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CHAPTER 1

INTRODUCTION

.l_ . Historical bagground

Although the history of the kinetic theory of gases lias been traced

+*
1% {ts scientific deveiopment started with other

back to ancient Greece,
branches of modern science. The first main success came in 1859 when
Maxwell® discovered the law of the dist.ibution of the molecular veloci-
ties for a gas in equilibrium and rediscovered the equipartition of the
mearn molecular energy and as a consequence the ideal gas laws.

3

Definjte advances were made in 1879 by Boltzmann” who discussed es-
pecially the approach to equilibrium. He established the famous integro-
differential equation (the Boltzmann equation' which the one particle dis-
tribution function must satisfy whatever the state of the gas is. There-
after one of the main probl~ems has been how to solve this equation and
how to derive macroscopic equations such as the hydrodynamical equations.
In 1917 Enskogh published his Uppsala dissertation in which he éaye
a general method for the determination of the distribution function fraom
the Boltzmann equation. His method was a modification of a method first
proposed by Hilbert.5 He derived the general formulae for the viscosity,
heat conduction and diffusion of gases. At almost the same time Chap-
2an®?7 obtained independently the identical results with a slightly dif-

ferent method.

Raised numbers refer to the bibliography on pp. 96 and 97.
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A very important extension of the theory was made by mmakOQT’a in
1922. Using the elastic sphere model for the molecular interactions, he
& .4sed how the theory could be modified for dense gases. If one regards
the Boltzmann equation as the description of the state of an ideal gas
vhich is not in equilibrium, then the Enskog theory may be considered as
an attempt to describe the aon-equilibrium properties of a non-ideal gas,
according to the ideas of van der Waals (1873).

During the later part of these developments of the non-uniform gas
theory, the statistical m:chanics of the equilibrium statc was firmly es-
tablished on the ensemble theory by Gibvbs.? In 1937, Mayer'® succeeded
in deriving the equation of state for dense gases with arbitrary central
molecular forces from the point of view of statistical mechanics. It is
therefore understandable that in the next decade .he general trend of the
kinetic theory was the elucidation of the connection of the Boltzmann
equation and of the Enskog theory with the Liouville equation, which 1is
the basis of the ensemble theory. The first investigations in this di-
rec"tion were dcne mainly by Born and Green,n and by Kirkwood and his
collabarators.l? They introduced the higher order distribution functions,

and found the hierarchy of equations, which will be discussed in Chapter II.

2. Asswumptions in the Boltzmann Equation
Before discussing the kinetic theory further, it is important to

know the basic assumptions on which the Boltzmann equation depends. It
is well understood now, that there are two such assumptions. The first
one is the assumption of binary encounters. Since the molecules of a gas
interact with each other through a short range forve (range r, is of the
order of 107 cm), for a dilute gas the average volume per perticle will
be large compared to the volume of the acticn sphere Mer,/3. Therefore



the probability of finding two molecules in the same action sphere is very
small, and the probability of finding three or more molecules interacting
simultaneously will be quite negligible. The neglect of such triple in-
teractions amounts to the assumption of btinary encounters, Clearly for
dense gases this assumption will have to be modififd.

The second assumption is the so-called "Stosszahlansatz"l> about the
number of pairs of molecules which are in the position to collide during
a given short time interval. It is well known that this statistical as-
sumption makes the equation irreversible in time. Since the gas consid-
ered as a mechanical system 1s reversible in time, it is clear that the
time used in the Boltzmann equation 1s not the exact mechanical time, but
is measured on a coarser scale, in which in each time element a great num-
ber of collisions occur. While the Stosszahlansatz seems very plausibie
and is verified by many true consequences of the Boltzmann equation, it
is desirable to replace the Ansatz by more general statistical assumptions,
g0 that the extension to triple and higher order collisions would become

possible.

In the attempt to derive the Boltzmunn equation from the Liouville

12a,b had to average the latter equation over a very

equation, Kirkwood
short time of the order of the collision time. In his theory, only the
binary collisions are considered and the Stosszahlansatz is replaced by
a new assumption. Kirkwood assumes that if the two particles involved in
a binary encounter are far apart from each other, the binary distribution
function is the product of the one particle distribution functions at the
corresponding positions. This assumption seems plausible wvhen the gas is
not very far from the state of the local equilibrium and it turns out to

be equivalent to the "Stosstahlansatz” when the spatial distribution of



the molecules of the gas varies very slowly. For denser gases, where
triple collisions become important, we shall see that it will be reces-

sary to modify the Kirkwood assumption.

3. The general idea of Bogolubovl®

At the same time with Born and Green and Kirkwood, Bogolubov pro-
posed a more satisfactory theory. This theory can be interpreted in
various ways (see for instance, reference 15); we will try in the follow-
ing to show its relation to the Kirkwood idea of time averaging or "coarse
graining in time."

There are three features which are characteristic for the Bogolubov
theory. The first one is the use of successive time scales of increasing
roughness. Then, it will always be assumed that the theory describes the
state of a gas, which does not deviate very far from a local equilibrium
state. And finally all properties of the gas will be expanded in powers
of the average concentration, analogous to the virial development used in
the theory of the equilibrium state. In this way, triple and higher order
collisions are successively taken into account.

Imagine at time t = 0 a severely disturbed state of the gas very .far
removed from the equilibrium state. The temporal development of the state
of the gas could then be described on;y by the Liouville equation. We as-
sume that after a very short time of the order of the collision time
T 10"‘2 sec, the state of the gas relaxee to a quasi-equilibrium or
"normal” state, in which the description of the state of the gas can be
simplified. The effects of the intermolecular forces on the one particle
distribution function are -noothed out, and hence it will vary little in
a time of order Tor But the binary and higher order distribution func-

tions still suffer the direct effect of the intermolecular forces and
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will change rapidly. However if we average these functions successively
over times of order t,, the remaining time dependence of these functions
would be due to the change of the one partic..e distribution function.
Therefore on the first "coarse grained" time scale, which we will call
the kinetic time, the higher order distribution functions would depend
on time only through the one particle distribution function.

In this "kinetic" stage, all the higher distribution functions will
be expanded in powers of the average»concentration. Acvually the expan-
sion parameter is the average density of particle times rg, which will be
small if the gas is far from the condensation point. One then assumes
that the lowest order term is the product of the one particle d%gtribu-
tion functions in certain phases of th: states of the particles. This is
the modification of the Kirkwood assumption which can be used for denser
gases,

After a time of the order of the time betveen collisions t, Ré 107°
sec, even the description using the kinetic time ecale becomes unneces-
sarily detailed for most purposes. There are exceptions; for instance for
strong shockwaves, the kinetic timé description is required to investi-
gate the almost discontinuous changes of the properties of the gas. How-
ever in most ceses, the gas 1s so close to local equilibrium everyvwhere
that the change of the macroscopic quantities (density, temperature and
the macroscopic mass velocities) is slow compared to the detailed change
of the first distribution function. Therefore if one averages successive-
ly by over times of order t,, then on this second coarse grained time scale
(vhich we will call hydrodynamic time), one can say that the one particle
distridution functicn depends on the time only through the macroscopic

.

quantities.



The development of the theory in this "hydrodynamic" stage, turns
out to be very similar to the theory of Chapman-Enskog. All quantities
are again expanced in powers of a parameter u, which is a measure of the
uniformity of the macroscopic quantities. Actually p is of the order of

the relative change of these quantities over a mean free path.

4. The purpose of the present dissertation

The purpose of this dissertation is to elucidate the Bogolubov the-
ory as much as possible and to carry out the theory till the hydrodynami-
cal stage (which Bogolubov only indicated), in order to obtain the formal
expressions for the viscosity coefficients and heat conductivities of a
dense gas. There are two main problems. The first one is the solutiocn
of the equations of motion for three or more interacting particles. The
second problem is to obtain the distribution functions assuming that the
first problem is solved. We will be concerned gply with the second prob-
lem. It turns out that the two problems can formally be separated, and
that it is possidble to find the deviations. of the distribution functions
from their local equilibrium forms in terms of the formal solutions of

the particle mechanics.

<2. The results obtained

1) The relation between the Bogolubov thecry and the Xirkwood theory

is clarified.

2) The effect of triple collisions of particle is estimated in the
kinetic theory.

3) The theory of the hydrodynamical stage has been developed up to

the second order in the uniformity parame‘er ..



a) In the first order of the uniformity parameter, one obtains the
ideal or Euler hydrodynamical equations, in which the pressure as func-
tion of the density has the same form as in equilibrium according to the
Mayer theory.lo Flso the energy equation is derived, which in this ap-
proximation corresponds to adiabatic changes, and in which the energy
density is again the same as in the equilibrium theory.

b) In the second order of the uniformity parameter, one obtains the
Stokes-Navier equations. There occur two viscosity coefficients, for

which one obtains expansions in the number density of the forms:

nm = n‘g()) +n ngl) + n? n£2) + e (1.1a)
T2 = n qél) +n? qég) 4 e (1.1v)

where the qﬁo) is the Chapman-Enskog value for the chear viscosity co-
efficient, and np is the bulk viscosity. In the energy equation a term
appears corresponding to heat conduction, and for the heat conductivity

one obtains the analogous expansion:

), W, 2 @

T = T + n-T .0 (1.2)

wvhere T(O) is again the Chapman-Enskog value for the heat conductivity
coefficient.

