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THE EXPONENTIAL ﬁISTRIBU‘I‘ION AXD ITS ROLE IN LIFE TESTING
by
Benjexin Epstein

Wayne State and Stanford Universities

1. Introduction
Many current resulis in life testing are baced on the essusption
thet the life X is described by a probebility density function f£{x;6)

of the form °
(1) £(x;0) = -]é exp («x/6) , x>0 , >0 .

In (1), x 18 life measured in oppropriate units (for example, hours) and

0

(2) E(X) = j xf(x30) dx = r X exp (~x/6) ax = ©
[+

o 2

is the meen life exprt_ass'ed in appropriate units_. There is evidence that
the lives of electrom tubes or the time intervals between successive
breakdowns of electronic systems are, to & Iirst approximation, random
varicbles having the density (1.).

A partiel JustiZication for the asaumptioz; of an exponential p.d.f.
has been discussed in some detail in o paper by ‘the suthor [12, 13] and
by D. J. Davis [7] and several relevant references may be found in these
papers. Further e“vidénce of an empirical neture can be found in & recent
series of ARINC monogrephs [1]. We are well aware of the fact that many
life dictridbutions are not adequately descrided by equation (1). While

this may be the case, an understanding of the theory in the exponential
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" case is essentlal if.ve are to treat more general situations.

As we write these words, some six years have elapsed since we started
research on s‘oatiﬁticni methods in 1ife testing. At the beginning scze
besic guestions arcse ags to where to di.stri‘bute owr efforts since .there
vere many avenues open for research activity. 'Ihe- exponential distyibution
was chosen only sfter considerable discussion with pecple in the field of
electronies and after o study of the literature exiatins' and available at
that time. 1In retrospect the cholce of the exponential distribution wus
a good one. It secms as if the exponential distridution plays a role in
.'!.ife testing analogous to thut of the normal distribution in other areas
of statistics. It is cur feeling that in mony cases there is at least as
mch Justification for using the exponeﬁtia]. diotribution in life test
situaticns as to use the normal diut;-ibution, for example, in developing
sampling plans by variebies.

An important by-product of the assumption of the exponential distribution
of life 1s that 1t n;kes it possible to spply the well developed theory of
Polsson processes. Furthermore, one can by almost trivial changes generslize
all the results to the case vhere the conditionel rate of fallure is some
function of time, Z(t) , rather than a constant as in the exponential
cage. The theory thus extended has validity over & wide area mclw‘;ing most .

cages of practical intarest.

2. Polsson Processes and Exponential Models J“'-/

We now consider in some detail vhy One wight expect the expomern:tini

distribution to ocewr and what implications the assumption of an exponential

i
¥ For a detailed troatment of Foisson processes and exponentlal distridbutions
see Feller [14].
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distrivution caryries with it. In addition ve will mention why one wight
expect certain other distributions to slgo occur in 1ife test sibustlons.
One often refers o the ekponential distribution as corresponding %o
8 purely random fallure pattern. Precicely vhat one means wathematically
is that vhatever is causing the failwre occurs accozﬂiﬁg o & Poinson
precess with some rate,ﬁ" A. For example, if ve imagine that a fallure
ocewrs vhenever a Gelger counter iz actuated by a mdioac:tiw source having
an emigsion rate, X, then the aistributioh of time Intervals between successive
fatlures will be given by the p.d.f. Ae ™ , A >0, £ >0 . This is very
easy to prove. Iet T be the random varieble associated with the tise P

interval between successive events, then

(3) Pr(T > t) = Pr [no event occurs in the interval (0,t)) , vhere t = 0

i3 the time viken the most recent event occurred.

From the Poisson esswption,

() Pr(T > ) = M,
Thus
(5) Pr(T <t)wl - e

and the p.d.f. 18 giver by
(6) 2(t) w Ae ™ A >0, 850 .

