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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4395

USE OF THE KERNEL FUNCTION IN A THREE-DIMENSIONAL
FLUTTER ANALYSIS WITH APPLICATION TO A
FLUTTER-TESTED DELTA-WING MODEL
By Donald S. W-olston and John L. Sewall

SUMMARY

The development and the numerical application are presented of a
Rayleigh-Ritz, or modal, type of flutter analysis which takes into
account three-dimensional structural and aerodynamic behavior. The
flutter mode is approximated by a series of natural-vibration modes,
and the aerodynamic forces corresponding to these modes are derived
from subsonic lifting-surface theory, according to the kernel-function
approach, for a finite wing oscillating in compressible flow.

The application is made to a delta semispan wing with a leading-
edge sweep angle of 45° which fluttered at a Mach number of 0.85. Results
of flutter calculations show that, for this case, when the first three or
four natural-vibration modes are used to approximate the flutter mode,
converged solutions for the flutter speed are obtained that are about
5 percent less than the experimental value. Theoretical flutter-speed
boundaries were located for a range of densities and Mach numbers
including those of the experimental-flutter condition. Further applica-
tion of the analysis to study the effects of variation in certain struc-
tural properties showed that the converged flutter speeds were more sen-
sitive to variations in the natural frequencies than to either variations
in mass or to the inclusion of generalized-mass coupling terms whose
existence is due to the use of experimental natural mode shapes.

INTRODUCTION

Current aircraft-design trends, such as the use of thinner struc-
tures and external stores on aircraft capable of very high speeds, have
combined to diminish flutter safety margins and have, consequently,
increased the need for greater accuracy in flutter prediction. As a
result, both the structural and the aerodynamic aspects of the flutter
problem should be trecated by use of more realistic methods than by the
beam-theory and strip=-theory methods commonly employed in the past.
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This report illustrates the development and application of a method
of flutter analysis which takes into account three-dimensional structural
and a2rodynamic behavior. In treating the structural problem, the flutter
mode may be approximated by a series of either natural or assumed vibra-
tion modes which could have platelike distortions or shapes. In treating
the aerodynamic problem, lifting-surface theory is used to obtain aero-
dynamic forces which take into account finite span and compressibility
as well as the modes of vibration of the structure.

In order to illustrate the application of the method, a number of
flutter calculations are performed. Primary attention is directed
toward correlation of the calculated result with an experimental flutter
result for a delta semispan wing with a leading-edge sweep angle of 45°
at a Mach number of 0.85. The calculations are based on carefully meas-
ured natural-vibration modes obtained by means of an optical method. A
detailed description of the determination of these modes and of the mass
distribution is given in appendix A.

Other calculated results are presented for the same wing plan form
in order to show some effects of variations in air density and in Mach
number (for a Mach number range from O to 0.95). Related questions con-
cerning the number of modes required for convergence and certain effects
of nonorthogonality of the measured modes are considered. Numerical
evaluation of the elements of the flutter determinant is discussed in
appendix B.

SYMBOLS
Ay g generalized aerodynamic force (see eq. (8))
31(131) arbitrary constant in series form of pressure dis-
tribution (see eq. (17))
b local wing semichord, ft
by wing root semichord, ft
d distance between mirrors on wing surface and screen

for optical method of measuring modes, in.

F,(6) function based on chordwise pressure term (see
eq. (B2))

f circular frequency, cps
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constants used in numerical integration (see
table VI)

dimension’.ess pressure mode (see eqs. (17) and (18))

structural damping coefficient

instantaneous deflection of point on wing surface
in the flutter mode, ft

normalized displacement at point x,y in itk mode of
vibration, hy(x,y)

chordwise integrating factor appropriate to station ¢
(see eq. (B5))

spanwise integrating factor appropriate to station s
(see eq. (B6))

surface integral in generalized aerodynamic force
(see eq. (B2))

kernel function of three-dimensional integral equa-
tion (see eq. (12)), 1/sq ft

dimensionless form of three-dimensional kernel func-
tion (see eq. (14))

reduced-frequency parameter, bom/v

dimensionless pressure function (see 2q. (5))

wing semispan, ft
Mach number

generalized mags associsted with ith mode of vibra-
tion (see eq. (3)), slugs

generalized-mass coupling term (see eq. (21)), slugs

local mass per unit area at point x,y, slugs/sq v

number of sheets of aluminum foil on top or bottom
surface of wing
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local oscillating pressure difference between top
and bottom surfaces of wing in the flutter
mode (see eq. (4)), 1lb/sq ft

pressure difference at point x,y in jth mode of
oscillation, ApJ(x,y)

generalized coordinate in ith mode of oscillation,
- t
qienn , Tt

complex amplitude of generalized coordinate in
ith mode, ft

area of wing surface, sq It
time, sec

thicknesses of aluminum insert, -luminum foil, and
balsa, respectively (see eq. (Al))

velocity of airstream, fps

weight of wing per unit area, 1b/sq in.