L) *When the molecules of gas are hard spheres, the parts of the
formal coefficients nij) and T(J) which depend on the binary collisions
can be evaluated, and these parts agree up to the first order in n with
the Enskog theory of dense gases. Even for this simple model the complete

first order terms r~ve not been found because of the difficulty of the me-

charics of triple collisions.



CHAPTER II
GENERAL DESCRIPTION OF THE SYSTEM

i. The Liouville gguation

In the following, we shall consider the behavior of a system of N
identical molecules in a vessel (volume V), which obey the law of clas-
sical mechanics. To simplify the problem, we restrict ourselves to point
molecules repelling each other by a known monotonic central force poten-
tial @ between each pair (1,J), which is a function of the dlistance be-
tween the pair only and which has a finite very small range r,, so that
#(0) + = and g(ry) = O. Furthrermore, the system is supposed to be not
under any outside force except the force due to the wall potential of
the container.

Let the coordinates and momenta of the 1-th particle be x; & (34,B1)-
The state of “he system at time t is completely determined by the set x,;,
Xz ... ¥y. Usually it is convenient to introduce the €N-dimensional phase
space for the system as a whole, the l"-space.16 The state of the system
is then represented by a point in this space, and the temporal develop-
ment of the system is completely represented by the trajectory of this
point.

For a system with a large number of particles it is physically not
meaningf 'l to assign the initial state completely, since only some average
values corresponding to the results of macroscopic measurements are kaown.
Therefore one must consider, in the language of Gibbs ,9 an ensemble of

identical systems differing in their initial states and follow the stream-
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ing of the "ensemble fluid"” in time. In other words, one must consider
a probability distribution Dn(xu- . o Xy3 t) in the [ -gpace and follow its

development in time.
According to the definition of the probability distribution function,

fj DN(xy,...xy; t) dxy...dxy = 1 (2.1)

using the notation dx; # daidsi. The change in the probability distribu-

tion function with time is determined by Liocuville's equation:

2. (oo
where HN is the Hamilton function. For the system considered, it is gi-
ven by:

N 2 N
= 5 P, %(5 )] + L & (2.3)
i i
1=1 {Pm iy

vhere m is the mass of each molecule, @ 3" #( !31‘33 |} is the interaction

potential, and @y(Qy) 1s the potential produced by the walls of the vessel,
s~ that
O 4f J; 15 inside the vessel.

Ba(dy) =

+c at the walls of the vessel.

The Poisson bracket {Km Dﬂ} can be written as:

N
R El(;;:. %_: . ;ﬂz %’f) (2.4)

vhere for any vector i we have written a/aE . Wt . Introducing the

"Hamiltonian" operator

8 h 8
N x..x) s I 21 3.7 2.5)
LR S - Ao (
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with
Oijnﬁi._a_.+i¢!i.’a__ (2.6)
d A Ay ¥
one can put the Liouville equation (2.2) in the form:
?‘t—l = - My Dy (2.7)
if the particles are insid:- the vessel.

The Liouville equation is an immediate consequence of the equations
of motion and allows us in principle to find Dx(xl...xN; t) if the initial
distribution Dy(x;...xN;0) is given. Since all particles are indistin-
guishable, one must choose Dy(x,...xy30) as a symmetric function of x;...
xXy. For this initial distribution, Dn(xx---xni t) remains symmec.ric be-

cause Hy or )ﬂﬂ(xl...xu) are symetric with respect to all particles.

g_ . The BeBaG=K-Y _e_guations

For very large N, it is practically impossible to obtain an explicit
expression for Dy(x;...xys t), because this involves the precise integra-
tion of ngtions. This is also not required since one is only interested
in the change of some macroscopic quantities with time.

The macroscopic quantities which have the most direct physical mean-
ing wre for a small volume around some point in space, the number of particles,
the average velocity of the group of particles, the average total kinetic en-
ergy o the group of particles, and the average total energy of the group of
particles. Fortunately, these quantities depend not an the complete distribu-
tion function Dy(x,...xys t) in M-space, but on the probabilities of find-
ing a single particle in a ceitain range 47 4p around a phase point (3,p),
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or of finding two arbitrary particles in certain ranges dq, dp, and dgp dpa
around two phase points (51 ,x’u) and (52,53) irrespective of the phases of
all other particles. These probability functione are obtained by integra-
ting Dy(xy...xy; t) over all x, except one or two. Since Dp(xy...xN5 t)
is symmetric in x;,...,Xy, these functions will be the same whatever single
or pair of particles is chosen.

By integrating the Liouville equation, one obtains a hierarchy of
equations derived independently and simultaneously by Bogolubov,lh Born
and C.‘yreen,l]'a Kirkwood,la and Yvon17 and therefore called the B-B-G-K-Y

equations. Following Bogolubov, introduce the partial distribution func-

tions by:

;lrl"'a(x;,...xs;t) = f"fDN(xl"'xN‘t)dxs+l"‘de (2.8)

In the limit N + », V » ©» and v ® V/N finite, if one considers only those
molecules deep inside the vessel, one may forget the effect of the walls.
Therefore, integrating Liouville's equation in the form given by (2.7)

OVer Xg,1s+«+,Xy and mult.plying by v s One ovtains immediately:

3 L
#*&Fs 'V‘j:"“fdxa’l...d!n{- Z 218?;0 ji 913*

i=gel B
sl

z ozt
* s+1<k<4 "kt Pula - xwit)

Since Dy(xX;,...XN;t) must be assumed to vanish for large [Ps] and [§;]:
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) B .

JJ dxs+l"‘de-—i-§-DN(x1”‘xN’t) = 0 1>84l
moRy

/j xgyp.--dxy Oy Dpy(Xy...xyst) = O k> > 84l

For the term:

vs i§s f,..fdxs'..locodxu Oid DN(xl"“xN;t)

8+1SJSN

all the contributions from different values of J are the same because of
the symmetry of DN(xl,...xN;t). Therefore using the definition (2.8)
again:
8
N-S
= 1§s f dxg 4191 541Fg41 (X1 0 Xgy15t)

which in the limit stated above becomes:

1 L ) .
v 1<s J ge1 ©1541 Faal (X3eeemgyyit)

for fixed s. Hence:
oF
Tt& + xars = % fﬂxs*l izg 915*1 Fs*l 8 = 1,2’0'- (2-9)

Later, we shall be especially interested in “he cases 8=l and ss=2 which

become, using the explicit forms of 7&, and x.;

Hadgut) %"&“) . %fd‘e %2 Fa(x,xast)  (2.10)
Ealzazait) , (& i - o..) Pe(xixest) =

- % dzg (0 3+0ps) Fa(x;,X2,%s3t) (2.11)
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CHAPTER III
THE BOGOLUBOV THEORY OF THE KINETIC STAGE

}_. The basic ggvations

As explained in the introduction, we will assume that on the first
coarse grained time scale (the kinetic time), the higher order distribu-
tion functions depend on time only through the first distribution func-

tion Fy, so that:

where the vertical bar denotes thot F; depends functionally on F,. The
whole time dependence sits in F;, and the form (A) 1s assumed to be valid
for any initial distribution Dy(x;...xN3;0) after an initial period of or-
der t,. The first aistribution function is expected to vary smoothly on
the kinetic time scale and to fulfill the basic kinetic equation of the

form:

i = A(xy|Fy) (3)
ot

The unknown functionals Fg(Xj...Xs|F;) and A(x,|Fy) must follow from the
hienrc!w'of equations (2.9). To determine them in successive approxima-

tion, we develop both functionals in powers of 1/v (virial expansion):

AIE) = A &I +#A & ID+EAGID+ - 6.1

F;(q...gl H)-F“".‘,F"’++%;--§'E’*o.-.' (3.2)

13
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Substituting the series expansion for Fz in the first equation (2.10)

of the hierarchy one obtains:

’aP -!;L?z -.';-ﬂr.e,,ﬂ‘?nwﬁ) + L (&, Fltanipye e

and comparing this with the kinetic equation (B), we get immediately:

pewmr« -3
A'(I"H) = JJI, B F‘(za %) F)

(3.3b)

and in general

AL(T"E) ’thJ 9,;}:“-’()1.1,[5‘) (3.3¢c)

Since Fg(xy...xg|F;) depends on time only through F,, one can express
its change in time by the kinetic equation (B). Let the first order var-
iation of Fg(xy...Xg|Fy) for the variation o. F, to Fy + €BF; be ehs
(x1...Xg [F1,8F;), then obviously, PPg(xy...xg|F,,8F;) 1s linear in the
(8Fy)'s which will have different arguments. The argument X of 8F;(X;t)
is determined by the functional form of Fg(x;...Xg|F3). Replacing
8F,(X;t) by A(X|Fy(;t)) one gets the change of Fg(x;...xg|Fy) in

time., Writing:

Fmulfsh - [ SF , 3F ]
we obtain:

3.&‘%5!52 '%F] [ »A('F)] (3.4a)

On substituting the lfv expansions of Fg(xy...xg|Fy) and A(|F,)
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AR < DR H(REYOE") ORI .

where the operators acting on any functional y(x;... |F1) of F; are de-

fined by:

1?(2;(1'-'"/5) = [’f%‘* A,(lﬁ)] (3.5)

Comparing (3.4b) with the B-B-G-K-Y equations for s > 2, using the series

expansion for Fg,; and equating equal powers cf l/v, one obtains:

RE +#.FE® =0 (3.6a)
RE+HF" - DE” +/Jx,,, § - w" (3.6b)

Fm + ;e Fcl) l-‘) -1
PR W (60

These equations are functional equations for F,;, so they must hold for

any function F,.