The question naturally arises as to vhether ithis rather artificial
model has any relevance 1o o real life cituation. The answver is that

it may under the following soxrt of conditions: Iumegine & situstion where
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a device uwndeyr test is being subjected to an envirenment B , which is
gome sort of vandom process. Let us ilmegine that this rewmdom process has
peeks dlstributad o a Polsson manney and thet it is only these peaks that
can affecy the device; in the sense that the device will fail if a pealk
oceurs snd will not fall otherwise. If this 1s the situation and if
peaks in the stochastic process describing the enviromment occur with
Poigson rate, )\ , then the failure distribution for the devices under test
will be given by the p.d.f. (6). It is interesting to anote that while we
call (6) & failure distribution it describes, in reality, the fregusacy of
severe shocks in the enviromnent. Thio is precisely vwhat (6) means in the
all or none situation, where the device fails 1f and culy if a peak occurs
and niot othervise.

It is not necessery, in the preceding discussion, that we have an
all or none situstion in order that the exponential distributicn arise.
Suppose, as before, that peaks in the stochastic process occur with rate )
and that the conditional probebility that the device fsils given that s
peak has occurred is p . Then it 18 cloar that the event: "device does
not £all in time © “ is composed of the muiually exclusive events, 'no
pesk occurs in (0,%) ", “"one peak cccurs and device does not fail given
this peak," "two peeks occur aad device does not fail given these ¢wo peaks,”
ete. Syrbolicclly we have ’

(7 Pr(T > t) = e ™ & g(at)e M

2 k
+ q2 }é,g eﬁkt + sved qk )\? e"’?\.t 4 ree

) 2 ) 4
) = e"’”tll-m_}& + -(%;')— Heeot -(-95%1- +eus)

o e MERAGE | e-h(l-q)t -A\pt

z @
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Thus

€ Pr(T < t) & Lae"NPP

sod

(9 £(t) = we™ £ >0 .

Again we have an exponential distribution. It is intervesting to note thet
the exponent Mp (vhich Is the mean time between feilures) reflects the
aimplest kind of interaction hetveen the device belng tested and its
envircement. I we hed two kinds of devices Dl and f02 each subjected
to the sam» environment ¥ , end 1f P is the conditionel probebility
that Dl will fall given that a peak in E has occurred; and Py is
the conditicnal probability that :D2 wili fall given thet e peak in E ocecurs,
then the mecan time between failures is given by 7@1 and xpa respectively.
Iz );91 < APy then one c¢an say thet in environment E , the device Dl
is stronger than the device D2 .
Carrying these ideas further, suppose that sn item is exposed siwultanecusly
to k environments E, & By s eoey E - Suppose thet the environment I«.‘.1
is choracterized by a rate M {the frequency with whick dangerous peaks
oceur in envircnment E, } #nd that the conditional probability that the
device faile given that e peck has occured 18 p; . From (7) it follows that
the probability that a device survives environment Ei for a length of
time t 1o given by e ™M P4 % | Let us scsume that the environments are
described by stochastic procecses vwhich operate independently of cone

another, then fxom (7) and the sssumption of independence, the time T
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wtil & faillure occurs {(or the Lime between failurss) iz a vaudom variable

such that

]
3 | -(: Kipi)t
. — WA P =],
- (20) Pr(T>t)= || e di'i"=e
A=Tmap, o (10)
Defining = 2__{7\.,1)1 » (10) beecmes
=1 ~

(1) Br{T > t) = " AT
and consequenily
(12) Pr(T < t) = 1" NP 550 .

Thus we agsin hove au exponential distributicn.