Cartesian coordinates (see sketch following eq. (12))

dimensionless chordwise variables referred to Dbg
(see eq. (14))

dimensionless spanwise variables referred to 1
(see eq. (lh)ﬁ

airfoil ordinate (see eqs. (A2) and (A3))
local slope of wing in pitch during vibration, oh/dx

local slope of wing in a direction normal to line
(or ray) of constant percent chord

vectors representing angular displacements a and
a', respectively, according to the right-hand
vector rule (see eqs. (A5) and (A6) and fig. 7)

unit weights of aluminum alloy and laminated balsa,
respectively (see eq. (Al)), 1b/cu in.

reflected displacement on screen in optical method
for measuring mode shapes, in.
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BxsBy

streamgise and epanvise components, respectively,
of

angular chordwise variable (see eq. (19)), deg

angle of sweepback for rth ray, deg

generalized mass-density ratio in ith mode of vibra-
tion (see eq. (10))

air density, slugs/cu ft
local slope of wing in roll during vibration, Jh/dy

local slope of wing in a direction parallel to line
(or ray) of constant percent chord

vectors representing angular displacements ¢ and @',
respectively, according to the right-hand vector rule

angle of image, referred to the horizontel, on screen
in optical method for measuring mode shapes, deg

complex eigenvalue of determinantal flutter equation,

(“—”‘-)2(1 + 1g)

w

angular frequenmcy, 2nf, radians/sec

chordwise and spanwise stations, respectively

flutter

modes of vibration under consideration

chordwise and spanwise pressure modes, respectively,
in aerodynamic quantities (m denotes power to
vhich spanwise variable is raised; see eq. (18))

line (or ray) of constant percent chord on wing

streamwise direction (related to local pitching
direction)

spanwise direction (related to local rolling
direction)
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Matrix notations:

[] rectangular matrix
| | rov matrix

{ } column matrix

[ diagonal metrix

Dots over symbols denote differentiation with respect to time.
METHOD OF FLUTTER ..NALYSIS

The present section is concerned with the development of a working
form of the flutter equations of a Rayleigh-Ritz, or modal, type of
analysis based on aerodynamic forces obtained by subsonic lifting-surface
theory. A brief discussion of the method of obtaining the aerodynamic
forces is included.

Development of Flutter Equations

In the development of the flutter equations, a basic assumption of
the Rayleigh-Ritz approach is that the displacement h(x,y,t) corre-
sponding t¢ the flutter mode may be represented by a superposition of
either natural or assumed modal functions in the form

h(x,y,t) = qqhy + qohy + . . . (1)

where q4 = 'c';'iei‘”b is the generalized coordinate of the ith chosen mode
and hy = hy(x,y) 1s the corresponding normalized mode shape.

1n the present investigation the normalized modal functions hy

are chosen as the natural (orthogonal) modes of vibration of the struc-
ture under consideration. With this choice of mode shapes, the general
equation of motion (obtained, for example, as in ref. 1) in the ith
degree of freedom may be written in the form

Mi:ii + (DiaMiqi = ﬂhi Ap(x,y,t) ds * (2)
S
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vhere Mj represents the generalized mass in the ith mode and is defined
as

My = 17 m(x,y) hy2as (3)
)

The integral on the right side of equation (2) represents the generalized
gerodynamic force and contains the aerodynamic loading Ap(x,y,t) which,
consistent with equation (1), is regarded as a superposition of
asexrodynamic-loading modes

ap(x,y,t) = q AP]_(XJY) + qp App(x,y) + . . . (4)

vhere Ap J(x,y) denotes the aerodynamic loading associated with the

- 1wt
mode shape hJ' In application, with q = q_ie ’ Ap(X,y,t) is
expressed in terms of dimensionless functions L‘j through the relation

1 (4 q

Ap(x,y,t) = bmpvd L{L L + 2 Lo + . . .|elot (5)
bo\bo bo

The form of the complex functions LJ is dealt with at a later stage.

At this stage, use may be made of equations (1) and (5) to obtain equa-
tion (2) in the form

2
“’1) - )

bg

ﬂhi(alx,l+5212+ ..)as =0 (6)
S

or, alternatively,

‘ 2
1 -(%) 51*%]2':!?@1‘11*52“12* rre) =0 (7
1
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where
Ayy = == ﬂhiL as (8)
bol J
S
and
bge
el

If equation (7) is written for each of the degrees of freedom under
consideration, a set of simultaneous homogeneous equations results. The
flutter condition is then given by the vanishing of the determinant of
the coefficients of 9y in these equations; thus,

(“’1)2 Ay Ao
1- (=) 0+ — > c
e ko Hy ko Wy
2
-'%-l— 1-(‘2)n+ AZ?' ... =0 (9)
ko ) kg
where
1 _ et (10)
By Mi

and vhere ( 1s defined by

2
Q= (ﬁ) (1 + 1g) (11)
(¢ V]

In this form §1 is a complex eigenvalue and contains the unknown fre-
quency o and a damping coefficient g that becomes zero at the border-
line flutter condition between damped and undamped motion.
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Equation (9), together with the definitions given in equations (3),
(8), (10), and (11), constitutes the working form of the flutter equa-
tion. In other sections of the report the determination of the ingre-
dients of equation (9) is discussed; appendix A is concerned with the
determination of mode shapes and mass distribution for a particular con-
figuration, and appendix B deals with numerical techriiques used to
evaluate generalized masses and generalized aerodynamic forces.