2. Determination of the functionals EE)():;...JIH)

Tte program for solving the basic equations (3.3a,b,c) and (3.6a,b,c)
is as follows. The first equation (3.6a) should determine r“’); this in
turn determines A; according to (3.3b), so that also D,_F( °) is known.
Hence in (3.6b) the right hand side is known, and (3.6b) should determine
Fsl) » from which Ag follows, and so on. In this section we will there.
fore assume that the right hand sides of the equations (3.6a,b,c) are

knovn, and ask hov the wiknown functionals FS1) can be found.
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1t should be emphasized thai equations (3.6a,b,c) contain functional
derivatives. Therefore, just as with first order differential equations,
some sort of initial or boundary conditions arc needed in order to deter-
mine the solutions completely. To formulate these conditions, we intro-

duce the sireaming operstor S.S. )(x;...xk) by:

Sz z) = erp{ Tl nee 0] (3.7)

It is the time displacement operator (over time t) in the streaming of
the k particles in their phase space under the influence of their mutual
intersctions. Ope easily sees that if (3y py) is the phase of particle
1, then in the motion of the k particles the phase of particle i a time
T later is [8.‘(.”61, 81(.“31]. Also when X(x;...xy) 1s an arbitrary
function of the phases of the k particles, then:

SEAw 70 = Y (g, S, Bz 6

Clearly the 8{¥) forms an additive Abelian, one parameter growp of op-
erantors with parameter 7T; 81({) . s‘:) = ai’;l,z, s?,‘) is the inverse
ot 8f%) ama s{¥) .1

We will nov assume following Bogolubov that for any of the function-

als Fyg:

-.r[.:':; ?;E(x,m-z,js‘:}:‘( it))
=L 3 77'3 Fzt) sea,3. (0

T
The basic nature of this assumption should be esphasized. It replaces
and generaliszes the Boltzmann Stosszahlangatz and the Kirkwood assusption.
It expresses somehow the requirement that outside some actior volume the
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cosrelation between the particles vanishes. This is especially clear

when the system is spatially uniform. Since in general:
)
SeFuit) = F+ v, Bit)

clearly in the spatially uniform case S.&“F;(x;t) = Fy(x;t). Because
there is a strong repulsion between the particles, the relative distances
of the s particles in the phase 5(%)xy, ... 8{%)x, will be large if 1n
the phase x;, ... Xg they were in each others action spheres. One can
also say that the two basic assumptions (A) and (C) for the s particle
distribution function are the two properties of the equilibrium distri-
bution, which one assumes that Fg; already has in the kinetic stage. In
Section § we will actually see that (C) is fulfilled in equilibrium.
Using the virial development for Fg, (C) implies that:

dim S FOn 7, 1S2F,) = &Sﬁl@sﬁ’};@.m (cy)

T~eo

and

.E.. 35:— Ew(?.--- %IS:E)-O 40 (C)

T-» 00

To find, vith the condition (C}) F§°), one replaces in (3.6a) the
functional derivative by an ordinary derivative in the following wvay.
Put, 1o DF{®)(x;...x5[F2), the function 8{l)r, for F,, then by the
definition (3.5) of the operator Dy,

? )
[RF % a'ﬁ’]é’;’E«-F - [_ﬁ;_c‘%)m y A1 B)

Suppose the variable of cne of the A, ( M"r,) in the bracket is X o (ﬁ,f),
thens
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A,(XIS';’E‘) - —%%Sf}’(X)F,‘(x;n by (3.38)
.- 3.3‘"00,,-()( )

= _ SG)E
T
since F,(X;t) is independent of v. From (3.4a):

ey®h) A0F) . 2Bk adp)
[ $(SzF) J L;QTI SR

Hence, considering the linearity of the functional derivative:

. AR -z, | &
[QF:“(% I:IE)]Sg,E‘-E ‘—L-,;,},Ml'

On replacifxg F, appearing in (3.6e) by Sﬁl)lﬁ,

A - :;lﬁE_ HaoF t x SF) =0 (3.9)

by (3.7)

then, the "solution" of the equation is:

C) ® te)
F ezl SPF) = Swon g F, a1 F) (3.10)
because of (3.7). Operating with the S(3) from the lert gives:

(®) o
FoaxiF) = S_?m-'m F;‘&.‘--z,:s‘,"F.‘ )

This i1s the condition which the functional form of P,‘,O) (Xy.0.%g |Fy)
should satisfy. In the above equution, the left hand side is indepen-
dent of T, so this must hold for an arbitrary vr. Therefore, taking

T em,
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gl = Lo Set-a Fle 2y
= £ S T L

Tree

according to (C{).

To find next Fgl)(x,...xs |Fy), put:

(1, % |F) =-— D,F‘cz. %|F) +fJ ZQ”,F:,'?r.-'-%lE)

then (3.6b) becomes:

f) ()]
Fﬂ(ﬁ', %IF") +7£:9E‘(r.mz,lﬁ) = #ﬁ(r,---z,/f")
After the same calculation as before:

‘ ) oo = - ’; ‘arh‘2;1;§2£11
[DFtx z'lF:’]s“,:r:«ﬁ =

(3.11)

(3.12)

(3.13)

and from the functional equation (3.13) for F;, (replacing F; by S,S.l)F,):

7F“u. SRISE) g Pt SO =- Bl ni SO b

Putting

E"(','...xtgs‘r'":") - S:’ Py;7IF)

?(10"'2;?7'5) "x Eo(’l "I',I.S:’F:)

(3.15a)

(3.15%)
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then clearly:

)
9(1,---15;“]:"): F:(%"'Zslﬁ) (3.16)

and one finds:

29z, %; Tif) & A '
i .‘73 CEE NP 4 (2% Se F)

This may be 1ntegraied easily, yielding:

-
u
3(1"'13;7'F:) = 3(10'.’13:0‘E) -jJTSS?). %s ;1'""7‘|.5‘:F) (3'17)
[
from which follows:

1) ® 0 T
rosIF) = Sy FagISUF )+ Ldr.f;?éa}n...z,,ggm

Again the left hand side is independent of 7, therefore taking the limit

T »

F:”(I,"' Y,,F:) - ;E’:S:— E‘.%zl"‘xtlsf;:ﬁ)‘FiJTS.:.’ é‘?ﬂ"lei’ﬁ')

N

- . at® oM )
Sodrs,.,lf(m ARA Y (3.18)

according to (C}).
The higher F“) are found in the same way. One gets:

Rlenif) = [irss luniSt) - 009

vhere:

()] ot
?s x-nlfe - é D F " #snife Jz,,.g‘;&,ﬁ."fg'mf.') (3.20)
(L2
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3. Determination of the functionals Ay (x|F,)

According to (3.3b) A;(x;|F,) follows from Fio)(x;xzh?l), which

we write in the form:

(®) 2) )
E an|Fy = S @w, aw FobFg;t) (3.21)

where the subscripts -o, +x imply the limit indicated in equation (3.11),

and vhere for abbreviation:

'0"";' )
S-:- <’1."‘¥x) = 3:‘(10""5‘.:3(1.() (3.22)

To separate the mechanics from the distribution functions, it is often

convenient to write instead of (3.21):

Ew()z. Al -H dgd C,ﬁ(¢.zf>ﬁf<,zt)32n$§'%> Sr5)5e-5,)  (3.23)

where corresponding t- x4 ® (Ei,ﬁi), Ly = ('Ei,'ﬂi) and 5 1s the Dirac

8-function. From (3.3b) one then can write:

A,(I.lf,’) -JJI, O,.Sf: "2 H‘(z,;t)ﬁ'(z;f)

= [[de.de FezsvFeest) Q@108 (3os)
Bec t

with

£2,(n184) = jflf) 8, SEwg 0 778 *-&) (3.25)
i

Twning nov to Az(xy|F;), we have first to find F‘l)(X;Xglrx).
According to the definition of the operator D,:
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(r,w,lF) Sf',,f,, {F’(z. f)A @)+ A, @ F s ))

= Sbn: nu :)fdg a 591113’3)+6‘,S(&3)S"(:3)—} ”F(Z it)

!

wvhere we have omitted x's in the arguments of the operators SL”). Since

according to (3.11):
F%nylF) = S‘.’i.fmomﬁﬁ’..fmff(zz:ﬂ
= 5.(.’,’,.('.: L)) "'('u 1) 7[F(z, it)

one finds:

?km(m"ﬁ) - JJ:(, [(9,,+9u)5{’:’(,,,‘3,50;:3,.,‘3) _
- S (1, t),i%l :){6 S‘)‘"’S,,g"""&, X, ,)S", 3))) -”' FH '{)

(3.26"

Using equation (3.18) one then can write Fsl)(xlxa |[F1) 1n the form an-

alogous to (3.23):

F(Z,‘blF)"ﬂP{.J{ Jg W'}-\" f)jJTSan) da, ]S (tw#S(z‘ -%:) (3.27)

where [ ] 1is the operator occurring between square bracket in (3.26).

