THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS

BY

HARVEY M. WAGNER

TECHNICAL REPORT NO. 51

PREPARED UNDER CONTRACT N6onr-25133
(NR-047-004)
FOR
OFFICE OF NAVAL RESEARCH

DEPARTMENT OF ECONOMICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

MAY 5, 1958
LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS

BY

HARVEY M. WAGNER

TECHNICAL REPORT NO. 51

PREPARED UNDER CONTRACT N6onr-25133
(NR-047-004)

FOR

OFFICE OF NAVAL RESEARCH

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR
ANY PURPOSE OF THE UNITED STATES GOVERNMENT

DEPARTMENT OF ECONOMICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

MAY 5, 1958
1. Introduction

Karst [5] has recently suggested an iterative procedure "for finding a straight line of best fit to a set of two dimensional points such that the sum of the absolute values of the vertical deviations of the points from the line is a minimum." It is well known that the general \(p + 1 \) dimensional version of this problem may be exactly formulated as a linear programming model consisting of \(n \) equations, where \(n \) is the number of observations. By employing the fundamental dual theorem [1, 6, 8] in linear programming, we shall show how the problem can be solved by a \(p \) equation linear programming model with bounded variables [2, 3, 9]. Secondly we shall demonstrate how a regular \(p + 1 \) equation linear programming model can be utilized to find a line of best fit according to a Chebyshev criterion [4], i.e., a line (or hyperplane) which minimizes the maximum of the vertical deviations from the sample points.

2. Minimizing the Sum of Absolute Deviations

Let \(X \) denote an \(n \times p \) dimensional matrix, where the columns consist of \(n \) observational measurements on \(p \) "independent" variables, and \(Y \) denote an \(n \)-dimensional column vector of measurements on the "dependent" variable.
We wish to find a p-dimensional column vector b such that

$$Xb + I e_1 - I e_2 = Y, \ e_1, e_2 \geq 0$$

minimize $E = (1 1 \ldots 1) \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$,

where I is an $n \times n$ identity matrix. We interpret e_1 and e_2 as n-dimensional column vectors of vertical deviations "below" and "above" the fitted line; i.e., $(e_1 + e_2)$ is the vector of absolute deviations between the fit Xb and Y (by the nature of the model, it is clear that the j-th components of e_1 and e_2 cannot both be strictly positive in an optimal solution). The solution to our problem yields the regression equation

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \ldots \\ x_p \end{pmatrix} b = y. \quad (2)$$

Note that if we wish the left hand side of (2) to include a coefficient for the intercept of the y axis to be determined by the linear fit, then we can let $x_p \equiv 1$, and the p-th column of X be a vector of ones. We may force the fitted line to pass through some point, the usual example being the set of sample means, either by adding to (1) the linear restriction

$$\begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \ldots \\ \bar{x}_p \end{pmatrix} b = \bar{y}. \quad (3)$$
or by the usual least squares approach of subtracting each coordinate of the point, in our example the sample mean for each variable, from all the corresponding observations (including y) and then by fitting (1) without a y-intercept coefficient; the latter approach simply consists of shifting the origin of the axes in a p-dimensional space to the selected point, and then of fitting the line (hyperplane) through the new origin.

If it is desirable, the linear programming model (1) can be restricted further to permit only non-negative values for some or all of the components of b, and to force b to satisfy additional linear constraints. It is noteworthy that collinearity in X (even to the degree that two columns of X are identical) will not cause a failure in the algorithm for (1). One drawback of the model is evident: when the number of observations n is sizeable, (1) becomes computationally unwieldy.

We shall now transform (1) into a more manageable dual problem which will yield the optimal b as a byproduct. To start, we shall assume we have added to (1) the restriction $b \geq 0$. The fundamental dual relationship in linear programming [1, 6, 8] asserts a solution to (1) can be found by considering the linear programming model

$$X'd \leq \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(4a)$$

$$Id \leq \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$(4b)$$
where X' is the transpose of X, Y' the transpose of Y, and d an n-dimensional column vector of "dual variables" which are unrestricted in sign (because (1) consists of a set of equations). Model (4), as it appears, is even a larger problem than (1), since it consists of $p + 2n$ relations. To reduce the problem to a model in p equations and n bounded variables we let

\[
(f) = \begin{pmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_n
\end{pmatrix}
= (d) + \begin{pmatrix}
 1 \\
 1 \\
 \vdots \\
 1
\end{pmatrix}.
\]