Determination of Aerodynamic Loading

In the determination of the aerodynamic loading, the functions LJ

required in the generalized aerodynamic forces are obtained from the
integral equation which relates lift and downwash distributions in sub-
sonic lifting-surface theory. (See, for example, ref. 2.) A systematic
numerical solution is employed herein which is similar to that of refer-
ence 3 but which makes use of a more exact form of the kernel function
together with more refined numerical-integration procedures. The method
employed has been programed for the IBM type TO4 electronic data pro-
cessing machine.

For the purpose of the present investigation, the integral equa-
tion may be written as

NI .1 ﬂ' ® otye
(ax + V> h(x,y,t) W K(M:v:x 6,y 'l) op(t,n,t) at dn (12)
S

where the coordinate-axis system is shown in the following sketch:

1
= —>~ l
‘ (gle

Airstream

> Y,
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where gle and ¢, denote, respectively, the coordinates of the

leading and trailing edges. The term on the left side of equation (12)
denotes the downwash angle at point x,y associated with a displacement
h(x,y,t). On the right side of equation (12), the kernel function
K(M,%’,x-g ,y-n) represents the downwash produced at point x,y by a unit
pressure load at point §,n; the function Ap(:,n,t) represents the load
required to satisfy the specified downwash condition. (The minus sign
on the left side of eq. (12) is associated with the form of the kernel
function and frises from the use herein of the sign convention for down-
wash, displacement, and 1ift which are positive downward.)

Substituting equations (1) and (5) into equation (12) gives

-(§§~+ %?)(Eihl + Qohp + . . .)

q q
-1 W 2ok, yen) | L e c.
" ﬂx(m,v,x £,y q) (bo + 5 Ly + ) at dn (13)
S

Introducing the following dimensionless quantities

X =

Sl Slx

t

y = (14)

]
~ <
~

M=

-~

K(M,ko,?—?,?—ﬁ) =12 K(M,‘#,x-g,y-n)
/
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1nto equation (13) gives

d 9 %
fe— + 1 — h +=—ho+ ...
(&-‘+ ko)"ol b - )

- ﬂ M, ko, k6,71 (B + B1p+. .. & (15)
5 bo bo

From equation {15) the form of the integral equation for the jth
mode of oscillaticn may be seen to be

(%_ . mo)nJ - é]‘ R, ko,%-T,7-7) Ly o af (16)

In the solution of equation (16), it is assumed that a function Lj may
be represented by a series of pressure modes of the form

Ly = Zz a,(,%)fm (17
n n

where the quantities a.gg) are arbitrary constants to be determined.

The indices n and m are associated with chordwise and spanwise pres-
sure modes, respectively. The form of the functions fppy is dictated

by krown leading- and trailing-edge conditions. In subsonic flow they
should satisfy the edge conditions pertinent to the Kutta condition. In
the existing procedure for solving the integral equation they have been
expressed (in terms of an angular chordwise variable 0) as

\
.| -2 D
= l' —-o- e
fan /| | bcot§
an
fim =0yl -1 Ee-sine ) (18)
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vhere, for example, for symmetric motion the index m is equal to
0, 2, 4, . . . und vhere the variasble 8 (see sketch which follows
eq. (12)) 15 related to ¢ by the expression

- b+t
f et _le b .5 0 (19)
2 bo

Toa + §
in which _t_e_é__l_e_

denotes the equation of the wing midchord.

If the series form of Ly given by equation (17) is substituted
into equation (16), a working form of the integral equation is obtained

as
i -1 ) = (J) K 2-t.v-n) 4t an
= + 1ko|hy anm frm K(M,kg,x-8,y-1) dt dn (20)

and may be seen to consist of a summation of definite surface integrals,
each weighted by an unknown constant ‘u,(,‘l) .

In order to determine the constants ay;, & collocation procedure

15 used. The right side of equation (20) is evaluated for as many
points x,y, designated as control points, as there are unknown
constants anpm and is equated to the known downwash angle at each con-

trol point. A set of simultaneous equations is thus obtained which may
be solved for the values of apy. Once determined, the constants apy

are used with equations (17) and (18) to define the pressure function Lj;
and Lj may then be employed in equation (8) to obtain the generalized
aerodynamic forces A:I.J‘ In the present application nine terms of the

series in equation (17) were used (so that n =0, 1, 2 and m = 0, 2, L),
and the downwash was satisfied at the nine control points shown in fig-
ure 1(a). As previously noted, a solution of the integral equation as
represented by equation (20) has recently been programed for the IEM type
T04k electronic data processing machine,

APPLICATION OF METHOD TO A DELTA WING

In order to show the application of the analytical treatment described
in the preceding section, a number of calculations have been made for a

-
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delta semispan wing with a leading-edge sweep angle of 45°, Primary
attention is directed toward a correlation of calculated results with
an experimental-flutter result. Other calculations are performed for
the configuration of the experiment to explore some effects of varying
Mach number and air density. In addition, some effects of varying mass
and natural frequencies and certain effects of nonorthogonality of the
neasured modes are examined.