Note that this is symmetric in x; and xp. Finally from (3.3c):

AcnlEd =ffjdedz.de, Z’(E«c-;f) 2,128 (5.28)

with
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e
Q‘,(" ’;,;. CJ) ’fdfzaldf S_:}“’Jd?,[ ] ;g&,}) Z?' 5(3’.‘ - ;;) ( 3. 29)

. _ﬁﬁ"size”gt_: Aa(x, |F

The ratio of Ap to A; should be of order r3, if r, is the range
of the interaction potential, so that the development parameter in the
kinetic equation is really r3/v. This will be so for dimensional reasons
provided that the integrals in A, are convergent and extend only over
the action volume of the three particles x;, Xz, Xs.

To see this, consider 0j(x;|[l3lals). The integrand of the x, in-
tegration will vanish if |Q2-3,] > r, because of the @;p operator.
Consequently one needs to consider only those xz for which [Qa-d, | <
ro. For this phase (x;,x3) the sff) (x3x2) operator separates the
particles 1 and 2 by a distance r, 1in the time T 38 Tor and from that

time on the distance of the particles increases. Putting:

=~ Q)
let t' be the time for which ﬁ,-’c{,l & 2rg. Now the operator occurring

in the r-integral can be written as:

Jdz, (6,298, % %) SR80S M2 2 -

- Ste :&:’cw(a,ms;& w3 hroSReueg)] .50
For t> v', 012(¥;%) = 0 and for fixed x; at least one of the
013(¥;,%3) and Gps(Xp.© ) must be zero, since ¥, and ¥p are sepa-
rated by a distance bigger than 2r,. Suppose 933(%,,x3) = O, but

e e e r— - - e - R “ - -
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623(¥1,%xa) # O. From the definition of Sg)a'xl'gxs), one then has:

So> ~ L. n
_?(!.ig ) — S?.r(r,t,) _1("1")

and since in this case sff)‘(‘i,‘:?,) sﬁl’l)(’iﬁ:’,) = 1 one sees that the op-
erator (3.30) goes to zero. This is also the case if Ops(z,x3) = 0
but 013(‘:‘:'1,::3) / 0, so that one can conclude that the r-integral will be
. convergent, and that the integrand will only be different from zero for

a time of the order of a collision time.

2- Spatially uniform systens

When F,(xy;t) does not depend orr-the J,, i.e., when the system is
spatially uniform, it is possible to simplify the expressions for Al(xllFl)
and Az(x, |Fy).

We will shov that in this case A; can be reduced to the Boltzmann
collision integral.

Proof: Since F; is independent of the spatial coordinates F;({;;t) =
F;(;u;t) and F;(la;t) = F;(iﬁt). In equation (3.24) one can ther per-
form the I-mtegrationa, and since the S(l) opverator does not change the

momenta, one gets:

AGID = [[A4 FdofanQedl oo

vith:

0,ai4d) - sz.G,,S:mm F- N8B (3.32)

Let sf)(‘lhﬁg-’ia), 1 =1,2 then it is easily proved that the fie)

g

are functions of $,, Pa and of the relative coordinate rg = Qp-dy -
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Since 6,2 also depends oniy on the relative coordinstes, one sees that
by taking in the xp-integral the origin for 3z in 4, that Qo and there-
fore A, will depend only on P, as it should. We will write instead

of (3.32):
.Q;(E m.ﬁ.) - JJ}Z, JJE 6“531,1‘) S("F' _,7') S(H_ i)
‘JJE“PE b, 5(?"-"‘7)5(?“’- ) (3.33)

The ia) are the constant initial impulses in the binary collisicn
governed by the Hamiltonian Hz which leads to the phases x;,xs at time

zeru. Therefore:

Hy = 3w BBh+4, = a {(BT+( R“))

Hence according to the definition of the Poisson bracket:

{ H, SE-RsB-M] =0

6. SPR-MEE) = ( %?{ + -3%%){ SR §Pm- ﬁ,)}
- BB3 (5 5oy

In (3.33), take for the ;21 integration cylindrical coordinates withL the
axis in the direction of the relative velocity @ -i. (Pa=Dy). Call the
coordinnte along this axis £, and the polar coordinates perpendicular to
the axis (§,f). Then:

Qemb - flﬁ 6 HOJffdl%{S(#l‘)’)S(ﬁm—q,)} (5.3%)
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where g = |Z|. The f-integration can be done immediately:

Jady (5ot =] aepgyspnet)

At £ = -o the two particles are outside their interaction region, and

since the SSE)(xle) operation will never bring them together

th-“ . up i‘.l,z
On the other hand for £ = 4o, although the particles are then also out-
side their interaction range, the Sgg)(xlxa) operation will produce a

collision. Therefore:

(¢ })
'{Eizea F% F;. i""jb

where the P;* are the impulses of the restituting collision (B %,02%)

(Pys P2)-

The collision cross section 1(g,®) 1s usually defined by:

$d8do = 109,6)d02
using the differential solid angle dn and the scattering angle 6. There-

TORGILANE J dp, fclﬂ 31 [S(k'—ﬂ,)&g"—?);-s(ﬁ-q,ﬁ@—@ (3.35)

On substituting fp(P1 |[Maf2) 1nto (3.31) (in place of Qg(x; |h#%2)], and

integrating over N, and ng:
AR = [t [dagIqm (PR o-RRHREL) o0

vhich is exactly the collision integral in the Boltumann equation.
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Turning now to the Az(x; |Fy), one can write in the spatially uni-

A;lF) "jﬁ,d’?jﬂsz F:(?‘,t)ﬂa(z.mﬂ,ﬂ,) (3.37)

where

Q 3 ( T,m,ﬂ‘ﬁ’) = JJ 1, B,J;J.T ,S:),(m)sz:’ [( 9,,4’0‘,)5? :('u,s)_

-3 (6,5 +0,, S29)] Zt B -9 R (3.38)

and all the S(l) cperators are omitted since they have no effect. Call
tle xg-integral in (3.38) O0O(x;xz), then one sees by the reasoning used
in Section 4, that O(x;xz) + o 1if [To,| ® |d2-di| 2 2r,. Furthermore
it is not difficult to show by the use of centre of mass and relative co-
ordinates, that 0O(x;,xz) depends only on Sl ’ 52 and To,. Therefore
alro Ss_s)(xlxg) O(x3x2) will depend orly on these variables, and for
T + o the result will be zero since the SE) operator will completely

separate the particles 1 and 2. Next, according to the definition of

Sff)(mz):
2 ™
(’wlni tm % "‘9::)3:;’,(2..%) = — d dT(t.r

fSrnm = (‘é‘% + ‘E‘%‘) S_f:lt.nw dSzen J: %)

Caliing for a moment ng)(xxlg) O(x3xp) = 8(:;_:2), then one can write

(5.38) in the form:®

0, b3 i + B T fe e
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In the third term the t-integral can be done and since the upper limit

does not contribute, one obtaias:

O, A0 = ‘le} O, %)
i ’ﬂ 1,2, [ (8,60 Skom- 5 oo ( 9,55':»*9,,5.“:.3«")] ﬁs ¢-%) -39
&

which puts in evidence that Qs depends only on 51. Hence also Ap

will depend only on 51, as 1t should in the spatially uniform case.

