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THE CONTRIBUTION OF BOUND, METASTABLE, AND FREE

MOLECULES TO THE SECOND VIRIAL COEFFICIENT

(REVISED)

by

Daniel E. Stogryn and Joseph 0. Hirschfelder

ABSTRACT

The second virial coefficient for molecules interacting with a

spherically symmetric potential is divided into three parts: (1) a contribu-

tion B b , related to the equilibrium constant for the formation of bound

double molecules; (2) a contribution B . rated to the equilibrium con-

stant for the formation of metastably bound double molecules; and (3)

a contribution BO due to molecules which interact but are free to separate

after the interaction. Equations are given for determining each of the three

parts of the second virial coefficients. A detailed treatment of these three

contributions is presented for the square well, Sutherland, and Lennard-

Jones -.4w"- potentials. 'ZK

The mean lifetimes of metactably bound double molecules are dis-

cussed and it is found that most metastably bound dou1 ,le molecules have

mrTWaV I1fftimas rt rahly lowsor , this th. moavt tivne botwoon collisions

at ordinary pressures. Finally. an equation is developed for the number of

vibrational levels of a double molecule.

This work was carried out at the University of Wisconsin Naval Research
Laboratory under the Office of Naval Research Contract N7-onr-28511.
Reproduction in whole or in part is permitted for any purpose of the
United States Government. A S T I A
Dow Chemical Company Fellow, 1957-1958.
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THE CONTRIBUTION OF BOUND, METASTABLE, AND FREE
MOLECULES TO THE SECOND VIRIAL COEFFICIENT

AND SOME PROPERTIES OF DOUBLE MOLECULES

I. INTRODUCTION:

The equation of state of a dilute gas can be expanded in the

virial form

PVWRT I t B(T)/V -- ccrTv 1  ... (1)

Here, DMT), the second virial coefficient can be expressed in terms

of the energy of interaction between pairs of molecules. If the inter-

molecular potential. 0 (r), depends only on the separation, r, and

riot on the relative orientations of the two molecules, then

BC(T) = 27rNf[1 (2)

This relationship is easy to derive from statistical mechanical argu-

ments and has been used since 1908 and maybe earlier. The

simplicity of the second vrial coeff-lcent ijn terms of the intermolecu-

tar potential arises from the fact that the equation of state is an

equilibrium property.

The second virial coefficient can be broken up into three parts,

8 (T) T () . t B (T) I- b~n(T) (3)

Flelt. Bf(T) arises from collisions between free molecules; Bb(T) is

reited to the equilibrium constant for the formation of bound double

moleculos (or dinters) in the gas; and CT) is related to the equilLb-m
brium constant for the- forigtion of metastable doub!e molecules (or

L. S. Ornstait, Thesis, Leiden 1908
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rlirer8) which, according to quantura mechanics, can dissociate but

which, according to classical mechanics, are firmly bound. Terrell Hill

has derived the equation for Qb(T), the partition function for bound

double molecules, and from this we obtain Bb(T). In the present

paper, we also derive the relations between Bn(T). Bf(T), and the

irntermoiecular potential. Since B (T) and B (T) are related to theb m
tuquilibrium constants for dimerization, a knowledge of these 4uantities

is useful in developing a theory for the variations of the transport

coefficients wlith pressure 'due to the formation of dimers. The dissoci-

ation of metastable moleciules and its effects on the transport proper-

ti;s of a gas will be discussediWter. It wli be seen that the

d..o,:ition of metaetable molecules leads to a small quantum cor-

r,:-,tion for the transport coefficients at low temperatures.

Vihenaver the potential is purely repulsive, so that no bound or

mctastable dimers exiat, the second virial coefficient can be expressed

,n terms of a collision integral which involves the angles of deflection

of the binary collision trajectories. Detailed equ:ations are given for

determining Bf(T), Bb(T), and B In(T) for an arbitrary intermolecu-

lar rotential. For molecules satisfying the square well, Sutherland

(attractive term proportional to r ), 'or Lennard-Jones (6-12)

1 otential, tables of values and graphs are given for B* = l bo of f'
13 * z 3 /b and B = 13 /b as functions of the reduced temperature

b b o m m 0

T kT/ . Here, b = (2/3) iT NO , The novelty of our treatment

,onaizts in distinguishing between the bound and the metastably bound

double molecules. The introduction of the two types of double molecules

T. L. Hill, 3. Chem. Phys. ?J, 617, (1955); "Statistical Mechanics,
(McGraw-Hill. 1956). Ch. 5.



3
is necessary to remove-the ambiguities in the various definitions of

2
double molecules. Some authorities, such as Terrell Hill , have not

considered the existence or effect of the metastable species.

Non-equilibrium properties of gases such as the transport

coefficients are much more complicated functions of the intermolecu-

lar potential than are the second virial coefficients. For example, the

transport coefficients in the limit of low pressure can be express-ed 3

in terms of the collision integrals

5) () aZr' Cos;t)Uctq (4)

Here a4 is the reduced mass of the colliding molecules,-;

g is the initial relative velocity of the two molecules; b is the impact

parameter or the distance of closest approach of the two molecules if

their relative trajectory persists in a straight line; and X (b, g) is

the angle of deflection of the relative trajectories which results from

the intermolecular potential (see Fig. 1) . The angle of deflection

can be expressed in terms of the intermolecular potential,

X(b~g)~7 z V_-_26____L____K_

Here rm is the distance of closest approach in the actual collision,

or r is the largest value of r for which

I 2. - 0 (6)

If O(r) corresponds to a purely repulsive potential, as shown in Fig.

la, then %(b,g) is always positive; if O(r) is a purely attractive

3. 0. Hirschielder, C. F. Curtiss, and R. B. Bird, "Mo)cclar
Theory oi Gases and Liquids', (John Viley, 1954), p. 484.
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b

Fig. la. Trajectory of Collision with Repu lie Potential

Here (is positive.

b/
A/

Fig. lb. Trajectory of Collision with Attractive Potential.

Here Zis negative.
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potential, as shown in Fig. I b, then 7(b, g) is always negative; and

if O(r) corresponds to attraction for large separations and repulsion

for small separations (as is usualby the case), X (b, g) is positive for

some va!es of the parameters and negative for others.

It is convenient to define the effective potential energy as

., (rL) = 0() + L/r% (7)

Here L = Kb2 wbare X is the initi*l relative kinetic energy or the
2/

total energy in the center of mass coordtnate system, IK =,*g /Z.

Insofar as the separation between molecules as a function of time is

concerned, the kinematics are the samre as for the one dimensional

motion of a particle of mass , and energy K movin$ in the potential

field Off (rt L) . The term Lir is known as the centrifugal poten-

tia7.- The Angular momentum of the collision system is M = 'A gb and

the moment of inertia of the collision system is I r 2 . Thus the

centrifugal potential L/r 2 " M zZI, whick is the usual form for the

energy of rotational motion. Fig. 2 Rhows a set of effective potential

energy curves for the Lennard-2one3 16 12) potentl4,

4 F e (8)

Here (- L) is the xxiaximum energy of attra! tion between two mole-

,ales and O" is the low velocity coQisJqn diameter. It is seen from

Fig. Z that #eff has an inilection point dt .8E when L - L2 , c

2, 46Z44 W . The yvtAu of 0 lt , inflection point is known as

tho critical energy, I( . The value of K depends Apon the func-th rtcl nry c c

tional form of the intermolecular potential. The critical value of b is

defined as bc =(L c ) c. Thus for the Lennard-Jonts (6-12) poten-

tial, b l= /51/3 0" = 1.754410. For values of L greater thanc
L , the effective potential curves have no minima and vary
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monotonically with the separation. For values of L smaller than L,

the effective potentials have both a minimum and a maximum. The

energy of the maximum varies, between zero and 0. 84E ; and the

energy of the minimum varies betweeen (- E ) and 0. 8@ . Maxima

in Oeff occur when the intermolecular potential is attractive at long

ranges and the attractive term varies inversely with a power of the

separation greater than two.

