Drag And Stability Properties
Of The 37-mm T324-E22 Shell (U)

EUGENE D. BOYER

DEPARTMENT OF THE ARMY PROJECT NO. 5B03-03-001
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT NO. TB3-0108

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Retain or destroy per AR 380-5 and SR 345-215-5 or comparable AF or Navy Regulations. Contractors should consult their government contracting officers regarding procedures to be followed. DO NOT RETURN

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18 U. S. C. Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
UNCLASSIFIED TITLE: DRAG AND STABILITY PROPERTIES OF THE 37-MM T324-E22 SHELL

C-7503
DRAG AND STABILITY PROPERTIES OF THE 37-mm T324-E22 SHELL (U)

Eugene D. Boyer

Requests for additional copies of this report will be made direct to ASTIA.

Reproduction of this document in whole or in part is prohibited except with permission of the issuing office; however, ASTIA is authorized to reproduce this document for U. S. Government purposes.

Department of the Army Project No. 5B03-03-001
Ordnance Research and Development Project No. TB3-0108

ABERDEEN PROVING GROUND, MARYLAND
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>TABLE OF SYMBOLS</td>
<td>4</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>EXPERIMENTAL RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>Drag</td>
<td>6</td>
</tr>
<tr>
<td>Overturning Moment and Lift</td>
<td>6</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
<tr>
<td>TABLE OF AERODYNAMIC DATA</td>
<td>9</td>
</tr>
<tr>
<td>FIGURES AND GRAPHS</td>
<td>11</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>25</td>
</tr>
</tbody>
</table>
DRAG AND STABILITY PROPERTIES OF THE 37-mm T324-E22 SHELL

ABSTRACT

The aerodynamic properties of the 37-mm T324-E22 shell as determined from Transonic Range firings are presented.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>K_D</td>
<td>drag coefficient</td>
</tr>
<tr>
<td>K_M</td>
<td>overturning moment coefficient</td>
</tr>
<tr>
<td>K_L</td>
<td>lift coefficient</td>
</tr>
<tr>
<td>K_H</td>
<td>moment coefficient due to cross angular velocity</td>
</tr>
<tr>
<td>K_{MA}</td>
<td>moment coefficient due to cross acceleration</td>
</tr>
<tr>
<td>K_T</td>
<td>Magnus moment coefficient</td>
</tr>
<tr>
<td>$\lambda_{1,2}$</td>
<td>yaw damping rates</td>
</tr>
<tr>
<td>δ^2</td>
<td>mean squared yaw</td>
</tr>
<tr>
<td>K_{10}</td>
<td>magnitude of nutational yaw arm at mid range</td>
</tr>
<tr>
<td>K_{20}</td>
<td>magnitude of precessional yaw arm at mid range</td>
</tr>
<tr>
<td>A</td>
<td>axial moment of inertia</td>
</tr>
<tr>
<td>B</td>
<td>transverse moment of inertia</td>
</tr>
<tr>
<td>cm</td>
<td>center of mass</td>
</tr>
<tr>
<td>d</td>
<td>diameter</td>
</tr>
<tr>
<td>N</td>
<td>number of yaw observations</td>
</tr>
<tr>
<td>N_T</td>
<td>number of timing observations</td>
</tr>
<tr>
<td>S_L</td>
<td>swerve associated with the lift force</td>
</tr>
<tr>
<td>ϵ_Y</td>
<td>error in yaw fit</td>
</tr>
<tr>
<td>ϵ_S</td>
<td>error in swerve fit</td>
</tr>
<tr>
<td>$\phi_{1,2}'$</td>
<td>nutational and precessional turning rates</td>
</tr>
<tr>
<td>s</td>
<td>gyroscopic stability factor</td>
</tr>
<tr>
<td>\bar{s}</td>
<td>dynamic stability factor</td>
</tr>
</tbody>
</table>
INTRODUCTION

At the request of the Computing Laboratory the 37mm T324-E22 shell was fired through the Transonic Range of the Exterior Ballistic Laboratory. These firings were conducted to determine the drag coefficient for the preparation of firing tables. A photograph of the shell is shown in Figure 1. The physical properties are given in Figure 2.