6. The equilibrium state

One should expect that the basic kinetic equation (B) will lead to
the state of thermodynamic equilibrium and that then F; and all the
higher distribution functions will agree with the results obtained from
the microcanonical ensemble, which for a large system is equivalent to

the canonical ensemble:

D% %) = onp{- —HJ%——’E!)—} (3.40)

where @ = kT and A a normalization factor. From (3.40) the contracted
distribution functions are formed as before, and one obtains especially for

F; the Maxwell distribution:

=3
(@) "TBF"
F: (%) -m e ™ _(3.m)

We will show that by the substitution of F{®)(x,) for F,(x3;t) in the
kinetic equation 1ll the functionals A.(x,|Fy) become identically zero,
and that for the higher distridbution functions one obtains virial expan-
sions vhich are in agreement vith the results obtained by de Bocrla and

by Mayer and Montroll.l?
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a. Zeroth order.--Since Fie) is spatially uniform one obtains

from (3.11):
s 2

%2 = H‘ﬁ. R Ei;;;l g_:jé‘ cﬁ—"‘p (3.42)

Since Sfi) By = pis) are the momenta of the s particles before the

s-tuple collision the Hamiltonlan for the s particles can be written as:

s
Hs‘xm;ﬁ:*'z’.#},‘ am ’;
[Y) ‘:(; L]
Hence it follows from (3.42) that:

0) 1 - —gl.
F: (2rmp)% C (3.43)

as to be expected. From (3.3b) one then gets:

A (xIF") -fJna‘W{c‘j};'}l'é} (3.4%)

Introducing the relative coordinate T = Q2-d;, the space part of the

Xp-integral becomes:
i L3 5’%- e"'g"

which 18 clearly zero. Hence A (x, |Fy) = O, as follows also immediately
from the Boltzmann form (3.36) for A,;.
b. First order.—Since A; = 0, D,r§°) = 0, and since F; 1is spa-

tially uniform, one cbtains from (3.18) and (3.43) immediately:

Rl = [ e SSunfin B8 € 0
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From {Hs, exp (-Hs/@)} = O one obtains:

(8,,**9.,,)6':“‘| '(‘g."?( + %3{“9@59’ + %%C"y’ (3.46)

Introducing this in (3.45) the last term ir (3.46) clearly integrates to

Zero. Since as we saw in Section 5,

ool + Ry o) - -452 (.36

the r-integral in (3.45) gives:
[1 -SR] c"g'l

Wr1£1ng Hy = Ha + ?12'5 P8 + P13 + P23, and integrating over Pa, One gets:
n
F:(’f-t.lf.“)- W[I-S:mr)] c"'y‘ fli e-*&%& (3.47)
3

Following Mayer, we introduce:
- “‘:B- | (3.48)
t; - ¢

Ja e bt L AT RIRY)

Because fy4 0 if ryy > ry, the last three terms are constants while
the first term is a function of |3p-8y| which will be zero if |[da-3 | >

2!'3 80 that:

&‘:“'t“)f‘li, ‘u oy °

Hence one obtains:
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P = zites ¢ ¥4 11,
- Rtesif? [ 4,1, (5.49)

from which follows:

A‘(I,(H“’) = fll" 9” F:,z"!t'ﬁm) (3.50)

Since F$!) according to (3.49) depends on the coordinates only through

r = |§2-43| it follows again by introducing relative coordinates that

the space part of the xg-integral in (3.50) vanishes. Hence Ap(x, |F(®)) =
0.

c. Second order.~To find F‘2)(X;_Iglpie& one needs Fsl)(xlxgxsli‘;fe)),

for which one finds analogous to (3.47):

ch’r.nx,lﬁ“)-m[t-ﬂl é"g‘ﬂx“ e Aﬁf"!‘ﬁ‘ (3.51)

Since A; = Ap = 0, DgF‘o) = n,ril’ = 0, and from the spatial uniform-

1ty of F{®), one cbtains from (3.19) immediately:

RaxiF™- u:r&::mvag 6,+6,,) Em(z.x.z,l F9 (3.52)

In order to get an explicit expression it is more convenient to derive a
differential equation for P§2). Operating oo the left side of (3.52)

with

3y + 4y - o

B N W NS T s

boe o RS - - - - e - - - - Lo - - B R e - v - -
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using the operator identity (3.46a) and carrying out the r-integral, one

obtains:

( ‘3‘3& ! -"131. -6 J Iz (8,40 Fy n % 1F) (3.53)

since it 1s easy to show that the upper linit T =« gives no contribu-

tion. Following Glauberman,?C we try to solve (3.53) by the Ansatz:
* 0) (e) e
E - F:@-a!ﬂ ) Xa(g“ 31) (3.54)

The left side of (3.53) becomes:

R3]

while, using (3.51), the right hand side can be written in the form:

FI"(—,E-B,' +§;}.)[ff4i4i. L R
—Siﬂz e’#_é‘ ]

wvhere a is the constant defined by:

d = .Si’:_(t.r.rpfdf’ c'—ﬁ'*?é"ﬂ.'

'J‘ri. (é fi+ 1)

Hence from (3.53) one finds immediately the particular solution:
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X1~ ([, e S _aufig )
=30 LG Ll bt £ bls b

* ,,‘,,t..tg* (..L,L,I,,*C.LU,, +‘!L"+ :” [4"’] (3.55)

From this form one sees that Xg{(%;,d2) depends only on r = |32-d; |
and it goes to zero if r + «. Since according to the general boundary
condition (C3), 8(2)(x,x2)Ff2) must be zero, equation (3.55) ie the
solution of (3.53) which is required. Introducing (3.55) in (3.54) one
has the explicit form for F42)(xx|F{®)), which s in agreement vith
the result of de Boer, and Mayer and Montroll. Since Fﬁa) depends on
the coordinates only through r = |32-3; |, one proves as before that
As(xy IF{Q)) = 0,

It i8 clear that in this way one can go on. One will obtain in any

order:

F:“.EX,!,'F.“) - F:?mr.‘m Xi (tt't)

vhere xi(aﬁg) vill depend only on r = |§2-3,| and can be expressed
as integrals over combinations of Mayer functions fy4 . Hence also in any
order Ay(x, I!'i’)) - 0.



CHAPTER IV
THE MACROSBCOPIC EQUATIONS
PREPARATION FOR THE u~-EXPANSION

o

The macroscopic quantities
The usual macroscopic quantities describing the state of the gas are

cbtained fraom the first and second distribution function by further aver-
aging over the impulse variables. They are defined as follows:
a. Number density n@.t!.-—'l’his is defined as the average number of

molecules in the volume element da, or as the product of the total number
of molecules in a system and the probability of finding a particular mole-

cule in 4§. oOr:
ng.t - Nx & [PBRABO =3 [BF (b.1)

In the following it is sometimes convenient to introduce a dimensionless

function v(g,t) by:

V) =ung. -fdfﬁ (k.2)

For a spatially uniform system clearly v = 1,

b. Macroscopic flow velocity u(J,t).—This is defined by stating
that a8 - nd4 1s the average momentun of the molecules in the volume ag.

Therefore:

ngtrxmdg. ) « Nx #ﬂfﬁﬁ({,},t}

»
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80 that:
Yivid,v -ﬂf—;-f,"tf.f. t) (4.3)

c. _'I'_he_ kinetic }_emrature Oﬁltl.—This is defined in terms of the

average kinetic energy of the molecules in da, which is given by:

vx b fap L Fabo x d

This can te split into two parts:

.o 2L df + (¥ (4p G2 Fq.p, 0}

The first part is the kinetic energy of mass motion and the second part

18 the energy of the random motion. We now define (3,t) by:

$ngoogn-§ [ E2LEgrn

Clearly in equilibrium ¢/kh (k = Boltzmann constant) will become the abso-
lute thermodynamic temperature.

d. Internal energy density n‘glt! cﬂltl.-—This is defined as the
sun cf the random motion part of the kinetic energy g n(§,t) o(3,t) end

of the average intermolecular potential energy n(g,t) e‘(i,t) which is

given by:

ng0ehg, b = 5[ B[54 dUEE D

ngoEq.v=-ng {$6g *5“!:*’} (b.5)

[ R e S . . w - - e e e ,
- . m . o
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2. The ggneral macroscopic equations
The equations which the macroscopic quantities satisfy are obtained

from the first two of the B-B-G-K-Y equations {2.10) and (2.11) by aver-
aging over the impulse variables. In these equations we will write (ﬁ,ﬁ )
for (q’; ,31) , apd we will use the tensor notation with the usual summation
convention. We will use Greek letters for dummy indices.

a. The equation of continuity.—Integrating (2.10) over § one ob-

tains

)&.1)
wdt | ’38:{ Vg.H UG D) =0 (4.6)

By dividing by v, this becomes the familiar equation of corntinuity:

‘?‘7‘;‘3‘2 +%£{mg,t) u,q,t)} -0 (4.7)

Introducing the "substantial time derivative"”

% r Eruiy

this can also be written in the form:

o g%: -
Dt + N o (4.8)

b. The general hydrodynamical equation.—Multiplying (2.10) by py/m
and integrating over §, ome obtains:

Ve + B oun+ FHRR) =-S5 HRE YRt 0

wvhere

PGt - fdp EomuKB-mu) TP
V[ 2p-Fd.P0)

(+.10)
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vhere we have put for the momentum of the thermal motion:

s -m1U.
P s R-my
P:J(a,t) is the familiar expression of the pressure tensor due to the

kinetic motion of molecules. Using (4.v), equation (4.9) can be written

in the form:

X
nm %;5 = - %P:l - -IIITIJFJEJZ. 2%:12{'(1,2,,0 (&.11)

Now it can be shown that

_ ‘
Lfdpdpdy -'é%gf-hlp;m.,b - ?,_?n (b.12)

vhere Pf‘ (§,t) 1is defined by:
P40 Zi [l [0 [t fiofh BEGem BB B0 025

Therefore (4.1l1) becomes:

mﬂﬁl - o ‘%% (b.14)
M oe ’
vhere:
RAD-RUORAY

is the total stress tensor. From (4.10) and (k.13) one sees that Pyy(d,t)
is symmetric.