In Fig. 3, there are two cross-hatched areas, one labeled "B"

and the other "M". The region I'B" corresponds to those two mole-

cule systems where the total energy is less than the energy of the

separated molecules. The systems in "B" correspond to bound

molecules where the molecules can only be freed by a collision with

another molecule. However, the "M" systems have energy greater

than that of the separated molecules. From the point of view of

classical mechanics, these molecules can only be freed by a collision

with another molecule, but from the standpoint of quantum mechanics,

the "IM" systems are metastable double rm9lecules which can dis-

soriate by leakage. through the energy barrier. If tjie half-life for

dissociation is greater than the average time between collisions, the

'M" systems behave like bound double molecules. But, if the time

between collisions is long compared to the half-life for dissociation,

the "M" systems behave more like free molecules. The mean life-

times of metastable molecules will be discussed in section V. For

example, in the c4-e of argon mle.cules, it is found t1at the mean

lifetime may vary betweepabout 1( sec. to well over 10 sec.

depending on the particular value of the relative energy and angular

momentum of the metastable pair.

Now consider one of the effective potential curves for a small

value of L, as shown in Fig. 3. This effective potential has a

maximum value F(L). Since F is a monotonically varying function

/
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of L, we can invert this rclation to obtain L as a function of F.

Thus the family of effective potential curves with F less than or equal

to K can be characterized by their value of F rather than by theirC

value of L. As is shown in Fig. 3, the intermolecular separation at

the hump or maximum in the effective potential is r (F ). Also,
h

rf(F) is tho. smaller separation for which the effective potential has

the value F. In the limit that F approaches zero, rh approaches

infinity and rf approaches 0 . In the other limit that F approaches

Kc , rh becomes equal to rf . The distance of closest approach, rm,

of two colliding molecules can be characterized by K and F. Con-

siderable interest is attached to those collisions in which K is very

nearly equal to F. In such collisions, the two molecules orbit around
4

each other a number of times before they finally separate . If K is

just slightly smaller than then rm is slightly larger than rh;

wh.ereas if K is just slightly larger than F, then r is slightlym

smaller than rf. Since 3mahl kineti,:: energy, K - Kc is required

for orbiting, it follows that such collsions are only frequent at low
temperatures.

There is still another way that we can characterize the effective

potential energy curves which have humps. Let us define bf(F) as

the value of b for which the initial kinetic energy K is equal to F.

Since LUF) -. Kb , it followv that

b(F) = f()FJ12

Here b varies monotonicallv with F from the value infinity when
f

F = 0 to b when F - K . Thus bf might be used to characterizec cf

the effective potential curves with low values of the angular

See Reference 3, M.T.G.L., pages 45 and 553.
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~~h( K )( - 0 - - -

VIO K

0 bf (K) b

Fig. 4. The distance of closest approach r. as a func-
tion of b for a fixed value of the initial kinetic
energy IC less than c~
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momentum. The significance of bf is shown in Fig. 4. Here, for a

particular value of K (less than K c) the values of r are plotted

as a function of b. From Eq. (6) it follows that

6" rc,;II- K I
When b = bf(K) there is a discontinuity in rm. When b is just

slightly greater than bf(K),. the energy of the system Is not great

esoft to get over the potential hump and r is slightly greater than~m

rh(K). Whereas, when b is slightly less than bf(K), then r is

slightly less than r f(K). When b is zero, rm becomes equal to

r(K) which is defined in terms of the equation,

The meaning of r1 and b will be explained in a later section. How-

ever, since 0 (r) becomes small as r becomes large, it follows

frosh Sq. (9) that the value of b approaches the value of r as r
m m

becomes large for a fixed value of K.

Th Second virial coefficient, A(T), for spherically symmetric

molecules can be written as

B(T) =-N.A'Q/V i- IYA'Q11 /1 V (10)

where Q and 0 are partition functions for one and two particles

respectively, N is Avogadro's number, V is the volume, and
= hZ /z2 m k T. The partition function 0! involves integrations

over the volume in which the particle is contained and over the momen-

ta of the center of mass of the particle. The two particle partition

function, QV, involves an integration over the volume in which the

two particle system is contained, amn !oegration ever the relative

coordinates of the two particles, an integration over the momenta
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of the center of mass, and an integration over the relative momenta of

the two particles.

Systems "B" and 04U01 of Fig. 3 have partition fuactions

02b and 0 m respectively. They involve integrations over the same

variables as Q " However, the integration limits are restricted so

that the two molecules remain ia the regions "0 and "IM" indicated

in Fig. 3. Tba intgraton, limits are discussed in move detail in

section I1. Then, Bb(T) and B m(T) are defined by the eqmtioas

I(T) IL --A!I Q,. /V (

The partition function of all oter possible systems in Fig. 3 is Q"

Again. Q 2 contains integrations over the same variables as Qz

but the integstlon lizaits are such that the two molecules remain ut-

side of the regions "B" and "M". One sees that these systems cor-

respond to molecules which iateract but are free to separate to

infinite distances after the interaction. The definittou of Bf(T) is

T NA4 Qa/±V (13)

The role of double molecules in the second virial coefficlent bas long

been recogaias4. We will now show that te equilibrium constact

1K (.r) a it. 1, Wit' 1, :4,

is 1g4we by

- --T) - (T ) - - -

-o
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In Eq. (14), nI and n 2 are the number of noles of single and d,)uble

molecules ( i.e. n2 = n 2b + nZm ; the subscripts b and m refer to

bound and metastable double molecules respectively) and I and

V z are activity coefficients. At low pressures, the activity coef-
5

ficients approach unity. Frorn the equations given in Hill's paper

one easily obtains the relation

NV/l, 2 - (Qlb +Q%,)N/V +8aiL ... (16)

The right side of this equation is a power series in n which is defined

by

The number of moles of "triple molecules" is n3 , etc. The coeffi-

cient "a" involves integrals over certain regions of the phase space

of one, two, and three molecules respectively. Higher coefficients

depend on integrals over part of the phase spice of greater numbers

of molecules. Comparison of Eq. (16) with Eqs. (11) and (12)

shows

nlV/n,' I (B +&) - (17)
2

The equilibrium constant, 0$(T), is equal to n 2 V/n 1  in the limit

that n approaches zero because under this condition the activity

coefficients approach unity. Thus, Eq. (15) for ?(TJ follows from

Eqs. (14) and (17).

The equilibrium constant, i((T), can be written as

5
Reference 2.

I
it i 7s- - - ~ - --- -- - -- - -
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7((T) W6 (T) - 7(a (T) (18)

where ,?(b(T) is the ee!aibrium -onstant for boun4 double molecules

and Ogm (T) is the equilibrium constant for intstle dole

molecules. It follows, for reasons similar to those given for X (T),

b(T)=b(T) and -r(T) a Bn(T)

In section II it will be soon that JBb(T) and Bm(T) must be

negative so that the equilibrium constants are positive as they should

be. This is to be contrasted with the results of previous attempts to

Srelate the second virial coefficient to the equilibrium constant for

dimer formation. In these previous attempts, boevuse of the approxi-

mations made, either a negative equilibrium costant6 Is obtained at

moderate and high temperatures or the introduction of an excluded

voluwo due to the finite alse of molecules obviates the necessity -f
7,809

dealing with a ungative equilibrium conatant . The equations de-

rived in section III will relate the equilibrium constant to the inter-

molecular potential without the introduction of any empirical concepts.

