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7E EXPONENTIAL DISTRIBUTION AND ITS ROLE IN LIFE U.SSTING

by

Benjamin Epstein

Wayne State and Stanford Universities

1 . Introduction

Many current results in life testing are based on the assuption

that the life X is described by a probability density function f(x;G)

of the form

(1.) f~x;G) e xpe (-x/0@) , x > 0 , 9 >0

In (I), x is life measured in appropriate units (for example, hours) and

Co()E(X) ~ xf(x;G) dx x ~exp (-xzIG) dx -

is the mean life expressed in appropriate units. There- is evidence bhat

the lives ot electron tubes or the time intervals between successive

breakdowns of electronic systems are- to a first approximation, random

variables having the density (1).

A partial Justification for the assumption of an exponential p~d.f.

has been discussed in some detail in a paper by the author [12, 13] and

by' D. J. Davis [7] and several relevant references may be found in these

papers. Further evidence of an cmpirical nature can be found in a recent

series of ARIZIC Monographs [1]. We are well aware of the fact that ny

life dietributions are not adequately described by equation (1). While

this may be the case, an understanding of the theory in the exponential

--- --- ---
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case is essential if. e are to treat more general situations.

As we write these wordsp some six years have elapsed since we started

research on statistical methods in life testing. At the begin-ing some

besic questions arose as to where to distribute our efforts since there

were many avenues open for research activity. The exponential distribution

was chosen only after considerable discussion with people in the field of

electronics and after a study of the literature existing and available at

that time. In retrospect the choice of the exponential distribution Vas

a good one. It seems as if the exponential distribution plays a role in

life testing analogous to that of the normal distribution in other areas

of statistics. It is our feeling that in many cases there is at least as

much justification for using the exponetial distribution in life test

situations as to use the normal distribution, for example, in developing

sampliag plans by variables.

An important by-product of the assumption of the exponential distribution

of life is that it makes it possible to apply the well developed theory of

Poisson processes. Furthermore, one can by almost trivial changes generalize

all the results to the case here the conditional rate of failure is sowe

function of tme,, Z(t) , rather than a constant as in the exponential

case. The theory thus extended has -alidity over a wide area incluing most

cases of practical interest.

2. Pbisson EProcesses and E!)~nitlMdels

We now consider in some detail vhy one might expect the exsocmtinL

distribution to occur and hat Lulications the assumption of an exponential

For a detailed treatnent of Poisson processes and exponential distributions
see Feller [I] 6
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distribution carries ith it. In additLon we w ll mention why one might

expect certain other distributions to also occur in life test situ'ationso

One often refers to the exponential distribution as correspouing to

a purely random failure pattern. Precisely vhat one means -rathematicall.y

is thiat whatever is causing the failure occurs according to a Poisso=

process with some rate, X. For example, if we imagine that a failure

occurs whenever a Geiger counter is actuated by a radioactive source havino

an emission rate, )X, then the distribution of time intervals between successive

failures will be given by the p.d.f. Xe-x t * X > 0 , t > 0 This is very

easy to prove. Let T be the randoim variable associated vith the tizae

interval between successive events, then

(3) Pr(T > t) a Pr [no event occurs in the interal (O,t)] , where t -s 0

is the time %hen the most recent event occurred.

From the Poisson assvx.~tion,

(4) P (T > t) - e ")

Thus

() Pr(T < t) I - e-

and the p.dof. is Given by

(6) f(t) . xe"  , >0, t >0

The question naturally arises as to whether this rather artificial

model has any relevance to a real life rituation. The answer is that

it may uuder the following sort of conditions: lmagine a situation where
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a device under test is being subjected to an environment E which is

some sort of random process. Let us imagine that this readom process has

peaks ditributtd in a -iasson manner and that it is only these peaks that

can affect %he device. in the sense that the device will fail if a peak

occurs and will not fall otherwise. If this is 'the sitivatioin and if

peaks in the stochastic process describing the environmeat occur with

Poisson rate, X , then the failure distribution for the devices under test

,ill be given by the p.d.f. (6). it is interestinS to note that while we

call (6) a failure distribution it describes, in reality, the frequdency of

severe shockts In the eavironment. 'Tiv is precisely what (6) means in the

all or none situation, where the device fails if and only if a peak occurs

and not otherwise.

