ~a)) and the two-sided 95% confidence inter-
val is given by {6k, 381).

Remark: We can interpret the one-sided 95% confidence interval

for x 9 as a one-sided tolerance statement, namely on the basls of the

-
B
¥

data we can be 95% confident in naking the assertion that at least 90%

g
5

04

P Sy —

of the population survives x g " 71 hours.

Problem 6: A certain company guarantees a televisicn tube for the

first month of use. Out of 1000 tubes sold, 50 are returned under this

SHEFE T THA

guarantee.

about the proportion of tubes lasting at least one month.

T et L

: {11) Assuming the exponential distribution to be valid, estimate

the mean life ©, and give one and two-sided 95% confidence intervals

\

distribution to be valid, estimate

for ©.

(111) Assuming the exponential

g e

D e

\x.s , the time when ve may expect 50% of the tubes to have failed. Flace
one and two-sided 35% confidence intervals on x 5°

Solution:

LYY

¢

Clearly this problem can be considered as & truncated

without replacement situation with n = 1000, t*# = 1, and 1 = 50, The

(1) Make a non-parametric cne and two-sided confidence statement
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problem can 8lso be considered as coasisting of 1000 non-replacement

truncated life tests, where each life test consists of testing n = )

itenm for at most +% = 1 hour. The customer cai‘ries out this life test

and in 8 sense accepts (keeps) the tube if 1t survives for cne month

and rejects the tube {1is given & new tube) if the failure nccurs before
one month. We will assume that accurate records have not been kept and

"‘ that we must base our estimate on the number of failures reported, From
=
% (i) the moximum likelihood estimate of the proportion of tubes surviving
4 t* o 1 month is given by P < 2TE LAV L 950, A cne-sided
& . n
K 95% confidence interval for the probability of surviving t* = 1 month
g ‘ 1 :
£ is given by substituting in (3') with r = 50, n = 1000. This confidence
% interval is
E“ o e
§ L 1 1
3 — ;1] = > 1 )= (.937, 1).
! 1 : 2 51 ’
: + 2= F {102 - .2
! 1+ g55 Fo5(202, 190C) | 1+ 555 (1.25)

A two-sided 95 confidence interval is given by substituting in (9). This

gives

—ee 1 . 1
<2 50
\1+9%?@$uw,ww, 1+ 567 F g75(100, 1902)

1 1 N

= = = (.934%, .963).
) 51 ’ 50 _1 '
1+ 550 (1'.31) 1+ 5T 1.5

This gives the solution to (i).

To solve (1i) we substitute ir (5) and {6) respectively. This gives
the one-sided 95% confidence interval for &

Vs

’ T 5 @ = (154, )




.
[y
o
<
n
e
F
B
o
ry

o EER SR BRI

S

* B

PP

Ve e

NG i v

o

&

¥

-3‘k3-

&nd the two-sided 95% confidence inmterval for 9,

1 .
. —, — - = (14.6, 26.5).
log -"'9—37; .Log;, -.36'3-
The best estimate for © is
A 1
8 = - = 19.5 months.
log _..1;.. ’
<95

To solve (iii) we multiply the answers in (ii) by log 2. EHence
the maximum likelihood estimste for X 5 is (19.5)(.693) = 13.5 months.
One and two-sided 95% confidence intervals for X 5 are given by (10.7, @)
and {10.1, 18.h4) respectively. One can interpret (10.7, o) as = one-
sided tolersnce interval in the following sense: Based on the data and
acsuming the exponential distribution we can assert with 95% confidence
that at least 50% of the items swurvive 10.7 months.

It is interesting to raise the question: Suppose cne kneﬁ the
actual failure times of the 50 tubes which fail. How much would our
estimates and coafidence intervals change? A reasonable assumption 1s
that the totgl life of the failed items is about 25 months. This amounts
roughly to assuming that the 50 failures ere uniformly diétribuﬁed over
one month. Thus T{t*) = 25 + 950 = 975. Az a good"éé’ﬁ?mte of & with
very little bias ve take § = {%"—‘% = 2'%' 19.1 months. One and two-
sided 956 confidence intervals for 6 are given by substituting in (17)

and (18). Thus the one-sided 95% confidence interval for @ is given by

B o) (o) s, o
K s5(102)

and the two-sided 95% confidence interval for © is given by
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. ‘Zl;gt*lf. ,‘ 20(t*) _(

1950 1220 '
. ] d = (lh .8, %-3) .
“oes(102) ,x?m5(1oo) 13157 T4 )

The best estimte for x o 1s (19.5)(.693) = 13.5 months. One and
tvo-sided 95% confidence intervals for x g are (0.7, ®) and (10.3, 18.2)
respectively. It would appear that little is gained from sctual knowledge

of the failure times. More will be said about this later.

Problex 7: 20 items are tested one at a time.

If the item fails
~before 1000 time units have elepsed, the experiment is stopped. If the
item is still living after 1000 time units have elapsed, the experiment
is slso stopped. 5 items are observed to fail with feilure times 100,

Loo, 600, 80O, 900 and 15 items are still living at 1000 hcurs. Give 95%

one-sided confidence intervals for Pr(T > t%* = 1000) ; the probability

of surviving t%* = 1000 time units.

Solution l: In the notation of this section, n = 20, t¥ = 1000,

d- = -05. A non-parametric solution is given by substituting in formula

(3). Thue we are 95% confident of the validity of the assertion that the
probability of surviving t#% = 1000 time units is
> 1 V = ; - = . -
T O1+2F (12,300 1+2(09) I -
15 “.os\ies V) 5

Put in reliability langusge, we are g5% confident of the correctness of

the assertion that the reliability is & .Skl over the time interval
t¥% = 1000 units.

Solution 2: Another solution 1is oﬁtained by assuming that the under-
lying distribution is exponential and applying (20). We first calculate
P(t*) = T, + 15t* = 100 + 400 + 600 + 800 + 900 + 15/1000) = 17800.
i= ) . . }
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-Bubstituting in formula (20) we can be 95% confident of the correctness

of the assertion that the probability of surviving time t* = 1000 is -

2 ,
-t X© (12)/2r{t* = 2000)  _
> e .05 - o 1000 (21.026)/35600 - .55,
Put in relisbility lenguage, we are 95% confident of the correctness of

the uaeftion that the reliability is > .554  over the tiue {nterval
t# = 1000 time units.

It should be noted how close the two results (non-perametric and
exponential) are. Because of its validity under much more general condi-

tions, ope would normally prefer the non-parametric solution 1.
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SECTION &

ESTIMATES OF BOUNDED RELATIVE EREOR FOR ©

.Problem: To give an estimation procedure for the mean life @
having a small relative error. Puf more. precisely, give a procedure
vhich will yield an estimate which is s \;ith "some preassigned confidence
l - oL, wvithin a certain percentage (100 J percent) of tie true, but
unknovn mean life ©. In practice, of and d will usually be smell.

Approximate Solution: In the exponential case, the answer involves

finding r, the pumber of failures, such thst

A
(1) Pr {9";9’:&5’)5 1-ot.

Such & requirement will in general meke it necessary that xr be large.

r
¥
=
Vol
;

i
i3

l1et 'rr be the total life associated with observing r failures and let

> e

AN L. .
31, - Z’r,’r. Then it can be assumed safely that Tf'(or - 8;/6 1is approxi-
mately distributed as N(O, 1). Thus to meet the conditions imposed by

equation (1), means that r must be chosen in such a way that

i @ , r2/gt

i ' where ¢y = 2.576 1f o= .01
|| ' - l.m o = .05

i ' . = 1.645 o= .10 .
i

1f d = .01, .05, .10 and o = .0l, .05, .10 the values of r required
are tabulated in Table 6.

C e WA e
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TABLE 6

Values of r

ot .01 .05 .10
d |
.01 66,400 38,400 27,100
.05 2654 1537 1082
10 664 364 2n

Remark: The exact solution to this problem involves considerations

analogous to those in the paper "Estimates of Bounded Relative Error in

Particle Counting" by M.A. Girshick, H. Rubin, and R. Sitgreaves in the
:: ANNALS OF MATHEMATICAL STATISTICS 26, 276-285, 1955. The values of r

obtained in the range O < ot % .10, 0< d .10 are almost identical

e v W RO

with those tabulated above. Further the "best” estimmtor of © in a

minimax sense for fixed r corresponding to the luss function,

(3) ‘ 1{e, 8) = 0 1f 1-d%521+4

=1, otherwise

~

is given by the estimator

() 2‘“'1-
a L2 Smmetrevsi——— &
l1+d
T log T -6

a T
However, for 0 < d § .1, &~ 8, = < , since
T

2 ' :
a--,’%(l--%— +o(8?).

oy
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Remark: One cau show that ovy confidence in the ve,l‘i.éiif\' of the
e oY . A

assertion that 1-d = § g1+ d

is given for any nreassigned

e

1+d
Fia o
vhere & = 2d T /fr log +—= T

- o by

/(J-e-J)-glog (“J)

, . r«-.l -3
3) Rf'(l»ﬂf;‘;? < 1+4) = ?;ﬁ“:gl‘gﬁ?ﬂ

frad g
o T

‘

} (1«4 % log (%—ﬁ-.“)

[e0]
= é pfk; (1 +d) ;’5 Jog(ﬁi&)] . Z ofk; (1 -8) & 1og(~—-5-)j

¥or example, choose » - 10 amd & = 10, then it is reaedily w:rifiéd'

that
(2 8 & oG24 = 11.0) 2 10g(h) =
and

{.l - (;.\)G;f’:-'()g( g)r—"g

Hence (5) bacomes

Pl - <

Di>d

In other words, we can huve approximately 25¢ cucfidence in our mssertion

that a —~ 'Tlo/lo is within 10% of the true nean life 9.