The effects of interactions between two free molecules is repre-

sented by Bf(T); Eq. (55) so*ws how Bf(T) depends on the angle of

deflection due to a collision. If it is desired, Bf(T) can be related to

tt empirical concept of excluded volume by supposing that a gas is

H. W. Woolley, J. Cbe.u Phys, 21. 236 (1953).

7 ,. 1 0. irach*lder, r. T. i lure, and 1. F. Weeks, 3. Chem.
Phys. A*, 201 (1942).

I -W. Wltner, Jr.. J. Chem, Phys. U 153 (1954).

9 R, Gisell, J. Cb*m, ]Pkys. 2395 (1955).

-PNI,1109" N s w
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composed of n1 moles of single molecules and n2 moles of double

molecules satisfying the equation of state

PCV-b') M (= tnI)RT

Except for the excluded volune, b', this corresponds to the perfect

gas equation. The number of single and double molecules are deter-

mined by Eq. (14) with the activity coefficients sot equal to unity. If

we take V to be the molal volume, (regarding the substance to be

composed of monomers) then

?t 2.71, = I

because the concept of molal volume is based on the notion that all the

molecules are single. From the last equation and Eq. (14), it follows

that

For large volumes, expanding the right side of this equation in powers

of 1IV gives

71 Ii (T)/V - [ X (T)IV. + ,,,

Thus

PV/RT - ) ['/V

= [i - ~WV +4(-(/v)-...Jtl + ,/v + (,'/V)'i...

I= H.b- 1(/V + (9~~b7*V/s~.
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so that the second virial coefficient becomes

8(T) a V - V )
The excluded volume, b', can then be identified with Bf (T).

Ordiaawily. 5f(T I positive eorrespAding to positive values of

the eelud d volume, Iowever, at low temperatures Bf(T ), and

thefsreo t r. excluded volume, beco.ems negativel Thus, this

alh"pMlifed a"I8eI 8bows the limitations of the concept of excluded

volume.

We will now proceed with the derivations of the relations for

D1 (T), Bb(T). and B M(T). Actually these relations were obtained

wbon we tried to extend, to molecules obeying an arbitrary inter-

molecular potential, a result which R. Byron Bird10 has obtained

for molecules obeying a rmonotonically varying intermolecular poten-

tial. Bird bed ue# quantum mechanical argonionts to express the

second virial coficiout in terms of the kage of 4flectioil of the

trajectories. For monotonically varying intermolecular potentials,

no boand or metastable double molecules can exist. Our results,

obtMned by classical mechanical arguments, agree with Bird's for

this special type of potential.

NOR -~ '.

- N



17
II. BIRD'S DERIVATION OF THE SECOND VIRLAL COEFFICIENT

FOR MONOTONICALLY VARYING INTERMOLECULAR

POTENTIALS 
0

The quantum mechanical expression for the second virial coef-

ficient of a gas of spherically symmetric particles in the case where

the potential is monotonically decreasing with increasing separation

of the particles is

IB ( f A 1+)e1* T+19)

w here X) ( is the phase shift and XC _ 2#K/A . In the case

of Fermi-Dirac statistics, the plus sign is used atid the sum over

includes only odd values of C , For Bose-Einstein statistics, the

minus sign appli., and the summation is over even values of C . In

the case of BPotwamnn statistics, B(T) is the average of the Fermi-

Dirac and Bose-Einstein results. Thus,

EMr = -2NA (41 +1)f" e A? * -I (20)

where the summation now extends over All values of 2.
To obtain the classical mechanical expression which corre-

sponds to Eq. (20), the folloving steps are carried out: (1) The

integral in Eq. (Z0) is integrated by parts. Use is made of the fact

that 4 =L(0) 0. (2) The sum over 1 is replaced by an integra-

tion over 2 . The resultis -

10 Reference 3, M.T.G. L., p. 51. We wish to thank R.B. Bird for

making available his unpublished notes giving his derivation.

Reference 3, M.T.G.L., p. 409.
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8Cr)~ -2"'NA! IT"'.c~ 21

Let

Through the use of the W. K.B. teethod, it is known that to the first
12

approximation 
,

Eq. (24) becomes correct in t e limit of large values of K or

where the correspondence principle requires quarntum and classical

mechanical results to be the same. It should be noted that Eq. (24) is

only valid if there is only one turning point, and the intermolecular

potentiaLis monotonically decreasing with increasing separation of

the particles. Integration of Eq. (24) gives

mx -~ (bl, )4.b' (25)

integration over b and b' is changed, Eq. (21) becomes

Refe') 1N, .T) e 103,p.67 (26)

Rai efere nce 3, M. T. G. L. , S c tiona 10. 3b, p. 6 87.
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This is the equation Bird obtained and is valid in classical mechanics

if the potential is monotonic decreasing with increasing sepatation of

the interacting particles. Below Eq. (45), it will be shown by strjrtl,

classical mechanical arguments that when the potential is monotonic,

Eq. (26) is an alternate means of writing the more usual expression

for the second virial coefficient, i.e. Eq. (2).
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III. DERIVATION OF THE SECOND VIRIALCOEFFICIENT FOR

ARBITRARY INTERMOLECULAR POTENTIALS IN.TERMS OF

THE DOUBLE MOLECULES AND COLLISION PROCESSES:

In order to investigate the contributions to the second virial

coefficient from the bound and metastably bound double molecules, it

is of interest to reiate

B'(T) = 2 NTr'I(AT) e- -K LJ2("dbJd K  (27)

to B(T) as given by Eq. (2) for the case where the potential is not

necessarily monotonic. Only in the case of the monotonic potential is

B'(T) = B(T).

The inter '.i, ftXb 2 db, is found by taking the limit of

oX Xb2 db as b approaches infinity. Let us define r 1 ail the value0as

of r corresponding to b and the given value of K. If b 1 is

sufficiently large, then r I is very nearly equal to b irrespective

of the value of K. Using Eq. %5' and the definition

h 2 *~z z' 2-Gih.' rl b2 h z f I It ., - V2 ; ' .F
L- f- j -, we obtain

b6 d Tr b 3 f ' G(b,r)dra ~ (2:8)
0-7-

11 the integration over r is performed last, Eq. (23) becomes

3 -
hF ( K[

-~T G&~b (bbr~~ (29)



When use is made of the fact that

Gbr)&b"= -2.R -( ) - (30)

and some of the resulting terms are combined into one integral,

Eq, (29) can be written as

Ir
Xb b Trb-/3 j d r

+-2K7- o b G(b,r)dr (31)

where

C(K)=
I()Kb %.2

r'(K Oft) (r- K§tK )Jd)r (32)

The last integral in Eq. (31) will be evaluated in the limit that

r 1 (or bl)--' . Let

0 fG(br)dr

bu" 0 b-r, r (33)

First, an upper limit for J will be calculated, and this will be shown

to he equal to the lower limit for J as r -Wo,
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Ik~ 1(bb~' V -14 Ydr
If the positive quantity - % (r)/K is neglected, an upper limit for I

is obtained. Since

" 14 Arxa 0 sin ,b/n)

WA xr(/ (34)

Similarly,

a =  s ( =

zb;[T/6 -(kXI/b,?snr-'(r/b,)- (lb)) ((/b,)t+1aj(r,/)trJ (35)
Us. Ot Eq, (M) givs

#(r- raIa^A

/116-,. ]) it rv r .

,(4y,,, I&, IL-. (36)

If the negative terms of Eq. '3) arts neglected and - *(rl/K is

replaced by the larger qu~ntitv, - 0 1i K, one finds that

G=

One finds m X Ad I nax approach zero as r -- 0 . In the
case of I , the ass impaUos ust be made that

max
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hIp r (r) 0 (38)

Thus,

auJ = "'/3 -a r,/ (39)

A lower limit for J is found by replacing - O(r)/K in Eq. (33) by

the larger quantity -(rI)/K.