Proof of equation (4.12) (see also Enskog?l): Define the pair den-
sity distridbution:

N4 = & [dpd Fnmt)

s 10

RIS (o2 A 0 bt e M, by 121 .

Sttt - Ao W A oMo W -t - - . - . .- e e e e oS, - - e v gy v W =
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then na(d,32,t) is a symmetric function of the two points J and do, and:

-{,—.IJFJE 4, 2.%’?5‘.’25‘(:,:.,0 - fdz k. &,{.y) 4.3
vhere ki ® (q4-q21)/|3-32]. Now:
¢ o , »
%% -1 Ldazz'ﬂdl f ) k. hé(z)?{‘n,(ﬂl(m» §+k0

Since np is a function of q + K. and Fr,

Ny _ f, 2%
A

Consequently

’_?3_;’1; -} {2;,,. [[d8 b, g {m g 3ke) - my§-Ra, D)
- [d7 k¢ 1.3

using the symmetry of ng(3,32).
¢. The energy transport equations.--Multiplying (2.10) by %—g R

integrating over 5 and rearranging terms, one obtains the transport

equation of the kinetic energy:

n 23—@ +mm tb%“e"+§£+i(u,8:) -— ;‘;;.[JPJP.JZ%& Rz %,t)

wvhere the kinetic part of the heat current density Jf(&,t) is given by:
K »
J @b = #flf%%ﬁ({},t) (4.16)

Using (b.1k) and (4.15), one can also vrite:

"?é%f’-*%f "&%*%%"ﬂ‘#f%‘i%‘g (8.17)
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vhere the rate of the deformation tensor Djj 1is defined by:

e LU | 2y
D«; z<ﬂ; + #:) (.18)

In order to obtain the transport equation of the potential energy
density; we have to use the second B-B-G-K-Y equation (2.11). By multi-
plying with @(|3-32])/2v%, integrating over p, Pz, Q- and rearranging

terms, one obtains:
é é2
2 W (apa Y k- BOBent o

wvhere:

Hao=d[dpgdffend e

The transport equation of the internal energy density is obtained

by adding (4.17) and (4.19). This gives:
: $o) -
n2+ UMY =Ry + (B

- #IJPJ}‘JZ %({--r *)E(!.x..t) (.21)

Similarly to (4.12), it can be shown that if one defines:
b f‘ ;u://ﬂ ﬁlt‘gé&m(bb)&rmﬂhw.t) (*.22)

then

= Iq;ﬁ.{%(};. +AORot) - % (8.23)
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and considering (k.12):

ggt)-J (gtH—u, cgt)

where

Jf’(f,t) - 4,,.] dnn? /f dk L u kb 0 [ dpd .
(& e+ F G+ka, B, AR

(b.24)
Thus (4.21) becomes:
t %{“ «-Rs Dy (k.25
where
DAY -]‘._"(i,t)*"]ﬂ{,t) +J-f‘c g.t) (&.26)

Note that the potential part of the heat current density (given by J?l +
Jga) depends only on the thermal momenta.
The pressure tensor Pu(a,t) and the heat current vector Ji(ﬁ,t)

are identical with those of Irving and xirhrood.lad

3. Expansions of PO xg|ry) and A (x|Fy)

According to the expression (3.24) for Ay(xy |[F1) and the formulae
derived in the preceding section, one needs only to consider the second
distribution function for phases X3, Xp such that the spatial distance
|31-32| S 1. Ve shall see that in the Dext stage (the hydrodynamical
stage) of the approsch to equilibrium all distridbution functions will de-

pend on the coordinates through macroscopic quantities which vary slowly

W nL e e ks P e )
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with position. As a preparation we will therefore in this chapter already
expand the second distribution functions in powers ol (r,° grad‘ ), and
ve will retain terms up to the second order.

Since according to (3.23):

Fringlp) = ff &4 P oK amle,s (b.27)
wvhere:

K2 %l2,8) = S §x-4)8(m—4,)

= {S.‘: . sq-2)8(%- Z‘)}( o S:‘.’.’S(ﬁ— n)5c- _7‘)} (4.28)

ve first expand the kexrmel Kz. Using the center of mass and rela*ive co-

ordinates:

344 R, §-3 =1, =-%, (.298)
and the corresponding momenta:

P+B =B, B-B =2p =-2f . 2%)

one shows easily that:

‘2‘% + }% - 'i%'%: "'i%%; (4.300)
6. = %’?%— (5.3)

80 that the operator:
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S xS ) = exp {-T( ;&g&-gﬂ)} exp (T i%;%‘)

o JJ'r (4.31)

depends only on the relative coordinate and impulse and is invariant un-
der a combined orthogonal transformation of ¥, and P;o.

Call:

B 5B-MNSE-Ay =T (RB BT (b.32)

putting in evidence that it depends on the spatial coordinates only through

?12 One further has:

95284 -5)5q- &) = S 5(R+ 3 f)g(f -)
= SR ++dl-2)SR -4 0 - )

“5G-F + b0 B)Sq -2 Lh-E)
Since we are interested in those values of ¥, vhich are of order r, and

since for such F,p one readily shows that IJ.. f12| 1s also of order
Yoy We expand (4.33) in a Taylor series around 31 One thus obtains:

Kizuls3,) = $§-E)8¢-L, +
+ (590540} 7, + (8254 £y -5
+ 3‘-{3&; $@-8)-84-%) = )} '77;'“
*i;diﬁ,*z)‘itl.-i)} 75’44- . ’S(f.of,)-

_zwn 2 ABY: 2 3 53.“3.)}7[ oo (B234)
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wvhere:
T, A BRI = - B, (h.3%0
*2 P "ﬁ = : 7r

LA AAL AN "42&" o (k.35b)

.. m,,,?.,alﬁ) = - A,
(4.35¢)
7r (::.R.‘P'ﬁﬁ)' "?n. 77; *(b.35d4)

e > B0 =-L-( g .
71:::;("'""'3'%1'1) 3 ’J‘Z*X‘J"ﬂ"i)m (4.35)

All the TT's are functions of #5, B-%), Po-%2 and P, which have
the following properties, as can easily be verified:

a) Adding a constant vector to all momenta will not change the T['s
(Galilei invariance).

b) Under an arbitrary (proper or improper) orthogonal transformetion
applied both to ;12 and all the momenta, the T's transform like isotropic
tensors .2’

¢) For an interchange of the two particles (correspondin; to the
transfortmtion (T12, P1, P2, W, f2) + (-Fr2, P2y P1» ‘h) ), My and
TT2's remain unchanged, while the T1;'s change sign.

Introducing the expansion (4.34) in (4.27) and carrying out the in-

tegrals over tx and Ig leads to the expansion:

ey - Fors Fot s St Fhe o



where

T0m = [JAA,REDREDTARRIAL

E:M( 'F") " ﬂJerﬁa%“{F(?"ﬁ')ﬁ(z’ﬁa)} ﬁ;,«(”vﬁ‘ 2 ‘ ﬁo ﬁ:) (4.370)

Fr 1y []Jf)'lr‘)‘{ zg“%ﬂﬁ"iﬁ.’-ﬁ'i ﬁ.@é}%‘ﬁ)m’»ﬁﬁ'w (4.37¢)

Fatipfl4 Jv.,,j 2P ERN, AR
4% 'F>-M#1. [ %r— FADRAA) T, A F R+

S T
B AN A 1L LAY

All the ?‘l are o be considered as functions of a;, ;;g and 31, Sg.

(k.37e)

Because of property (c) of the functions TV, the Fs vith the upper index
A are antisymmetric under an interchange of the two particles, while thoce
vith Wper index S are symmetric. Note also, that because of (4.35) the

.nuayutrlcs"t can be written as divergences:

.;:':M . ?L{-?ms} (b.360)
I ‘?{_{‘%‘ﬁf’} (+.3)

Fimlly, according to (3.2k):

A,(TJF.‘) 'jfk,«‘g}',‘f(.f)ﬁ'((,,t)ﬁ,('M(.4.) (.%9)
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with:

Q@188 = [dr, 6, K, (5%18,8) (4.0)

Substituting the expansion (4.34) for the kernel Kz, one obtains an ex-

pansion for the binary collision operator:

AGIE) = @75+ Q"M+ Q"+ QP + QP54+ (b.b1)

We omit the explicit expressions, since they are quite similar to the ex-
pressions {4.37) for the f's, and in fact are obtained from these by op-

erating with @2 and integrating over ;a and ;12. We only note that:
QAR = [[AARIDRGR QPR ede

with:

Q;, = [[dpdt. 6, M AEEIAA

= ffdz6, St s@-scp-A

(b.b2v)

This has precisely the same form as in the spatial uniform case, which was
discussed in Chapter I1I, Section 5. One can therefore transform af"”‘

t0 the familiar Boltzmann form:

ar - f dj, [da 3Iq.Oﬁmf’K‘iﬂ"E‘Lﬁ’ﬁ'ﬁ.ﬁ’] (b.43)

L. Dgensions of Pfl)(xuxglr,) snd Ag(xjry)
In the same way as in the previous section, we will expand Fe(x,xp|F;)
MA.(:; [Fy). These functionals are connected with the effects of triple
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collisions, and as a result the formulae are rather complex. We will
therefore only indicate the method, and show that the essential proper-
ties of the previous expansions appear here again.

