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THE DYNAMICS OF SHELL

ABSTRACT

The exterlor ballistic motion of shell is considered by the
methods of classical mechanics. These methods prove to be powerful
tools for a qualitative aﬁaljsis of the non-llnear motion of shell
and, in certaln special cases, for obtainlng quantitative results
with a2 minimuwm of computational difficulty. The solution thus ob-
tained for the alrcraft gunfire problem has proven to be especiélly
useful.
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INTRODUCTION

Interest in the gencral motion of shell with nonlinear aero-
dynamics and dynamics has been academic until only recently. While
the first attempt at a study of the general motion was made by Fowler
and Lock2 in 1922 (two years after their presentation of the first ‘
definitive work on the subject of linear motionl), their considerations
showed nothing worth intensive study since they only considered non-
linearity in the overturning moment. The experimental methods were
too weak to disclose any good data on the Magnus effectﬁ.

I. L. Synge]+ and C. H. Kﬁebby5

shell as a "top". 'The latter reference 1s extremely detailed, giving

have made similar analyses of the

" all possible cases for the "Fowler moment".

Not only was the experimental evidence lacking, but also the
practical interest in large yaw motion. For most weapons, to be effect-
ive the shell must be kept in the small yaw region. This is a problem
for linearized theory. Two notable exceptions to this premise are high
angle artillery fire and bomber defense gun fire. The first problem,
popularized by the requirements of jungle and hill warfare, would most
probably be best solved by avoilding large summital yaws, but this does
not appear possible. The second problem has large yaws almost by
definition, namely the launching of shell into crosswinds whose velocity'
is comparable to the muzzle velocity. The second problem with its
urgency has supplied the necessary funde and priorities for truly
broaching the subject of large yaw.

In 1952, L. H. Thomas6 considered the motion of shell as a problem
in classical perturbation theory. Unfortunately the heyday of classical
techniques was at the turn of the century, and few 1f any present day
ballisticians were prepared to cope with the mechanical sophistication
of the paper. This is especially unfortunate since the classical methods
have proven to be so powerful 1n handling the orbltal problems of the
astroncmer, and the problems of orbits with their multiple perlodicities
are not unlike the problems of the rigid body motion of shell.



Fortunately there is nothing about the perturbation methods of
classical mechanics which requires a deep understanding of complicated
notions of physics. Thils was stressed by Dr. Thomas in conversation
with the author. That 1s, the almost-constants can be arrived at by
either considering the cancnical transformations of Hamiltonian theory,
the conservation of energy and momentum, or just ad hoc properties of
the differential equations. 1In fact it is the latter approach which
C. H. Mﬁurphy7 applied so successfully to the problem at hand.

It is the purpose of thls paper to reproduce the results of Thomas
by appealing to direct considerations of the equations of motion. At
the same time it is desirable to correlate the direct approach with
the body of Hamilbvonian theory sc that the numerous methods of the
astronomers may be made more available to the ballisticians. Therefore,
the flrst section is concerned with the general theory of canonical
transformation and secular variables. The remainder of the paper
develops the theory of the motion of shell independently of the first :

sectlion but with identifying references to the first section.

A departure from Thomas! paper is the use of the function defined
by equation 6.3 as the fundamental motion rather than a sinusoidal
approximation. The author prefers to make the trigonometic¢ approxi-
mations as late as possible in the averaging process. Sections 12, 13,

and 14 are extensions of Thomas! paper.

One particular limitation of this pafer is the omisslon of the
effects of gravity. While this deletion is not important in the case '
of flaf fire and rather desirable for the sake of clarity, there is a ‘
large area of interest (Howitzer fire) in which the effects of gravity
~ are of prime importance. It is in this area that the author hopes to
extend these methods.

1. HAMILTONIAN APPROXIMATION THEORY

The basis for classical perturbation theory, and for that matter N
any approximation theory, 1s the study of the variation of what would

be constants 1n a simpler but similar system. We shall conslder two



types of systems: & simple rigid body with a conservative moment of
force and additional non-conservative aerodynamic forces and moments

of force and a compound shell with a conservative moment of force.

For the first type we assume that everything possible has been put

into Hamiltonian form. That is

Py

BH/qu + T
1.1

93

BH/BPi + 8y

where the q's are the generalized coordinates, p's are their conjugate
moments, H is the ﬁamiltonian, and the f's and g's represent those
forces and moments which defy & Hamiltonien formulation.* I contéips
the kinetic energy of the shell and those aerodynamic forces which are

conservative (usually the overturning moment).

_ We further assume thet the effect of the f's and g's is to produce
a small secular change iﬁ the motion:whichlis-typified in any small
region of time by H. This is to say, the conservative motion at any
instant gives the frequencies and. amplitudes of oscillations in the
system while the non-conservative terms produce long term changes in
the parameters of the conservative system. To isolate these parameters
of the conservative system, we shall introduce new varilables such that
'the coordinates are almost cyclic and hence the conjugate momenta are

almost constant. These new momenta will be the desired parameters.

We make a canonical change of varilables as follows:

Let P, =E |
1.2
P, =p; i1

*
For a general discussion of the Hamiltonian formulation see References
8 and 9. These are only two of many possible references.



We shall find that for our purposes the case with all but one
variable’s being cyclic 1s of particular interest. That is
H = H(pl, I I ql). To complete the transformation we let

Pl = G(H) PQ) LI IR I) pny ql)

and defline a generating function

n 9
F = E g P, +L]" G(P, - + ., P, x)ax
i=2
wbhich gives the transformation equations
p; = 3F/dq
Q = BF/BPi

The generating function gives thé following transformation for

the new coordinates:

Q =g +‘J21 9G/oP, ax 141
ol
Q = U[ BG/BPl ax .
Noting that
BH/BQi =0
BH/BPi =8, , (the Kronecker delta),

we write the new Hamiltonian equations as

P

Q

y = 8y + (39,/3p)) £, + (3,/3q,) &y

where summation is to be taken over repeated indicies.