J~~~~,=~~ jtfr~~~~Ld [-I-fI -(~. j- ] (40)

roo /I
list d1ri =  , /3 - r," q (41)

Eqs. (39) and (41) show that lin J = r 3/3 - 4r /9. Eq. (31)
r --be

becomes (on taking the limit b --o c).

Mim xb, bi = hi[ 7br/S - Trr' 1
-r dr + 2K'"'C(K)

9 + (42)b, -V*)

Thus

0 r.(K)

In both Eqs. (42) and (43) use has been made of

b = (1- (r)/K)l and lim r =b

... ..........
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Therefore,

t(K)

It is desirable to perform the integration over r in Y q. (44) after the

integration over K. Fig. S shows the region of integration. The

distance of closest approach when *eff = (r) (L = 0 in Eq. (7)) is

O' when K =0.

r d~rf dr rjdK (4S)

In the case of monotonic decreasing potentials, C(K) is zero

because rf(K) - rh(K) for ill values of K. Also, in this case,

Eq. (45) would be

-t a r

because a* . After some manipulation, it is found that

rCrL((K*f'j -Ki4)e-1AdK dr

f (0TfA~ 'f ~ f~ * ' (KIS e- AT K*~A ct

so tha Sq. (4#) is, Mrtical ifth Eq. (Z). Thus, the validity of Eq.

(26) in classical inechanics is demonstrated without the use of

quantvai nwchanu cs.

When Eq. (45) is used, Eq. (44) becomes

1Q
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r

K

Fig. S. The cross-batched area indicates the region of

integration in Eq. (44).
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*Lrr ae 1TK
T0()0

+ 2 fo' C(K) e -V ctK (46)

In the last term of Eq. (46), the upper limit for the integration over

K is K because for values of K above K rf(K) = rh(K).

Then , by using

,f- ,J'; dK= + Jr" T)I/a- ' ri T

0a I

and

1iK- ~rSe'L_ 4r"(A)-e r'ATd. -(AT)"6 e4(r/A( _
one finds

15,) - .Nw'n'(Ar)" T " ar"[ -e- 4M AT rdfr

±~ ~ ~ ~ ~~A * A?1 (fAr~ ~)dr

L 2L fC(K)e-K'ATdK (47)
Here r (itx) is an incomplete gamma fanction.
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It is known that the partition function for bound pairs of mole-
13

cules 
is

= 2 TT V A O(-W Ar"-
2rvAfr r e~r/Tr+ WVr(JIdr

Thus, Eq. (11) gives

(T) 2 ~NT r e (/Afl(i<- Xr)/r) (tr (48)

The use of Eqs. (2), (47), and (48) together with the equation

e e1
gives

B(T) (T) t B'Cr) +~ +NIT 4fr0 f W1 d.r
(r

!T), )o C(K) C 6K (49)

In order to find the contribution of the metastably bound double

molecules to the second virial coefficient, we start with the equation

for the partition function of two particles:

H -- 1 6 f -. /T xyz(r)oppd, ~s iod
2- 1- py +.- p. Y4 Ta; V-t (pl- + F;/stn'e Yrnr'L * F/?n i ON

Here, x, y, and z refer to the cartesian coordinates of the center

of mass while the other coordinates are the relative coordinates of the

two molecules. If the change of variables, P. = p, /(mr zkT'.1
2 1 1.PO po /(mr kT) 3 , and Pr = pr/(mkT) is made, and the inte-

grations over x, y, z, Px Pyt and pz are carried out,

13 Reference 2.
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2aA VTr/a r eXPI§- AT P02 -X f r% -Pdr d f P0 P (50)

The total energy in the center of mass system is given by

K -AT(F* RV + 0 r A T R

~7T Also,

where Kb 2/r 2is the centrifugal potential. Only the sum of the

-- squares of P a nd P0 is important in determining the centrifugal

potential, so a change to polar coordinates is made using

fdP a(P asY(AT)-' frd(WK). 0
When the variable P is replaced by the var'.Able K,

To obtain B Tthe ineraini q.9t)mt (be:resticte (51

the regions indicated in Figs. 6a and 6b. For a fixed K, Fig. 6a

ahows the effective potentials for the two extreme values of Kb 2

which ar'e allowed. The lower of these is Kb 2and the upper is 2b
fb 2 .

Fig. 6b #bows the region of integrition for a fixed K. The

condition

Kb x' r2'L K -# #(o) (!t21

is true at the tuarning points of zmotion. From its defin-itio".. Eq.(1)
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rf. K). ' r

/

Fig. 6a. The effective potentials when b = bf and b = b

KEL

KbL =rL[K - 0(r)]

f I

rr

Fig. 6b. The region of integration indicated in Eq. (53)

for a fixed value of K.
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0^ KC r to -aix4kn jkcJ f4()J[)L'/,iv (53)(T)) Kb

so, that

- ~ L(to (54)

Combining Eqs. (49), (S4), and (3) shows that

(T)(T (55)tf*'L-~~j#d

Thus, the second virial coefficient has been divided into three

parts. B b(T) is given by Eq. (48), B m(T) by Eq. (54), and B f(T)

by Eq. (55). In the case where the potential is monotonic decreasing,

all the terms except B I(T) are zero and B(T) is given by Eq. (26).

For arbitrary potentials, B b(T) and B m(T) have to be considered

in addition to B f(T). In B f(T), the terms added to B I(T) are a

result of the fact that there is more than one turning point (see

comment below Eq. (24) )



31

IV. EVALUATION OF THE THREE PARTS OF THE SECOND VIRIAL

COEFFICIENT FOR SEVERAL INTERMOLECULAR POTENTIALS:

The results of the previous section will now be applied to the

square well, Sutherland, and Lennard-Jones potentials. For these

potentials, it is convenient to write the equations in terms of reduced

variables. This also permits an easy tabulation of numerical results.
r* ,* , * * , *

Let r r/a, ,b = b/r"K = K/. , = / T = kT/#i , and

D(K ) = (Ce") 3 C(K). Thus,

B*(T) = -3jIr e-  * tT o r* (56), P (3/Z".

) /'T* (57)
0

M *) Ih r*'[K*- 0*(ru?) - 'dr" (58)

coe

00

-61T " 41/ T * ' & K- c D ( K* e" K*/T * d K* (59)

0

D(*) - "-- ob x"
-r -b '  ] dr* (60)

(a) The Square Well Potential.

This potential is given by
€* (r* *

r 1
0 **(r ) -l 1 (r <R

* (r)= 0 r R
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The expression for Bb(T ) is given by Eq. (56),

8(T*) 2 .'r" (I- t") r'(s/i, T') eT  (61)

Because of the discontinuity in the potential at r R, some

special features arise. In the Integral for Bin(T*), two cases occur

depending on the value of K . The separation of the two cases occurs

when

or

Since b * R , it follows thatf

S= (R i'"

In case 1, K (I - 1 and rf(K*) 1. Incase U, K >(R (i1

and r (K) > I. Figs. 7a and T show the two cases. Also,

because of the discontinuity of the potential at r A R, it follows that

K is infinite instead of finite as is the case for smoothly varying

potentials. To find B2 (T ), the integration limits for M(K ) mustm

first be determined from Eq. (52). For case I, one obtains

r ) 1 1 and r (K) R. For case II, r (K) a [X/(K + I)) ]

and rh(K R. The integration over r*gives

RbL ~ -~ ~LL1(62)

The first integral in Eq. (62) io easily integrated in terms of the

exponential integral

S 4
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eff

Fig. 7a. ffversus r for the Square Well Potential,

Case 1: K < (R 2  1l) and r *(K)=1

F ig. 7b. eff versus r *for the Square Well Potential.