[o'] CO |
€3+ £ F plki 11 - ) plk; §) ‘
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Numerical ylea

1. How many tubes should be tested in order that there is a

probability of at lsast .90 that the estimate 19 within 104 of the
true msen lLifet | |

1, Gw .1, and
¢y ™ 1.6L45. Therefore the number of tubes tested shouid be

Solution: In the notation of (1) and . (2), B w .

> (200)(1.645)° = 270. If the underlying aistridbution is exponential
this means that ve zust obt;erve &t least 271 failures in order to get,
an estimate such that we can be 90% confident that the estimator is
vithin 10% of ths true but unknown mean life.

2. We have availeble information from a life test in which S
fallures occurred with associsted total life T, = 1000. Aoiﬁning

an exponentiel disetribution, find the minimax estimator a associated
with the loss function

Lo,8) w0 1r B< F < 1.2

= ], otherwise.

Also compute the confidence that we will have in the correctness of
the assertion that .8 < %5 1.2,

S8olution: From (4), the minimax estimator of ¢ based on the

5 failures is given by & a = 2( .2)(200)/108(!'-:%) = 80/1log(1.5) = 197.

To find the confidence in our assertion that .8 < 8/0 <€ 1.2, we use

formuls (5). This gives us

® ®
Confidence = >_ p(k;6.08)- % p(k; 4.06)=. 7255 . 38290, 3426..
=5
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SECTION 5

THE TWO PARANETER EXPONENTIAL DISTRIBUTION

It has been found in many problems of life testing that there are
occasions when & two parameter exponentisl distribution is more appropriate
for fitting life test data than is & one parsmeter distribution. ﬁy’ a

tvo paramester exponentinl distribution we mean a dérisity function
£(x; ©, A) such that

(1) f(x; 8, A) s%e'(x - A)/g, x2 A=>=0,8 >0.

A can be thought of &8 a guarantee period withiri which no feilures can

occur or as & minimum life. If A = 0, eguation (1) reduces to the one

parameter exponentisl.

Problem: A sammle of n  items is dravn at random from & population

wvhose p.d.f. is described by (L). The experiment is terminated as soon as

the £irst r failure times nH & e .o 2X become aveilable.

Items which fail are not raplaced. Give "best" estimates for the unknown

parameters A end 6.

Solution: It can be shown that X5 the time to observe the first
failure, and 'r(xr - 1),.the totel 1life observed in the interval (x,, “r)
are mutually independent and Jointly sufficient for estimating A and 6.
Sufficiency means roughly that x; and '1.‘(::r - l) Jointly contain all

of the relevant information for estimating A and © that can be obtained

from the first r fallure times, x, = Xy © ... & xr. Best estimates

for A and © 1n the sense that they are unbiased and minimm variance
are given by
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{2y A = ¥ "%
A

{3) 8 = 1x_ - xl)j'r - 1,

vhere )

{s) Px, = %) = {0 - Vidx, = %)) * (fx f’h’ﬂ:) Y B

*

{n -r+ 1.)(xr-vxr“’l}" o ‘

#

“.(n - 1% ¢ o, Xyt A X

It is often convenient in {3) snd (&' to use tue farct that

r“;., - X = ':5" Y e ’/'{‘!C Vo= ™x Ve z.
R % (%)« M T(}’r' nx ,

where

e
= Z %, + (n - r)xr-
1=l ~ ’

Confidence limite for @ are casy {0 obtain from the fact that
) . . 2.
2(r « LV5/0 = enlx, ~ zl;/e is distributed as K°(2r - 2). Thus for
r » 2, one mné two-sided 100{1 ~ ol) percent confidence intervals for

6 are given vospactivaly bjt
L LY 2]3(:: - X,
(5) ‘ (*"—g“;'—*ﬂ?‘* , or . ®
| \ Kz - 2) _ 21' - 2)

(6) / Ao ek )
\)(ém -2 X;,g, (2r - 2)

oxr : .
ol m) M n) ).
}a‘f’h«z_) X7 fler -2}y
% at: /.

—-—




AR T SRV o (e n

R

e Sl

3k !%ma:ﬁ L S
¢

grrigty e

g

~3.53-

it follows that the desired 100 ' percent confidence interval for A
is given by

- e :
(10) (xl—zrﬂr?'—ll,xl) ] (xl-Zm. (%, xl):xl)r

n

Since zy = "T/r - 1 we have, of course, the same confidence interval

as before. However, =2 '. is computable for any r and any 2%
) > el

Remark 2:
n(x:L - 4) n(xl - A)
e oB T T, - %) -

can be interpreted as the ratio between the total life between time A

and %y, the time when the first failure occurs, and the total life bhe-

twien X and x, inclusive. Clearly one wvants to reject the hypothesis

that A= 0, if nxl/T(xr - %,) 19 too large. It should be noted that

under the hypothesis that A = O, m:]lﬁ(xr - xl)/r - g= % ~F(2; 2r-2).
Remark 3: Either formula (7) or its equivalent, formula (10), can

be used to test whether or not A differs significantly from zero.

CI x, - %))
X - “8 3 ©°r equivalently %) = Zp n are > O, then A

is significantly greater than zerc at the (1 - 2') 1level.

Remark 4: The 100 ) percent confidence interval for A can be

interpreted as a one-~sided tolerance interval. More precisely we can

make the state?ent that‘): ell items live longer than X, - zr@ -(r—;-—l)-
P(x_ - x

(or % - Zp rn i ) with confidence 2°. 100 jy'percent of these

asgsertions will be correct.

ir <
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1. 20 items are placed on test. Testing ls terminated after oune

has observed the first 10 feilures. Suppose that the first failure occurs

520 l;oura after the experi’mént starts. The total life observed between
the time vhen the first failure occurs and the time when the tenth fallure
oceurs is_ 1éooo item hours. Assuiing that the underlying distribution is
exponential do the following: )
(1) Test vhether A > O at the .05 level.
(11) If A >0, find the shortest 95% confidence interval for
A and an undiased egtimate for A.

(i11) Find an unbiesed estimate for © and one ahd two-sided

confidence intervals for e

nx
- 1
Solution: {i) Suppose that A = O, then ¥ PN is

distributed as F{2, 18). From the data

! 20) (520 20)9
Wy - 9P ° 1:200039 - 52 - 1.80.

But the upper 5% point for F(2, 18) is 3.55. Hence A is significantly

different from zero on the .05 level. As a mtt".er of fact, since the upper

" .5§ point for F(2, 18) is 7.21 and the upper .1$ point for F(2, 18) is

- 10.39, A is significantly different from zero at between the .00l and

005 levels.

(11) From the data @ = x4 - xl')/g = 12000/9 = 1333. Heuce an
unbiased estimate for A 1is given by x, - 8/n = 520 - 1333/20 = 520 - 67.7
- 452.3. |
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The ‘shortest 956 confidence intervel cen be computed from (7).
Bince w oo = 3.55 1in this case, the interval is (520 - ﬁigw , 520)
= (283, 520). | A

(111) 1In (ii) we saw that the best estimate for © is given by
6 = 1333. From (5) and (6), best one and two-sided 95% confidence inter-

vals for © are given by ‘4

S0 ' , ‘”) = (E‘Tam ’ °°) = (831, @

X.o5 (18) .
and
24000 - 24000 25000 24000
2 ] ) = (31.53 2 7.9% = (761) 3036)
Xoas(18) X g75018) M
respect_ively.’

" Remark: The tolerance interval in (2) can also be interpreted as
follows: . ve are 95% confident of the assertion that all items survive
283 hours.
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Appendix 3A

The material in Section 1 of Chapter 3 dealing with point and
interval estimates for the mean life 6 418 given in detail in:

3. Epstein and M. Schel, "fome tests based on the first r

amdered observations drawn from an exponential distribution,"

Stanford University Techmical Report No. 6, Wayne University
Technical Report No. 1, March 1952

I'. Epstein and M. Sovbel, "Iife Testing," Journal of the
Agerican Statistical Asscciatior 48, l4é5-502 » 1953.

 Aypendix 3B
Proof of the Theqrexns in Chaptexr 3, Section 1

n order to show thet é; , 83 given by {7) is the maximum like-
2

1ihoxd nstimate e write diwn the p.d.f. of the first r out of n

crdered obcervations Xy n?
~4

xz,,n" eey xr,-.'z » ‘Thiz i3 given by:
A x _+ -, [fo
n: i [i=l 1,0 T,n

T ¥o 0 R T O

- 'rr/e

R - A
(DK o €

in the non-replacement case and

-nx_/0 -7 /e
£z, %y s e Xk Il e T =B e o/
1,n’ “2,n r.n
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in the replacement case. It is very sasy to verify that the maximmm of
£ ocours at $'= Tt/r and this proves (1).
The sufficiency of the estimate can be verified at once by using

@) can be

a result in Cramfr [p.. 488] since t(xl,n’ Xp 03 s é‘r,n;

factored as
.f(xl,n’ xa’n’ ssey xr,n; 9) = S@I’n, °) h(xl'n,ﬂxaln’ sney xr’n)
vhere

b( X )=l if og,xl ‘.g.gxr’n‘oo

b 4 xn 5 vy -
1,n’ “2,n T,n R

= 0 otherwvige.

A
We next show that the p.d.f. of @, . is given by (6). To do
,

this we introduce r pew random variables defined as

y, = ox; and yin(n-i-rl)(xi-xi._l),agiﬁr

in the non-replacement case and
y, = ox; anod yi-n(xi-xi_l), 24 <r

in the replacement case. We can now state the folloving lemms.

lemma: The random varisbles Yi.n defined above are mutually
independent with common p.d.f. %. "/a, x>0.