1.3

1.k

1.5



The new generalized coordinates are the time in the conservative
system for i=1 and the perturbations produced in the original coordinates
(q) by the introduction of the non-conservative terms. It should be

pointed out that no approximations have been made up to this point.

Allowing that the non-conservative terms may be considered as small
and hence that the Q's for iAl may be taken as zero and Ql =t, we

obtain the secular equations

P, =h, (P.y, o« v v, Pn,t) 1.6
from equations 1.5 by substituting the solution of the conservative

system in the right hand side. A further simplification can be effected
by replacing the right hand side by its avérage over a period of motion

giving:
t + T/2

P, = (1/7) h. (Pl, R y) dy , 1.7
t - T/2
the P!s being assumed constant during the averaging process. T is the

period of motion.

Should the frequencies of motion be of particular interest, a
suitable choice of variables would be the action-angle variables. If
on the other hand the magnitﬁde of the motion is of first Iimportance,
the roots of the energy equation would be more appropriate. 'The latter

will be the case for most of the further discussion.

The systems of the second type, mentioned at the beginning of this
section, will be considered in the last section since, in breaking faith
somewhat with the introduction, the development will be done in the

Hamiltonian manner.
2. 'THE EQUATIONS OF MOTION

As was mentioned in the introduction, the following development
will be performed in a direct fashion, i.e. by the use of familiar
equations of motion and simple algebraic operations thereon. Never-
theless the development will parallel the Hamiltonian method outlined
in section 1, and at appropriate points reference will be made to the

preceding outline. The object of the direct development is twofold.



First the complicated force system is hard to identify in terms of
generalized coordinates; second the direct approach will be easier
for the uninitiated to follow, while, at the same time, giving a view
into the inner workings of the theory if continual reférence 1ls made

to section 1 and Textbooks of classical mechanics.

The starting place will be the equations of motion in almost
the same form as presented in reference 10. The major difference
1s in the definitions of the aerodynamic forces and moments for which
the axial component of the velocity is used in the reference while
the total speed is used herein. Also we shall use the arc length of
the trajectory for the 1ndependent variable rather than the integral
of the axial component of the velocity*. The effects of drag and
séin deceleration 'are not considered although they may be added with
1ittle more than an increase in bookkeeping. The effects of gravity
are not considered, which limits the discussion to "flat fire".

Without further discussion the equations of motion are taken to be:
A =dp 4 - 2 JL Y
2.1

2 2

t = ~ (v + 1 - - -
9 1AVP/B ( JT 1JM) k2 A JH k2 K
where

by Complex orientation of the velocity vector with respect
to the shell axis

H Complex transverse angular velocity of the shell in
radiens/caliber of travel

! a/ds
s arc length of the trajectory in calibers
o] angle of yaw

2 cos &

sin & |k|

A axial moment of inertia

B transverse moment of inertia

*
Actually, the same definiltions as we use were used in the earlier but
probably not so widespread work of Kelley and McShane, On the Motion
of a Projectile with Small or Slowly Changing Yaw, BRL Report 446, 194h.

10



i

axial radius of gyration in calibers

e
n

transverse radius of gyration in calibers

axial spin in radians/caliber of travel
deK/m

density of air

diameter of shell

mass of shell

lift coefficient

Magnus moment coefficient

damping in pitch coefficient

static moment coeffilcient

NN I N

3., THE VARTIABIES H, $, and £

To reach the starting place of section one, we must change the
variables of sectlion two into canonical variables. Although we shall
go directly to a set of variables containing H (as in 1.5), it is
worth while Indicating the intermediate canonical variables. Using
the definition of Eulerian angles in reference 8 with 8 = 0, one can
obtaln & set of canonical variables. The qy of section one would be;
Q= ¢; q_5 = V3 P, = Pgs Dy = P2 = p; p3 = P3 = PW . In what follows

we shall use the dimensionless_@'and v in place of P2 and Pj‘

The normalization factor is Av. In this section a bar over a symbol

represents the complex conjugate.

We define a dimensionless energy (or Hamiltonian)
2

_1 /B ~
H=5 (3) KL+ V , 3.1
which 1s the sum of the kinetic energy of the transverse angular motion
and the potential energy of the overturning (static) moment

. as
V = %3 3.2

Where

S

l

stability factor = (AV)?/(hBQJMkQ—E) .

The normalization factor is (AV)Q/B.

11



We further define a dimensionless angular momentum which is the

component of the shell!s angular momentum about the velocity vector

B - =
= sy (M + M) + 4. 3.3
The varlables H and_ﬁ-are essentially those used by L. H. Thomas,

Using equations 2.1, the above definitions, and some straight-
forward algebra, one obtains the following as the equations of motion
in the new wvariables:

m P

-2 -2 1
-Jgk, T (2B-2V) - Ik, (- 2) + 5 I (1 - £9)
3.4

g = (2 I+ JHKQ-Q) (@ - 2) - (JTkl"2 - JL) (1 - 32)

£ o=+ %_V \/(1 - 22) (2H-2V) - (ﬁ—z)?+ I (1-32) .