Case II. K *> (RZ - Ij, and r *(K )> 1.
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t = - (63)

The second integral in Eq. (62) fan be evaluated by making a change

in variables to y -[ -(R 2  I)K)I/R 2 and then expanding the

exponential term. Thus

~ILIr~v " T*3 3 t R I -Ri 7-t

where

B, (5/1 n) KJ X St. -,X),-, ctX (6S)

is an incomplete beta function.

The equations for 'X , to be used in Eq. (59) are gi,' :, by

Holleran and Hulburt 1 4 . 'he integrations in Eq. (59) can be carried

out to give

(T') - i) - B*(T) - (I T*) (66)

As a check on the work, Eq. '3V in its reduced form) can be used

in Eq. 'b6. When this, is don, one obtains the well known result for

the second virial coeffic-ent of ptrtit les interacting with a square

well potential.

Table I gives the viluts of the toefficients 15!*J

which appear in Eq. ;b4 . The various contributions to the second

virial coefficient are shown in Tible 11 for three values of the

* parameter R. Fig. 8 is a graph for the case R = 1. 5.

14 E. M. Holleran and H. U. Hlburt, J. Chem. Phys. Z3Z (1951).
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Table I. The Square Well Poterttal Coefficients

(54 Which

Occur in Xq. (64) for B(T*).
i

n a1.5 1.7 1.9

1 -9.48146 x 102 -4.30777 x 10-2 223438 x 10

'2 5.82435 x 10 "  2.47950 1 10 2  1.23950 x 10

3 -2.43107 x 10- 2  -9.60556 x 10 3  -4.60869 x 10 3

4 7.76289 x 10- 3  2.81876 x 10- 3  1.29243 x 10- 3

5 -2.02366 x 10 3  -6.68550 x 10- 4  -2.91628 x 10- 4

6 4.48630 x 10- 4  1.3353. x 10- 4  5.51624 x 10- 5

7 48.0652 x 10 5  -2.31036 9 10-5  -8.99779 x ID 6

6  . 6
8 1.503U8 10 ~ 3.53503 x '0 1.29210 -4 106

a#.
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(b) The Sutherland Potential.

The potential for this model is

***

(r co r < I

'1 * *(r*) =-r r 'Y I

The equation for Bb(T ) will be given as a power series in
-l

T .An expansion for e r (3/2,x)/fl (3/2) is first developed; this

expansion will also be useful in finding Bb(T*) for the Lennard-Jones
b

potential. The incomplete gamma function is a particular case of the

confluent hypergeometric function which is defined by /

7-o c(67)

where

(a),

( a) a(a+ o)... ( a t'n - )n= :j .

Thus,

e,4~ ~ r s/s/, x)l we5/;X
- 31r3/)( )

(68)

Here, the second step follows from Kummer's transformation and the

third step from Eq. (67).

15
A. Erdelyi,"Higher Transcendental Functions', Vol. I,Bateman Manu-

script Project, (McGraw-Hill, 1953).Ch. VI of this book has a summary
of all the properties of the confluent hypergeometric function used in
this paper. It also has information on the Whittaker functions which
are introduced in the discussion of the Lennard-Jones potential.
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If the expansion, Eq. (68), is used in Eq. (56), integrals of the

form r V(R Ur' - r - result; Eq. (56) becomes

TrT' -,8 T .713 (.TV

Eq. (69) is valid if Y , Z. It will be shown below that B*(T) also
m

is defined for Y 7 2. This is to be contrasted with the result for the

second virial coefficient for this potential which is defined only for

' ">3. The fact that B and 8* are defined when I o 2 impliesb rM
that an equilibrium constant for the formation of double molecules can

be calculated (see Eq. (15)) for some cases where the second virial

coefficient does not exist.

For the special case where " -r 6,

b (T' 7 "L T 46 % tX " (70)

where

-- _ _i (71)
-l -2

We find that a0 1. 6)666 x 10 , a 3. 33333 x 10

-3 -3 -4
*2 = 6. 34921 x 10 , d 3  1. 05820 x 10 , a4 = 1. 53920 x 10

65 6 -7
1.97334 x 10 a 6  2.25524 x 10 and a7 = 2. 32157 x 10

To find * ( ), one must first determine K b *2, K and
in f c

integration limits for M(K V. 7rom the form of th. potential, it is
obvious that r (K 1. One finds 9 le a. _*"nd r# *(K)

r-a / */d* 0 d

by solving the equations d 0 /ffdr =0and

e*(r) = * By letting r (K*) - h(K it is found that K

of yf h i
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* *2 * *
When the above equations for K bf , rf , and r h are used and the

'* Va*
substitution t = 1-K is made, the integral M(K*) becomes

t V-2.+IjOtt (72)

If Y > 2 in Eq. (72), it is easy to see that Eq. (57) gives a finite

value for B .. It should be noticed that the polynomial under them

square root sign always has a double root at t : 1.

The integral of Eq. (72) can be evaluated for several choices of

Y but unfortunately a different method must be used for each choice.

We shall consider only the case I" = 6. When the substitution z = t2
is made in Eq. (72) and (I - z) is factored from under the square

root sign, M(K*) is easily evaluated. Thus,

M(KO) I t (4 tdK')~ +± rl +(9K*)#/]6.

- coth 1  t oth6  1/3 (73)

On expanding the exponential in Eq. (57) and changing the integration

variable to y = [1 + (4K*)1/31 1 , Eq. (57) can be integrated to give

where

HP______3' __ Sitl,)r 7+ 1 (3 jytsr f I)C , L "(+a.3s71)7t["-( 3 )Z - 1 (75)C (l S-3 ro (3rjs2a-r)j rj (?i*7-ar).

4
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-I -2 -2

We find c = 1. Z3065x10 , c I =-3..75800x10 , cz = 1.20161x10

-3 -4 -4
c 3 = -3. 51826 xI0 , c4 = 9. 23385 x 10 , c 5 = -Z. 1740 x 10

6=4.16x1-5 0-6

4.6196 x 10, and c 7 = -8.9247 x10

The total reduced second virial coefficient for this potential

when a = 6 is 16

B(T*) I -x (76)

whe re

4(77)dt ffi ln-i) 71,

Here, d I1, d2 = 1. 66666x 10 1, d 3 = 3. 33333x 10- , d4= 5. 95238x10,

d 5 = 9. Z5926 x 10 4 , d 6 =- 1. 26263 x 10 4 , d 7 = 1.52625 x 10 . , and

-6
d8 = 1. 65344 x 10 .

When Eq. (3) is written in reduced form, B*(T* can be found
Bb* Bt * *

by subtracting B'*(T) and * (T) from B(T*). Table III and
m

Fig. 9 show the contributions to the second virial coefficient for the

Sutherland potential with the attractive term equal to -r *

(c) The Lennard-Jones (t-1Z) Potential.

The equation for this potential is

4( r" 'Ia -r'") (78)

16 Reference 3, I[. T. G. L., p. 58. This follows from the equation

given for B(T) which is valid for I ;, 3 after the typographical
errors are corrected.



-'4 r- % '.0 fn UN (3
* r- 0 00 C) c. 0 -4

4 en 10 Q% m -rl

(:D 0I 04~ t %Dr -J
0 C 4 . ' . . 0 . . . .

If4

4

%.0 in w ( 0% a, w~
N- 0 M r, -4 LtI Non r-N 4 M I' - N- '0 M

44 m 4 0 L 0 N4 L1 '.D
o m 4 CI - %I0 %0 .-4 4 14

Uj 04 L %0 r- co 0

c D0%
"~4 40% e

0 10 v-4 0010 10 1

0
4~

Q4

'I I)

r- 00 ql in e 0 .