The program consisted of firing 19 rounds over a range of Mach numbers, M = 0.6 to M = 2.7, from the M3A1 tube mounted in a Frankford rest (Fig. 3). This tube has a twist of 1 turn in 17 calibers of travel. Initial firings exhibited very little yaw. Since two to three degrees of yaw are desired to determine the aerodynamic properties of the shell it became necessary to induce yaw. This was done by installing a blast deflector (Fig. 4) on the muzzle of the tube. This device distorts the flow of the gun gases over the model just after ejection and gives the model a tipping tendency. One round was fired at each Mach number with the deflector on the tube.

Three rounds were fired at the service velocity of 3000 fps. It was observed that one round lost its fuze cap after 580 feet of flight. A shadowgraph of the shell is given in Figure 5 and a shadowgraph of the shell with the fuze cap detached is given in Figure 6. At the conclusion of the scheduled program an additional 11 rounds were fired to try and duplicate this phenomenon. The fuze caps were intact on all of these rounds within the observed portion of the trajectory and no other information is reported from these rounds. It must be noted that the loss of a fuze cap was observed from a very limited firing program. This loss may have been due to one freak round, or it may be an indication of marginal strength of the fuze cup. Since the limited sample fired in this report can not differentiate these possibilities it is suggested that if short ranges are observed in future firings of this shell that this phenomenon be studied further. The round that lost its fuze cap had been fired when using the blast deflector but it is felt that the deflector would not interfere with the fuze cap. The drag coefficient for a shell without the fuze cap is increased by a factor of two.
RESULTS AND CONCLUSIONS

The data are given in the table of aerodynamic data and in Figures 7 to 14.

Drag:

The drag force coefficient, K_D, and Mach number were determined for each round from the test conditions and a polynomial least squares fit of time-distance data taken in the test. Since drag is both a function of Mach number and yaw it is desirable to separate the effects of these two. Assuming that drag is a linear function of mean squared yaw, K_D was reduced to zero yaw by the relationship $K_D = K_{D0} + K_{D0} \times \theta^2$. Due to the limited amount of data at any one Mach number it was impossible to determine a yaw drag coefficient, K_{D0}^2, over the entire range of Mach numbers. However, K_{D0}^2 was reasonably determined to be 2.0 l/radians square at $M = 2.6$. This 2.0 value was used at all Mach numbers to determine the zero yaw drag coefficient as given in Figure 7. At supersonic velocities $Q = \sqrt{1 + M^2} K_{D0} = a + bM$, where a and b are empirical constants, is a useful smoothing formula. A Q function was fitted for drag values between $M = 1.32$ and $M = 2.67$, yielding:

$$a = 0.9280 \pm 0.0037 \text{ s.d.}$$
$$b = 0.1581 \pm 0.0016 \text{ s.d.}$$

Overturning Moment and Lift:

The moment coefficient, K_M, was determined from the turning rates of the two arms of the characteristic epicyclic yawing motion of a spinning missile (Fig. 8). This K_M yields a gyroscopic stability factor of 3 which is certainly adequate for the shell. The lift force coefficient, K_L, is determined from the analysis of the swerving motion (Fig. 9). The center of pressure of the normal force is given in Figure 10.
Dynamic Stability:

A shell is considered to be dynamically stable if its transient yawing motion does not increase with time. From the yaw damping rates (Figs. 11 and 12) it is seen that the precessional rate is undamping at speeds less than \(M = 1.5 \). This shell is being considered for use at slant ranges up to 5200 yards. With a muzzle velocity of 3000 fps the shell will enter the unstable region at about 2200 yards and remain there during the rest of its flight. However, the degree of instability is slight and if the indicated trends continue, an initial yaw of two degrees would yield a terminal yaw on the order of 10 degrees*. The instability is primarily due to the Magnus moment, \(K_M \), which is positive for \(M < 1.8 \) (Fig. 13). The damping moment, \(K_N - K_M \), is positive at supersonic velocities and becomes slightly negative at low subsonic velocities (Fig. 14) and hence also contributes to instability in this region.