The radical in the right-hand member of the last equation is equal
to G of the flrst section multiplied by sin2 5. Of course, £ is not a
canonical coordinate, and a new variable ©, which is more closely related‘
to the coordinate canonical to H, will be introduced in section 6. However
£ will continually occur in our considerations, and a word about the use
of the cosine of the angle of yaw in the definition of the aerodynamic

coefficlents is in order.

It is common practice to represent the aerodynamic coefficients as
even functions of the sine of the anglé of yaw. This practice 1s satis-
factory for angles less than 900. Beyond 900 this representatlion gives
the value of the coefficlent for & to be that of 180°- & which is generally
incorrect. The general expression for an even function (in angle), whitch
is not completely pathological, is a Fourier cosine series which, 1f the
function is analytic, can be represented by a power series involving
both even and odd powers of the cosine. Not only does the cosine appear

as a loglcal variable in the dynamlcs but also in the aerodynamics.

of additioﬁal interest is the ease with which a coslne seriles can
be fitted to experimental data by trignometric interpolationll and further

the ease in converting a cosine Fourier serles to a cosine power seriles.

12



The advantage of the variables H and @ is that they are constant
for the case in which the motion is that of a'top with a generalized
overturning moment and no other forces. However, it is just that top
motion which makes the equations so difficult to handle. Essentially
we nov have variables with most of the high frequency top motion

stripped out.
L., THE FUNCTION f(4)

It was noted in the last sectior that the radical on the right
of the last of equations 3.4 was the function G of section cne mul-
tiplied by the square of the sine of the angle of yaw. We define the

function £(£) as
£(8) = (1 - ££) (2H - 2v) - (g - 0 . 4.1

This function dominates much of the motion of & shell in the same
manner as the similar function dominates the theory of Abelian integrals,
In fact if V is approximated by a truncated cosine series, f is a poly-
norial in £, and the analysis depends strongly on the theory of elliptic
anq hyperelliptic integrals. Without the use of such sophisticated
mathematics, much can still be learned about the overall motion from the

roots of this polynomial.

Since the cosine of the angle of yaw must be a real quantity, it
follows from (5.5) that the function f must be positive for any value
of yaw the shell can assume consistently with the initial conditions.
In particular, the yaw will oscillate between two neighboring roots

zo and £, such that the function is positive between these two roots.

1
There 1s of course the requirement that the cosine of a real angle
must be of not more than unit magnitude. In thils connection it is grat-

ifying that the function is non-positive for £ of unit magitude.

The speclal case of V linear in 4 corresponds to the common gray-
itational top. This casc is discussed at length in reference 8 and, for

that matter, most any text of classical mechanics.

15



The roots, ZO

adapted to use as secular (slowly varying) variables. Indeed the entire

and El, of £ which bound the motion are often well

concept of stability hangs on thege roots. In many cases it might be
desirable to avoid the algebraic difficulties of finding roots of high
order polynomial by carrying both the roots and H and}@-as dependent

variables,
5. THE ROOTS AS VARTABLES

In this section we shall do two things, find the differential
equations for the roots and evaluate H andjﬁ'in terms of the roots.
The first is necessary for using the roots as dependenf variagbles and
for determining the behévior of the variable © which will be introduced
in the next section. The second is necessary if the roots are to be

used exclusively as dependent variables.
We proceed as follows:
Iet r be one of the roots of interest. Then
£(r) = (1-°M2E-V(x)) - (B-r)® = 0
Differentiating this expression we obtain .

(32(z)/or)rt = 2(F-r)F" - 2(1-r")H
‘ -2
2(F-r) [-(z Iy + Ik, )@_g)_(JTkl-e_JL)(l_ze)]

K

-2(1-r°) [-JHk2_2 (2H-2v(2)) - JTk_L‘Q(;b-z) + JL(l-zg)/hs(z)].

Using f£(r) = O and observing care in keeping £ and r separate, one
obtains, by eliminating terms iniﬁe,

(32(x)/ar)et = 23, {-z@-r) (r-2)+ PE-2V(x) ] (r-8)(L+r2)
+[2/us(z) - 188 (8)) (1-£°) + 3 (1-£9) %ﬁ—r)-}
+ 2kl~2 JT (r-ﬂ){lﬂm@ - §(r+£)} 5.1

+ 2k2'2 Ty {(r-_g})(r-z) + 2(1-1«2) [v(r) - v(z)]} .

Each J 1s a function of 4.

14



It is certainly reasonable to assume that V and S are different-

iable. 1In which case, using the mean value theorem, we can write:
2
(of (z)/or)r' = (1-4) Jp (d3f (r)/dr) + (r-2)C (r,2) ,

Where
lim. C(r, %) is finite.
£ ~—»1
Anticipating the next section, we define
£(8) = (zl-z)(z-zo) Fg) . 5.2
where F 1s bourded, positive, and non-vanishing in the closed interval

(20, El). Then
(of(25)/ar) = (£-4,) F (4,)

(30(4))/3x) = (8y-4,) F (4))
and
L2
t 2 0
By = (1-27) I+ II:?S o (zo,z)/Fo
L -4 5:3

a 2 1
L = (1-£°) I+ 35:11 c(zl,z)/Fl

vhere FO and Fl are the values of F evaluated at £o and 21.

A more detailed evaluation of the derivatives of the roots would
depend on a knowledge of the functional form of V. For our purposes

equatione 5.3 are sufficient.