0~~~~ 0



44

Fig. 9. The Cobtribbion ft tbae Stowed Virial

Coefficiem$ MI* 5 D B n

-1 * for a Sutherland Ptential wvi6
f

Attractive Term Proportial to

r

0I
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To obtain B' (T*) lot X (r )/T and us* Eq. (68). In theb

series for Bb(T), integrals of the form

Arr '1[ .r ,~-

appear. Repeated integration by parts gives

A ILRO)I.:i~~.Y at " +41 )z+'X q.. (4 n +S)

Thu

, j T.ra (79)

where

eq = ( atL n i .80)' ~~ ~ , (n +-.C (o

The first eight coefficients are a= 1. 666666 x l0 " ,
*e=4.232804x 10, e 9.47010x10 " , 03 1.782967x 10 .4

4- SC4 . 2.859895 x10 . e5 m 3. 97896x 10"6

a 4.87,450 x 10 7, and •7 =5. 341019 x 10

The integrals for either B*(T*) or e Te) must be done

numerically. Of the two, the numerical integrations for B* (T*) are

lwek eseler; the ftumrical details are described in Appendix A.

When the expoential in Eq. (57) is expanded, B* (T ) is found in

ternm of a power series in T with the coefficients given by

iP illillli9
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fit =2 f" K*1 MK*).K* (81)

Thus

(TV)U(2 -1 -z

We find that f 0 2.5400x 10 , fl = -4.8167 x 10 2

-,:8 01 0 3 f -3,4 -4
f 2 8-.2071x10 o f 1.1886x10 f = 1.4766 x 10 ,

f = - 1.5985x 10" , f = 1.5302 x 10- , and f7 = - 1.3115x 10.-

Because of the numerical integrations, it is uncertain whether or not

the f are correct to five s 4 aificapt figures.
n 17
Recently, Nosanow and Mayer have shown that the reduced

secona virial coefficient for the Leninrd-Jones (6-12) potential satis-

fies the differential equation

d.T" ( L-8 + ST")B*=( (83)

This equation can be solved by letting Z* = T * 3/4 # (T* ) ,

and noticing that (T* -1) satisfies the differential equation of a
15 s18

confluent hyp*rgeometric function .Thus

B( ') at(,(Aee2') *(Va)&A )j (84)

Here, R and R are constants which can be determined by com-

paring the series form of Itq. (84) with a result previously obtained
S 19

by Lenard-'Jones 1

17 L. 14. Nosanow and J. E. Mayer, J. Chem. Phys. 2i. 574 (1958).
An error of oae siA in the differeial oqution given by Nosaow
and Mayer has been corrected in Eq. (53).

Alt Alteroativ* n00d of arriving at Eq. (84) is gliven by L. F.
tein and q. , Roo, 3. Chem. Phys. 9, 13Z0 (1951).

1 oefereace 3, U. T. G. L., p. 163.

Aot
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R1 a- 3.s l r 1-/4) (85)

R2. - J-.'" r{'/,,) (86)

Eq. (84) can be written in terms of the Whittaker functions 1i

M1  .4 1 "1) and M1 , 1/ 4 T 1). Thus,

B*(T*) e [R,(T ] (87)

By using tho expansions

(T-2.-,) a W T [().j (88)

-o ()j ( ] j

and

M T-"' = T'- [ (-- a (-)4. -JJ] (89)
tSI

Eq. (87) becomes equivalent to the result given for (T*) by

Nosauow and Mayer except that they give recursion relations for the

coefficients of T while Eqs. (88) and (89) show the explicit

form of these coefficients.

The reduced second virial coefficient for this potential has been

tabulated2 0 . Thus, Be(T*) is found by using Eq. (3) in its reduced

form. The contributions to the second virial coefficient for the

Lanard-Jones potential are shown in Table IV and Fig. 10.

With the tables given in this section, it is easy to calculate the

number of bound andmetastably bound double molecules in a $as if the

force conStante are known. f the activity coefficients are set equal

Z0 Referene 3, 1K.T.C.L., pp. 1114 and 1115.

1|
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to unity in Eq. (14) and if n1 , the number of moles of single mole-

cules is replaced by at, the number of moles that would be present
if molecular association did not occur, then on using Eq. (15) the

mole fraction of double molecules is given approximately by

while the mole fractions of boand and metastably bound double mole-

jcules are given by

X -b, 6*/V

As an example of the type of results to expect,, we list in TableV
the mole fractions for a number of ga sea at several temperatures.

The calcolations are for the Lennard-jones potential and at a

concentration of 1 mole 22. 4 liters (i.e. n =1, V =2. 24 x 10O4

C.c.)
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V. THE LIFFETIMES OF METASTABLY BOUND MOLECUIES:

It %as mentioned in the introduction that the mean lifetime of

mrtastably bound molecules will have an effect on the transport

properties of gases. This is because double molecules with a life-

time less than the mean time between collisions will behave more

like single molecules than doublk- molecules. It will be seen below

that except at low temperatures fthe comparison is being made at a

fixed density) most metastable molecules have lifetimes sufficiently

long so that effects of dissociation will not have to be considered in

calculations of the transport properties.

The theory of the mean lifetime of metastably bound double
2 1, ZZ, 23

molecules is very similar to the one body model theory of

OK -radioactivity. There are several ways of calculating nraa life-

times but we shall employ the simplest method using the W. K. B.

approximaition, This is the quasi-classical approach discussed in

referenice 22. From a classical mechanical point of view, the meta-

stable inolecule has a vibration period t. This is the time, as

calculated b classical mchanics, for the system to move once back

and forth across the potential well. Thus,

t - 4.r (90)

=( -
H.A Bethe, Rev. Mod. Phys. 9*, 69 (1937). So* especially part

2z V. C. KembLe, "The Fundarental Principles of Quantum Mechan-

ics" (McGraw-Hil, 193T), Sectio 31.

D. Bohm, "Quantum Theory' (Prentlce-Hall, 1951), Ch. iZ.

- - --
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v'here r and r are the two turning points for a fixed value of K

and Kb 2 . According to quantum mechanics,there will be a probability

of transmission. 0, that a particle hitting the poteutial barrier at r 2 will

penetrate the barrier. Thus, the probability of dissociation in one

second, P, is

P - 0/t (91)

and the mean lifetime T is

'r - I/P - t/9 (92)

The transmission coefficient T can be found by the W.K.B. method

and is given by 2 1

- . ea(93)

',vhere

G-2 (94)

Here, r2 is the turning point inside the potential well (see Eq. (90))

and r 3 is the turning point outside the well. For the W. K.B. method

to be applicable, G should be somewhat larger than one.

The mean lifetimes of metastably bound molecules will be calcu-

lated for systems interacting according to the Lennard-Jones (6-12)

potential. When Eqs. (78) and (7) and the reduced variables intro-

duced at the beginning of part IV are used (with y = r-), Eq. (94)

becomes

A--V 4y + 1V'k- K (95)

Here, A is a parameter which also appears in the quantum mecbAn-

ical equation of stateZ4 of a Lennard-Jones gas,

Reference 3, M. T. G. L. , p. 421.
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~(96)

Also, with this change of variables, Eq. (90) for t becomes

t . d(y (97)

Tb right band sides of Eqs. (95) autd (97) lead to hyper-

eliptic integrals and hence are evaluated numerically. The details

are described in Appendix B. The integrals were evaluated for

several values of K* for three different fixed values of K*b* 2.