It is not necessary, in the prcediLng discussion, that we have an

all or none situation in order that the exponential distribution arise.

Suppose, as before, that peaks in the stochastic process occur with rate .

and that the conditional probability that the device fails given that a

peak has ocaurred is p . Then it is clear that the event: "device does

not fail in time t " is copsed of the mutually exclusive events, "no

peak occurs in (Ot) ", "one peak occurs and device does not fail given

this peak," "two peaks occur and device does not fail given these two peaks,"

etc. Symbolicclly we have

(7) r(T > t) = e "Xt + q(xt)e " t

2 jj~t)2  k
e 21-'" t + +..', +

=e ')t+Xqt .f -X(l-q)t = ',pt



Thus

( )Pr(T < t) 1 - e 'kPt

and

(9) f(t) = %P-%Pt I t >o 0

Again we have an exponential distribution. It is intexesting to note that

the exponent %p (vhich is the mean time betineer failitres) reflects the

simplest kid of interaction between the device being tested and Its

envirow:nt. If 'e had two kinds of devices D an D2  each subjected

to the same environment E , end if pl is the conditional probability

that D, will fail given that a peak in E has occurred, and p2  is

the conditional probabUlity that D2 will fail given that a peak in E occurs,

then the nieen time between failures is given by kn. and Xp2 respectively.

If ?,9 < xp2 then one ceu say that in environment E , the device D,

is stronger than the device D2 .

Carrying these ideas further, suppose that an item is exposed aiwltaneously

to k environments E1 2 B2  .. ,' Ek - Suppose that the environent Ei

is choxacterized by a -mte i (the frequency with which dangerous peaks

occur in environment Ei ) and that the conditional probability thvat the

device fails given that a peak has occured is Pi " From (7) it follows that

the probability that a device survives envirorment E4  for a length of

time t ic aiven by e-%i Pit• Let us aasue that the environments are

described by stochastic processes which operate independently of one

another, then frm (7) and the assovption of independence, the time T
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until a failure occurs (or the time between failures) is a random variable

such that 4-( xipi)t
(10) Pr(T>t)= I1i = e

i~1

s

DefininS A % xpip (10) becomes

(1) -(T > t) o e-At

and consequently

(12) Pr(T < t) 1-e- At t>0

Thus we again have an exponential distribution.

In the situation described by the distribution function (8) and

density function (9), p, the conditional probability that a failure

occurs given that a peak has occurred, is independent of t . Let us

now as mxe that given that a peak occurs, the conditional probability

that a failure occurs is siven by p(t) . It is easy to show in this

case that t

(13) r(T > t) = e

and so

(ii ) Pr(T < t) i _e

and



f1) (t). X(t)e = p(t)e'XIP~t), t 0

vhere

(16) 11(t) itpdT

Mliustrations

1. Inparticular sv se that p(i) 0O, O < <A sad p() l ,T >A

then

Pr(T <t) - 0, t <A

ad

Pr(T < t) - 1 -(t-A) 0 t > A

and

f(t) 0 , t <A

and

f(t) = ke ( t A ) , t >A

This is known as the two pxamter exponeatial.

2. AMother example is of the follov gz kind:

( 0 < t o

. i > to
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In this case

%t a+l) ~

Pr(T<t)=l-e , 0 <t<t o

-%(t- -2

1l-e a 0 t > t 0

Remark: In the range, 0 < t < to , Pr(T < t) is of the form frequently

called a Weibull distribution.

A generalization in still another direction is to assume that devices

are exposed to a variety of environments. For example, we could imagine

a situation where devices are exposed to k possible environments

El, E2,..o, E which can occur with respective probabilities
Itk

C1 , c2 P... Ck(cj >0 , - 1). Furthermore, with each environment
3=i1

E there is associated a Xj (the rate at which dangerous peaks oceur in

environment E ) and within the environment E, , the conditional probability

that a device fails given that a peak occurs is p J. It then follows quite

readily that the probability of surviving for a length of time t is given by

k -X p t

Pr(T >t) a je 3
(17) (> ) -ce.