The next step, as indicated at the beginning of thls section, 1s to.
find the functional rélationship between the roots and H and_ﬁl To do
this most simply and to give the moet understandable form, we introduce
two new intermediate variables. These new variables are quite closely
related to rather familiar concepts in exterior ballistics. In particular
let 60 and 51 and Zl. We then
define two new variables

(1/2) (8, + 8))

be the angles of yaw associated with BO

b
5-,4»

B
n

(1/2) (8, - 8) -

15



The letters p and n are chosen for the connotatlon of precession and
nutation. Here we are at Yariance with the majority of the literature
in the field of exterior ballistics, but in keeping with the traditions
of classlcal mechanics. That is in this paper we call nutation EEE

motion involving changes in the angle of yaw and precession the

—_—

average motion of the shell axls about the velocity véctor. In this

sense we shall see that nutation is always more nearly associated with
the ballistic concept of fast motion while the precession can be either

fast or slow.
From the two equations
f(zo) = 0 and f(zl) =0

eliminate H to obtain

2 2, —
5 - 1+ 258 +\/f1-zo )(1-1;l ) ‘\[1 -h bre, V-V,
20 +.£l - ko + &y 2 zl-ﬁg
where VO and Vl are the values of V for £O and £l.
Changing varisbles to p and n gives
cos n (1 + qg) cos p (1 = g)
[ — + - 5.5
2 cosp 2 cos n ’ y
where i '
)
¢ =-1-L4cospecosn (Vi- O)/(&l - EO) , 5.6

which reduces to the usual ¢ in ballistics in those cases where V is
linear in the cosine (Kﬁ 1s constant). Now if @ is the azimuth angle

as used 1n Reference 8,

¢‘ =AV (g-ﬂ) 5.7

Bsin2 3]

If we consider the case of pure precession (n = 0O)
Av (1 + o)

P =
g 2B cos p

5.8
For the case of statically unstable shell (O< g<l), there are

two precession rates, both in the same direction, one fast and one
slow. For the case of steticelly stable shell (o >1) there are aleo

16



two vates but now of different sign as well as magnitude., For the
case of neutrally stable shell {¢ = 1) there is only one rate and
that is the vacuum rate as one would expect.

One final observation about the rates is of interest. For p = 900,
there 1s only one possible precession rate. This motion 1s possible
since the limit of o as p approaches 90° is ome. The slow motion is
the possible one and in this case

2
j? = cos n (Vl - VO)/(.El - EO)
In a similar mznner as for equation'5.5 we obtailn;:

2 2
1, 2 Q2o o Lto 1 |
H=7tten p { - ) +tan n (__E—_) ]- + 3 (Vl+Vo) 5.9.

6. THE UNIFORMISING VARIABIE ©

In Section'3 it is noted that 2 is not a canonical coordinate.
While time (actually arc length) is the coordinate conjugate to the
Hamiltonian, it 1is more convenient to introduce ancther varieble 6 by
the relation

y; =_(;[2)(zo+zl) + (1/2)(30721) cos & . : o 6.1

Thomas callé.this variable a uniformising variable since, 1f £

varies sinusoidaliy, © varies linearly. In any event, the transfor-

mation absorbs much of the oscillation.
Differentiating 6.1, substituting in 3.4, and rearranging terms glyes

£ - £ '
0 1 . am' L AV / ' 2 t sl+cos Gy, " ,l-cos ©
—%— sin 00 = + N £(2) - JL(l-.e )+.t?,O (-—§—)+El (-—2——)

Using 5.2 and 5.3 we obtain

Ol’_ éz F(E) _ sin G C(‘eo,‘l‘e) + C(gl) E) 6 2
TE 202 1,) F F, )

In general the presence of the El - EO term 1n the denominstor of
the last term causes trouble when the roots are almost equal. A dis-

cussion of this case will be given in Section 8. Fortunately for roots

17



which are separated sufficiently that the manner of finding the average
of £ 1s important, the entire term can be disregarded. This latter
simplification is applicable only for the case of heavier-than-air pro-
jectiles (see below). Since this is the case with which we are con-

cerned, we shall use

o =& Vr() 6.3

B
as the equation of the fundamental motion. This is similar to the use

of the approximation Ql = %t in Section 1.

The frequency of nutation can be defined as the reciprocal of thé
time (arc length) in which O changes by 2n. We call this time (arc
length) the period, P, where

8 +2n

(¢]
P=f d o 6.k

5, VT

o}

To establish under what conditions equation 6.3 is valid, we shall
evaluate the C and ¥ terms for ﬂo = ﬂl = £ = cos p. We shall then con~-
sider under what conditions the term Av  F(cos p)/B dominates the term
¢(cos p,cos p)/F(cos p) [ZO - ElJ .

Now, using 5.1, 5.5, and 5.9, we obtain

1l

C(cos p, cos p) chil [tanep (1io)2/4 - singp (1-02)/4]

-2 .2
: EJT kl sin p o 6.5

n 2JH k, tan p sin p (lio) /2 .

Equation 6.5 may be used in detail to obtain an estimate of the size of
C. However, in the cases which are usually of interest, we can merely
say that C is of the order of magnitude of (pd5/m)sin2p, and hence
C/[Zl-ﬂo1 is of the order of magnitude of (de/m)(sin p)/(sin n). The

comparison is then between Av+/F /B and (pdj/m)(sin p)/(sin n)F. That
1s, the approximation 6.3 is invalld for n such that

sin n-<<pd5/m) gin p / [(A /B) FB/2 ] . 6.6

18



[o]

' For spin stabilized shell we may use F 2 1 and KMk; =1 %o get as

an order of magnitude apﬁroximation

sin n < (1/48)(Av/B) sin p 6.7

for the. approximation 6.3 to be invalig.