*Also, for shell flying at low velocities, the dynamic stability is frequently sensitive to yaw level due to nonlinearities of some of the aerodynamic properties. Conventional shell, at high subsonic speeds, usually show instability when fired at small yaw; that is, when the shell is fired at small yaw the yaw will grow. As the yaw grows, however, the aerodynamic properties change in such a way that the shell becomes stable at some yaw level other than zero. This case of low yaw instability and higher yaw stability may exist for the 37mm T32 E22 shell for \(M < 1.5 \). However, the available data are too limited to demonstrate this.
REFERENCES

<table>
<thead>
<tr>
<th>Round Number</th>
<th>M</th>
<th>K_D</th>
<th>K_M</th>
<th>K_L</th>
<th>K_H - K_MA</th>
<th>K_T</th>
<th>(\lambda_1 \times 10^3) (ft(^{-1}))</th>
<th>(\lambda_2 \times 10^3) (ft(^{-1}))</th>
<th>(\frac{\theta^2}{(\text{deg})^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4442T</td>
<td>.651</td>
<td>.0993</td>
<td>1.42</td>
<td>.82</td>
<td>- .7</td>
<td>.26</td>
<td>1.16</td>
<td>- .94</td>
<td>11.69</td>
</tr>
<tr>
<td>4441</td>
<td>.679</td>
<td>.1102</td>
<td>1.46</td>
<td>.77</td>
<td>- .1</td>
<td>.19</td>
<td>1.02</td>
<td>- .54</td>
<td>23.81</td>
</tr>
<tr>
<td>4443T</td>
<td>.843</td>
<td>.1080</td>
<td>1.51</td>
<td>.79</td>
<td>.4</td>
<td>.18</td>
<td>1.20</td>
<td>- .54</td>
<td>15.87</td>
</tr>
<tr>
<td>4440</td>
<td>.860</td>
<td>.0981</td>
<td>1.63</td>
<td>.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4444T</td>
<td>.936</td>
<td>.1043</td>
<td>1.61</td>
<td>.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4439</td>
<td>1.014</td>
<td>.1751</td>
<td>1.52</td>
<td>.75</td>
<td>2.9</td>
<td>.08</td>
<td>1.70</td>
<td>- .01</td>
<td>14.75</td>
</tr>
<tr>
<td>4445T</td>
<td>1.038</td>
<td>.1745</td>
<td>1.52</td>
<td>.72</td>
<td>3.0</td>
<td>.13</td>
<td>2.07</td>
<td>- .38</td>
<td>12.87</td>
</tr>
<tr>
<td>4438</td>
<td>1.049</td>
<td>.1612</td>
<td>1.60</td>
<td>.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4446T</td>
<td>1.140</td>
<td>.1673</td>
<td>1.58</td>
<td>.82</td>
<td>3.0</td>
<td>.20</td>
<td>2.49</td>
<td>- .71</td>
<td>5.05</td>
</tr>
<tr>
<td>4437</td>
<td>1.148</td>
<td>.1676</td>
<td>1.58</td>
<td>.73</td>
<td>3.3</td>
<td>.16</td>
<td>2.39</td>
<td>- .55</td>
<td>6.27</td>
</tr>
<tr>
<td>4436</td>
<td>1.279</td>
<td>.1628</td>
<td>1.58</td>
<td>.77</td>
<td>3.5</td>
<td>.12</td>
<td>2.27</td>
<td>- .32</td>
<td>4.09</td>
</tr>
<tr>
<td>4447T</td>
<td>1.323</td>
<td>.1674</td>
<td>1.56</td>
<td>.74</td>
<td>3.1</td>
<td>.14</td>
<td>2.19</td>
<td>- .44</td>
<td>5.31</td>
</tr>
<tr>
<td>4435</td>
<td>1.677</td>
<td>.1552</td>
<td>1.56</td>
<td>.77</td>
<td>4.4</td>
<td>.01</td>
<td>1.95</td>
<td>.37</td>
<td>3.97</td>
</tr>
<tr>
<td>*4463T</td>
<td>1.715</td>
<td>1.48</td>
<td>.88</td>
<td>.88</td>
<td>3.3</td>
<td>.06</td>
<td>1.75</td>
<td>.16</td>
<td>5.71</td>
</tr>
<tr>
<td>4434</td>
<td>2.170</td>
<td>.1309</td>
<td>1.45</td>
<td>.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.76</td>
</tr>
<tr>
<td>4448T</td>
<td>2.180</td>
<td>.1323</td>
<td>1.39</td>
<td>.95</td>
<td>3.4</td>
<td>-.04</td>
<td>1.21</td>
<td>.81</td>
<td>15.06</td>
</tr>
<tr>
<td>4451</td>
<td>2.643</td>
<td>.1252</td>
<td>1.28</td>
<td>.88</td>
<td>5.1</td>
<td>-.09</td>
<td>1.65</td>
<td>1.02</td>
<td>3.96</td>
</tr>
<tr>
<td>4450</td>
<td>2.654</td>
<td>.1184</td>
<td>1.28</td>
<td>.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**4449T</td>
<td>2.672</td>
<td>.1162</td>
<td>1.15</td>
<td>.88</td>
<td>3.3</td>
<td>-.02</td>
<td>1.67</td>
<td>.56</td>
<td>2.70</td>
</tr>
</tbody>
</table>