In the situstion described by the distribution function (8) aad
density fuaction (9), p, the conditional probabiliity that & failure
occurs given that a peck has occurred, is independent of t . Let us
now agcume that given that a peak cccurs, the conditional probability

thet a fallure cccurs is given by p(t) » It ie easy to show in this

case that t

-AI p{r)ar
(13) Pr(T>t)ce °
and go
- x‘r p{t)dt
(1%) Pr(T < %) = 1-¢ *°
and




(235)

vhere

(16)

bt

24

In particular suppose that p(1) =0, 0 <1 <A and p(7) =1, 1>4,

then

and

070

-LSQ p(v)ac
o

2(4) = ap(t)e = Ap(e)e M), t20

1

B(t) = j p(v)ar .
Q

Illustrations

Pr(?<%) =0, t <A
Pr(T < t) = 1-eMEA) ¢ 5 p
£f(t) =0 , t <A

£(t) = 2eMEA) o5

This is known as the two parameter exponential.

Another example is of the followving kind:

0

< \&
P(t)u(;;—-) »yOST<E

ﬂl,rzto »
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In this case
P i
_ R CTEY) tmo
Pr(T < t) = l-e » 05t <t

Q
At Zr ) |
s l-e ol °,t>t0 .

Remark: In the range, 0 <t <%, Pr(T < t) is of the form frequently
called s Welbull distribution.

A generalization in still another direction is to assume that devices
are exposed to a variety of envirommenis. For example, we could imagine
e situation vhere devices are cxposed t© k possible environments

EJ.’ Ea pewoy EL. which can oceur with respective probabilities

X
€15 Copenns ck(c':3 >0,Y% ey = 1). Furthermore, with each environment

E; there is assoclated lea A 3 {the rate at which dangerous peaks occur in

environment L 3) and within the environment E I the conditionel probebility

that a device falls given that a pesk oceurs 1s ol 3 It then follows guite

readlly that the probabllity of surviving for a length of t{ime ¢t 1is given by
k -

p,t
a7 (T >t) =S —ce 99 .
w9

The associated density fuaction is described by

. k - Jth k -th
{18) £(t) = % cjxdpje = é'_;_ chde ,

where

v

»”

#1
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Thus we are led to a descripi:ion of the density of feilure times
s a sum of exponentisls. A continuous amalogue of (18) is

(19) £(t) =r ve V" an(v) .
fo]

It is interesting %o see wvhat heppens in the special case for which

dG(V) _ vrAr-i'le*-AV
v =

(20) B(V) = 4 s 2 0 S V<0

Equation (19) then becomes

4l r+l  =v(B+t)
(21) r(t) ﬂf \4 A e dav .

!

It is reedily verified that f£(t) becomes

. r+l
(22) £(t) » STHL A t >0

(asz)™ 7

Remark: Tt is interesting to uote that in the special case where 4= r+l ,
£(t) becomes en F(2, 2r + 2) distribution.

Thus, the assumption thet failure is ascsociated in an esgentisl way
with the occurrence of peaks in a Polsson process has led us to & muzder of

quite interesting life distributions.

3. Model Based on Conditicnsl Probebility of Fallure

Let us now proceed in a different direction and see where this leeds

us. It is well-known that if the underlying distridbution of 1ife T is
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described by the exponential p.d.f. £(t;0) = é— e , then the conditional

probability of an item failing in the time intervel (t,;t +4t) given

that it has survived for time + , is independent of + . This is readily

verified since

(23) Pr(t < T < t '+ 4t|T > t) = £(t;0)ab / L-F(t;0)

1 e-1-./ -t/e

© at7e™%® < at/e

=

Geperally speeking the conditional rate of failure or hazard rate, g(t) ,

vhere
(24) g(t) = £(t)/1-F(t)

does depend on t . We are interested in solving for f£(t)-'and F(t), given

the failure rate, g(t). This is resdily done since (24) implies that
(25) a[4a(1-F(t)] = -g(t)

and therefore, recalling thet F(0) =0 ,

t
- fo 8(1)'6,1' 1 e-G(t)

(26) F(t)al-e ,t_)’o )

where (t) = J¥ g(v)ar . The density function £(t) 1s obtained by
differentiation and ls

-f*'» g(7)as
(21) £(t) = g(t) e ©° , 620 .
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Illustrations

Exemple L. -Suppose that g(t)'—?:.é » 20, then

(26) bvecomes Fe(t.) =0,1<0
1. %, 550
end(27) becomes fe(t) = -‘é e:"‘/‘Q y 830 ,
= 0 , elseuhere.
Tais is the exponential distxribution.
Exemple 2. Suppose that g(t) =0 for 0 <t <A
=% for t>A.