A more spe01flc analysis along the same lines is necessary for any

particular fln stab1117ed shell,
7. THE FUNCTION F

The function F, together with Av/B, determlnes the frequency of the'
nutatlon of the shell (6.4). If V is at most qpadratlc in. z, the nutation
“can be expressed in terms ‘of elliptlc 1ntegra.ls° If.V is of hlgher order
the solutlon requlres hyper-elllptlc functlons (or serles expan51ons)

It is instructlve to -reduce F to a form 51m11ar to the expre551ons ior
the nutatlonal frequency found in the usual balllstlc theory. (In v1ew
of our definition of nutatlon, the nutatlonal frequency we shall obtaln
will be equal to the difference of the two frequen01es of the usual '
‘ballistic theory). |

We first note that 1f '
f(z ) f(E ) =0

Then, by using the mean value theorem,

2 = ' . o .
£(8) = - (1/2)(4-2)(2-0,) SECE) i
0 1 : dgz " .

where £ lies between £, and ﬁl and depends on £.

Letting .
V = v(%) ete.

we have _ . )
Fol+(eno®) -0z & Ly X0 g0

at ar”

Several cases are simple enough to be of interest. First consider the
case of small nutation. Letting n go to zero and using 7.2, 5.9, and 5.6,
we get the following expression for small nutation. '
l+o 2 2
—) + sinzp é—% 1.3
dg .

F=o + tanzp (

19



The other special case we shall consider is that for V quadratic
in 4. In particular let V = af + bze. Then

2
o 2 1+a o l+o
F=g +tanp ( 5 -)  + tan'n ( )
* s (1-—3L)+2(1-32)b
zl + zo

8. THUE BEHAVIOR FOR SMALL NUTATION

In developing the equations for the uniformising variable, mention
was made that the right hand side of equation 6.2 could cause trouble.
Such is often the case when the nutation is quite small (while a specific
check would be required for each case, it appears that generally the
approximation presented by 6.3 is valid for any nutetion which can be
considered sensibly different fram zero. This appears to be the case
e long as the density of the projectile is large compared to the density
of the resisting medium.) While the case of extremely small nutation
presents no problem as to the choice of a proper averaging technique, for
completeness it is desirable to discuss this case. Indeed, in one sense
at least, 1t 1s mandatory that an explanation be glven as to why a per-
turbation technique appears to break down under those conditions for
which the perturbed variables should be changing the least., It 1s de-
sirable to show that the difficulties are only in the coordinate system.

Actually the variebles H and § do change slowly at all times., The
.. ficulty is in the roots of f. When the two roots are close together,
very small changes 1n the parameters of the polynomial cause proportion~
ally much larger changes in the roots. What happens, as we see below, 1s
that in certain cases the uniformising variable has limited variaticn,

and the roots osclllate markedly.

For the case of small nutation equetions 5.3 and 6.2 can be aspproxi-
mated by ‘

or - AV VE o sin @

i (7T, C/F

8.1
(£0~El)' =cos 8 C/F

where C, ¥, and ¢ are evaluated for ZO = 21 .
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These equations can be normalized by introducing the wvariables
i (.20 - Bl) CAv F

B 8.2
dz = Av v;F ds

X

The normalized equations are

dc sin ©
— =1 -
dz X
8.3
dx
EE—COSQ »

A graphical representation of these equations appears in Figure 1.
It can be seen that two types of solutions are possible: closed paths
around the points x = 1, © = (2k + %)n or around the points x = -1,
0 = (2k + g)ﬁ; and open paths in which © increases indefinitely. Actually
the varlables x and © are not the observable gquantities. What is '
observable 1s the change in the cosiﬁe of the yaw, this change being
proportional to x cos 6. If we denote this duantity by y then 8.1 gives

which by the definition of = means that the cosine of the yaw has the
usual frequency, viz. Av v F/B.

9. THE SECUIAR EQUATIONS

While equations 6.3 and the first two of equations 3.4 could be used
thelr present form for machine computatlon, the presence of high frequency
oscillations is a source of possible divergence of the truncation error
in the computational techniques unless extremely small integration inter-
vals gre employedlea Further the presence of three variables upon which
the equations depend explicitly, rules out the possiblility of a gewmetric
interpretation with any intuitive value. A simplification of the equations
15 therefore indicated from both the analytic and computational views.
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To this effect we 1nvoke the same approximation which was used in
obtaining equation 6.3 from 6.2, namely, the transient times are large
compared to the nutational period. The secular equations (see 1.6) are
obtained by averaging the dependence of the filrst two of equations 3.k
on 6 over a perlod of nutation. It is assumed that over this perliod H
end § are constant. The average will depend upon the functional form
and roots (ﬁo and Zl) of f.

Samcwhat more specifically the modus operandi is as follows:

Equations 3.4 may be written as

H' = a1 T+ al2-@_+ a,l5
9.1
B o=y B+ ay

where the a's are functions of £ and hence of © and the roots of £. The

a's are replaced by their averages

s+P
- _ 1
a (zo,zl) =5 a(zo,zl, o)ds
5 ' 9.2
27
1 a(zo, 2y Q) ae
- P
Av 5
2 f7(ay, 2y, 0)
2n
P - = do
. 5 YF (40,4 o)
The roots (ﬁo and zl) are considercd constant in these integrations.
Usually the a's can be written as polynomiéls in £ and hence as
a,, (£) =a (2.,2.) cos® @ ' 9.3
13 ijk ‘Y00 *1 | .

with summation over k.
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Therefore

353 = %54k Pk

where gfa cos © do Q de
0
2:": 95&'
de

VF
Evaluation of the latter quantity involves complete elliptic integrals
of the first and second kind when f is cubic (see next section), complete

elliptic integrels of the first, second, and third kind when £ is quartic
and complete hyperelliptic integrals when f is of higher order.