The associated density function is described by

k j P t k -v tr
(18) f(t) Z- c XC Ve

where

V3 P



Thus we are led to a description of the density of failure times

as a sum of exponentials. A continuous anolcgue of (18) is

(19) f~t) %o -vt G(. ,)

It is- interesting to see what happens in the special case for which

vr r+le-Av

(20) N U(v) vv e 0 < V < o.

Equation (19) then becomes

(21) f(t) 1  vr + Ar +1 e-V (A+t) dV
r!

It is readily verified that f(t) becomes

(22) f(t) (r l) t > 0
(A-t)r+2 ',

Remark: It is interesting to note that in the special case where A r+i ,

f(t) becomes an F(2, 2r + 2) distribution.

Thus, the assumption that failure is aesociated in an essential way

with the occurrence of peaks in a Poisson process has led us to a number of

quite interesting life distributions.

3o Model Based on Conditional Probability of Failure

Let us now proceed in a different direction and cee where this leads

us. It is well-known that if the underlying distribution of life T is

F-



4o, -10-

described by the exponential p.d.f. f(t;O) = e then the conditional

probability of an item failing in the time interval (tt + At) given

that it has survived for time t , is independent of t • This is readily

verified since

(23) Pr(t < T < t + 4tIT > t) f(t;G),ft / -r(t;G)

1 e-tiO At/e-tl'9 = 4t/O
9

Genera-ly speaking the conditional rate of failure or hazard rate, g(t) ,

where

(24) g(t) - f(t)/-F(t)

does depend on t . We are interested in solving for f(t) and F(t), given

the failure rate, g(t). This is readily done since (24) inplies that

(25) d[Ia(l-F(t)] = -g(t)

and therefore, recalling that F(O) = 0
t

(26) F(t)=1- e g(r)d- i - (t)t>O

ohere G(t) f gS()d7 • The density function f(t) is obtained by

differentiation and is
-ft ()dT

(27) f(t) g(t) e 0 t > o



Illustrat-lons

1

__pe . Suppose that g(t) , t > 0 , then

(26) becomes F (t) 0 t < 0

1, > >0

and(27) becomes fq(t) = e 0 t >0 ,

= 0 , elsewhere.

This is the exponential diZstribution.

2. Suppose that g(t) =0 for 0<t <A

1 for t>A.

In this case we get the two-parameter exponenti4! distribution ;where

(26) becomes F(t) =' , t <A

=I-e t>A

and(27) becomes f(t) =0, t < A

t-A
- e ,t>A

ktk'l

E z 3. Suppose that g(t) = v- vhere k > 0. In this case,

(26) becomes F,(t)= 0 ,t <0

.- ()k
= -e , t>0
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and ktk (t)k
(27) becomes f (t) h : e , t > 0

0 @

0 , elsewhere.

Remark: This distribution is often called the Weibull distribution. Note that

the conditional rate of failure g(t) is

decreasing if 0 < k < I

constant if k a 1

increasing if k > 1

Easple 4: Suppose that g(t) =c4e~ t . In this case, G(t) a(e t-1)

Thus

(26) becomes

F(t) = t < o

= " ( e t l  t > 0

and (27) becomes

f(t) - 4e t e a(e t 1 )  t > 0

Remark: Th13 kind of distribution occurs in extreme value theory [163.

It should be noted that there is a great deal of similarity between

formulae (i4) and (26). Actually, these two models have a great deal in

con, the difference being, only that in one model we make specific

assutions regarding an underlying Poisson process which generates dangerous

peaks, wa4reas in the second model the conditional rate of failure function,

g(t) , is made central to the discussion. g(t) depends on the environment,
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on the items under test, and on the interaction of items, being tested and

the environment. If we try to make explicit the dependence of g(t)

on the environment, Twe will be led back, essentially, to the first model.

It is also interesting to note that we are led to distributions which are in a

sense rather direct generalizations of the simple exponential distribution.