Proof: 1In both the replacemesnt and non-replacement case the Joint

p.ﬂ.f. f(xl,n' xa,n') esey xr,n) “Cms

r .
éi yfo . y,/e
c(yl,n, ya’n, cesy yr’n) = 0 -ﬂl-. ’ 0‘ yi‘w,

i I-l, 2' ey l‘

and clearly the lemma is established.

| s e i
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Rewriting 31,:11 in terms of the Yy,n (1) becomes

r .
A
er’n = élyi b )

Since the characteristic function of the p.d.f. %e.x/ 6, x » 0 is given

by #(t) = (1 - 1£6)™" 1t follovs st once from the independence proved
in the lemma that

~ T4 1£0,~
%(t) - ;E:':: ¢yi(t/r) = (1 - -1—"-) r.

From the uniqueness theorem fox; characteristic functions o gets by

' N
inversion that the p.d.f. of "9, is given by (6),
2

(6) W) -y BT ey 50

= 0, elsewhere.

To complete the proof of the theorem in Section 1 we show that
6‘1_ o 18 unbiased, efficient, and minimum variance.
2

Unbiasedness is immediate, since

A I
E(8). = E(1 yilr) = r9/r = 6.

For efficiency and minimm variance let us compute the Cramér-Rmo

lower bound
1 ¢ /O

m', where f-;r" e

. ni i - F -
with c-m in the non-replacement case and C = n in the re
placement case.  Thus log f = log C - r log O.'Tr/"
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& 106 £ = r/o + 1,/6°.

2 . T.2
BA5ED 25+ P
2
2 27 T .
) £ A S |
| [.92 ‘;!i‘

o

2
= [1-2 +—l§(02/r + 6 =/
\ <) e .
Hence the Cramér-Rao lower bound is 92 r.

A
But Var 6 = YQr}_z = 92/r and since the assumptions needed

for the derivation of Cramér-Reo lower bound are clearly met in the present

A .
problem, er n ie minimum veriance and efflcient since any other estimate
2

has variance at leest equal to 92/1‘. Thus the theorem in Section 1 is
conpletely established. .
Remark: It is of interest to note that while © 1s "best™ among

all unbiased estimmtors, it is not "best” or “"admissible" if one uses

other criteria. Using the language of decision theory, let us consider
the loss function

1(e, a) = i"—e;‘-?f ,

where © 1is the true but unknown value ve are trying to estimate and
wvhere a is our estimate of €@ based on knowing the fimt r failure
times. We would like to choose the estimate a in such a way that

Eg [L(O, a.)] is made as small as possible in thé minimax sense. It can

be verified readily frcm results in Chapter 11 of Blackwell and Girshick's




X
«3.60~
bock, "Theory of Cames and Statistioal Decisions,” that the best choice
for & 1s given by
' 5. 30 a8 \'l‘-(x,.)
il S Sl 2 i}
If the estimmte & =@ 1s used then
N - I
Bl O § 73T
‘ ‘vhereas if © is used as the estimate of 6, then
T ‘ A1
g}} EgL(e, 0) g £
= - .
E Hence .
RO\ e = r .
g Be, /Ege, DY iy
5 | o | .
. I ’ and one alvays gets a smaller expected loss by using the estimate ©
L rather than ©. Stated in the langumge of decisicn theary, © is an
i?« "admissible minimex" estimate for the above loss functiom, vhile § is
L not admissible. Here is a case where cne does botﬁer using the "bissed”
estimate © rsther tban the "unbiased” estimate .
5 Appendix 3 |
We have seen that a 100(1 - ol) percent one sided contidence inter- -
@ . vd.forthcqmntm X5 where X is the solution to Pr(xarb)-p
L
o (1.e., x, = Olog-) is given by
&9 n
; 5(2.:)
8
4 .
: . 8

RSy
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and that this implies the tolerance statement that we can be 100{1 =)
percant confident of the assertion thet the fraction of items surviving

I _xj(ar)

The proof of this usg’ruon 18 now given. We can be 100(1 -ol) percent
confident of the assertion that T = X, < ® ). But

Pr(x 27) 2 Pr(X 2 xp) = p. Combining the last two statements we can.
say that we are 100(1 - o) percent confident that-the fraction of items

surviving T tize units is 2 p. And this is what we vanted to prove.

aiss
It is interesting to compare the material in Section 1 end Section 2
of Chnﬁcr 3 in the replacement case. We assume that one starts the life
test at time t_ = O vith n items and replaces falled items at cnce by
new items. In the situstion treated in Section'l, the life test is con-
tinued until s prescribed mmber, T, of failures have occurred, and ome
stops testing at the random time x_ . (msasured frou the begimning of
time). The total life observed up to and including X o 18 the randon
variable T,= mX., . In Section 2, the life test is termimated at a
Preassigned time t#* and the mmber of failures r that ccour is s
random variable. The total life observed is preassigned and given by
T = nt¥, To sum up; in Secticn 1, the nusber of failures is fixed in ed-
vance and it is the waiting time (and hence total life) until the r'th
fallure vhich is randoum; in Section 2, the time (and hence total life)
allotted to the 1ife test is fixed in advance and it is the muber of -
observed failures that is random.

Y

.!"j"‘e"t.z‘f‘-' ey ma -
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Point estimation of @ 4in the case where tha number of failluves,
: ' . A
r, 1is fixed in advcnge, is very simple. The estimator °r,n = nxr,n/r
= T_/r 1s emong other things & maximum likelihood and unbiased estimator
of @. However in the case vhere t#* ig fixed as in Section 2,
nt*/r = T*/r is & maximm likelihood estimstor of 8, but it is biased

(and in fact meaningless when r = 0). As a matter of fact it can be

© proved that no unbimsed estimator of 6 exists in this case. If we

knov apriori that nt# = ™" > 5> @, then an almost unbiased estimator for
® 1s given by

nt#* T
Ll dlras

This arises from the fact that
| -5
E(e*) 01 -e °1],

since

L, o» T . efe
e -2 T @ TG

.o ™0 oé (?-:)”?/(r + 1)t
oo T/ [em'/o -1]

= 9[1 -e T'/OJ-

" In any case, oue can find a point estimate of © by solving the equation

[ [1-¢ T'/OJ numerically.
When one is dealing with confidence interval estimation, the
situations in Sections 1 and 2 compare as follows:




e
£
2
¥
i
4 4

¥

s

confidence interval, | o7 .
; T—.-r . @ —E-—-——-a' , @
One edfed (X‘(ar ) Xalz+2) )
ar a1 \
Two sided _, r 1\ 2, 2
N e =) | (K Tg)
= A 4] 5 3

e g

Fixed T, random r
100(1 -ot) percent

It is very interesting to see that there is a striking similarity even
tpngh the two situations are redically different. It is curious that
only the degrees of freedom for X need to be changed as indicated sbove
when one goes from the situdtion in Section 1 to the situation in Section 2.

Remark: It is interesting to note that in the csse where T*¢ is
fixed, Cox [1] has given

e =
Yier + 1) " YT aler + 1)
5 2

as an approximate two sided 100(1 ~ o) percent confidence interval.

Appendix 3B

We should 1like to verify that equations (16) and (17) in Chapter 3,
Section 2, Remark 7 generate 100(1 - ol) percent one sided confidence

. intervals vhen data arise from a truncated replacement procedure

sao(s n;t'). Let us first consider the case where r_ = 1. In this
O‘

cave if no failures ocowr by time t#*, we stop life testing and accord-
ing to (16) give (-%f(—:—) , ©) as the onq-udcd‘ 100(1 - ob) percent con-

pd

fidence interval. If, however, s fallwre occurs et time T < t¥, ve,
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stop the life test and according to (17) give V(%% » ©) as the
one-side 100(1 - ob) percent confidence interval.” We wish to verify
that this is true. This msans that we wish to prove that our assertion
that '@ is contained in the system of confidence intervals (16) amd (17)
18 correct with probability 2 1 -~ ot no matter vhat © is. This 1s
particularly easy to do for the case r, = L. .Inthhcueomcan

sumarize the results in the following table.

r =l
o ‘ ‘ :
Probability that confidence statements
Valus of © besed on (16) and (17) are corvect
o> St - 1
X (2
X2 |

Ir e >i2%(t:7' then no matter what happens our assertion is correct.
2 .
A

1t 94 -2 then our confidence interval vill not include @ if’

o Ke o)) :
the failure occurs after time ¢ = ; & t*, BPut

-Xa@)/e

i
1
1
1

Prob(‘rl >t[]0)me ob. BHence the probability that our con-

fidence interval does not include @ is equal to o, and the probability

tutmmmommuﬁucmhoqmto l-o., If r, =2,

.. _(16) and (17) give the following: If no failures occur in (0, t#), stop

the life test and give (%,m) uthcans;dedloo(l-d-)mnt
oL\

confidence interval; if only one failure occurs in (0, t*) stop the life
test and give (-%%)-”, ®) s the cne sided 100(1 -ob) percent confidence
ol c o .




—

L4
a

~3.6%5-

B L i Y R : ¥

interval; if 2 failures occur at time 'C'a < t* then the appropriate

?m'z‘o

100(1 -ot) percent confidence interval is given by (-i-é-(T-‘-)‘- ’ 06). Again
, o (I

we wish to prove that our system of confidence intervals is correct with
probability = 1 - 2% no matter vhat 9 1s. It can be verified that this

is 80 and the results can best be summarized in the following table.