The final secular equations are

H!

n

a il + B ay by + 8131k

g = 221{1«:6*&231«:1&

wheré'the ats and b's are functions of ﬂ and ﬂ .

9.5

We may now think of the dynamic history of the shell as being a path
in the H,'@-plane.l A shell may be deflned as dynamically stable in an
H,_@'region if all paths from that region lead to the H,_ﬁ.point corres-
ponding to %o = £ = 1. The reglon of physically consistent H and §
(that is H and § such that £ is positive for some values of £ in the
interval Fkﬂt:l) 1is bounded by the curve of values of H and_@-for which
the roots are equal (n=0). Any limit points on thls curve represent
stable pure precessional motion. Idmit points inside fhe region rep-
resent staBle "elicyclic" motion. In those cases where the curvés for
H' = O and for‘jﬁ = O can be obtained, the intersections of these curves
(singular points) may be analysed and an overall description of the
motion obtained (in the same manner as reference 7)., The lattéf situ~.
ation 1s not too likely since, even 1f the elliptig integrals can be
approximated, a system of three nonlinear algebrailc equatioﬁs must.be

considered (two for the vanishing of the derivatives and one for the

2l



roots of f). A more profitable line of attack would probably be
to lay down a sufficiently dense set of numerical solutions for

reliable inferences to be drawn about the general motion.

However, there are many special cases in which such things as
restricted initial conditions, etc. allow analytic approximations to be

made and a somewhat closed solution to be obtained.
10. THE CASE OF A CUBIC f

For the case in which the stability factor (8) is a constant,
(V is linear in £ as in the usual gravitatiopal top), the function
f is a cubic polynomlal in £, and the secular equations can be written
in terms of complete elliptic integrals of the first and second kind.

In fact, only one transcendental function need be used, namely E/K.

To demonstrate this fact and to derive the detailed equations for
the cubic case, it is convenient to use all three of equations 3.k.
Averaging with respect to £ is eguivalent to averaging with respect

to the uniformising variable ©.

. y2
—_— 0 a
Zn=(l/P)f L
) Vi :
1. 10.1
y
0
S
t
31

- where again the roots of f are assumed to remain constant during the

integration.
Now - ' |
£ o - ) e - 4/28) - (F-2)°
= (1/28) (2 - £,)(2 - 4 - 4) . 10.2
by = 28(PH ¥ 1) - 4, - b

Noting that f(l).aﬁd £(-1) are negetive and that since £ is an odd
order polynomial it must apﬁroach plus infinity elther on the- right
(s » 0) or on the left (S < 0), we conclude that there is elther a root

s




22 >1, S >0 or a root 22 < -1, 8 < 0. We shall consider the case
for § > O (the moment of force tends to overturn the shell). The
other case is quite similar.

Since we are interested in the ratio of two integrals, we may
neglect the factor of 1/28. Then

£

tlﬁ & oas

) V=202 )(2-2,)
1

10.3
&£o=
20
2 dL
where
22 >1 > 20 >£l
Making the substitution
2
snu = (£-2.)/(L.-2.)
1o 10.4
2
X = (zo-zl)/(zQAl)
we get
K
T 2 \n
£ = (1/x) ‘J“ (zl + (zo-zl) sn"u) du
° ' 10.5
. n-J _p \d/m
sumning on J and where
K
A’Z,j =J~ sneju du .
Now (see reference 13)
Ay =K
A, = k-2 (E ~ X)
2 B 10.6
. : 2
A (351) - 2j(1+x%) AQJ + (1-23) AQ(J_l)
2 2
(2341) k
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\
Hence, since there integrals are divided by K to form the averages,
“n 2
! 1is a function of 2y By K, and E/K.

Finally we note that, 1f we write for the al's in equation 9.1

n
aiJ £ ciJn £
summing on n where the e¢'s are constants,
a,, = ¢, ;o 20,7

1 ijn

and we have the secular equations a functions of H, @, £., and £, with

2

E/K as the only transcendental function. >
One further item is of interest in connection with a cubic f. That

is the geography of the H,_ﬁ'plane (Figure 2). The curve which bounds
the region of permissible motion has three parts: pure slow precession,
pure fast precession with p less than 900, and pure fast precesgion with
p greater than 90°. The lines for one root = 1(0°) and for one
root = -1 (1800) are drawn and are seen not to intersect (the motion
cannot oscillate between O and 180° unless the spin is Zero).. (ne other
line is included. That is the line for H = v(4,), B = 45, Polnts on
thig line are those candltions which correspond to the case of an
initially stationary shell axis. These are the initial canditions for
ghell fired fram aircraft.

11. A 0NE~DIMENSIONAL EXAMPLE

The following 1s glven to illustrate the techniques described thus
far. Conslder the one-dimensional equation

x" +(a+0V x2)x’ + %0 =0,

We need only define one secular function, namely
2 L
B = (1/2)(x")" + (1/8)(x") ,
which 1s, as usual, the sum of the kinetic and the potential energy.

Then .
- (8 + ) - (1/2)x%)

Vem - (1/2)x"

Define two new yariables r and © by

Ht

]

x!

X = rcos ©
I‘h =’+H 'y
27



one root = -1 (180°)
(@ =-1)

one root = 1 (Q°)
(@=1) \

\\pure fast

pure fast initial conditlons
precession or aircrarft gunflre precession
o}
p>90 H = V(4) p<90°
b -=o
e — “’
—_——-— ]
‘\EM\\“ pure slow
precession

H, O PLANE

Figure 2
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Then
ot

T W/(l + cosag)/2 - (a+ br2cos£9)(l + coseO) 5ine cos®

rt = - (1/2)(a + b 2 coseg)(l - COSAQ)r .