This is very important because this makes it possible to change the time

scale in such a way that all theoretical results obtained under a purely

exponential hypothesis are valid for the more general situation. Thus, in

the second model, if t represents the time to failure, then

u = Q) - f t g()dv is distributed with c.d.f. I - e u , > 0 , and

-with pod.f. e u . u > 0 . As a conseqjuence of this, many of the theorems,

tests, estimation procedures, formulae, etc., become valid in a much more

general situation if one replaces failure times t by generalized times,

ui ?CG(t i )o

Another interesting feature of the models is that they lead to all kinds

of useful distributions, some of which arise in other connections. As examples

we mention the so-called Weibull distributions =4d extreme value distributions.

4. Two Other Failure Models

We now consider briefly two other models. In the first of these, let

us assume that a device subject to an environment E will fail when exactly

k > 1 shocks occur and not before. If shocks occur at a Poisson rte

) then the waiting time Tk (or life) until the item fails is described by

the p.d.f.
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(28) fk(t) ,  Y tk- p-tl(1 4 )! , t >0
0 , elsewhere

and by the c.d.f.

(29) Fk(t) Ir(Tk < t) t t )j

The derivations of (28) and (29) are simple. Thus to get fk(t) we

note that

(30) Pr(t < Tk < t +; At) = Pr[exactly (k-i) shocks in (O,t) and

1 shock in (tt + 4t)]

=Xt k-1

S (t) tke t(k-l). , t > 0

To derive Fk(t) we note that

(31) Pr(Tk > t) Pr[k-I or fewer failures in (O,t)]

k-1

- "- e't~t)JIJ-

Therefore,

(32) Fk(t) - Pr(Tk < t) 1 1 - Pr(Tk > t)

k-1 3-a

-Z e _t_/!

J=O2



For the special case where k - 1 , (28) and (29) become (6) and (7),

respectively.

It is quite clear that formulae (8), (9), (10), (11), (14), (15), ard

(19) can all be suitably generalized to the case where the life time is

given by Tk and not by TI  . Thus, for example, the analogues of (14)

and (15) become
k-1 co(33) Pr(Tk ,_ t) 1 - e'P(t)[xP(t)] 3 /, eXPt)[P(t)]J/J, .

jW0 3=k

and

(34) fk(t) = [(t)]k-1 e-XP(t) *i(t)/(k-l).

In essence, one can say that this simple model gives rise to the type III

distribution and its generalizations.

We have seen in our earlier models that under certain assumptions one

gets the Weibull and extreme value distributions as possible life distributions.

We should now like to examine the relevance of an extreme value model. It is

our feeling that vhat we are saying applies to failure problems involving

corrosion. Suppose, for example, that corrosion is essentially a pitting

phenomenon and that failure is associated with perforation at the deepest

pit. The time to failure may then be viewed as follows: let t i be the time

required to perforate the material at the i t h pit. Then the time to failure

is min ftj . If the pit depths follow an exponential distribution, and if

we assume that time to porforation at a pit is linearly dependent on the

thickness of the coating minus the pit depth, then extreme value theory would



lead one to expect a life time distribution of the form A et e Aet[2,8).

For further details on extreme values in this connection one should see

papers by Epstein [9,310], Epstein and Brooks lii], and Gumbel [15,16].

Remark 1: There have recently appeared results in the literature that

failures of complex mechanisms tend to be exponentielly distributed. This

has a theoretical justification since the times between failures of the

complex mechanism (we are assuming that it is repaired after it breaks down

and put back Into service) result from a superposition of the failure

patterns of the parts making up the mechanism. It has been shown by

D. Re Cox and Wo L. Smith [5,6] that t: a good approximation this kind

of superposition gives rise to an exponential distribution of times between

successive breakdowns.

Remark 2: It will be noted in the foregoing that none of the failure models

led to a normal or logarithmic normal distribution of life. How, then, does

one explain the fact that some observed life time distributions appear to be

normal or logarithmic-normal? It seems to us that in our considerations we

have assumed that in one way or another sudden shocks in the environment were

important. If this is the case, then one must be led to the ec-tial

distribution or suitable generalizations of it. But if failure is caused by

a wear-out mechanism or is a consequence of accumulated wear, then we assert

that the normal distribution caa be expected. Thus, if an accumulation of k

failures is required for failure, we have been led to a type III distribution

which will tend to normality for k large.
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Another possibility is that failure occurs after an essential substance

has been used up. In this case. the time to failure might be proportional

to the amount of this substance in the particular specimens being tested. If

the amount of the substance varies from speciueh to specimen according to

a normal distribution, then one. would get a normal distribution of life

times

What about logarithmic normal distributions? It seems to us that such a

distribution can arise in either c two ways:

(i) as an approximate fit to sihewed distributions like the Weibu2ll or

type III$ or

(ii) if failure depends on using up some critical substance, the amount

of which varies according to a logarithmic normal distribution from specimen

to specimen.