Correlation of Calculations With Experiment

The experimental result used as a basis for the calculations has
been obtained by William T. Lauten, Jr., and Marvin F. Burgess at the
Langley Aeronautical Laboratory. Construction details of the 45° delta
senispan wing under consideration are shown in figure 2. The mass prop-
exrties of the model a~e shown as chordwise and spanwise distributions
of weight per unit area in figure 3. The mode shapes in the first four
natural modes of vibration were obtained by means of an optical method
and are shown in figure 4, Details of the methods used in obtaining
mass and mode shapes are described in appendix A.

Tvo models were involved in the experimental program. One, des-
ignated as model A, fluttered to destruction before its mode shapes and
mass distribution had been determined. These structural properties
were obtained by use of a second model, model B, which was built to the
same specifications and had very similar nodal patterns. As can be seen
in table I, model B was lighter than model A and had different natural
frequencies. In all flutter calculations the mode shapes for model B
were used, and in the calculations for model A the generalized masses
were adjusted by the ratio of the total masses of the models.

The flutter calculation of primary interest has been made for
model A, vhich fluttered as a cantilever at a Mach number of 0.85 with
an air density of 0.000787 sl s{cu ft. Results of this flutter cal-
culation are shown in table I;?a « Converged flutter-speed solutions
are obtained (as irdicated by the agreement of the first three- or four-
mode calculations) which are about 5 percent less than the experimental
value. Calculated results based on two two-mode subcases are included
in table II(a). The flutter speed calculated with modes 1 and 3 is
about 2 percent above the experimental flutter speed. It is noted that
modes 1 and 3 resemble, respectively, first-bending and first-torsion
modes of a bean.

Variations in Mach Number and Air Density

Results of converged flutter calculations at other values of Mach
number and air density for the configuration of the experimental flutter
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condition are given in table II(b) and are presented, in different forms,
in figures 5 and 6. Figure 5 illustrates the effect on Vg of varying

density, with Mach number held constant at 0.85. Results are shown in
terms of an air-density parameter 1//5. The effect of Mach number on
calculated flutter speed is shown in figure 6 for each of three values
of air densi . Results are presented in terms of a flutter-speed
coefficient \f/bow5. As can be seen, the flutter speeds calculated for

the present configuration appear to remain nearly constant for all Mach
numbers up to M = 0.95. The oorresponding calculated flutter frequencies,
on the other hand, tend to decrease with increasing Mach number, as may

be seen in table II(b).

Effects of Certain Structural Modifications

The effects of the differences in total mass and natural frequencies
between models A and B, noted in table I, were considered worthy of fur-
ther study. First, flutter calculations were performed for model B, and
the converged flutter speed was 10 percent less than that for model A.
(Compare case 1 of table II(c) with the four-mode result in table II(a).)
In an effort to separate the effect of the difference in total mass from
the effect of the difference in natural frequencies, additional flutter
calculations based on the generalized masses of model B and the natural
frequencies of model A were performed. The results, listed in table II(c)
(case 2), show that about three-fourths of this 10-percent difference in
flutter speed was due to the differences in the natural frequencies
between the two models. The remaining difference in flutter speed is
then attributed to the difference in total mass.

As can be seen in equation (9), the offdiagonal elements of the
flutter determinant contain no inertial-coupling terms. This is a con-
sequenct of the orthogonality condition for natural coupled modes, which
may be expressed as

My = ﬂm(x,y) hihy @S = 0 (1 £43) (21)
S

It is recalled that, in the present analysis, measured modes were
erployed. In order to investigate their orthogonality, values of Mj
were corpputed for model A by use of equation (21) and are listed in
table III. In order to determine the effects of the nonzero values

of Mjy, they were added to the appropriate elements of equation (9)

and two calculations were made for model A. First, the aerodynamic
terrs were eliminated and the natural frequencies were computed; results
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arz shown in table III and, with the exception of fh» are seen to differ

by a negligible amount from those in table I. In a second calculation the
change in flutter speed due to including the MiJ terms was determined;

the other parameters used were those of the four-mode solution of
table II(a). Results are listed as case 3 of table II(c) and show that
the converged flutter speed has been decreased by less than 1 percent.

CONCLUDING REMARKS

The development and the numerical application have been presented
of a method of flutter analysis which takes into account three-dimensional
structural and aerodynamic behavior. The flutter mode was approximated
by a series of natural-vibration modes, and the aerodynamic forces cor-
responding to these modes were derived from subsonic lifting-surface
theory, according to the kernel-function approach, for a finite wing
oscillating in compressible flow.