This is an interesting case. If r is small we cannot ignore the
last term in the O! equation. Indeed for small r the motion becomes
over-damped., However, we shall start with a value of r which is large
enough to allow dropping the second term in the 8 equatlon. This is
on the assumption that a + br® 1s smaller than v/ 2

With this assumption, we let
cos @ = cn{u) (en = cosine amplitude)
in which case the secularized r! equation becomes
K
- (r/2K) Jﬂ (a + broenu x - acnhu - bcn6u)du
0

-r [a/5 + (/K - 1)/5] .

GEDA solutions were run for two specific cases (Figures % and %),

Tt

The oscillating curve is the actual solution. The envelopes are solutions
of the secular equation and give the'amplitude of the oscillation. The

agreement is good.

12. THE MURPHY NONLINEAR TREATMENT

C. H. Murphy?

nonlinear vibration theory to the case of shell motion. It is desirable
to tie his methods to the methods of Hamiltonian mechanics. To do 50,
we shall consider a somewhat different form of the equations than that

has been quite successful in applying the methods of

of equations 2.1, and for simplicity we shall consider nonlinearity in
the Magnus term alone.

We teke as the fundamental equation of motion (after Murphy)
MY+ (2 - 1V) A+ (M - ipT) A =0 11.1

with v = (&/B)v
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-2 -
T = JL - kl JT = Tl + T2 AA

In these equations we have neglected the geometric nonlinearities,
These could be added, but the algebra would beccme more difficult.

- We now define the varlables
(1/2) (A' X1 - MAR) v

(Aat- AX1)/2iv - an/2 _ 11.2

H

p

These variables are closely related to our orlginal definitions, One

difference should be noted, namely,_ﬁ;ew =-¢;ld-l' This means that a

negative_ﬁ_is assoclated with the slow precession, and a positiVe_ﬁl with -

fast precession.

The differential equations in terms of the new variables are

Fv = (P +AN/2) + ™Y
H' = -2A(H + WE/27) + [ +a%/2] | 11.3
(M) = (511’125)' =+ 2v '\/2511125 (H + sinQB/BS)-(¢+(siné5)/2)2 '
=+ Vg \/(sineﬁl - sin25)(sin28-sin280)‘
Iet
2 2
= sin &
(G + 1) t 2.4
(Kl - K2)2 = sin250
Then
sin28 = Ki2 + KéQ + 2KiKé coé e . 12.5
and ‘
K_122 _ °H - (lé: a) 8 12.6
? g
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Using 12.5 and 12.6 in 12.2 and taking averages with respect to 6,

by using 2n "
(1/2x) ‘jﬂ (Kl2 + Ké? + 2K K, cos Q) de = Kig + Kég 12.7
)
25
(1/2x) L{\ (K12 + Kég + 2K K, cos 0)° ao = Ki” + Kéh + hKigxég )
0 .
we get . -z -+7[T (K5, 42 2)]
SN 1,2 1t U o 2K 2.8
() 1,2 ; , y
¢1,2 " ¢2,1
where
¢i,2 =v(1+a)/2 .

This is Murphy's result.
15. ATRCRAFT GUNFIRE

In bomber defense gunfire at high altitude, stability factors are
quite high, and the initial conditions are such that there is a large
slow precession and practically no nubtation. Two things are of lnberest:
 the damping of the precession when the nutation is zero and the stability
of smell nutation., We assume the stability factor is infinite which

allows us to approximate 5.5 and 5.9 by

& 2 (cos p)/cos n 13,1

H =2 (1/2) n2
pubting 12.1 into 3.k using the relation

cos 8 = cos pcosn+ sinp sin n cos O ,

1

s

and keeping no terms in n in the p?! equation and only linear terms in n

in the n' equation, we get

=2
1 —e- ~ i
p! =—(J ~ Jn k) sinp 13,2
n!' = =J_ k -2 n - J -2 (n cos p S sin P cos Q)
g 2-dply ‘

The first equation has been checked against complete integrations of
the dynamical problem, was found to give good agreement, and is belng used
in the computation of aircraft firing tables.
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To be useful the second equation must be secularized by averaging

the © term. The final equation will be in the form

2n
n! = -J Xk -2 n-J. .k 2 ncos p + (1/2x) sin p 2 J . cos® 4o
i ? %) 5 T
0
To evaluate the last term let
. , m
JT = 2{: c, (cos p cos n + sin p sin n cos®)
=0
m m- 1 .
=:E:cm(cos D + m COS p sin p cosO n)
Then 21
n : m-1 .
(1/2x) f Jp cos © 46 = -2-2 m c  cos p sin p 13.h
0

14, NON-RIGID SHELL

The Hamiltonian formulation is well adapted to the consideration
of campound shell. 1In many cases there are limitations imposed on some
of the degrees of freedom of the component parts. We shall consider
one special case, that of a small mass which 1s constrained to move in
a plane perpendicular to the shell axis and subject to a linear re-
storing force centered on the shell axis. 1In linearizing the problem
we shall make extravagant use of canonical transformations in the hope

that the repetition will engender a feeling for canonlcal transformations.