* Nose damaged before firing
** Wind shield came off after 550 feet of flight. Data computed for first 530 feet.
T Fired with blast deflector
<table>
<thead>
<tr>
<th>Round Number</th>
<th>M</th>
<th>N</th>
<th>N_T</th>
<th>K_{10} (rad)</th>
<th>K_{20} (rad)</th>
<th>S_L (ft)</th>
<th>\varepsilon_Y (rad)</th>
<th>\varepsilon_S (ft)</th>
<th>\phi_1' (deg/ft)</th>
<th>\phi_2' (deg/ft)</th>
<th>s</th>
<th>\sqrt{t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4442T</td>
<td>.651</td>
<td>19</td>
<td>9</td>
<td>.023</td>
<td>.054</td>
<td>.06</td>
<td>.0034</td>
<td>.0083</td>
<td>12.90</td>
<td>1.29</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>4441T</td>
<td>.679</td>
<td>23</td>
<td>10</td>
<td>.041</td>
<td>.073</td>
<td>.08</td>
<td>.0031</td>
<td>.0133</td>
<td>12.87</td>
<td>1.27</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>4443T</td>
<td>.843</td>
<td>25</td>
<td>11</td>
<td>.034</td>
<td>.059</td>
<td>.06</td>
<td>.0028</td>
<td>.0113</td>
<td>13.15</td>
<td>1.27</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>4440</td>
<td>.860</td>
<td>23</td>
<td>9</td>
<td>.002</td>
<td>.022</td>
<td>.02</td>
<td>.0087</td>
<td>13.15</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4444T</td>
<td>.936</td>
<td>25</td>
<td>13</td>
<td>.001</td>
<td>.027</td>
<td>.03</td>
<td>.0092</td>
<td>13.71</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4439</td>
<td>1.014</td>
<td>18</td>
<td>10</td>
<td>.033</td>
<td>.054</td>
<td>.06</td>
<td>.0023</td>
<td>.0089</td>
<td>13.84</td>
<td>1.21</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>4445T</td>
<td>1.038</td>
<td>22</td>
<td>12</td>
<td>.025</td>
<td>.055</td>
<td>.06</td>
<td>.0034</td>
<td>.0121</td>
<td>13.50</td>
<td>1.24</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>4438</td>
<td>1.049</td>
<td>23</td>
<td>12</td>
<td>.006</td>
<td>.025</td>
<td>.02</td>
<td>.0094</td>
<td>13.62</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4446T</td>
<td>1.140</td>
<td>25</td>
<td>12</td>
<td>.014</td>