According to (3.27), one can write:

3
Flagip) = JJc,J;iJcJ T R, Kymml 444, (bbb )

with

K, * j.jTS‘:,’,('-’)JJIJ {(0,,-0- 6,,) S_(:"u.s.s)Sf:)u.a.s) -

- Sf:.’(v,x )5‘{& 6 "S_‘:fm “ o.n+9”5°_’. -"S:?"”)}S-‘:"?‘”j (%~ %,)

(4.45)

We begin again with the expansion of the kernel. We are interested only
in such phases x;, Xxg 8o that lal-azl S r,. In Chapter 3, Section 4,

we saw that for such phases the T-integral extends only over a time of
the order of the collision time T,. Also in the integrand of Kg only such
values of the phase X3 play a role for which |Q,-Qa| and [d2-Qs| are

of order ro. It is therefore convenient to introduce center of mass and

relative coordinates according to:
R! '}(i*?‘*?j) ' -)il’ ‘ii‘?g ’ 5,3, = ?‘-?J (k.46a)
and the corresponding momenta:

B=p+h+d 5 B=tGB i Ba4B-B e

Then:
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AR T S T S &
b e PRI -B
‘ 2‘%‘1'&(% +f§p

and one finds:

ST(’”So 2.9 -axf [—-?' {4-"%5;1-% %;’-9,,}}47 [+?'{;§&’+ m—%}%‘:’}]

()

(4.47)

= 4., (4.48a)
“'? 3, (13 = =exp ( -{ 7,,%%’ + w% )]I,,‘ 0:3}]'5’? [*7('5'%&,'* ﬂ%ﬁ;}]
= JJ: | (4.48b)

SharSitan= oip (- Ikl +a sk, ta-0s-0o)):
s exp [+7{ #ﬁ;-{- 59:?&‘3]

€ ))
5;5., (b.b8c)

Clearly the operators J 1(.k) depend only on the relative quantities.
Splitting in the kernel K, the product of the 8-functions in the coor-
dinate and impulse part and using (4.48), one can write for the part of

the integrand in K3 which comes after the @-operators (for k = 1,2,3):

JJ:) 5::“) z' §(%-%e)
{Z}' 5(R,+ ;gr +7€an'f¢)} { J:i SCfa- ﬂ_)} i)
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vhere Rp 1s again %(Exﬁz) and:
4 ] )
7\(”(!,9 3= g" ( :3"‘;' .,)*)J:(':‘E "3)"' (‘,PJ 'P'J)

" L
X ’(,,,,3) %’ ('}3,, ] l!) ﬁ( )( "» Li/ﬁ"’{%"n(’ﬁa-n’) (4.50)

- )
Xoan = - +0ha) -+ 42 Aye A - 240 BB

One can easily see that for all phases where the three distances [Q;-d2],

|§,-ds| and |d2-33| are of order r,, also all the A§k)

are of order
ro. One also easily verifies that by an interchange of the particles 1

and 2 the K§k) change according to

7\(”(, 2.V e 7\ ’}:.:.)) )\‘?(:.h!) = X:’(m.’)
T _ e () dem (k.51)
)\J (1,2.3) = ig' (2.0.3) X,(:.m = )\' (123)

7\ (21.3) = X‘ (EX)

One now can start the expansion. Just as in the previous section,
we leave the impulse part Jﬁ(,k) n&(i,-'ﬁl) in (4.49) (which depends only
on relative quantities) as it is, and expand the coordinate part. Since
-o(k)
M

are of order r,, we write:

5@+ Hrr-20-F, -775(5 33?—5)-

- 778(? ,7'2,)'*"“ (b.52)

5.‘ 7{

s

wvhere we use the sumetion convention both for the latin index i as for

the (Greek) index a, which denotes the vector components. Introduce
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this expansion [extended to second order in the k( )] in the kernel K,.

Since the product TT5(§2+§3 T[jm-gl) commutes with the €y, there will
occur exparsions in which the remaining S-operators in Kz act oun thi: pred-

uct. It is easily seen that one can write:

(,2)77-S(R3 3mT {) Sm(ll) m(l)) "3a)ﬁ§(§+3m'f {

", S(? ﬁ‘* +))n: 3)- f) (4.53)
where

Y (-. + a) L,

Yoy = R8T (4.54)

Since T is of order T, V 1s of order r,, and one can therefore fi-
nally expand in powers of (-1/2 T12 + v) around q;. Doing this also

up to second order, one finally obtains the expansion:

J -~
Ky(xz1¢.8,3) = EM‘,- &,)&Jo

PRV 18a-8) B, .,
PR L ) Oung,ep

+ 06 & s

(b.55)

k
where we have introduced for sbbreviation the differential operator vcx

which when acting on a product of functions of §; is defined by:



vigd-adr} = 9 5,903 9,‘,,(7»

The form of (4.55) 1s completely analogous to the expansion (4.34) for Ko

and the functions o are analogous to the functions TT. They are defined

by:

(L BRIAAT,) = fj'r o j‘f: It { (RIAP A
- B (B * B4y B2) } 7[ (B, -

f 4S54 # ”J Jz-'! {(003’ S - S (8, Sf.:-("” +

(k.56a)
) 3 |
+ 9”5__9»)'} I 5P, =)
~ . - " A
@, , (”;:.Phrn'ﬂum',?’) =T ‘2.& a)" (4.56b)

U:,k,.t("l'n,_é.ﬂl?..?h.m)'LJro_\:’fJE,Ji {[(d, A A « "”)J&'
“BulB N4+ 6, X, e0 b)) +
t )'L(""-” [(0"*9") :)‘13.( '3'8:’* ﬁ:xﬂ}ﬁ J(Pl‘ 7:)

(b.56c)

,“’(M,f. 'Jv:ﬂ ﬁ) - -% (‘)l, K, p (4.964)

e B
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UQ,KJ, JP (zu, ‘Fl}i 'i,j,,q,) = T:{’ JTOJ”/J&JI {[(0&)
. X':g.u) X;i ’(a.:.s) )8:’ - )J.( 9,, X:,‘{'-"’)X;':‘(b’o”ﬁ:‘ +

+ 6’, }\(: Jua9 )\;: ’(v.a.s) J:': )J
+ ))‘U.’.”)* (12.3) [(9,,"'90316:’ 'Ju (013 J:,'.' 9'3 Jﬁ,)]

LR ((REAV Y Y RURWIEV KT R U]

({ }] [¢ 1) U
+(F 2ty (0,480,427 - 4 (8,52 + 6,407}
Z §P-T (b.56e)
In here the only undefined symbol is the operator 0(2) which is part of
the two particle operator c‘(2)(1 2) expressed in the ‘wo particle center

of mass and relative variadbles. O(ne has:

Sr""’ = exp {—'r-;,%— 33—} 0=
o= a&xf{-?'(;;;gn -6.) (4.57)

It is easy to prove that the functions o have the same properties a),
b) and ¢) which were mentioned on page 43 for the functions T1. Intro-
ducing therefore the expansioc. of Ks in (4.4i) we get an expansion for

9)(:1:,(1"1) vhich 18 of the same form as the expansion for F( °) We

write, analogous to (k.36):

Feanifh = T::’f ?:?‘+E:“+ .t F::+ (4.58)



where:

TR - [ 4 TRa D G BRALD o

FrOR =fAAA {TREA) BuA DALY oo
I:‘:s( IF) = “Ia’ﬁ#ﬂ/i V“{Z’f' F,'(fuﬁg)} @O, x,xRaP B | "70 "). ;is) (4.59¢)
TR AAAE G RN B BT sy

%:"9( I ‘Iﬂﬁﬁx% ZK{V:ZZE‘&,,%)} Q):,n'dfanﬁ Elﬂﬂ,)(hé%)

The superscripts S and A refer again to symmetry or antisymmetry with re-

gard to an interchange of the particles 1 and 2. Ome still has, regarding

-+

q, and F,» as independent variables that:

T—mA . %_;{ A ?-(ns} (b.60n)
M %‘{ JT‘M (.60b)

Finally, since the triple collision functional is given by:
A=) -pc,dg J.;’ir, E«,,t)ﬂ,(mt&.ﬁ,) (b.61)

with:

,(1828,) 'ﬁl.&. K, %l4,4,5,) (k.62)
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the expansion (4.55) for the kernel X3 leads to an expansion:

A IR = QP + &My Q05 @M QRS- (4.63)

similar to the expansion for A;. We omit again the explicit expressions
for the 's since they are obtained immediately from the expansion (L.58)

of the Fé ).