Consider the situation pictured in Figure 5. The y axes are space
fixed axes. The x axes are fixed in the main shell body (the X5 axis is
the axis of symmetry of the main shell body). The gl and gg axes define
the plane 1n which the small mass may move. The §l axls is taken in the

Plane defined by x The origin of the faxes is at a distance a fram

5 V30
the center of gravity of the main shell (origin of the x and y axes).
The main shell body is acted upon by a moment whose potential energy
is p cos ©. This is again the assumption that V 1s linear in £. The
2
spring has a potential energy of (l/E)K(gl + §22). The velocity com-

ponents of the small mass (m) are given by

Sh
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1 2@ + gl - @ cos @ §2

V. =
v, = é (a sin6 + ¢, cos e) + ég 14,1
v5 =-0 §2 sin 6 - 6 gl

The Hamiltonian for the system is
. 2 2 3 y 2
H - (B/2)(92 . f sin“6) + (A/2) (V + @ cos 6)° + u cos ©
: : k.2
2 2 2 : 2 2
+ (m/2)(vi tV, + Vg ) + (K/2)(§l + §2 )y,
where A is the axial moment of inertia of the main shell body and B the

transverse moment of inertia.

The five momenta conjugate to the coordimates ¢, ¢,, i, o, and ¢

are respectively:

pl = mvl
Py =1V
py = A(i + é cos ©) 1.3

It

. o« .
Py = B6 +ap, +mt. " 6 +m, t, sin @ )

i

2 2 .2 py
B sin” of + pycos © + ¢, sinom ) g, tom sin ©

- t, cos op, + (2 sino + §l cos ©) P,

We shall make repeated use of canonical transformations with a

generating function of the form F( %14 P ). The transformation

new
equations for this function are

_ ¥
qlnew EPi

new

P = —gE-——
1o1d 9

old

As a simplification in the notation only those conjugate pairs of vari-
ables actually changed by the transformation will be written in the
generating fundtion and in the result. Those variables not included will

be agsumed to be subject to the identity transformation.
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For ocur first, transformation we take asg the generating function

P-go, + (v + P, L.
which gives us two new coordinates and momenta
q3—¢
q =V +P
b 14.5
Pz = Fg = By
Ph‘=P¢

Essentially this transformation removes the spin from the momentum p¢.

We now define a second transformation with generating function
F = sin 0 sin gy pg - sin 6 cos gz Py + (§l sin gz + £, cos q5)p7
: k.6
+ (-glcos d + ¢, sin q5)‘p8
which gives the transformation equations

Py = cos © sin q3 p5 - cos O cos q3 p6

p3 = sin © cos q_3 p5 + sin © sin q3 pg * (Cl cos q3 - §2,51n qﬁ) p7
+ (gl sin a4 + ¢, cos q3) Pg
Pl = p7 sin q3 = Pg cos q3

p2 = P7 cos q3 + p8 sln q3

sin O sin q3
ikh.7
9 = - sin © cos q_3
4y = Cl sin a5 + t, cos U
ag = -f, cos g + £, sin A
This transformation introduces the direction cosines of the shell axis
(q5 and q6) and the direction cosines of the vector between the center
of force and the small mass (q_7 and q8). These direction cosines are

for the Yy Yo axes.
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To simplify the situation, we shall consider q5 6. 7,8 their
b4 J )

Cerivatives, and m to be small. We shall let K = mf2 and assume that
the frequency of the spring (f) does not vanish as m—0O. Note that
this makes p7 and p8 second order terms. Further we shall keep only
up to third order terms in the Hamiltonian. To do this note that to
second order terms
BO = - a in - - cos
(p5 - ap;) sin gy - (pg - apg) 4%
114'.8
. {106
o = sin _ e . .
Bsin 6 ¢ P, 5 * (p5 apY) cos gz + (p6 ap8) sin g
Therefore, to third order terms

H = (1/2B) {.(P5 - ap7)2 + (pg - ap8)2 + Py [-(p5 - ap)ag + (pg - ép8)q5]
2 ' .

2
. 2
2% T 1 > p 2 2 .1 2 2y mfT, 2 2
* Py T t5x Py m3 %ty *ag (b + g+ —p(ag vagT)
' ‘ 1.9
For a final transformation we shall use the generating function
F ='d5 Py + 4 Py + (aq5 + q7)Pll + (aq6 + q8)p12 . 1k.10
which glves the transformation equations |
90 % %
qll = a‘q5 + qf(
q.~ = 8q, + :
12 6 qs. 1h.11

Py = Py + aPy;
Pg = Pip + BP0
o = Py

Pg

This transformation changes the q7 and 8 coordinates from a moving origin

P1o -

to a fixed origin and

(a); end)p).



Now the Hamiltonian is
2

p e
= (1/28) kpg - 9, EE) + (pg + 9 52) ] + (1/24) php
- (W2) (g + ) + (1/2m) (25° + pyp0) 12

2 2 2
If we let A = q +1ig,, and z = g, + ig,, and note that p = Av = Bv,

the Hamilton equations give

AT -4V A - (/B = (amf?/B) (z - a\)

2" 4+ fez = af?x

14k.13

Stability of this system 1s equivalent to requiring that the roots

(r) of the determinant equation

_ 2
r® - 1%r - (4/B) + (a°mt”/B) anf™/B | _ o

af2 r2 + f2 ’
are pure imsginary numbers. This will be the case (for small m) at least
1f the roots for m = O are imaginary (usual stability) and 1f the roots
for m = O are not close together (resonance). The requirement that the
roots be pure imaginary is due to the form of the quantic polynomial
represented by the determipant. If any root 1s @ + 1B, there 1s alss a

root - + iB, and one of these roots introduces an unstable mode.

While a judicious guess could give equation 1h.1kh, not all cases of
restrained motion are as simple as the preceding. In the more complicated
cases, the Hamiltonlan method helps to avoid errors in the formulation of

the equations of motion.

/ A
O?@ er/('

HARRY L. REED, JR.
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