Then (4) is equivalent to

\[
X'f \leq X' \begin{pmatrix}
 1 \\
 1 \\
 \vdots \\
 1
\end{pmatrix},
\]

\[
0 \leq f_j \leq 2 \quad j = 1, 2, \ldots, n
\]

\[
\text{max } G^* = Y'f - Y' \begin{pmatrix}
 1 \\
 1 \\
 \vdots \\
 1
\end{pmatrix}.
\]
Upon appending a set of slack variables to (6a) and dropping the constant on the right side of (6c), we may solve (6) by one of the simplex algorithms for bounded variables [2, 3, 9]. If X and Y are deviations of sample values from their means, then the right hand side of (6a) is a vector of zero's, and the constant in (6c) is zero. Denoting the basis of the optimal solution of (6) by B (which may include slack vectors), and the associated coefficients in (6c) by \(r'_B \), we have

\[
b = (B^{-1})'r_B.
\]

(7)

No extra computations are needed to find (7). In the original simplex method b appears in the \((z_j-c_j)\) row of the final simplex tableau under the columns for the slack vectors [1, 8]; in the revised simplex method (7) is the "shadow price" vector for the optimal solution [7]. The optimal value of \(G^* \) is the minimized sum of absolute deviations.

When we drop our assumption that b be non-negative and allow the components of b to take on any sign, we modify (6) to

\[
X'f = X' \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}
\]

(6a')

and introduce a set of artificial variables having an arbitrarily high cost to initiate one of the simplex algorithms. The optimal b remains (7), i.e., the shadow price vector in the revised simplex method or \(z_j \) of the final simplex tableau under the columns for the artificial vectors [1].
In summary, we can solve for \(b \) in (1) by applying a simplex algorithm for bounded variables to the \(p \) equation model (6). Although the mathematical manipulation underlying the transformation of problems appears involved, the computational procedure required to solve (6) is relatively straightforward, but somewhat laborious.

3. Minimizing the Maximum Absolute Deviation

The most bothersome aspect of the approach in the previous section is the requirement of a linear programming algorithm for bounded variables, as such techniques are (slightly) more difficult to perform than the standard simplex algorithm. We may eliminate the drawback if we are willing to accept a Chebyshev criterion for best fit. Our model in this case is to find a \(p \) dimensional column vector \(b \) such that

\[
\begin{align*}
Xb - Y & \leq \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} e \\
-Xb + Y & \leq \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} e \\
\text{minimize} & \quad e \geq 0.
\end{align*}
\]

Examination of (8) will reveal that \(e \) is the maximum absolute deviation. The equations (8) are reminiscent of a linear programming formulation for the minimax problem in two-person zero-sum games, and we shall use a similar approach for the solution. An equivalent expression for (8) is
\[
\begin{pmatrix}
-X & 1
\end{pmatrix}
\begin{pmatrix}
\mathbf{b}
\end{pmatrix} \geq
\begin{pmatrix}
-Y
\end{pmatrix}
\]
\[
\minimize e \geq 0 ,
\]
where \(\mathbf{l} \) is an \(n \)-dimensional column vector of one's. Our previous remarks concerning additional linear constraints on \(\mathbf{b} \) apply here equally as well.

Assuming for the moment that we wish to impose the restriction \(\mathbf{b} \geq 0 \), we convert the \(2n \) equation model (9) into its dual form, which contains only \(p + 1 \) equations

\[
\begin{pmatrix}
-X' & X'
\end{pmatrix}
\begin{pmatrix}
\mathbf{h}_1 \\
\mathbf{h}_2
\end{pmatrix} \leq
\begin{pmatrix}
0
\end{pmatrix}
\]

(10a)

\[
\begin{pmatrix}
1' & 1'
\end{pmatrix}
\begin{pmatrix}
\mathbf{h}_1 \\
\mathbf{h}_2
\end{pmatrix} \leq
\begin{pmatrix}
1
\end{pmatrix}
\]

(10b)

\(\mathbf{h}_1 , \mathbf{h}_2 \geq 0 \),

\[
\maximize M = (-Y' & Y')
\begin{pmatrix}
\mathbf{h}_1 \\
\mathbf{h}_2
\end{pmatrix}
\]

(10c)

where \(\mathbf{0} \) is a \(p \)-dimensional column vector of zero's. The vectors \(\mathbf{h}_1 \) and \(\mathbf{h}_2 \) are \(n \)-dimensional columns; if a component of \(\mathbf{h}_1 \) (\(\mathbf{h}_2 \)) is positive in the optimal solution of (10), then the maximum deviation occurs at the corresponding point or equation in (8), and this point will lie "below" ("above") the fitted line. Analogous to our result in (7),
where B denotes the optimal basis for (10), and r_B' the coefficients in (10c) corresponding to the variables in B; and exactly as before, the solution (11) is a byproduct of the simplex method.