Probability that confidence statements
+

r =2
0
& Valus of ©
£
b *
i o > ¢
i p 4 &(2)
}
2nt*
b 0 = 5
g i Xd‘(2)
&~ i
= 2utH < cot®
H 2 - g2
i (] 2
X50) Xi2)
B 6 < anztl'
""'T.
XS0
{
It r o™ 3, one gets
Value of 6
’ _2nt*_
2
: 2
. X5
b 2t
4 -y
L Kul?)
o ‘;"'

EEL U B

based on (16) and (37) are corrac

1

o
1
t

-n
l-ent/Q,

e
XS /e "
e % < Q“‘n{n*/ﬂ‘/

where
< ol

1~

Provability that cunfidence minnuuents

'
LI . - T 9

based on {156) and (19) are eorrecr,

1

—y e




"“‘kkum oy

¢
’ 2nt* - ont*
2y <8 £
P X

Sk

e

-

2nt.*

0 <
, )L (6)

For general To

one gets

Value of ©

=
B
&
3
&
¥
%;;
&
¥
"ﬁ |
W
§ '
¥

o ~» Snt%
¥

x3)

o= ot
X

s < 0 < __ent*
2
‘x (2 + 2) X dSak)
) 0 < 2ntH

-3,“‘6

-nt#
l_ent/O, vhere

e 2 L ;e o oo

1. ok

-nt#* ent#
1 - et /0_(3%:)ent /9, where

x (b) % 2(6)

Probability that confidence statements
based on (16) and (17) are correct

1

1~o0

[ ¥]
*
;Z; plx; 9—%—), vhere

(.21:. + 2)

,_1
= *
2‘6 olr; ""—'—"'94 Z:ép(l',n: =€t
wl L % kﬁgro'l
1l - ol
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Appendix 3F

In Chapter III, Section 3, we dealt with life test situations
in vhich n items are placed on test, where testing is discoutinued
after e fixed time t* has elapsed, and vhera items which fail are not
replaced. In the first part of thig section we gave estimation procedures
vhich depended only on r, the observed mmber of items failing in [0, t*J,
sdoot on U £, £... £T £ t#, the actual fallure times. More
precisely, we gave non-parametric one and two sided confidence intervals
for the probability of suiviving for a length of time t¥, and in the
speéul case where the underlying' ﬁistribution is exponsntial we were able
to translate these intervals into confidence statements sbout the mean
life 6. —

Since the sufficient statistic for estimating © in this problem
is giﬁn by the pair (r, T(t*)’-g . A +(n = r)t*) we know that we
can make better estimates and better confidence statements about 6, if
we use not only r but also T(t*). To carry this out in practice, hov-
ever, is not easy since the c.d.f. of T(t*) is expressible only ina

-— series of many terms. The c.d.f. is given in 8. Teakada and 8. Shimda,

"Statistical Analysis of Life of Vacuum Tubes,” Hitachi Reviev, pp. 13-
154, July, 1954. See particularly page 153. The c.d.f. 15 given by
equation 2.6.16 in the po.per.r Thus one is virtually forced to use approxi-
mate confidence intervals Aand to use a certain amount of heuristic reason-
One approach to the problem of finding approximste confidence
intervals is given in the paper by Takada and Shinada to vhich ve bave
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Just referred. Essentially, their ides is as follows. If ve place n

items on test and truncate life testing at time t#, wve can treat

T(t*)-g'r’-r (n - r)t® as the sum ﬁxi, vhere the X, are
isl
identically and 1ndependcnt1y distributed random varisbles ’ mh possess-

m tm cld.f.

L)

Ft) =1 -e/®, ¢ 2 ¢a

-l ’ tzt’.

Takada and S8himada apply the central limit theorem to obtain an spproxi-
mtion to the c.d.f. of T(t*) by the normal distribution. From this
approximation they obtain - appropriate confidence limits for ©. They
clainm that this.upproazmtion is a very good one and give a table which
stetes, for-exanple, that If O = 20, and t¥/6 = .05, ‘“%nin“'a.n exrror

ot5$:l.a mde. They further stute that if n 2 30, and t*/0 2 .1

or nZ 50 apd t#/@ = .05 then the arror associated with the approxi-

mation is less than 1%.

" We have given ancther approximstion in equations (17) and (18)
of Chapter 3. Thase formilae are certainly excellent approximations for
n lisfge and even for small =n, thcyahouldbequitogpod. There are

& number of ressons vhy we believe that this statement is correct. Among

these are:

(1) If t*/0 4is smll, then ths number of failures will be small

and ths non-replacement case becomes virtuslly & replacemsnt case. One

‘can then act as if we were observing a Foisson [process with rate A = %

for a length of time T(t*);

e
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But it is readily verified that

D2 10g £ ia? -

23 =x/A% - L

qa' .

E&) a1 - e )

As ancther way of estimating A, we note that

(T etd)=1-e L £E).

Hence the statistic r/n is asi unbissed estimate of 1 - e AC"
and thus an estimate of A is given by

A = log (=25)/te

A ~ ‘
As wvas the case with A, Aismobmcdrorf;nita n. However as

n —-—>® ’}T—pbi\mo. Iat us now compute the asymptotic variance of
[~ 'd
A. It can be shown that as n —p @

Ver n n ¢~ At 1- ¢t

% - ()2 22
[&(n-r)] (t*) n" e (t*%)

oA (2 - M;’)
n(t#)°
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Let us nov compute the ratio Z/a-i?. It is emsy to verify that

. 2/ 2 Lo 2 . Ate

'U}d"’n-

A (- 2%
Expanding the mmerator, ve let-

(Ae9)2 " 2 L (e - (a3 4 1—-)— -
And exparding the denominstor we get

(1-e "“‘*)2 = (At#)2 [1 - At* + (,\tﬁ)"’é - ]

Beglecting higher order terms, o’:\.a/rﬁg becomes

2
1-;\1;;4,.(.5%’.)_ * oo

1"‘ At* + (At*) 1%' LX) ’

. - ’ . i ‘. o~
It 1s interesting that the ratio is close to ome, (i.e., A is

slmost as efficient as ’}{) perticularly if At* is £ 4. Indeed, if

2 2
Ath = 3, 1t 1s resdtly verified taat o%°/o%y :‘-‘3% . Although vhat
ve have just dome is for point estimates, clearly similar results will hold

.for, confidence intervals. Also, it is trivially noted that nlthaugh ve vere

discussing estimation of A, the conclusions obvicusly apply to un\\
paramter O = 1/A as w.oll. The upshot of the preceding discussion

is that, in case the underlying distribution is exponential, then the con-
fidence intervals (5) and (6) given in section 3, vhich depend only on

the number of faflures r in (O, t#), are almost as short as those based
on using both r and T(t*). |
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Appendix 30

It 1s interesting to note that if life testing is terminated not
after a preassigned time t#*, but after a preassigned total life T,
then the problem becomes one of making spprOpriste estimates of A or
8 = 1/A vhen observing a Poisson process having rate A = 1/0 for
a length of time T*#. Thus the considerations in Section 2 and Appendix
3E can be used, the only differeqce being that we replace nt* in Sec-
tion 2 by ™. We nov state a muuver of results without proof.

Suppose that life testing stops after a total life T* has been
observed. If the underlying distribution is exponential with mean life 6,
then the nimber of observed failures , T, is a Poisson random variable
distributed with the probability law

Ie
Pr(r = k|o) = p(k; ) = e ° (%)k/k«:. keo,1, 2, .:.

Using precisely the same crgunents ss in Section 2, it can be asserted
that if r = number of items which fail in (0, T), then s one-sided
100(1 - ) percent confidence interval for © is given by

[ 2. _"m' .
Xi(ar-ta)'

and & twvo-sided 100(1- oL) percent confidence interval for © is given by

2™ 2 ™
Xj(a--»a)"Xz ‘

Note that for r = O, only one-sided confidence limits make sense.
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Another kind of sitvetion is where data become available as the

result of the following rule of action: Redect if r_ fallures occur
before total life T* has been uped up; accept-if fewer than r, fail-

" ures océur by the time one has observed a total life of T* (it is assumed
that r, and T* are preassigned). In the event that one rejects, ex-

perimentation stops at T(F, ), the total life observed up to and includ-
o 4

ing ‘!’ » the 1x,'th failure time. In the event that one accepts the
o ,
toul 1life observed will be T*,
Using prccinely the same considerations as in Section 2 and in

Appendix 3E, we can assert that if the number of observed failures in
(0, ™) 18 0% k & -1,

then a one-gided 100(1 - ok) percent zon=-
fidence 1ntorv51 is given by

st
Ti sl ke RO
L .

P L .

36y 2k + 2

i3

é. When r =T, i.e., if '1'(2'1_ ) € T then the appropriste 100(1 - o&)
53. ; [

g percent confidence interval is given by

ﬂ:'

i 2o, )

3o Po) ©

i , .

¢ 2(er.)

1 Ao

' ‘ Similar results can be conjectured for two sided 100(1 - ol) percent
; .] confidence intervals. The results are

. 2 T

@® if k=0

;| %a’ )’ -

fi

§; u k = 1 2, ven, r - l

( (a+a ’ 1ya)
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3.81
TABLE U4(a)
Values of . 3 for a= 01
| 1+ (ﬁ-ﬁ-)rﬂ(eﬂe.an_ar)
0 Y 2 3 k 5 6 7 8 9

.0100

1090 L0050

.21%8  .0588 .0033

.3162 .1408 .0k20  .0025

.3981  .2220 .10% .0327 .0020

A640 L2045 1731 0847 L0268  .o0L7

L5181  .3567 .2362 .22 .0708  .0226 .0OLL

5622 .4098 .2033 .1981 .1210 .0608 0197 0013

.5966 4561 .3%35 .25%C0 .1709 - .1052  ,053k  .0173 .001l

5309  .hMg56  .3883 .2971 .2182 .1503 .0932 .0&75  .0155 0010

65Ty 5302 k280 .3396 .2622 .1938 .1344 .0836 .0b28 .01kl

L681h  .5607 . M4627  .3775  ..3025 2349 L1TAT 1215 L0759  .0390

L7006 L8871 L9937 kg5 .3399  .2730  .2128  .i589  .1108  .069h4

L7198 61092 .5215 Jb435 372k .3080 2488  .agh7 L1457 L1018

7357 .6323  .5469 k717  .hO29 - .3hOh  .2822 .2288 L1798 .1345

7498 L6510 .5693 .b969 .b309 3701 .313% .2607 .2117  .1663

L7627  .6683 .5903 .5201 .4569 .3976 ..3%23 .2907 .2821  .1970

742 6838 L6086  .5h19  .h803 (k226 .3691 .3187 2709  .2261 -

L7848 .6982 .6257 .5610 .5017  .WW59  ,3937 .3wk8  .2979  .2538

7943 7LD A6M17 L5790 L5220 LB6BR 4175 L3689 .323F  .2799

.8317 ?762!4 .7Ok2 6509 L6017 .5562  .S1LT  .W69T  .b29h 43902

8576  .7985 . .7hBC .7025 .A596 .619%  .5803  .5430 .5077 4730

8913 .8453 .80sB .7698 .T360 .TOM2  .6732 .63k .61hL .