In this case we get the twoe-parameter exponential distribution iwhere
(26) becomas 'Fe(t) =0, t<A

t-A

- (=)
- - e T ,tZA,
and (27) becomes fe(‘c.) =0, t<A
(&A
S%e e ,tzA .

k-1
Exswple 3. Buppose that g(t) = k:k -~ , where k > 0. In this case,

(26) bdecomes Fe(t) =0,t<0

t k
- (3
=l"'e ,1'-20
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gkl =@
(27) becomes fg(t) = =p—€ s 20

8

= O , elsewhere.

Remark: This distribution is often calied the Weidbull distribution. Note that

the conditional rate of failure g(t) is

decreasing if 0<k<1
constant if k=l
increasing if k>1 &

Example 4: Suppose that g(t) = aﬁest . In this case, G(t) = a(eﬁt-l) "
Thus

(26) becones
T(t) =

1
o
[
ct
I
(@}

and (27) becomes

gt e-a(eﬁt-l)

2(t) = afe ,t>0 .

Remark: This kind of distribution occurs in extreme value theory [16].

It should be noted that there is a great deal of similarity between
formulae (14) and (26). Actually, these two models have a great deal in

common, the difference being only that in one model we make specific
agsumptions regarding an underlyinrg Poisson process which generates dangerous
peaks, waexeas ln the second model the conditional rate of failure function,

g(t) , is made central to the discussion. g(t) depends on the environment,
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on the items under test, and on the interaction of items being tested and
the environment. If we try to make explicit the dependence of g(t)

on the envirconment, we will be led back, essentislly, to the first model.

It is also leteresting to note that we are led to distributions which are in e
sense rather direct generalizations of the simple exponential distribution.
This is very lmportant decause this makes it possible to chenge the time
seale in such & way that all theoretical results cobtained under a purely
exponential hypothesis are #a.lid for the more general situetion. Thus, in
the second model, if t represents the time +to <fallure, then

u o Glt) = fﬁ g(t)dr is distributed with c.d.f. l-e ", u >0, and
with p.d.f. e s >0 . As o conseqguence of this, many of the theorems,

tests, estimation procedures, formildae, ete., become valid in e much more

general situation 1T one replaces failure tinmes ti by generslized times,

»

b’-i © G‘(ti) °

Another interasting feature of the models is that they lead to all kinds
of uscful distridutlions, some of which arise in other comnections. As excrmples

we mention the so-called Welbull distributions and extreme valuve distributions.

4. Two Other Fallure Models

We now consider briefly two other models. In the first of these, let
us assume that a device subject to sn environment E will fail when exactly
k > 1 shocks occur and not before. If shocks occur at a Poisson rate
% 5 then the walting time Tk (or 1ife) until the item fails is described by

the p.d.f.
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(28) £ (6) = 25 e Mgy, w0
w 0 , elsewhere
and by the c.d.f. '

@ At
t
(29) F,(6) = Pr(T, < t) = %i...%b_)m .
The derivatiocas of (28) and (29) are simple. Thus to get fk(t.) ve
note that
(30) Pr{t < T, <t At) = Prlexactly (k-1) shocks in (O,t) and
1 shock in (t,t +4t)]
k=<l -pat
: k t
. L 2(t) = A e My 1), t >0

To derive Fk(t) we note that

(31) Pr(T, > t) = Prlk-1 or fewer failures in (0,t)]
- E e M)y .
30
Therefore,
(32) Fk(t) = Pr('.l‘k <t)=1- Pr(Tk >t)
L2 Dt .
=1-3e (A6)3/32 = e (el .