If we drop the assumption that b be non-negative, we need only change (10a) to equalities, and results analogous to those in the previous section continue to hold.

4. A Numerical Example

Karst [5] examines the following data

$$X' = [-12.5 - 8.5 - 6.5 - 3.5 - 2.5 - 1.5 - 0.5 2.5 4.5 8.5 8.5 11.5]$$

$$(12)$$

$$Y' = [-8.4 - 5.4 3.6 - 2.4 - 4.4 1.6 - 0.4 - 0.4 - 2.4 3.6 5.6 9.6],$$

which comprise deviations of the original data about their sample means. He finds the least squares fit to be

$$y = .539 \times \quad ,$$

and the fit for the minimized sum of absolute deviations to be

$$y = .659 \times \quad .$$

As we have argued, (14) can be obtained by (6), where specifically we would find

$$b = (B^{-1})'r_B = (1/8.5) 5.6 = .659 \quad .$$

$$\quad (7')$$
The solution by model (10) yields

\[B = \begin{pmatrix} -6.5 & 11.5 \\ 1 & 1 \end{pmatrix}, \quad r_B' = [3.6 \quad 9.6] \] \hspace{1cm} (15)

and consequently

\[\begin{pmatrix} b \\ e \end{pmatrix} = \begin{pmatrix} .333 \\ 5.767 \end{pmatrix} \] \hspace{1cm} (11')

That is, the Chebyshev fit is

\[y = .333 x \] \hspace{1cm} (16)

since the vectors in B correspond to variables in \(h_2 \), the third and last sample point in (12) will lie above the fitted line and assume the maximum vertical deviation from it of 5.767.
REFERENCES

STANFORD UNIVERSITY

Technical Report Distribution List
Contract N6onr-25133

Office of Naval Research
Branch Office
346 Broadway
New York 13, N.Y. 1

Office of Naval Research
Branch Office
1030 E. Green St.
Pasadena 1, California 1

Office of Naval Research
Branch Office
1000 Geary St.
San Francisco 9, California 1

Office of Naval Research
Navy No. 100
Fleet Post Office
New York, N.Y. 2

Office of Naval Research
Logistics Branch, Code 436
Dept. of the Navy
T3-Bldg.
Washington 25, D.C. 10

Air Controller's Office
Headquarters, U.S. Air Force
Washington 25, D.C. 1

Office of Technical Services
Dept. of Commerce
Washington 25, D.C. 1

Logistics Research Project
The George Washington University
707 - 22nd St., N.W.
Washington 7, D.C. 2

Operations Research Office
The Johns Hopkins University
6410 Connecticut Ave.
Chevy Chase, Maryland 1

U.S.A.F.
Air University Library
Maxwell Air Force Base,
Alabama 1

U.S. Naval Supply Research
and Development Facility
Naval Supply Depot
Bayonne, New Jersey 1

Weapons Systems Evaluation Group
Pentagon Bldg.
Washington 25, D.C. 1

Ames Aeronautical Laboratory
Moffett Field, California
Attn: Technical Library 1

Armed Services Technical Info.
Agency
Arlington Hall Station
Arlington 12, Va. 5

The Director
Naval Research Laboratory
Washington 25, D.C.
Attn: Tech. Information Office 1

Chief, Bureau of Supplies
and Accounts
Advanced Supply System
R and D Division (384)
Room 2434 Arlington Annex
Washington 25, D.C. 1