L9121 .87y (Bk22  Bl27  .7853  .7583 .7326 7079  .6838 g

kol .o1k7 8927 .8722 .8529 .83k2 .8166 .T991 .7822 .7655
100,955 .93% .9187 .9030 .8883 .87h2 ,8605 .8471 .8332 .8e12
150 © .9697 .9566 .9452 .96  .92k6 .9151 .9056 .3e65 8878 .6788
200 .9772 9672 .9586 .9506 .9k30 .9358 .9286 .9216 .9150  .9081
300 .9847 .9780 .9722 .9668 .9617 .9569 .9520 .9473  .ok28  .9382
400 .9885 .9835 .979L .9T5L .9712 .96T5 .9639 .9603 .9570 .9535
500 .9908 .9868 .9833 .9800 .9770 .97hO  .9721 .9683 .9A5%  .9627



3.82

TAELE h{a) - cont.

Vaiues of -.‘;‘;i 1
l-i—(;-_?) Fa( 2142, 2n-2r)

for a = 0l

P wwthtmmﬂism' sl e ey B ‘ e ,4,‘.}5&‘3' ~ e TR

0 1 12 13 b 15 16 A7 0 180 19

11 .0009

12 .0128 20008

13,0358 .0118  .0008 T

1 0640 L0331 0109  .0007

15 .04k .05Gh  .0307 .0102  .0007

' 15 .a2u9 .0878 .05 .0287 .085 .0006

S 17 .1553 1168 .082) ,0519 .0269 .0076 .0006

18 .1842 .1453 .1096 .OT72 .ObBB  .0253 .0069  .0006

19 .2126 .1733 1%y .1033 .0727 .Ok60 .0237 .0063  .0005

20 .2387 .2000 .163F ,1292 .0976 .0688 .Ook3&  .0223 .00%  .0K0S

25  .3520 .3165 .2817 .2479 .2155 .1846 .1553 1276 .1007 .0765 .O%41
30  .b383 .4056 .3738  .3436 ,.3131 .283h .2555 L2281 .2013 L1757 .1%09
40  .5592 .5313 .5059 .h802 .5kl .h29C  .4OS2  .381% .3580 .33%k  .3122
50  .6372 .6146 .5923 .5700 .S489 .527h  .5066 .L4BEL  .M6ST  JA4k5T .26
75  -ThO4 7335 .7173  .7020 .6868 .671L3. .6558 .64O8  .5258 .6112 .5970
! 10 8082 .7958 .7840 .7720 7598 .TAT8  .7362 .72%7 .7132 .7019 .6906
150  .867k .8617 .853L .BuM8 .8368 .8283 .8201 .B120 .80%43 .7967 .7888
’ 200  .9017 .8953 .8888 .8825 .8762 .8770. .8635 .8575 .8515 LBuS7  .8397
300 -9339 .9295 .92% .9211 .9165 .9123 .9082 .9kl .00L .8962 .8920
koo  -9502 9469  .9437 .9405 .9370 .9338 .9307 .9277 .924k6 .9216 .9185
5 500  -960L L9575 .99  .9523 .9¥96 LG40  .9uh5  .9420  .9396 .9372  .9347
I
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TARLE W(%) o
Values of -—-r x;ﬂ - Yor @ « (%
1+ (;:‘-:;\ Fa(?.ﬂ2,.2n-s£‘r)
0 1 2 3 b 5 6 7 8 9

1 .0%00

& .e237 .ok

3  .3686 .13%3 0170

L L4728 .2u88 L0977  .0x27

5 ,sho5 (3425 109k L0765 .0102

6 L6067 AIBL 271k L1531 .06R9 .0085

v L6518 k792 .31 .2252 .1288 .0%h6  .0OT3 ,

& L6879 .5295 .booO .269k .1928 .L11  .Okck 006k .

9 L7171 0 5706 .W302 .3%8 .2513 L1689 ,0977 .okl .0057

10 L7813 L6057 .k932 3933 .3038 ,2226 .lhg9 0873 .0397 .00%1
1 .7618 6353 .5300 4357 .3500 L2710 .1998 .1389 - ,0787 .0333
12 L7792 6611 5618 L.a727° .3912 3156 .2h51  .1808 1230 0719
13 .79kl 683k L5898 .5051 4276 L3552 .287% 2239 1656 .1126
W .807h  .7035 .6lkh .50 A598° L3906 3253 .26k0 L2038 .1329
15 .8188 7705 .6369 5997 .h889 k223 .3596 .3003 2480 1899
16 .B2gh  .7360 L6557 5635 L5161 .WSl2 L3915 .3333 2787 2266
17 .8383 .T98  .6739 .60%5 .53k 4785 L4200 .36Wh 03106 2597
16 867 L7623 6897 .6229 .SALL  .SOMG  .MhS9 3923 L3807 L2913
10 .83 7739 702 L6410 .581k  .52ko  .N705 4178 .3679  .3205
20 LBEl0 L7838  JIATT  .6559 5993 | .SWAT  .kge6  .4h22  .39k1 L3470
25 .8872 .8236 .7692 7180 .6709 ,625%0 .5807 .5383 .M9%9  .AS9B
30 .,90% .8512 806 .7615  .7200 .6812 .6h3%  .6039 5705 .53k
ko .9279 8867 .8m0 Btk .7855 7553 L2486 696k 568k .63
50 .o4i8 .9087 .879% .8523 .8260 .BOM3 .T7TC  .7331 L7300 L7071
75  .9608  .538% .018k  .8999 8822 8648 .8481 8321 8156 .8003
100 9705 .953%  .9385 .92uh 9107 8977 .8850 .87271 .8601 .B8A83
150 .982 .9688 .9586 .ohol .90} .9313 .9227 .9150 .90%7 .897%
200 9851 .9765 L9688 .9616 .95M8 .oMB2 .97 .9352 9290 .5@26
300 - .30 L9843  .9T9L  .OTh3  .9697  .9653 .9609 .9%67  .93525 ,9h82
00 .9925 9882 .9843 .9807 .9772 .9739 L9706  .96TH  .9683  .9611
500 940  ,9906  -98Th. .9818 ,9791 .9765 9739 971k  .9688
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3.84
TABLE 4(b) - comt.
Values of 1

1+ (23) § (2r+2,20-2r)

13 15 16 17 18 19

12 20

1 0046

12 .030%  .00b3 ‘

12 .0658 .0281  .0039 -

% .10h  .0611 .0260 .0036
3-15 L1818 L0965 .0568 0242 003k

16 L1779 .1k07 L0903  .0531 .0227 .0032

17 L2119  .1662 .1239 .08K6 .0b99 .0213 .0030

18 .2uh1 .1989 .1%63 .1163 .0797 .Ohg2 .0201  .0028

19 .2738 .2296 .1876 .1473 .1099 .0753 .04k  .0190 .0027

20 .3021 .2586 .2170 .1773 .139% .1037 .0712 .0k22 .0M81  .0026

25  .b166 .3792 .3w13 .3053 .2703 .23% .2021 .1707 .1396 .1099 ,0822

30 .5011 .k666 .h33%  .4026  .3695 .3390 .3085 .2790 .2497 .2209  .1931

B  .6132 .5859 .5595 .5339 5075 .u822 .h572  .M329 .4083  .3B46  .3615

S0  .6840 .6627 .6409 .6182 .5976 .5763 .5556 .5349  .5143  .ugh3  LUTAS

75  .78%2 .769% .72  .7383 .7237 .7086 .6938 .6792 .GCAT L6503  .6360
100 8361 .82k5 .8127 .80k .7898 .77 .T7672 .7558 .7MA3  .7330 .722h
150 .8893 .8817 .8737 .86%9 .B576 .8ugo .Bh2k .83k .8272 .8196 .8121
200 .9166 .9106 .90k .8987 .8925 .8866 .8809 8751 ' .869% .8638 .8580
300, .9kk2 9800 .9359 .9319 9280 .9239 .9199 .9160 .9121 .9083 .9043
%00  .9%80 .98 .9517 .9h87 .ohS8 .gk27  .9397 .9367 .9337 .9309 .9280
500  ,9664 .9638 .9613 .9%89 .956C .91  .9516 .kg2 .9469 .94M6  .9M23

| e e e b
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TABLE k(c

)