N 4
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For the spzcial case where k = 1 , (28) and (29) become (6) and (7),
respectively.

It is quite clear that formulae (8), (9), (10), (11), (14), (15), and
(19) can all be sultadbly generalized to thé case vhere the life time is
given by T, end not by T, . Thus, for example, the analogues of (14)
and (15) become

k-1 ' N L
(33) Pr(T, <t)=1- %’:6 e-kP(t)[xP(t)]J/42 52 f e")&"(t)[u(t)]d/dz
™~ 4

end
(34) £.(6) = R(E)1E Y M) jo(e)/(ka):

In essence, one csn say that this simple model gives rise to the type IIX
distribution and its generalizations.

We have seen in cur earllier models that under certain assumptions one
gets the Weibull and extreme value dlstributions aus possible life distributlons.
W should now like to examine the relevance of an extreme value model. It is
our feeling that vhat we are saying applles to feilure problems lnvolving
corrosion. Suppose, for exsmple, that corrosion is essentlally a piiting
phenomenon and that failure is asscociated with perforation et the deepest
pit. The time to failure may then be viewed as follows: let ¢t

1
required to perforate the meterial at the 1™ pit. Then the time to failure

be the time

is mnin {ti} . If the pit depths follow en exponential distribution, and if
we assume that time to perforation at a pit is linearly dependent on the

thickness of the coating minus the pit depth, then extreme¢ value theory would
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t
lead one to expect a life time distribution of the form A et emAe [2,8).
For further details on extreme walues in this coanection cne should see

papers by Epstein [9,10], Epstein and Brooks [11], and Gumbel [15,16].

Remark 1: There have recently appeared results in the literature that
fallures of complex mechanisms tend to be exponentieclly distributed. This
hes & theoretical Justification since the times between failures of the
complex mechanism (we are assumling that it is repalred after it breaks down
and put back into service) result from a superposition of the failure
patterns of the parts making up the mechanism. It has been shown by

D. Re Cox and W. L. Smith [5,6] that % s good approximation this kind

of superposition gives rise to an exvonentiel distribution of times between

successive breakdowns.

Remark 2: It will be woted in the foregoing that'none of the failure models
led to & normal or logarithmic normal distribution of life. How, then, does
cne explein the fact that some observed life tiﬁe distributions appear to be
normel or logarithmic-normal?t It seews to us thst in our considerations we
have assumed that in one way or another sudden shocks in the environment were
important. If this is the case, then one must be led to the exwmsr-atial
distribution or suitable generalizations of it. But if failure is caused by
a vear~out mechanism or is & corsequence of accumulated wear, then we assert
that the normal distribution can be expected. Thus, if an accumulation of k
failures is reguired for failure, we have been led to a type IIY distribution

which will tend to normality for k lerge.



;_?’\

-17-

Another possibility is that failure oceurs after an essentisl substance
has been used up, In this case, the time to fallure might be proporticnal
to the amount of this substance In the particular gpecimens being tested. If
the smount of the substance waries from specinell to specimen according to
& normol distribution, then one would get a normel distributicn of life
times.

What ebout lcearithmi‘c normal distribubions? It seems t0 us that such a
distribution can arise in either of two weys:

(1) as an approximete £it to skewed distributions like the Weibull or
type III, or

(i1) 4if failure depends on using up come critical suhstancc—; ; the amount
of whlch varies according to a logarithnic normal distribution from specimen

to specinen.

It mey be noted that the logarithmic normal distribution of lives seems to

oceur particularly in some biological problems. Whether this results in

accordance with (1) or (ii) is generslly mnot clear.