Naval War College
Logistics Dept., Luce Hall
Newport, Rhode Island 1

Director
National Security Agency
Washington 25, D.C. 1

Director
National Science Foundation
Washington 25, D.C. 1
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Frank Hahn</td>
<td>Dept. of Economics University of Birmingham</td>
<td></td>
</tr>
<tr>
<td>Dr. H. Heller</td>
<td>Navy Management Office Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Dr. Theodore E. Harris</td>
<td>The RAND Corporation 1700 Main Street</td>
<td></td>
</tr>
<tr>
<td>Prof. C. Lowell Harris</td>
<td>Dept. of Economics Columbia University</td>
<td></td>
</tr>
<tr>
<td>Prof. M. R. Hestenes</td>
<td>Dept. of Mathematics University of California</td>
<td></td>
</tr>
<tr>
<td>Prof. C. Hildreth</td>
<td>Michigan State University East Lansing, Michigan</td>
<td></td>
</tr>
<tr>
<td>Mr. C. J. Hitch</td>
<td>The RAND Corporation 1700 Main Street</td>
<td></td>
</tr>
<tr>
<td>Mr. Alan J. Hoffman</td>
<td>General Electric Co. Management Consultation Services 570 Lexington Ave. New York 22, N.Y.</td>
<td></td>
</tr>
<tr>
<td>Dr. C. C. Holt</td>
<td>Grad. Sch. of Industrial Admin. Carnegie Inst. of Technology Pittsburgh 13, Pa.</td>
<td></td>
</tr>
<tr>
<td>Mr. John W. Hooper</td>
<td>Econometric Institute Netherlands School of Economics Rotterdam, Netherlands</td>
<td></td>
</tr>
<tr>
<td>Prof. H. Hotelling</td>
<td>Dept. of Mathematical Statistics University of North Carolina Chapel Hill, N.C.</td>
<td></td>
</tr>
<tr>
<td>Dr. H. M. Hughes</td>
<td>Dept. of Biometrics School of Aviation Medicine U.S.A.F. Randolph Field, Texas</td>
<td></td>
</tr>
<tr>
<td>Prof. L. Hurwicz</td>
<td>School of Business Admin. University of Minnesota Minneapolis 14, Minn.</td>
<td></td>
</tr>
<tr>
<td>Prof. W. Grant Ireson</td>
<td>Dept. of Industrial Engineering Stanford University</td>
<td></td>
</tr>
<tr>
<td>Dr. E. H. Jacobson</td>
<td>Survey Research Center Institute for Social Research University of Michigan Ann Arbor, Michigan</td>
<td></td>
</tr>
<tr>
<td>Mr. Dale W. Jorgenson</td>
<td>12A Wendell St. Cambridge 38, Mass.</td>
<td></td>
</tr>
<tr>
<td>Mr. Sidney Kaplan</td>
<td>RCA Princeton Laboratories Lab. 3 Princeton, N.J.</td>
<td></td>
</tr>
<tr>
<td>Prof. T. C. Koopmans</td>
<td>Cowles Foundation for Research in Econ. Box 2125, Yale Station New Haven, Conn.</td>
<td></td>
</tr>
<tr>
<td>Dr. Howard Laitin</td>
<td>2134 Homecrest Ave. Brooklyn 29, N.Y.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. R. F. Lanzellotti</td>
<td>Dept. of Economics</td>
<td>Washington State College</td>
</tr>
<tr>
<td>Prof. C. E. Lemki</td>
<td>Dept. of Mathematics</td>
<td>Rensselaer Polytechnical Inst.</td>
</tr>
<tr>
<td>Mr. Bernhardt Lieberman</td>
<td>Clinical Psychology Section</td>
<td>Boston Veterans Adm. Hospital</td>
</tr>
<tr>
<td>Prof. S. B. Littauer</td>
<td>Dept. of Industrial Engineering</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Dr. R. Duncan Luce</td>
<td>Dept. of Social Relations</td>
<td>Harvard University</td>
</tr>
<tr>
<td>Dr. Craig A. Magwire</td>
<td>Dept. of Mathematics</td>
<td>U.S. Naval Postgraduate School</td>
</tr>
<tr>
<td>Prof. Julius Margolis</td>
<td>Dept. of Business Admin.</td>
<td>University of California</td>
</tr>
<tr>
<td>Prof. Jacob Marschak</td>
<td></td>
<td>Box 2125, Yale Station</td>
</tr>
<tr>
<td>Prof. Lionel M. McKenzie</td>
<td>Dept. of Economics</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>Prof. Maurice McManus</td>
<td>School of Business Admin.</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Dr. Richard A. Miller</td>
<td></td>
<td>4071 West 7th St.</td>
</tr>
<tr>
<td>Prof. Franco Modigliani</td>
<td>Dept. of Economics</td>
<td>Carnegie Inst. of Technology</td>
</tr>
<tr>
<td>Prof. O. Morgenstern</td>
<td>Dept. of Economics and Social Institutions</td>
<td></td>
</tr>
<tr>
<td>Mr. M. L. Norden</td>
<td>Research Division</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Prof. R. R. O'Neill</td>
<td>Dept. of Engineering</td>
<td>University of California</td>
</tr>
<tr>
<td>Prof. Stanley Reiter</td>
<td>Dept. of Economics</td>
<td>Purdue University</td>
</tr>
<tr>
<td>Prof. D. Rosenblatt</td>
<td>Dept. of Statistics</td>
<td>The George Washington University</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Prof. A. E. Ross, Head</td>