The application was made to a delta semispan wing with a leading-
edge sweep angle of 45° which fluttered at a Mach number of 0.85.
Results of flutter calculations show that when the first three or four
natural-vibration modes were included, converged solutions for the flutter
speed were obtained which were about 5 percent less than the experimental
value. Further application of the analysis was made to orient the experi-
mental flutter condition with theoretical flutter-speed boundaries for a
range of densities and Mach numbers including those of the experiment and
to study the effects of certain varlations in natural frequencies and
total mass.

langley Aeronautical laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 17, 1958.
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APPENDIX A
STRUCTURAL PROPERTIES OF DELTA-WING MODEL

The structural properties of the delta-wing model needed for the
flutter analysis that is presented and applied in this report consist
of the mass distribution and the natural modes of vibration, which are
represented in equations (3) and (8) as m(x,y) and hy, respectively.

This appendix provides a description of the methods used to determine
these properties for the delta-wing configuration considered in this
analysis.

Description of Model

Figure 2 shows pertinent details of the construction of the model.
This construction consisted of a 0.02-inch-thick sheet of aluminum alloy
located at the plane of symmetry with vertically laminated balsa glued
to each surface of the sheet. The balsa laminations were shaped to the
ordinates of an NACA 65A004 airfoil section, and the outside surface was
wrapped with layers of 0.00l-inch-thick aluminum foil. The wing tip was
rounded so that the semispan was 32.85 inches at a point 1.5 inches for-
ward of the trailing edge. The aerodynamic aspect ratio, with the assump-
tion of a straight or squared-off tip based on extensions of leading and
trailing edges to a common point, was 3.5L.

Two models were involved, both built to the same specifications.
One model, designated as model A, fluttered to destruction before all of
its properties were determined; the other model, model B, was used to
obtain the mass distribution and experimental natural-mode shapes for
these elements. Certain mechanical properties of both models are com-
pared in table I.

Mass Properties of Model

The mass properties of both models studied in this investigation
are based on the chordwise and spanwise distributions of weight per unit
area shown in figure 3. These distributions were calculated from the
equation

ve = 7a(tr + tp) + ety (A1)

vhere w, 1s the weight of the wing per unit area, 7, 1is the unit
veight of aluminum alloy, t; 1s the thickness of the aluminum insert,



NACA TN 43% 17

ty 1s the thickness of the aluminum fcil, tg 1s the thickness of the
laminated balsa, and 7B is the unit weight of laminated balsa. The
value of 78’ which was determined from the measured total weight of the

wing and the volume occupied by the balsa, was found to be 0.01007 1b/cu in.
By using this value together with = 0.100 1b/cu in. and the data given

in figure 2, equation (Al) can be written in the form

w,, = 0.100(0.020 + 0.002N) + o.01oo7[u82b - (0.02 + o.ooan)] (A2)

everyvhere on the wing except in the regions of the leading and trailing
edges which were covered by an additional layer of aluminum foil which

was l% inches wide on each surface. The consequent increase in weight

in these edge regions was accounted for in the equation

v, = 0.100(0.022 + 0.002N) + 0.01007[1+82b - (0.022 + o.oozu)] (A3)

In equations (A2) and (A3) N 1is the number of 0.00l-inch-thick
sheats of aluminum foil on each (top or bottom) surface of the wing, and
z 1is the ratio of one-half the local thickness to the local chord for

an NACA 654004 airfoil.

Optical Method of Measuring Natural-Vibration Modes

The natural-vibration modes were obtained from the results of shake
tests conducted at zero airspeed and involving the use of an electro-
dynamic shaker. The shaker was located near the wing root in order to
reduce as much as possible the effect of the shaker mass on the natural
modes. For each natural frequency found, the corresponding mode shape
up through the fourth mode was determined by application of an optical
method described in this section. This method involved the measurements
and numerical integration of local slopes in pitch and roll directions
at 24 stations distributed over the wing surface.

A schematic Aiagram of the apparatus used in this optical method is
shown in figure 7. Small mirrors that were l/l6'1nch square were glued
to the wing at six stations along rays at 25, 50, and 75 percent chord
and along the trailing edge as shown in the mirror lattice in the upper
left corner of the figure. Light aimed at the wing was reflected by the
mirrors onto a screen located a considerable distance from the model.
During vibration in a natural mode, images reflected from these mirrors
appeared as straight lines whose lengths and directions were marked on
the screen. These measured lengths and directions were resolved into
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local pitching and rclling slopes for small values of a and @ by
the relations .

\

¢}
q = Ex = é% cos V¥

( (Ak)

@~ g* = é% sin ¥
/

It should be noted that, although this relation is shown for an instan-
taneous position of the model from equilibrium, it also applies when &
corresponds to a double amplitude, as 1s the case during vibration. The
distance d 1in this application was 155 inches.