<td>.034</td>
<td>.04</td>
<td>.0027</td>
<td>.0098</td>
<td>13.38</td>
<td>1.31</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>4437</td>
<td>1.148</td>
<td>21</td>
<td>10</td>
<td>.016</td>
<td>.039</td>
<td>.04</td>
<td>.0029</td>
<td>.0080</td>
<td>13.48</td>
<td>1.30</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>4436</td>
<td>1.279</td>
<td>22</td>
<td>7</td>
<td>.011</td>
<td>.033</td>
<td>.03</td>
<td>.0032</td>
<td>.0090</td>
<td>13.29</td>
<td>1.32</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>4447T</td>
<td>1.323</td>
<td>22</td>
<td>13</td>
<td>.019</td>
<td>.033</td>
<td>.03</td>
<td>.0047</td>
<td>.0079</td>
<td>13.19</td>
<td>1.30</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>4435</td>
<td>1.677</td>
<td>22</td>
<td>10</td>
<td>.018</td>
<td>.028</td>
<td>.03</td>
<td>.0031</td>
<td>.0089</td>
<td>13.25</td>
<td>1.30</td>
<td>3.06</td>
<td>.43</td>
</tr>
<tr>
<td>"4463T</td>
<td>1.715</td>
<td>22</td>
<td>---</td>
<td>.028</td>
<td>.033</td>
<td>.04</td>
<td>.0044</td>
<td>.0091</td>
<td>13.25</td>
<td>1.21</td>
<td>3.25</td>
<td>.29</td>
</tr>
<tr>
<td>4434</td>
<td>2.170</td>
<td>22</td>
<td>7</td>
<td>.008</td>
<td>.012</td>
<td>.01</td>
<td>.0044</td>
<td>13.45</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4448T</td>
<td>2.180</td>
<td>20</td>
<td>9</td>
<td>.012</td>
<td>.015</td>
<td>.02</td>
<td>13.44</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4451</td>
<td>2.643</td>
<td>23</td>
<td>12</td>
<td>.047</td>
<td>.046</td>
<td>.08</td>
<td>.0037</td>
<td>.0077</td>
<td>13.30</td>
<td>1.07</td>
<td>3.64</td>
<td>.83</td>
</tr>
<tr>
<td>4450</td>
<td>2.654</td>
<td>22</td>
<td>11</td>
<td>.030</td>
<td>.030</td>
<td>.05</td>
<td>.0041</td>
<td>.0098</td>
<td>13.37</td>
<td>1.06</td>
<td>3.59</td>
<td>.80</td>
</tr>
<tr>
<td>"4449T</td>
<td>2.672</td>
<td>19</td>
<td>9</td>
<td>.019</td>
<td>.021</td>
<td>.03</td>
<td>.0028</td>
<td>.0078</td>
<td>13.22</td>
<td>1.09</td>
<td>3.55</td>
<td>.58</td>
</tr>
</tbody>
</table>