The potential curves corresponding to these three values of Kb

are shown in Fig. Z. In Table VI Z AG and I Q.At/k are tabu-

lated. Thus if the potential parameters of a gas are known, the mean

lifetimes of metastably bound molecules ',an be estimated. Table VI

also shows the mean lifetime for rnetastably bound oi'sgn molecules

( Cu. 1386,6/k = 119.8°K), For K 0.49, G is approzi-

mately 0. 5 in the case of argon so that the W. K. J. approximation
*

does not apply, but for the other values of K G wies between

2 and 33 so that the W. K. S. approximatIon is valid. 4tnc. the mean

time betw*e colUisous is of the order of 10- 9 or 10 "10 socoeds

at ose atmosphere pressure and ordinary temperatares, one sees that

most metastable argon molecules will not dissociate before under-

8oa. a collision. The only exceptions will be molecules in meta-
stable states which happen to have energies lying close tW the top of

the bamnp ia the potential. However, at low temperatares, when the

tea time bot~oea collisions increases, a larger number of meta.

stable molcules will dissociate before a coAlisiou with another

molecul. This will lead to a rather small correcton in the traws-

port cote uts" Of the gas.
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Table Vl. The Functions 2A G and 2E -A t/h for Calculating

the Mean LWtetinee of Notastable Double Molecules Using

the Lenard-Jones (6-12) Potential

K b K 2A0 24 At/h Oargon ("e.

.02 8.18 3.75 4.75 x 407

.64355 .04 4.7/, 4.28 5.25 x 10 1

.06 2.64 5.15 8.30 x 106

.08 1.17 6.96 3.98 x 10 9

.06 12.0 1.83 2.19 x 10

1.3261 .12 6.98 2.04 4.43 x 104

.16 3.92 2.41 3.78 x 10 3

.24 1.74 3.14 3.82 x 108

.40 2.23 2.29 3.94 x 10 7

,54, .43 1.49 2.56 8.52 x 10 9

.6 .824 3.05 2.76 x 10 10

.49 .1" 4.53 1.42 x 10- 1 1

A'AL

- - - IIII IIIII
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VI. THE NUMBER OF VIBRATIONAL LEVELS OF A DOUBLE

MOLECU LE:

During the course of this research, an equation for the maxi-

mum number of vibrational states of a dimer was obtained for the case

of itolctuletxi It , t t tig with ci Lotitiartl-Jo tiv (6-1Z) pObt iltial. Th1i

equation will be derived in this section. The results obtained here will

justify the use of classical mechanics instead of quantum miechanics

in the evaluation of the partition functions in section III. It is known

that the methods of classical statistical mechanics are applicable

provided that &E << kT, where &E is the energy difference

between two neighboiving quantum states of a system. In calculating

& E for a dimer, only the change in vibrational energy need be

considered because the rotational states are very close to each other

except for hydrogen and helium isotopes. Thus, in the case of the
*

Lennard-Jones potential, one must show that &E/E << T . For

example, it will be seen that for argon, there are nine vibrational

levels in a potential well of depth E , so that classical mechanical

methods are valid if 1/9 << T . Except for hydrogen, helium, and

neon, the results below show that-quantum mechanical corrections
* T*

should be small for most gases at values of T as low as T= 0. 5.

For values of T a little larger than one, the quantum corrections

for neon also become small.
25

According to the W. K.B. method S , the vibrational quantum

number, v, is given by the equation

Z5
L. I. Schiff, "Quantum Mechanics", (McGraw-Hill, 1955),
Ch. VII.
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"V vm"/ f E - u /2 .r (98)

The limits of integration are the two positive zeros of the integrand,

E is the energy eigenvalue, and .t is the angular momentum quan-

tum number. The coefficient of r- containsZ6 (,I + 1) instead

of ( .( + 1) because of the singularity in the potential at r = UX.

Eq. (98) can be rewritten in terms of the quantum mechanical para-

meter A , which was introduced in Eq. (96), and the reduced

quantities r and 0*. For the Lennard-Jones potential, is

given by Eq. (78) and

-t )=+ fr ' (99)

4 - -* ri 67T2

The integral on the right side of Eq. (99) is hyperelliptic and

thus the energy eigenvalues cannot be obtained except by numerical

methods. However, if we are only interested in the maximum number

of vibrational states, the integrand can be simplified. First, the

maximum number of vibrational states occurs when = O. This is

because the addition of the centrifugal term makes the effective poten-

tial well narrower and less deep, and both of these factors decrease

the number of energy levels. Therefore, we need only consider the

case where 0 0. Under these circumstances, the coefficient of

r is which is never more than 1. 50 x 10 (the value for

3 -4
He 3 ) and for most gases is of the order of 10 4 . Thus, only a small

26 ,
P. M. Morse and H. Feshbach, "Methods of Theoretical Physics,

(McGraw-Hill, 1953) Part II, p. 1101.
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error is made by neglecting the term containing r . Secondly, for

a bound state, E cannot be greater than zero. If r is set equal to

zero in Eq. (99), the right side will in general no longer be equal to

V + J, but the jreatest integer contained in the right side of Eq. (99)

minus I will be the maximum value of the vibrational quantum number,

v. Thus

VW" 
(100)

In Eq. (100), the integration limits %#s the positive seros of tho into-

greed. Is thU section only, The square braekete, I ] , isdicaft the

largest integor less than or equal to the number iaclosd by the

brackets.

The tgral ia Eq. (100) is easily evatuatod in towma of the
t1l

incomplete elliptic integral of the first kind by making the substitu.
*4

r . Thus,

SP 101

where

A ( (103)

The m il II s*0ber of vibrational states. M, is equal v + 1

(becae v a 0 is tit first vibrational stat.). By teimeti g the

numeral vow*to ?( V, k) in X* (101)$ we id

Z . *.'y ei l. .. 61- edof iB b d BUIW fitpels

ter 3egrwre &W Pqkyists" Muerl J. Stiepro 1960.

. ........
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Table VII shows the results for several molecules. It is

interesting to note that for He 4 these calculations predict one vibra-

tional level lying near the top of the potential well. More accurate

methods show that probably no discrete levels exist. However, this
4

result for He indicates that in the case of the Lennard-Jones (6-12)

potential, the W.K.B. method does give a fairly good approxiniation

for the number of levels even when the maximum quantum number is

low, while for most potentials one can only use the W.K.B. meth6d

with confidence when dealing with high quantum numbers. It should

be noted that for the polyatomic molecules in Table VII, the number

of vibrational levels refers to vibrations of the bound molecules and

not to the vibrational levels of the individual molecules. In such cases,

it is assumed that there is no coupling between the vibrations of the

molecules and the vibrations within a molecule.
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Table VII. The Maximum Number of Vibrational Levels for Several

Dimers Us'ing the Lennard-Jones (6-12) Potential (a)

Maxi--m Nuuber of
Single * 1.684 1 Vibrati~onal Levels
Molecule A !A 2 iu.Diner,

He 4  2.67 1.13 1

Me .593 3.34 3

A .186 9.54 9

Kr .102 17.0 1L6

Xe .064 26.8 26

CH4  .239 7.54

N .226 7.94 72

CO .220 8.15 8

0 2 .201 8.87 8

()The values of the parameter A are from Reference 3,

M.T.G.L., p. 423.
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APPENDIX A. THE COMPUTATION. OF THE COEFFICIENTS fn

OF EQ. (81) FOR THE LENNARD-JONES (6-12) POTENTIAL:

In this appendix, the numerical calculations used in finding the

coefficients f of Eq. (81) are described. For the Lennard-Jonesn

(6-1Z) potential, Eq. (58) becomes

* *2" * * r*

One finds K b as a function of rh by solving d /dr =0 for

K b f Then, r is found by solving e (rh) = K . The results

are

- - (A- 2)

and

-( "' + -SK)J (A-3)

Numerical methods are used to find r . The quantity, K , which is

the upper limit for the integrals f , is needed. It is found thatn

*d 0 an d * 0
K = 0.8 by solving d efd P r eff /dr 0

simultaneously.
*

The integral, M(K ), can be written in a more convenient form

for numerical integration by making the change in variables y = r

Thus,

M "(,)-- 'y4.-,. (A-4)
Yh (K )

and in this form it is seen that M(K ) is a hyperelliptic integral in

the case of this potential. The function which is actually calculated is
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M(K) - the reason for this being that as K -1o-0, M(K ) has a
-lII K* *

logarithmic infinity. To show this, we shall write M(K ) in still
T.- 3

another form, Let t "r in Eq. (A-I).