The local slopes in pitch and roll were obtained at six stations
along each of four rays at 25, 50, 75, and 100 percent chord. Deflec-
tlions along each ray were determined by numerically integrating spanwise
curves faired through the six values of @' along the ray. The vec-

tors &, &', ¢, and @' 1ndicated in the lower left corner of fig-
ure T represent angular displacements a, a', @, and @', respectively,
according to the right-hand vector rule, and from this vector relationship

»

a =a' cos A. + @' sin A,
(A5) i
¢ = -a' sin AL + §' cos A,
from which
g' =@ cos A, + a sin A, (A6)

Thus, for the ith natural mode, after substitution of equation (A4) into
equation (A6),

(1)
¢ =g (L) - S sin(v(sir) + Ar) (1=1,2,34)  (AD)

where the subscripts s and r identify a point on the mirror lattice
as indicated in the upper left corner of figure 7. Values of ¢'§:)

determined from this equaticn are given in table IV. For modes higher
than the first mode, the sign of the angle vgi) + Ar was governed by

the observed node locations on the rays rather than by the actual numer-
ical value of this angle. .
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These slopes were in turn used to determine the deflections by
numerically integrating spanwise curves faired through the six values
of @' along each ray. A check of the data disclosed that, for any
roint on a particular ray, the deflection obtained in this manner was
in very close agreement with the deflection obtained by integrating @'
along the trailing edge to the spanwise position of the point and then
by integrating the curve faired through four chordwise values of Qgi)
forward of the tralling edge to the point itself. On the basis of this
check, the normalized deflection curves shown in figure 4 for the first
four modes have been adjusted to be compatible with the measured values

1) given in table V.

(
of Qe

The integration of @' along a ray was performed by means of the
direct-summation method illustrated in reference 4 with the use of 10
equally spaced stations for the first mode, 15 to 17 stations for the
second mode, 11 to 14 stations for the third mode, and 18 and 19 sta-
tions for the fourth mode.

The nodes shown in figures 4(b), 4(c), and 4(d) trace out very
nearly the same paths observed on model A, particularly in the outboard
region of the wing plan form. Because this similarity is a good, though
not complete, indication of mode-shape similarity between the two models,
the mode shapes used to calculate the generalized masses of model A were
assumed to be the same as those measured for model B.
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APPENDIX B

EVALUATION OF ELEMENTS OF DETERMINANTAL FLUTTER EQUATIOM

AND APPLICATICN TO A SPECIFIC CONFIGURATION

Evaluation of Generalized Aerodynamic Force

In order to evaluate the generalized aerodynamic force Ai 3

(eq. (8)), use is made of the dimensionless variables introduced by equa-
tion (14) and the pressure function L‘j given by equations (17) to (19)

to write equation (8) as
1 An {————2
= - v g -2
AiJ fofo hil yE:ote(aoo+ya02+...+

2
sin O(alo-t-yala«i— . . .)+

- -
Il;sinee(aao+ya22+...)+...]sinﬂdedy (B1)

In the evaluation of this equation, the following definitions are useful:

)

- 9 =
FO(G) = cot 5 sin @ = 1 + cos 8
Fl(e) = Sinae
Fo(8) = Il: sin 20 sin 6 f (2)
1l x
< 2 -
If;)zf f yvjl -¥ F (o) hy @0 dy
0 Jvo J
Equation (Bl) may be written in terms of the integral I(i) as the

nm
sumation

Ayy = Zz Ir(ui) ar(‘i) (B3)
n m
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or, as the matrix product

L(()gﬂ

N T DY TR B | S
()
Sy

Numerical integrating techniques can be applied to evaluate the
surface integrals I,, in the row matrix of equation (B4). (It is

noted in this connection that the use of the angular coordinate 6 in
the chordwise integration is particularly convenient for this applica-
tion. For example, when represented in Cartesian coordinates, the first

term in the integrand of Ig) is infinite at the wing leading edge;
when expressed in polar coordinates, the product cot % sin 6 1is a non-

singular function.) A number of spanwise stations may be chosen at
¥ = §, with appropriate spanwise integrating factors I . Similarly,

at each spanwise station, a number of chordwise stations are selected at
© = 6, with appropriate chordwise integrating factors I,; s and c

thus’ identify stations on an integrating lattice such as that shown in
figure 1(b).

A matrix product of chordwise terms may be formed as

_9-0

n
¢ I Fo(8y) I Fol®2) ..

O X0 A I I

L -

and a matrix product of spanwise terms may be formed as

- 0
-
[
-
L ]
<
[
)
[
<9
[
-
[}
<
-
O
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The normalized displacements hy at the integrating stations may be
arranged in a rectangular matrix of the form

h(07,)  hy(0pF2) - - - hy(81.7,)
hi(ea)yl) : : ’

i[;ij ) i
ni(e ,il)

Eqations (B5) to (B7) may be used to obtain the surface integrals I(i)

of equation (B2) from the matrix product

[ (1)] [e] [hi] [Y] (B8)

The elements of the rectangular matrix on the left side of equation (B8)
may then be rearranged as the row matrix L(i)J of equation (B4) and be
used with the values of the constants (J) to obtain the generalized

aerodynamic force Ayj. Equation (Bk4) may, of course, be expanded for
any number of modes into

Aln A2 A1y : o i
(1) W] (1) (J)
A?_l . . . Iw e s e Inm Bw “ e e aoo
: -1 : N : .| (89
(1) . . a(l) .
A1 L°° L™ §
L i
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Evaluation of Generalized Mass