<td>Dept. of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Notre Dame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notre Dame, Indiana</td>
<td></td>
</tr>
<tr>
<td>Prof. Jerome Rothenberg</td>
<td>Dept. of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>Mr. A. J. Rowe, Proj. Dir.</td>
<td>Industrial Logistics Res. Proj.</td>
<td></td>
</tr>
<tr>
<td>Mr. A. H. Rubenstein</td>
<td>School of Industrial Management</td>
<td></td>
</tr>
<tr>
<td>Dr. Melvin E. Salveson</td>
<td>16 Parish Road</td>
<td></td>
</tr>
<tr>
<td>Prof. F. A. Samuelson</td>
<td>Dept. of Economics</td>
<td></td>
</tr>
<tr>
<td>Dr. I. Richard Savage</td>
<td>School of Business</td>
<td></td>
</tr>
<tr>
<td>Prof. Andrew Schultz, Jr.</td>
<td>Dept. of Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>Prof. H. N. Shapiro</td>
<td>New York University</td>
<td></td>
</tr>
<tr>
<td>Prof. Martin Shubik</td>
<td>202 Junipero Serra</td>
<td></td>
</tr>
<tr>
<td>Prof. H. A. Simon</td>
<td>Dept. of Industrial Admin.</td>
<td></td>
</tr>
<tr>
<td>Mr. J. R. Simpson</td>
<td>Bureau of Supplies and Accounts</td>
<td></td>
</tr>
<tr>
<td>Prof. David Slater</td>
<td>Queen's University</td>
<td></td>
</tr>
<tr>
<td>Prof. R. Solow</td>
<td>Center for Advanced Study in Behavioral Sciences</td>
<td></td>
</tr>
<tr>
<td>Prof. Henri Theil</td>
<td>Econometric Institute</td>
<td></td>
</tr>
<tr>
<td>Prof. R. M. Thrall</td>
<td>Dept. of Mathematics</td>
<td></td>
</tr>
<tr>
<td>Prof. L. M. Tichvinsky</td>
<td>Dept. of Engineering</td>
<td></td>
</tr>
<tr>
<td>Prof. James Tobin</td>
<td>Cowles Foundation for Research in Economics</td>
<td></td>
</tr>
<tr>
<td>Dr. C. B. Tompkins</td>
<td>National Bureau of Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building 3U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Angeles 24, Calif.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Prof. A. W. Tucker</td>
<td>Fine Hall, Box 708, Princeton, N.J.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. D. F. Votaw, Jr.</td>
<td>Dept. of Economics, Yale University, New Haven, Conn.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. W. A. Wallis</td>
<td>207 Haskell Hall, University of Chicago, Chicago 37, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Prof. J. L. Walsh</td>
<td>Dept. of Mathematics, Harvard University, Cambridge 38, Mass.</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Philip Wolfe</td>
<td>The RAND Corporation, 1700 Main Street, Santa Monica, California</td>
<td>1</td>
</tr>
<tr>
<td>Prof. J. Wolfowitz</td>
<td>Dept. of Mathematics, Cornell University, Ithaca, N.Y.</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Marshall K. Wood, Chief</td>
<td>Industrial Vulnerability Branch, Office of Ass't. Sec. of Defense, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Prof. M. A. Woodbury</td>
<td>Dept. of Mathematics, New York University, New York 53, N.Y.</td>
<td>1</td>
</tr>
<tr>
<td>John Hopkins University Library</td>
<td>Acquisitions Department, Baltimore 18, Maryland</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Louis Doros</td>
<td>Assistant Director, Management Planning and Admin. Division, Military Petroleum Supply Agency, Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Joseph Mehr</td>
<td>Head, Operations Research Desk, U.S.N. Training Device Center, Port Washington, L.I., N.Y.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. T. Whitin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Philip Wolfe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J. Wolfowitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Marshall K. Wood, Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. M. A. Woodbury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Hopkins University Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Louis Doros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Joseph Mehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. T. Whitin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Philip Wolfe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J. Wolfowitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Marshall K. Wood, Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. M. A. Woodbury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional copies for project leader and assistants and reserve for future requirements</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>