1+ g‘-*_%-) Y (2r+2,2n-2r)

ror‘ as .10

e

0 2 3 b S 6 7. 9

1 1000

2 .3165 .0513

3 Jheukh L1957 L0345 ‘

h .5626 .3205 .1hRE  .0260

5 6313 .k1s8 2465 L1124 .0209

6 .6810 .kB92  .3331 .2011 .0926 .Ol7k

7 .T196  .5hTh k039 .2786  .1695 .0787 .09

8 LTU98  .s942 L4619 (3uhh 2395 L1850 L0686  .0131

g STH5 L6319 5102 .BOLL 3012 .2100 .1295 0608  .0L16

1 L7943 L6627 L5502 Luk87  .35%0 ~.2671 1873 .1159  .054%6  .0105
1 .82  .5897 .5848 4890 .4000 L3171 .2405 .1695 .10MT  .Ok9S
12 8253 .712% 6286 _.52hs5  LWkOB L3611  .2881 .2189 .13kl  .0955
13 8376 .7326 .6%03 .5556 .4762 .bOO7  .3303 .2639 .2002 1418
1% Bu85 .7h9T 6523 5026 .5076 4355 .3686 .30k3 .2h27 .18%2
15 .8576 .7642 6831 .6073 .5366 .4673  .h026 .3813 .2820 .22%
16 8658 .7780 7000 L6286  .5607  .h959 .3k 37k L3176 2632
17 8731 7897 .7163 .6481 .':3@_30 .5208 .4623 .WOS8  .3497  .297h
18 .8798 .800F .7303 .6661 .6034 .5435 4878  .4331 .3804 .328%
19 .8858 .8101 .7h30 .681k  .622h  .5645  .5006 487 .bOT1 .38k
20 .8913 .8190 .57 .69%6 .6390 .5841 .5319 L4815  .432h  .3846
25 9121 .8531 .800k .7%16 .70%h .6596 .6160 .5T3% .5313 .hoL1
20 .9262 .B765 .8322 .7906 .75¢8 .711% .67h3 .638L .6021 .%673
40 Skl .9060 .8723  .8uOk  .8097 .779% .7510 .7232 .69%3 .668s
50 959 L9245  .Bgr2  .8713  .8k65  .8215 .798%  .T757 .7530 .731
15 .9697 .9491  .9305 9129 .8960 .8790 .8629 .8473 .8317 .8168
100 9772 L9617  LOMTT .93k .9206 .9086 .8567 .88M8 .8728 .8613
150 (9847 .9Th3 9649  .9559 .9473  .9386 .9305 .9225 .9143  .9065
200 .9885 9807 .9735 .9669 .5604  .9538 .9kTT .9M16 .9355 .9295%
300 992k 9871 .9823 .97T79 .9735 .9691 .96%0 .9610 .9568 .9928
400 .99%3  .9903 .9867 .983h .9801 .9768 .9737 .9706 .9675 .9645
500 «99%  .9922 .9893 .9867 .98k0 .98 .97B89 .976k .9739 .ST1S
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TABLE 'l;(c) - cont.
H .

for a« .10

2k e e e Stk

Talves of (EX) r_(2ré2,20-2r) -

n 12 J/.3 b 15 16 1 - 18 19 =9

-0087

.Ob17 L0081

L0814 .0386 .0075 .

L1200 L0786 0360  .0070

.160%  .1136 .0709  .0337 .0066

L1969 .1500 .1068 .0667 .0317 0062

.2312 .1852 ,1kl3 .1008 .0628 .0299 -0058

2628 .2181  .1750  .1337 .095L .0595 .0283 .0055

2923 .2486 .202% .1660 .1264 .0903 .056% .0268 .0053
25 .Am3  LA19 L3780 L3311 L3004 .26k3  .2302 .1963 .1631 .1310 .1001
30  .5325 .A982 .hGiB  .h323 .ho06 .3689 .3373 .3068 .2768 .2472 .2178
8o .6KC9 6137 3873 5606 .5367 .52 .h855  .h603  .B3%6 .41 .38717
s0  .7085 .6863 .6646 6433 .622h .600B 5796 .5587 .5363 .58L .hg8h
75 .8012 .7860 .TTA1 .7566 .7M2% .727%  .7127 .6982 .6B39 .6698 .6339
100 L8hoh  .8378  .B265 8155 .8OBT  .7932 7818 ,7706 .7595 .786 .7378
150 .898%  .9906 .8830 .8755 .8683 .8605 .8528 .8u51  .8376  .8304 8228
200 .923  .517% .9117 .9061 .%006 .80k6 8888 . .8831 .67 8717 .B662
300 988 .9Wh8 .9k09  .9371 .933% .9295 .9255 .9217 .9179- .91kl  .510h
600 961k 998k .95k  .9526 .5498 .oh6B  .ou38 .gk09 .9360 .9352 .93k
K-soo .9690 .9666 .96k2  .9619 .9597 .9573 .95H9 .9%R6 .9503 .Sk80 M%7
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‘ TABLE 4(4)
N ’ Values of : r-‘rl—']i‘ - for a = .25
A + (;-_-z-_) r&gfme,a-::r) ~
s ) 1 2 '3 h’w* 5 3 7 8 9
1 +2500
2 000 .30
'3 6303 .3268 .0915
b L7067 .h339 2427 .069%
5 .I516  .Sh6s 3597 1938 .05%9
6 7937 .6112 .Bh69 296K .1613 .OM6S
17 8206 .6%93 .5133 .3788 .2532 .1382 .0403
8 Lkl2  .6972 5666  .4uk8  .3202 .2203 .1208 .03%h
9 8571 .7273  .6087 .h9B3 .3922 .2915 .19kS .1073  .0315
10 .8703  .7%25 .6hh6 .5h18  .WWAL  .3S511  .2607 .17% .0965 .0283
1n 881k L7728  .67h2  .5797 .h895 .hO16 .3178 .23%8 .1%92 .08T7
12 8909 .7914 .6983 .611% . .5263 .B4%9  .3662 .2900 .2163 .14%6
13 8990 .8065 .7208 .6378 .5500 .4825 .4093 .3366 .2676 .1990
% .90%6 .8186 .739%% .6627 .5882 .5172 W65 .3783 .3120 .2M75
3 15 L9119 .B8308° L7545 .683% .6128 -.5433  .4799 .h153  .3%17 .2899
16 .9170 .8x08 .7692 .7019 .6349 .5723 .5093 - .Mk77  .3877 .3286
17 9216 .8496 .7825 7172 .6549  .59%2  .535%  .AT75 - .B195  .3636
18 9257  .85715 .7937 .732F  .6731 .6161 .5588 .5035 .MWB9  .39M7
19 .9295 .8&47 .8039 .TeSh  .GB97 6352 .3803 .5271  .M755 .Me3?
20 9328 .8n12 .8132 .7573 .7039  .6510 ,6000 .5h88 k991  .b508
25 o859 ,8961 .8k90 .8036 .7%99 L7179 .6TW8 .6331 .5923 .5%52%
30 9548  .9130 .8733 .8355 .7985 .7622 .7262 .6908 .6560 .6219
O .96% .90 .90k .8755 8475 .B195 .79 .7656 .739%0 .7128
%5C 9726 .oh69 .9228 .8998 .8771 .8587 .8327 ‘ 8110 .7893 .7679
75 .9817 .96k2 982 .9326 .9173 .9025 .8877 .8730 .838s .8Mko
100 9862 .9731 .9609 .9491 .9375 .9263 .9151 .9039 8927 .8818
1% .9908 .9819 9737 .9658 .9580 .950M .9h29 .9353 .9278 .920k
200 9930 .986% .9802 .97k3 .968k .9627 .9570 .9513 .96  .S400
300 995  .9909 .9868 .9828 ..9788 .9T%0 .9712 .96Th  .9635 .9598
500 9965 .9932 .9901 .9671 .98ML .9812 .9783 .9755 .9726 .9697
500 9972 .99%5 .9921 .9896 .9873 .98%0 .9%6 .9803 .9780 .9738

TN .['




A TP

e R ey T T

i

Ty
S

Py
s
w
U
bl
s
=

"R SR W R b

5,84
TABLE 4(d) - cont.
Values of 1

14 (-a’-’_-%,-  (2842,20-2r)

for a= .25

ic 1n 12 13 14 15 16 17 18 19 20
11 .o0z58
12 .0801 .0237
T 13 .13k 072 .0219
1s L1852 .12% .0689 .0203
z; 15 .2302 Q7% .65 o643  .0190
16 .2706 .21%1 .1%3 .1091 ,0602 .0178
17 .309% .2%51 L2019 .1515 .1026 .0567 .O168
18 .3419 .2912 .2402 .1913 .1829 .0568 .0535 .0158
19 - .373L .328)  .2792 .2281 .1817 .1351 .0916 .0%07 .01%0
20 .ho15  .3538 .307k .2%577 .2162 .1715 - .1282 .0870 .oMB2 .03
25 .59 4730 4335 .39%9 .35T1 .3181 L2002 .28h9 L2072 .ATIé L1362
30 .5888 .5957 .5218 .L8B5  .h%57 k232  .3908  .3582 .3266 .2957 .2622
40  .6866 .660% .63%0 .6097 .5B43 .5589 .5336 .5085 .4837 .01  .A3M8
50 .THE5 L1253 .TOMG  .6BA2  .G6L  .6h33  .6227 .6022 .5B19 .3618 .58
‘75 8295 Jam .ol 7873 7736 .75  .7M53  .7313  .7A6B .7028  .6B69
100 .8707 .8597 .Ghg1 .8385. .8261 .8172 .806 7957 .7850 .7  .7638
150 .9129 .90%h .8982 .8910 .88k .8766 .8692 .8619 .85M6 .BA73  .8WOL
200 .93 .9207 . .9232 .9178 .912% .9068 .g0le 8957 .8902 .B8h7  .8792
00 .95%9 .9522 .9M85 .9W8 .9M13 9379 .9337 .9300 .92 .9225 .9188
k0  .9659 .96k0 .9602 .9585 .95%8 .9530 ,9%01 .9h73 .9WhS .9M17  .9389
500 .9TH 9712 .9685 .9667 .96M6  .9623 .9600 .95T7T 955 .9532 .9%0
‘ .
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TABLE 4(e) - cont.
1

Valume of . -t - fOr O w .50
1+ (;if—f_) Fa(2r+2,2n-2r) '

“q.