Remark 3: It is intcresting to note that the failure distribution given
by (3%) i3 almost identical. with the one given by Z.W. Birmbaum and
S. 8. Saunders [3] in their recent paper in which they give = statistlcal

model for life-length of structures under dynamic loading (i.e., fatigue).
One difference is that they make the conditionsl rate of failure funciion

central to their discuesion while we moke more explicit use of the underlying
Folsson process generatling dsngerous peaks, The other difference is thaet

they-sre desoling with e multi-component structure, wvhich initially hags m
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components. They assume further that, in the course of time, one component

n:t‘te" sncther fails and that there is a eritical mumber of failures k fm,

such that the entire structure fails vhen k of its components fail. The

anzlogue of thelr Assumption B, if cne uses the Poisson model, is the following:

if a pesk in the stoc‘hastlc proccas {(the peaks sre sssumed to cccur &t rate i) }

occurs at time + apd LT J of the components in the structure heve failed

prior %o time ¢ , then zach of the remaining (m-,j) coaponents has &

conditional probability of failuve given by p(t)/ (z-3) » It iz then very

easy to show thet the p.d.f. of § , the life of structure, is given by (3%)
8 ,

and further that 2\ f p(t)dr is dictributed as ){(ak) This is an

analogue of the theorem given on p. 154 of [3].

Remark 4: We have shown in this paper that & possible theory of failure is

based on the Poiscon process. A generalization of Poisson processes is glven

by "birth end death” processes. It has recently been shown in a note by

Weiss [17] that some kinds of mechanical failure, such as creep failure of

oriented polymeric filaments under tensile stresses, (see Coleman [4]) cen

be viewed as “pure death” processes. Essentially the theory assumes that

there are initially H fibers, each of which, independent of the other
fibers, is subject to feilure under loed. Fallure occurs when all the fibers

have fajled. Two specisl cases are considered:

(i) the probebility of a single fiber falling in the time intexrval (t, t +4t)
is glven by §(t)At ;

(11) the probability of a sia-g;:.e fiber failing in (t; t +4¢) vhen n(<K))
fibers arve left is given by ‘f’(t) At.

A'pure death” pracess vhere the probability of a fiber failing is
given by (i) results in the following life destribution:
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(35) Pr(T < t) = Pr(0 fivers survive time t)

o Veoes %

]

[lee

The p.d.f. of T dis given by

t t
. N -1
(36) f(t) - No }[/(t) e fO Y(T)dﬂt [1ec IO Y(T)df‘} o]

-

In the speclal case where ‘f’(f) =\ , T >0, then (35) becomes

"K't ]NO

(35°) Pr(T < t) = [1-e »

and (36) becomes

N -1
(36") £(4) = N pe M (1-e™N ©
Furtherwore
' leg ¥
1 1 Q
(37 Eh(T) = AL g eees ﬁol ~ .

A "pure death" process where the probebility of a fiber failing is

given by (i1) results in the life distribution:

(38) Pr(T < t) = Pr(0 fibers survive time t)
t
L ~f° X, ¥(x)ar
21 - J e !
=1 :;:% [ Lﬁo F(x)ar) T .

The p.d.f. of T is given by
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t

¥
t - N y(1)a
(39) £(t) = [S(j N, \r(x)d-r]No_l e «[o A NP (6)/(N,-1)!

In particular if" Y(t)z A , T >0 , then (38) and (39) become

l 4
(38*) Pr( <) = 1 -3 e oM (wat)d/a!
J=0
and
(39*) £(t) = NQA(Noht)No'l e/ 1)t .
Further
1
(ko) E}‘(T) = X .

It should be noted that assumption (i1} in the Weiss model is esséntially
the same as asaumption B in the Birnbaum - Saunders paper and hence the
p.d.f.'s of 1ife vhich result must agree, It should alsc be noted thet

(36)is the p.d.f. of the largest value ?g & sample of size N_ drawn

o \}’('r)d-t °

from a distribution with c.d.f. 1 - e , vhile (39) is a Type III

distributicn.
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