The generalized mass Mi is expressed as a surface integral by

equation (3) and may be evaluated by use of the same matrices of inte-
grating factors and displacements employed in evaluating the generalized
aerodynamic forces Aij' For this purpose, equation (3) may be written

in terms of the variables defined by equations (14) and (19) as

1l ~x 2 b _
J0O YO 0
or, as a sumation which involves the integrating factors I; and I,
used with AiJ' in the form
M, = byl Z Ty 52 Lo m(0, ,¥s) by (Oc,ys)sin 0 (B11)
s ¢

or ir ‘'2.ms of a matrix product as
.- b c= ¢
- ], 2 =\l
= s
M = bolz I, 35|.m(ec,ys) I, sin ecJ {hi (Gc,ys)} (B12)
s
‘The column matrix {hié}’ which pertains to a particular spanwise sta-

tion, may be obtained by squaring the elements in the correspcnding
column in the matrix [hi] (eq. (B7)). The inertial-coupling term MiJ

(eq. (21)) is found by replacing the matrix {Pia(ec’ys)} in equa=~
tion (Bl2) with a matrix of crossproducts {hth} for 1 # J.

Application of Method to a Specific Configuration

In the application to a specific configuration of the integrating
procedures discussed in the previous section, either equal or unequal
intervals in a given variable may be taken. With equal intervals,
appropriate integrating factors are readily available; when unequal
intervals are employed, corresponding integrating factors must be devel-
oped. Useful procedures relating to numerical integration are presented
in reference 5.
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In the present application to the flutter of a delta wing, 10 equal
intervals in the chordwise variable © and 8 equal intervals in the
spanwise varisble ¥y were used. The integration stations are shown in

figure 1(b). Chordwise integrating factors I, employed are based on a

rule employing overlapping quintic functions derived in reference &.
Spanwise integrating factors I, were based on a rule which employs

overlapping quartic functions. Data pertinent to the evaluation of the

factors I, and I; are given in table VI.

Normalized mode shapes hy; employed in obtaining both generalized
force AiJ and generalized mass Mi were obtained from the plots of

figure 4. The normnlizing station for each mode was arbitrarily located
on the midchord at y = 0.875. Values of mass per unit area m(ec,yg)

for use in determining M; were obtained from the weight distribution
shown in figure 3. The components g;# and hJ of the downwash angle

employed as a boundary condition in equation (20) are listed in table VII
for the control points shown in figure 1(a).
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TABLE 1

CERTAIN MECHANICAL PROPERTIES

NACA TN 4395

OF DELTA-WING MODELS

Item Model A Model B
Aspect ratio (squared-off tip) . . - 3.54 3.54
Airfoil section . . . . . . . . . . + | NACA 65A004|NACA 65A004
Ar’ deg:
leading edge . . « + ¢ + 4 4 e e e 00w L5 45
25 percent chord (r = 1) e e e e e 36.83 36.83
50 percent chord (r = 2) . 26.58 26.58
75 percent chord (r = 3) . 14,03 14.03
Trailing edge (r = 4) . . . . . . 0 0
R Ce e . 1.458 1.458
T .. 2.7%9 2.739
Total mass of wing, 1b-sec2/ft .. 0.1789 0.164k4
Natural frequencies, cps:
First mode . . . . . . . 21 21
Second mode . e e e e e e 58 52.5
Third mode . e e e e e 81 7
Fourth mode . . . . . .. 115 107
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TABLE 1I
RESULTS OF FLUTTER ARALYSIS AND CORRELATION WITH EXPERIMENT

(a) Correlation of theory and experiment for model A
(M = 0.85; p = 0.000787 slugs/cu ft)

Modes used Ver e, kg
b
in analysis £ps cps ’

1, 2 2,405 7%.5 { 0.280
93 41.5|1 .403
4o.0| .415
1, 2, 5, &4 876.5] 39.8] .46

Experiment . . . . « ¢ s 0 s s s o o] wmmemecece= 924 37.9]0.37

(o) Results of converged flutter calculations at other Mach numbers and densities
(Four modes used in analysis)

(o] V, ff: [*] vf) fr: k
M 811)587(!“ ft f{)g cps ko)f M slugs;cu 't pr cps 0’ by

.001267 T20 .2 511 . 9 . .
0.85 .0021 618 | u2.5 .630 7 0.000787 920 | k6.0 .bs8

.00326 554 | 3.9 .T26 9 928 | 38.0 375
0 1,129 | 53.0 0-‘):53 0 N 735 54-2 0-275
A . 1,133 | 51.2 RSt . 1 | 52. .650
T 0.000504 1,13 | k5.5 .367 K 0.001267 ™2 | 16.8 570
.95 1,073 36.9 .315 .95 792 42.2 .488

(c) Effects of structural modifications
(M = 0.85; p = 0.000T87 slugs/cu ft)

Results of converged
M solutions
Case Model 1)
(1 #13) v t

1’ £ kot

fps cps ’
1 B 0 197 38.2 0.439
2 (a) 0 857 k0.0 428
3 A Nonzero 872 39.0 .410

l'l'he model combined the generalized masses of model B and
the natural frequencies of model A.
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TABLE III