.
P

1 1 12 13 1k 15 6 17 18 19 .

qmnsmﬂv@ﬁmfwmﬁ@gg AR m

L 13 2016 .1266 .0521

i 1Y 2572 .1866 .1171  .0%82

5 : g; 15 .3062  .2392 .1Th?  .1096  .OhSL

16 L3084 2860 2317 L1630 L1031 .Ok2k

g"l 17 .3865 .3280 .2681 .2123 .1538 .0973 .OMGO

b 18 186  .3638  .309% .2538  .1995 .145%6 .0921  .0379

19 LAh90 L3976 .3h5%5  .2038  .2810  .1894  .1382 .087h  ,0360

20 ATST L4266 .3772 3268 .2797 .2277 1803 .1316 .0832 .03k2
25 S579L .5h00 000 Lh599  Jheo7 L3799 .32 2935 L2635 .2239
30 L6886  .6i%5 5826 .95 5164 L4836 k511 L4186 .3838  .3%k
3 kO .73% .7109 .6861 .6612 .6363 .6117 .%870 .5622 .5375 5125

s0  .7882 .768 .7485 .7286 .7085 .6888 .6690 .6492 .6293  .6095
75  .8s85 .8u3e .8320 .8186 .8053 .7921 .T789 .7657 .75k .7391
100  .8937 .8838 .8738 .8638 .8538 .8439 .83w0 .82k0 .81  .80M
150 .gesh .9e2h  .91%8 .91 .02k .B9s8 .88z 8026 .87 8653
: 200 k68 .9818 9368 .9318 .9268 .9218 .9168 .9119 .9069  .9019
. 300 .9%h5 L9612 .9579 .95 .9512 .9N79 .93  .9M2 9379 .96
T 800  .973r .9709 .968% .96%9 .9638 .9609 .958% .9539 .953 .9509
s00  .9787 L9161 .9TMT  .9121 .9107 .96B7 .9667 96N  .9627  .9607

¥
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Kuserical Exsmple for Tsbles &(a) through 4(e).

20 itens are drawn at randos from a lot and placed on life test.

The test xruns for lOO_hourn. Surpose that no failures occur, then we -
can be:

(a) 99% confident of the assertion that at least 79.b4% of the items
in the lot eurvive 100 hours,

(v) 954 confident of the assertion that at leart 86.1% of the items

in the lot survive 100 hours, , Lo

(¢) 90% confident of the assertion that at least 89,1% of the items
in the lot survive 100 hours,

(8)  75% confident of the assertion that at least 93.3% of the items
2 in the lot survive 100 hours,

(e) 50% confident of the assertion thst at least 96.6% of the items
in the lot survive 100 hours.

These are non perametric statements.
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TABLE 5(a)
: | Velues of ——mnyd : - for Ge .0l
’ _ ~ 1 + (==) p_(2r+2,2n-2r)
2| 1000 | 5,00 | 10,000 | 50,000 | 100,000 500,000 2,000,000
0 | .99k | .99907 | .999mk | -w99%e | 99995 | 999992 | .$99995
1| .99338 | .99867 | .99933 | .99987 | .99993 { .999987 | .999993
2 | .99162 | .99832 99916 | .99963 | 99992 | .999983 | .9999%2
37| -98999 | 99799 | .99899 | .99980 | .99990 | .999980 | .999990
% | 988 | .99767 | .9988% | .99977 | .99988 | .9999T7 | .999968
5.1 .98696 | .99738 | .99669 | .9997h .| .99987 | .99997k | .999987
6 | .o8s49 | .99708 | .99854 | .99971 | .99985 | .999971 | .999985
7.1 9805 | .99679 | .99839. | .99968 | .9998k | .999958 | .999984
8 | .9870 | .99651 | 99826 | .99965 | .99983 | .999965 | .999963
9 | .9%e9 | .g96e3 | .99812 | .99962 | .99981 | .999962 | .999961
10 | 97997 | .99596 | .99798 | .999%60 | .99980 | .999960 | .999980
1 | 97863 | .99%69- | 9918+ | .99957 | .99978 | .999957 | .999978
3 12 ) 97130 | 99542 | .99TTX | .993%% | .99977 | .999954 | .9999T7
3 13 | 91605 | .99517 | 90758 | .99952 | .99976 | .999952 | 999976
$ W | .omés | .ong8 | .oomh | .99k | .o997s | L9999 | 99997t
E‘ 3 15 |-.9733% | .o62 | .99731 | 9946 | .99973 | .999946 | .999973
gﬂi 16 | 97209 | .9936 | .99m8 | .9994k | .99972 | .9999%s | .999972 -
%j; 17 | -97085 | .9%11 | .99705 | .99%k1 | 99971 | .9999%1 | .999971
18 | .96961 | .99386 | .99693 | .99938 | .99%69 | .999938 | .999969
¢ {19 | .98 | 95362 | (99680 | .99936 | .99968 | .999936 | .999968
"5 20 | .96717 | .99336 | -99668 | .99933 | -99967 | .999933 | 999967
“30 | .95490 | .990B7 | .99543 | .99908 | .9993% | .999908 | .99995%
‘. 450 | .9u318 | .98248 | .9ve3 | .9988s | .9gk2 | .999884 | .9999h2
¥l 50 | .931k9 | .98618 | .99308 | .99860 | .9993L | .999860 | .999931
H . 60 | .91962 | .9B36% | .99280 | .99836 | .99918 | .999836 | .999918
' 70 | .90807 | .98126 .| .99061 | .99812 | .99906 | .999812 | .999906
) 8 | .8%95 | .97897 | .98v6 | .99789 | .9980s | .999789 | .99989%
o 90 | .88621 | .97676 | .98835 | .997656 | .99883 | .999766 | .999883
00 |.8768 | .omes | .8726 | .99m5 | .998Te | .999ms | 99967
200 | .767190 | .95267 | .97628 | .99%2% | .997162 ) .999%2% | .999762
500 56461 | 89242 94616 .98923 -99k61 .998923 999461
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TABLE 5(b) :
Valuss Of - L . for G = .09
e %ra(am,a-zr) <
r 1000 5000 10.000 | %0,000 | 100,00 900,000 | 100,000
9 99701 i%yw 99970 | 999% | .99997 | .9999% | .999997
Lo Seser | .99905 | -99953 | 99991 | 99995 | 999991 | .999995
2 99372 .9987% .99937 | 99987 | 99998 | .999987 | .99999%
3 99226 - 99343 299922 | .9998% | .99992 | 99998 | .995992
8 1 99087 99817 | -.99908 | .99982 | .99991 | .999982 | .599991
5 | .989%2 99790 99895 | .99979 | 99989 | .9%9919 | .599989
6 .98620 99763 39881 +99976 +99988 .999976 999988
T | 9869 | 99737 | .99868 | .909Tv | 99967 | 9990 | 999967
8 98365 | .99TiL | 99836 | .999T1L | .99986 | .9999T1 | .999966 i
"9 | 98436 | .99685 | 99843 | .99969 | .9998% | .999969 | .99998s |
10 98312 .99661 .99830 | .99966 | .99983 | .999966 | .999983 |
n | .9818 | .99%35 | .99817 | .99963 | .99982 | .999963 | .999982 |
13 | 97931 | .99588 | 99192 | 99958 | .99979 | .9999%8 | .999979
1% 97820 99561, 9ITES | .999%6 | 99918 | .9999%6 | 999978
15 | 91697 | 99536 | .99768 | .999%% | .9997T | -9999% | .9999M7
16 97878 L9812 99756 299951 | .99976 599951 999976
17 9T4%9- |- 9988 997uk | 99949 | .9997h | .999%%3 | .99997k
18 973N 9PhSh 299732 | 99986 | -99973 | 99%u6 | 999573 -
19 | 97225 | .99%kx | .o9720 | 9994k | .99972 | .9999%k | 399972
20 97108 | 91T 99708 | 99942 | .999TL | .999%k2 | .9999M1
30 | .959m .99183 99531 | .99918 | .99959 | 999918 | .999951
5o .9h828 90955 SFHTT | 499895 | 99988 | 999895 | .99998
50 93T 98738 | .9369 | 9987k | .99936 | .9996Th | .999936
60 | 92983 1 .98k98 | .99288 | .998k9 | .59925 | .9996M9 | .999923
70 | 92476 | .9873 | .99135 | .9982T7 | .99913 | -9998R7 | .995213
80 .90397 .98052 99026 | .99805 | .99902 | .999805 | .999902
90 | .89337 | .978%2 | .9892% | 99785 | 99892 [-.99970% | .999892
hoo | .88297 LITER .98819 | -99764 | .99882 | .99o7é% | .999882
o0 | 7703 | 95t Th 977133 | 9956 | 99773 | 9996 | 999773
| eTas6 | LBoA39 | WTAT | .98983 | .99NTL | .996983 [ .99947L
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TABLE 5(c)
Values of - 2

le (i‘-’_—}) 7,(2re2,2n-2r)