It may be noted that the logarithmic normal distribution of lives seems to

occur particularly in some biological problems. Whether this results in

accordance with (i) or (ii) is generally not clear.

Remark 3: It is interesting to note that the failure distribution given

by (34) is almost identical with the oue given by Z.W. Birnbaum and

S. S. Saunders [3] in their recent paper in which they give P statistical

model for life-length of structures under dynamic loading (i.e., fatigue).

One difference is that they make the conditional rate of failure function

central to their discussion while we make more explicit use of the underlying

Poisson process generating dangerous peaks. The other difference is that

they-are dealing With a multi-coponent structure, which initially hac



components. They assume further that, in the course of time, one component

after another fail and that there is a critical number of failures k <m 

such that the entire structure fails when k of its components fail. qte

analogue of their Assumption B. if one uses the Poisson model, is the following:

if a peak in the stochastic process (the peaks are assumed to occur &t rate X)

occurs at tini . t and if J ot the components in the structure have failed

prior to time t , then each of the remaining (m-J) components has a

conditional probability of failure given by p(t)/(m-j) . It is then very

easy to show that the p.d.f. of Sk , the life of structure, is given by (34)

and further that 2% 1 f0 p( )dx is distribrbed as X)'(2k) . This is an

anialogue of the theorem given on p. 154 of [3].

Remark 4: We have shown in this paper that a possible theory of failure is

based on the Poisson process. A generalization of Poisson processes is given

by "birth and death" processes. It has recently been shown in a note by

WeiSs [17] that some kinds of mechanical failure, such as creep failure of

oriented polymeric filaments under tensile stresses, (see Coleman [4]) can

be viewed as "pure death" processes. Essentially the theory assumes that

there are initially N0 fibers, each of which, indepenlent of the other

fibers, is subject to failure under load. Failure occurs when all the fibers

have falled. Two special cases are considered:

(i) the probability of a single fiber failing in the time interval (t, t +,&t)

is given by T (t)4t ;
(ii) the probability of a single fiber failing in (t, t +4 t) when n(< N0)

NO
fibers are left is &Cven by $-(t) At.

Apure death" process where the probability of a fiber failing is

given .by (i) results in the following life destribution:
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(35) Pr(T < t) = Pr(O fibers survive time t)

'[- ft ((1dv N0
0]

The p.dof. of T is given byt2 t
(36) f(t) = No)L((t) e [i-e

In the special case where '(-) , r > 0 ,then (35.) becomes

(350) Pr(T< t) = [I-e-xt] 0

and (36) becomes

-~ -~tN 0 -1
(36) f(t) = 10Xe (t[l-e 0

ihurthezre

log M
(37) E).(T) = X (1 + + 0

A "pure death" process where the probability of a fiber failing is

given by (ii) results in the life distribution:

(38) Pr(T < t) Pr(O fibers survive time t)

Th1 p; f o N*( v)dr

I e

The p.d.f. of T is given by
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(39) f~t) t .o()]No' 1 N°-t(-)dT

(39) f(t) No -f(()dr] 0 e N d No*(t)/(No-l).

In particular if'(') k , • >0 , then (38) and (39) become

(38' Pr(T < t) 1 - e oXt (N.t)%/j'

and

(39') f(t) e N -o(No"j)N"1 "4 o-t/('No-l)!

Further

(40) E,(T)

It should be noted that assumption (il.) in the Weiss model is essentially

the same as assumption B in the Birnbaum - Saunders paper and hence the

p.d.f.'s of life which result must agree. It should also be noted 'that

(36)is the p.d.f. of the largest ue. sale of size No drawn

from a distribution with c.df. i - e , while (39) is a Type III

distribution.
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