* Nose damaged before firing
** Wind shield came off after 550 feet of flight. Data computed for first 530 feet
 T Fired with blast deflector
FIGURE 1
T324-E22
Shell
FIGURE 5: Shadowgraph at 3000 fps
FIGURE 6: Shadowgraph of Shell and Fuze Cap After Separation
ZERO-YAW DRAG COEFFICIENT

VS

MACH NUMBER

FIG. 7
OVERTURNING MOMENT COEFFICIENT VS MACH NUMBER
NORMAL FORCE CENTER OF PRESSURE

vs

MACH NUMBER

$C_{PN} \text{ (CAL)}$

M

FIG. 10
NUTATIONAL YAW DAMPING RATE, $e^{-\lambda_1 Z}$

vs

MACH NUMBER

$\lambda_1 \times 10^3 \,(FT)^{-1}$
PRECESSIONAL YAW DAMPING RATE, $e^{-\lambda_2 Z}$

vs

MACH NUMBER

FIG. 12
MAGNUS MOMENT COEFFICIENT

vs

MACH NUMBER

FIG. 13
DAMPING MOMENT COEFFICIENT
vs
MACH NUMBER

FIG. 14
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORDTW-Bal Sec ORDTW-FA Systems Sec.</td>
<td>1</td>
<td>Commanding Officer Naval Air Rocket Test Station Lake Denmark Dover, New Jersey</td>
</tr>
<tr>
<td>10</td>
<td>British Joint Services Mission 1800 K Street, N.W. Washington 6, D. C. Attn: Mr. John Izzard Reports Officer</td>
<td>3</td>
<td>Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library Aeroballistic Laboratory Code 5034</td>
</tr>
<tr>
<td>4</td>
<td>Canadian Army Staff 2450 Massachusetts Ave., N.W. Washington 8, D. C.</td>
<td>4</td>
<td>Commander Air Research and Development Command Andrews Air Force Base Washington 25, D. C.</td>
</tr>
<tr>
<td>3</td>
<td>Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C.</td>
<td>1</td>
<td>Commander Air Proving Ground Center Eglin Air Force Base Florida Attn: Armament Div. (ACOT)</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Proving Ground Dahlgren, Virginia</td>
<td>1</td>
<td>Commander Arnold Engineering Development Center Tullahoma, Tennessee Attn: Deputy Chief of Staff, R&D</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mr. Witt</td>
<td>1</td>
<td>Director Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Va.</td>
</tr>
<tr>
<td>1</td>
<td>Superintendent Naval Postgraduate School Monterey, California</td>
<td>10</td>
<td>U. S. Atomic Energy Commission Sandia Corporation P.O. Box 5900 Albuquerque, New Mexico</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Air Missile Test Center Point Mugu, California</td>
<td>2</td>
<td>Director National Advisory Committee for Aeronautics 1512 H. Street, N.W. Washington 25, D. C.</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>National Advisory Committee for Aeronautics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lewis Flight Propulsion Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland Airport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: F. K. Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. S. Army Ordnance Arsenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, Ala.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. G. Reed, ABMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Samuel Feltman</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammunition Labs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frankford Arsenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia 37, Pa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Reports Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director, JPL Ord Corps Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4800 Oak Grove Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasadena, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. Irl E. Newlan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reports Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Warfare Laboratories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Army Chemical Center, Md.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>National Advisory Committee for Aeronautics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Memorial Aeronautical Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Field, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Applied Physics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8621 Georgia Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver Spring, Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. George L. Seielstad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRU: Naval Inspector of Ordnance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Physics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8621 Georgia Ave.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver Spring, Md.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Aerodynamics Development Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 657</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pacific Palisades, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. William Bollay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRU: Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Angeles Ord Dist.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55 S. Grand Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasadena 1, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cornell Aeronautical Lab., Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4455 Genesee Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Miss Elma T. Evans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Librarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRU: Bureau of Aeronautics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Representatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4455 Genesee Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo 21, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Commander Bolles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Consolidated Vultee Aircraft Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ordnance Aerodynamics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daingerfield, Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. J. E. Arnold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRU: Asst. Inspector of Naval Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ordnance Aerodynamics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daingerfield, Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Recipient</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Michigan</td>
<td>Willow Run Research Center, Willow Run Airport, Ypsilanti, Michigan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRU: Commanding Officer</td>
<td>Central Air Procurement District, West Warren & Lonyo Aves., Detroit 32, Michigan</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Professor George Carrier</td>
<td>Division of Applied Sciences, Harvard University, Cambridge 38, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. A. E. Puckett</td>
<td>Hughes Aircraft Company, Florence Avenue at Teal Street, Culver City, California</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Professor Clark B. Millikan</td>
<td>Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena 4, California</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>Diamond Ordnance Fuze Laboratories, Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: ORDTL-06.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>