S e e r—————

for Q= 10

. f
e s WSO

. 1000 | %000 10,000 | 50,000 | 100,900] 500,900 | 1,000,000
O | 99771 | 9995k | .999TT | 99995 | 99998 | .ovsw | .959F
L | 99612 | .99922 | 99961 | .99992 | .9999%6 | .9999%2 | .9999%
2 | .om69 | .9989s | .999aT | .99989 | .99995 | .999969 /9,9’9995
3| 99333 | 99666 | .99933 | 99987 | .99993 | .999987 |\399993
5 | -99069 | 99613 | .99907 | .99981 | .99991 | .J9ge8L | .999991
6 | .98gks | .99788 | .9989% | .99978 | .99989 |/.999979 | .999969
7 | .98822 | .g997s4 | .99882 | .99976 | .99988 1 .999976 | .999988
8 | 98676 | .9973 | .99867 | .99973 | .99987 | .999973 | .999987
9 | .98%82 | .99715 | .99858 | .99971 | .99986 | .999972 | .9999%
10 | 36859 | 99691 | .99846. | .99969 | .99985 | .9999%69 | .999985
11| 98329 | 099666 | 99834 | .99968 | .99983 | .999968 | 59598
42 98205 | .99642. | .99823 -99966 - | .99982 +9999€6 999982
13 | .98087- | .99617 |7.99811 | .99965 | .99981 | .999965 | .999981
W L9190 | 99593 | -99799 | -9996k | .99980 | .99996k | .999980
15 | 97851 | .99570 | .99787 | .99962 | .99979 | .999%2 | .999973
16 97136 .9954 7 .99776 .99961 .99978 .999961 «999978
i | .97621 | 99523 | 9976k | .99950 | .99977 | .999960 | .995977
18 | 971509 | 99501 | .99752 | .99958 | .99975 | .999958 | .99997%
19 | .9TeOL | .IHT9 | 9970 | 9993 | 9997 | .99995T | .9999T
20 | 97296 | 958 | .99729 | .99956 + 3 | 999946 | .999973
130 | -96158 | .99231 | .99615 | .99923° & | -999923 | .99vwe
0 | .95131 | .99002 | .99513 | .99900 | .99951 | .999900 |:.999951
50 | .00 | 98798 | .99399 | .99880 | .999%0 | .999880 ! .3999
60 | .92937 | .98563 | .9929% | .99856 | .99930 | .9998% | .999w.i0
70 | .91878 | .983u2 .99188 | .9983u .99919 | .999834 999019
180 | .90762 | .96136 | .99076..1 .99613 | .99908 | .999813 | .999908
90 | .89693 | .97929 | .98969 | .99793 | .99897 | .999793 | .9v9897
100 | .88575 | .97721 | .98860 | 99772 | .99886 | .999772 | .995885
200 | .78227 | .95603 | .97T799 | .99559 | .99780 | .9995%9 | .999780
500 | .s8201 | .89%91 | .9v792 | .989%8 | .99%T9 | .998958 | .999479

"y
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TARLE %(d)
Values of 1 € .
D 14 (ﬁ‘-:f-é) ¥ (erv2,20-2r) for o B
r 1000 000 10,000 { 50,000 1&.&4 :soo;ow 1,000,000
o | .99861 | 99972 | .99986 | .99997 | 99998 | .999997 | .999998
1] .99730 | 99946 | .99973 | .99995 | .9939T | .99999% | .999997
2 | 99607 | .99920 | .9996L | .99992 | .99996 | .999992 | .99999
3| 99489 | .99896 | .99949 | .9999¢ | .99995 | .999990 | .999995
bl .99376 | 99675 | .99938 | 99988 | .9999%% [ .999988 | .999594
5 | .99es7 | .99851 | .999au | .99985 | .99993 | .999985 | .999993
T 6 99143 «99828 L9951 s99983 - | .99991 . 999983 .999991
7 | -99030 | .99806 | .99%03 |..9996L | .99990 | .999981 | .9999%0
8 | .98920 | .9978s | .99832 | .99978 | .39989 | .999978 | .999989
9 | .98812 | .39762 | .9988L | .99976 | .99988 | .999976 | .939988

10 ¢ 98636 | .99739 | .99870 | .9997h | .99987 | .9999Th | -999987
12| 9858k | .99716 | .99858 | .99972 | .99986 | .999972 | .979986
12 | 9872 | 99693 | 59847 | 99959 | .99985 | .J499969 | 93905
13 ] .983s2 | .9967L | 99836 | 99967 1 -99984 | .999967 | .93998k
1 ) .98254 1 .99€48 | .99825 | 99955 | .99983 | .999965 | .995983
3 15 | 98146 | .99626 | .998i5 | .99963 | .99982 | .999953 | .999s62
16 | .98030 | .99605 | .99803 991 | 39980 | 999961 | .999980
97925 | L9958k | . 93 99958 | 299979 | .999953 | .995979
18 | .97822 | .99563 | .997B2 | .999% | .99978 | .999956 | .999978 -
; 19 | .STTB | 99542 | 99772 | (9995 | .H99TT | 999954 | 999977

B R R ki L s 21
F
-3

20 ~gT761k .99%22 ~997h), 99952 .99975 .999952 ! .999976
&, ' 30 | 9659 | .99308 | .996u6 | .99931 | .99965 | .99993% | .9999%4
¥ bo ! .9%k39 | .99096 | 9954k | .99910 | 9995k | 999910 | .99995k
¢ so | .oeks8 | .98887 | .99kb3 | .99889 | .999uk | .599889 | .999su
7 i 60 | .93ubs | .9858 | .993mk | .99868 | .99934 | .999868 | .999934

70 | .92uk3 | .9BuB1 | .99243 | .99847 | .9992h | .9998%7 | .993ck
. 8 .91441 .98282 99143 .99828 .99914 .999828 -99931%
o
00

} 90640 | .98083 | .990uh | .99808 | .93904 | .999808 | .994.404
| 1 Bu39 | 97885 | .98gu2 | .99788 | .99894 | .999788 | 999894
L 200 | .79837 | 95885 | .oToke | .99588 | .9979% | .999588 | 935794
B 500 | Jegb3k | .89884 | .ougk2 | .98988 | .994oh | .998988 | .g999u9k
N

%=
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TARLE 5(e)
1l

e

h . Values of < S ru——— for a = .30
’ ’ ) (;:-;) 7 (2re2,2n-2r}
rr . 1000 $000 10,900 20,000 100,000 | 500,000 1,@,(&7«
0 | -99931 | .99985 | .99993 | -99999 | .99999 | -999999 | .999999
1} 99832 | .99966 | .99983 | .99997 | .99998 | .999997 | 999998
2 | .99733 | 997 | .99973 | 99995 | .99997 | -999995 | .999997
3} -99%33 | .99927 | .999%3 | .99993 | .99996 | .999993 | .999996
b | .99533 717.99907 | .69953 | 99951 | .99995 | .99999r | .999995
5 | 935 | .99887 | .9993 | .99989 | 9999 | .999989 | .99999%
6 | .99336 | .99867 | .99933 | .99987 | .99993 | 999987 | .999993 -
7 ] -9%23 | .99847 | 99923 | .99985 | .99992 | .999965 | .999992
8 | .93k | .99827 | .999:3 | .99983 | .99991L | .999383 | .999991
, 9 | .99033 | .99807 | .95903 | .99961 | .99990 | .999981 | .9999%0
8 10 | 9893 | .99787 | .99893 | .99979 | .99989 | .999979 | .999989
B i | .98832 | .99767 | .99883 | .99977 | .99988 | .9%9977 | 999968
3 12 | .98730 | .997hT | 99673 | .99975 | .95987 | .999975 | .999987
pe 13 | .98630 | .99728 | .39863 | .99973 | .99986 | .999973 | .999986
gi W] 98531 | .99708 | .99853 | 99971 | .99985 | .959571 | .999985
s s 15 | 98432 | .99687 | .9983 | .99969 | .99986 | .999965 | .99998k
. 16 | 98333 | .99666 | .99833 | .99967 | .99983 | .999937 | .999983
¥ 17 | .9823% | .99646 | .99823 | .99965 | .99982 | .999965 | .999982
& 18 | .g8135 | .996e7 | .99814 | .99953 | .99981 | .9999€2 | .999981
19 | .98036 | .99607 | .99804 | .99961 | .99980 | .999961 | .999980
: 20 | .97936 | .99587 | .99793 | -99959 | -99979 | .999959 | .999979
30§ 96937 | .99386 | .99693 | .99939 | 99969 | .999939 | .999969
bo | 095936 | .99185 1-.99593 | .99919 | .99959 | .999919 | .9999%59
- 50 | 94936 | .98987 | .o%kgh | .99899 | .99%%9 | .999835 | .999949
v 60 | .93935 | .96788 | .993% | .99879 | .99939 | .999879 | .999939
' 70 | .9293 | .96588 | .99293 | .99859 | .99929 | .999859 | .999929
80 | .91935 | .98387 | .99193 | .99839 | .99919 | .999839 | .999919
9 | .90936 | .98186 | .9909% | .99819 | .99909 | .999819 | .999909
: 200 | .89935 | .97986 | .98993 | .99799 | .99899 | .999739 | .399899
200 | .79962 | .95987 | .97993 | .99599 | .99799 | .999599 | 999799
; 500 | 49956 | .89986 | .94993 | .98999 | .o9k99 | .998999 .| .999m99
! * N

H
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Wrongo, H

1000 items arz ibravn at rapdom from & 1ot cad pladed-on lifé test. The

v
¢

99% confident of the ssvertion that at least 96.72) of the

items 1 the let suprive 100 bours:

95%& confide . i foe vigertion that ot least 97.11i% of the

items in th: lot s bve B0 Woure;

904 confid: & &F the .onerolan that st least 97.30% of the

items inm the I« & vvens 100 howes;

75% confident of *he ese:tion tuat at least 97 53% of the

iteme in the lot eurvive J00 hours;

»

504 confident of the aswertion that gt leant G7 9h% 4 the

iteme in tane lot varvive 100 hour..

[

test runs for 100 hourr Suppose that 20 failurs: oscur,.then we can be:

RN
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