~M (r,) + ,t t.- (A -5)
tLt t

An upper bound for M(K ) as K -- 0 is found by noticing that

t 6L-*. > ! *L (A-6)t I 4t 4 t1 4/S

The equal sign holds at t -- th: otherwise Eq. (A-b) is an inequality.

Hence

" Ct ( -7)

M(K*) S -5 t(e +t t (A-

From Eq. (A-ZY, it follows that as K approaches zero, t approaches

(K /8)2. \Vso, ah K approaches zero, tf approaches unity because

lir rf ,K i. The right side of Eq. (A-7) is evaluated, in the limit

JK -- 0

of small K by letting x -- t integrating by parts (the division being

d~x
and the radical), using Eqs. 4r36.00) and (236. 16) of Byrd

and Friedman , and then taking the limit as K -- P0. Thus,

I ,m M ( K K (A -8)

A lower bound for M(K ) as K ---&0 is found by noticing that

for small K
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K*b - K (K )" 9

4'f t -;%-T otews theK

The equal sign holds in Eq. (A-9) for t 1 K otherwise the

inequality holds. (This can be verified by the usual methods of

calculus.) Therefore

t t [ K , c &t (A- 10)

In Eq. (A-10), the limits of the integral are the positive zeros of the

radical. These zeros lie between th and tf because th and tf are

the zeros of the radical in Eq. (A-5) while the integration limits of

Eq. (A-10) are the zeros of a radical which is always less than or

equal to the radical of Eq. (A-5) in the region of interest. When the

right side of the Eq. (A-10) is integrated by parts (the division being

cit and the radical) and Eqs. (256.00), (256.11), and (Z56. 12)

t27
of Byrd and Friedman are used, we find on taking the limit as

K -- a0 that

km -.L Ib- 2 -. .. n h _ (A-il)
8 In7' M (K - n (A

Unfortunately, a better estimate of the limit, lim M(K ), could

not be obtained than those of Eqs. (A-8) and (A-11). Therefore, in

finding the value of

f ( *' K* M(K )& K* (A-12)
it 

*
numerically, the technique of subtracting the limiting form of M(K )

from the integrand of Eq. (A-IZ) and then integrating the logarithmic

term analytically cannot be used. The method used consists in writing

Eq. (A-1Z) as
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Kt*1/ -- n K K
LI jx (A~ -~ 13),I

-,x he re

X = - K K 10 (A-14)

When n -- 0, the integrand of Eq. 'A-13s has an infinite slope at

x 77 0. However, since , and is thus finite when x = 0,
-I t K 3

this does not cause much error since the integrand is evaluated for

closely spaced values of x. In fact, it is estimated that the error
-4

from this source in f 0 :s somewhat less than 10 4 . For other

values of n, this difficulty does not occur.

The integrand of Eq.:A-13) is evaluated at 0, ) (- iL
30 ' 50 50

10 1 °
: 0 30 3 0 3o ° O 'Ix Io.

x . For each of trese values of x, 1K "Na first computed

-nd hen it) w-ts found from Eq. 'A-4%o The integrand of Eq. (A-4)

-.as computed at yh i nyf 'o for n equal to 0, -- 2 2
1. 60 60 2-0~~*

S-s6 ... 2 1. Over the intervals n-v 0 to
20 20 60 60

n- and n - L. to n 1 seven point integration formula can be

used and over the intervals n - To to n = and n ,:.M to n -

a nine point integration formula' can be used. After WKN) was

computed, the integral of Eq. 4A -13) was found by using a seven point

: ;8, Tables of Lagrangian Interpolation Coefficients', Mathematical

Tables Project, Federal Works Agency, (Columbia University

Press. 19481. p. XXX;,.
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integration formula over the intervals [0, and ,

six point formula over the interval [ aX , and a five point

10 > 30

formula over the interval X] . Table A-I shows some of

the intermediate results in the calculation of f
n

The accuracy of the numerical integrations is difficult to deter-

mine. The five figures given for f may not all be significant.~n
However, at worst, the error should not affect more than the fourth

figure in the first few f and the third figure in the last few f
n n

:1
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APPENDIX B. THE COMPUTATION OF T'HE INTEGRALS L:

EQS. (95) AND (97):

The integral of Eq. (95) is easily evaluated by numeric. I intr*

gration. For a given value of K and K b ,the integrati,:n

limits and y2 are first corr~ rited. These integration Iin-Aits w.r-e

the two smallest positive roots of the radical in the integranci. Tbe

integrand was computed at y3 +n y 3  for n equ~al to 0, . 5, 11

1. 5, 2, 3, 4. 5, and 6 for all values of K and K b Zin Tabic., V. For

K equal to . 02 and .04 (K b G. 64355) ,And K L-q uaI trn 016 a rd

0. 12Z (K b 2-:1. 3261) the integrE rid was also computed for 0. 11"5

and 0. 75. The integral was eval :.ated by -,,sing a fivi- -poir t i~~

tion formula Z8over the intervals n 1,-0 to n 2Z and n 2 to n- 6

except when the integrand was ev luated at i :.0. 25 and n 0.O 75.

In the latter case, a five -point integration formula Z8was uised oier

the interval n ! 0 to n - 1, a th: ee- p,:)nt ftrmutla from n = 1 to

n :-2, and a five-point formula fiom n 2 h :' 6

To evaluate the integral of 1Iq. (97), the integration limits Are

computed as above. The limit is4 the Jargt t positive root of the

radical in the integrand. The intt'grand is infi,''te att the, tvo end-

points so near the endpoints the p.olynomial in t~radicel is appro <i-

mated by (y - 10)f(yo) . Here, f (y) (K* - 4 y 6+ 4 y 3- K b *Y)/

(y - y0 ) a nd y0 indicates either y1 or y2  No w, [flv')1Z, near
0 0 1 Z I ' -

the endpoint y. or [-f(y)] -a, iiear the endpoirt y,, can be

expanded in a Taylor series about the endpoint. .1 bie apprexirnatior

(- yoffy0 ) was used for the pol (nomial in the rad~ical as long as

X
the second term in the Taylor ersexansio 1 of , f4ao

Z-~y was less than 1%6 of the c:onstant term. Wht n this



appro4y-Ynatiot% iN used, tc contribution to the integral from the regio ru,

r.ear t endipoints are easily evluwted analyt.cally. To obtain th-.e

.ovp -aLave of the integral, the remaining portion be.welan the ne j erid-

points, YI and y is evaluated nume ric*lly. The. integrand was

1q 4d ( .-1 -IV !or n ea.'w'to '. , . 34,

4. 5, 5,5. -9a 6. A five-point integratioa, armula was Used from

a t 0 to n = 2, a three-point fcrrnula from n 2 to n 4, .trv a

live-point formula from n 4 to n 6.
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~.p. 6 :Replace Fig. 2 t-.f report by the Fig.. Z given on following pages.

2?. p. 10 Replace Fig. 4 of -report by the Fig. 4 given on following pages.

k 3.. p. 27 :Second line from. bottom: P# =p /(r 2 uin 0 kT

4. p. 60 E 1q. (104) should read 68 +ii

5. .6Z Change column haiding from

i684 ' to 1.68kf

6. ?. 6 I Por I'r," ~a n ge . i0 to 16.9

7. p.63 q (A- 2) shoulti rei-,d rh 1/l6[ (4-5K*) 1 1
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Fig. 4. Thi distance of closest approach r mas a func-

tion of b for a fixed value of the initial kinetic

energy K less than K
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