NACA TN 4395

GENERALIZED MASSES AND CORRESPONDING CALCUIATED NATURAL

FREQUENCIES COMPUTED FROM EQUATION (21) FOR MODEL A

MiJ’ slugs, for values of J of - £,
' 1 2 3 " cps
1 | 0.010376 -0.0015128 | 0.0034925 -0.026760 20.95
2 | -.0015128 0159856 | -.0139947 - . 0645656 57.2
3 .0034925 ~.0139947 | 1.243043 - .O4T1072 81.6
b | -.026760 -.0645656 | -.0471072 2.897119 125.7
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TABLE IV

MEASURED SLOPES ¢'$) OF NATURAL-VIBRATION MODE SHAPES

CALCUIATED BY MEANS OF EQUATION (A"{)a

Semispan r=1 r=2 r =3 r =i

1 | s |station, | (25 percent | (50 percent | (75 percent | (trailing
percent chord) chord) chord) edge)
1 20 0.280 0.727 1.096 1.350
2 35 1.048 1.570 1.870 2.550
112 50 2.298 2.964 3.410 4,080
N 65 L.001 4.495 4.927 5.284
5 80 5.842 6.373 6.755 6.79%4
6 90 7.707 T.937 7.916 7.621
1 20 -0.658 -0.786 <1.243 -1.873
2 35 -1.150 -1.208 -1.526 1.77T7
5|3 50 -.993 -.605 -.175 481
L - 65 .992 1.888 2.868 k.012
5 80 6.029 7.245 8.683 10.046
6 90 11.938 12.558 12.978 12.915
1 20 0.891 0.659 -0.968 -3.355
2 35 1.037 .065 -1.262 -3.117
3 50 .783 -.205 -1.055 -1.207
31k 65 -.1195 -.259 -.116 1.217
5 80 -.622 125 1.539 3.636
6 90 ~.4505 1.012 2.854 4.987
1 20 0.436 0.455 0.667 1.538
2 35 303 .239 .243 -.356
L |2 50 -.591 -.987 -1.492 -3.022
N 65 -1.83%0 -1.720 -1.877 -2.200
5 80 373 1.486 3.017 L.788
6 90 7.963 9.029 9.196 8.772

a
Each slope may be obtained by multiplying
value in the table by 0.003225.

the corresponding

29
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TABLE V

a
MEASURED SLOPES IN PITCH “‘i(.-,:.) OF NATURAL-VIBRATION-MODE SHAPES

Semispan r=1 r=2 r=23 r=4
1 | s | station, | (25 percent | (50 percent | (75 percent | (trailing

percent chorad) chord) chord) edge)

1 20 0.106% 0.204 0.0968 -0.166
2| 3 572 540 8L .04l5

3 50 1.19 1.16 .854 .610

1l 65 2.015 1.83 1.655 1.416

5 80 2.735 2.69 2.62 2.47

6 90 3.61 3.355 3.34 3.315

1 20 -0.205 -0.221 -0.1Th -0.164

2 35 -. 446 -.2895 -.473 -.T55

3 50 .1208 -.0836 -.348 -1.13
21 65 1.02 .931 499 -.2455

5 80 3,54 3.01 2.98 2.32

6 -90 6.18 5.80 5.59 5.49

1 20 -0.07h -1.29 -1.295 -1.78

2 25 -.556 -1.713 -3.05 4.1k

5|3 50 -2.015 -3.495 -5.05 -6.50

4 65 -4.19 -5.26 -6.65 -T.69

5 80 -6.26 -6.94 -7.70 -8.15

6 90 =7.55 -7.58 -7.85 -7.98

1 20 -0.172 0.067 . 0.3% 0.835

2 35 .028 .08l 483 1.426

3 50 -4l -.301 .082 479

1y 65 791 -.483 - Th3 -1.270

5 80 . 790 .T67 3T -.461

6 90 4.515 4.172 3.640 2.937

aEach slope may be obtained by multiplying the corresponding
value in the table by 0.003225.
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08

-l

SV

25% 75 %
chord chord

(a) Control points.

x = by-b(l + cos 8)

(b) Numerical integration.

Figure 1.- Lattices used in evaluation of elements of flutter determi-
nant for 45° delta semispan wing.
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018
<4016
<1014
4012
41010

o
ib/sqin.
-1.008
: -1.006
Lominated boisa
(01007 Ibku in)
-1.004
Rounded tip
y=1.00
—
Aluminum alloy 002
{100 W/cuin)
1 1 i 1 A
-20 -6 -2 -8 -4 0
b
&0

(a) Chordwise distribution.

Figure 3.- Weight distributions of model.
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(v) Spanwise distribution.

Figure 3.~ Concluded.
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4 Experiment
O Theory

1,200+

1000}

800}

fps
600}

200}

l
0 10

Of=— Stondord sec -level density

% %o

5

Figure 5.- Effect of density on calculated flutter speed for a Mach num-
ber of 0.85.

By wy ' Py SESAU 1t bl
@ 0000787  Experiment
O ooorer
8 ooIze? } Theory
| O oo0eos) , . L
0 2 4 M 6 8 10

Figure 6.- Effect of Mach number on calculated flutter speed for various
densities.
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