9. Expansion of the macroscopic ejuations

In Section 2 we have cerived the general macroscopic equations from
the B-B-G-K-Y hierarchy of equations. These equations are exact, but form
only a general scheme, in which any closed (and approximate) system of equa-
tions for the five macroscopic quantities will have to fit. 1In this sec-
tion we will derive more specific macroscopic equations from the general
kinetic equation (B) of Chapter 3, in which we will use already the ex-
panded forms (4.41) and (4.63) for the binary and ternary collision oper-

ators. The basic equation is therefore:

—4-31—32‘; P, % a“’q PIF) +Z(a“" 0“”)}+

+#{Qg" + ; (a,:-;ﬁ-'-a‘:'s)} 4 reeen (b.64)

Notice that this equation, just as the Boltzmann equation, is a differ-
ential equation in the coordinate 3, and an integral equation {n the mo-
sentum 3.

The procedure to obtain macroscopic equations is the same as used in
Section 2. Integrating (k.6k) over p and dividing by v gives again the

continuity equation:
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:%%— + %‘(ﬂu.) =0

since the right hand side of (4.64) does not contribute. Then by multi-

Plying with ﬁ and integrating, one obtains the equations of motion in the

form:
X
. - ) NA n O »

CE[PR (A A B B Yo

k
with the same Py; as in Section 2. From the expression of the Z's
in terms of the corresponding expansion (4.36) and (4.58) of the second

distribution function one finds:
[dpp QPR =-[Hdp A% FGALERID 6o

Since a¢/3ri is 0dd in ;, clearly the contribution of the symmetric
F's vanish. Since according to (4.38a,b) and (4.60a,b) the antisymmet-
ric,?f's can be written as a divergence, one gets from (4.65) and (4.66),

the equations of motion in the desired form:

- -0 4.6
mBlh - 3R -6
with:

% - P‘;* ﬁ': (%.68)

and
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RIQIR) = - & [Jdppdt 36 {54 50

-4 //JPJP,Jl _&é os ]:Jv';s+ )+ o6o)

Finally by multiplying (4.64) by 52/2111 and integrating one gets the

kinetic energy equation in the form:

n&d9) + 3 - -RBy + R R +
+-,‘,-.fdf£,—'{aj"+a{”‘-fag"a...]%fdf%mfs*...}+.... o

Since, as mentioned at the end of Section 3, a,fo)s(a,S[Fl) can be trans-
formed into the familiar Boltzmann form, its contribution in (4.70) will
be zero according to a familiar argument (see Chapman and Cowling, p. 67).

In general one has:

IJF‘ZQ‘UM . ""L"UJP‘?: %#-nu .71)

and therefore in general both the symmetric and antisymmetric Frs will
contribute. Splitting py according to:

Pi = .B._“'T&-.; ..&11‘_&. (%.72)

then the second part which is symmetric ir the two particles together
with the antisymmsetric 7 ‘s can be written as a divergence. One finds
for this part:

- gwsh- 3
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with:

THQIF) = - Jx [l s di 235 BB (F04 %)
Bl A Y BBAET T

The first part of (4.72) combines with the symmetric F 's, and altogether

the kinetic energy equation becomes:

n2(36) + R,y = - FL+IY) + RAIM v

with:

RGP =-+= ]dpayiz}% {F+ £0%.)
'#W#Jﬁﬁ%%{ﬂr*’ F% E 0% e (07D

Since in the kinetic stage the equation for Fa(x;xz|F1) has the
same form as the second B-B-G-K-Y equation, the equations for the poten-

tial energy will be the same es (4.19), namely:

B - A )

with:

n{;‘({m) = -:,-f,-rﬂ[cffafﬁﬁ, $3-INF xxiF) (b.77)

. (§IF) = ;ﬁ,—.—[ﬂ'«?lf,ﬁﬁii'lvﬂmnlm (b.78)
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Using the expanded forms (4.36) (4.58) for Fﬁo) and Fél), clearly the

right hand side of (4.76) becomes -R(3|Fp). 1Ir e¢ only the symmetric
jF: 's will appear, while in Jga because of the factor ‘pi/m both the
symmetfic and the antisymmetric F 's will contribute. Adding (4.74)
and (4.76) gives the total energy equation in the same form as in Section
2.

What is achieved is the expression of the stress tensor PiJ and
the total heat flux vector Ji 1in terms of the first distribution func-

tion only. This will be the starting form of the macroscopic equations

in the next hydrodynamic stage.

= —+ ——————————— i . e —— ———



CHAPTER V
THE THEORY OF THE HYDRODYNAMICAL STAGE

1. The basic equations

As explained in the introduction, we assume that as the gas relaxes
further towards the equilibrium state a second coarse graining in time
(over a time of order t,) is needed in order to describe the slow varia-
tion of the macroscopic quantities in time. On this "hydrodynamic" time
scale, we assume that the first distribution function F; depends on time

only through the macroscopic quantities n, 3 and ®, 50 that:

Fexit) ——F @ BIn,2,6 (D)

where as before the vertical bar denotes that F; depends functionally on n,
8 and ¢, which contain the whole time dependence. The form (D) is assumed
to be valid for any initial distrivution F,(x;0) after an initial period of
order t,. The macroscopic quantities are expected to vary smoothly on the
hydrodynamic time scale, and to fulfill the basic hydrodynamic equations of

the form:

= N@GInu,6)

R 2R

> - (F)
L3 U@in u6)
W . 9Gini,6)

The unknown functionals Fi(§, $ln, 8, @), ¥(§|n, 3, O),ﬁ(ﬁ‘n, 3, 6) and
58
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8(4in, ¥, @) must follow from the kinetic equation (4.64) and the correspond-
ing macroscopic equations (Chapter IV, Section 5). Trey will be determined
again in successive spproximation. Since at this stage the deviation from
equilibrium is caused by the non-uniformity of the macroscopic quantities,
the development parameter (called u) will be a measure of the spatial varia-
tion of the macroscopic quantities. Physically pu will be of the order of

the relative variation of the macroscopic quantities over a mean free path.
However, it is more convenient mathematically to use u as a formal unifor-

mity parameter, with u = O corresponding to the completely uniform state.

The expansion of the basic hydrodynamic equations (F) will .nen be of the

form:

W o u N N . e
u;

(2
= M Uim + U e (5.10)

M 6" + p@"+ .- (5.1c)

%
gt
and the expansion of Fy will then be of the form:

LrGpnLe) = [APn 0O APIn 20+ o

Note that (5.1) gives the time derivatives of n, U, ®; these quantities them-
selves are still determined from F; in the usual vay for all values of u. We

require therefore that:

nd.tr = [d {, (5.38)
ng.t)iig,t = fdf -; L, (5.30)

2ad.t)gi.t) 'fJf ‘3!,: L (5. 3¢)
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and for 1 = 1,2,0000000

[t =&l [ L =0 o.0)

2. Comparison with the macroscopic equations

We will now compare the hydrodynamic equations (5.1) with the macro-
scopic equations derived in Section 5 of Chapter IV, in which only the first
distribution function occurs. Putting in the expansion (5.2) will lead to
a p-expansion of the macroscopic equations, if in addition every differentia-
tion after the coordinate ﬁ is multiplied by the uniformity parameter u. Thnis
is necessary tor consistence since the differentiation by E operates only on
the macroscopic quantities and is therefore Just a measure of the non-uni-
formity cf the gas.

To abbreviate the formula we will use the following notation. In the
macroscopic equations of Chapter IV, the functionals‘ff of Fi occur, which
involve F; as a product such as {g} F1(4,8;). Therefore introducing (5.2),
orne gets in zeroth order only f,, in first order f, and f3, in second order
fb, fi, and fp, etc. We write therefore the u-expansion of a general funce-

tional Z(1F;) of this type in the form:

ZUEE) = Zaly + »Zl, L)
t P {ZOLA+ Z OB

With this notation, one obtains fr . (4.68) and (4.69) for the stress ten-

sor the expansion:

B = By AR Rt O)
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wvhere:

Poe = Piie + P.'i‘:l, 2=0, 0800 (5.6)

Fraqm o= [ BEf,  teorr o

e “im 2.0) "fﬂ%ﬁ"[[df‘jf {T;f('lﬁ}“"uln _} (5.70)
R, qimio)=- [H13 % [dpdp [{EM LRI
HE o B gy )]

Analgously one obtalns from (4.73) and (4.78) for the heat current vector the

expansion:
Jo = Joo # 4k +pTat (5.6)
where:
Joo = K 48 #TE gmenne O
Jif@(?m’a'o) zfdﬁ"ﬁ"w%'ft {=01.20 0 (5 00)
T Gin.0) =[5 Y % [[4pfp b,

(Bl Fiotyr o)

(5.11a)
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T aint0) = - [dn % [[apay Bl [{ B0l o+ By il boe)
Emals Eate)) »

Haqman- H{ad BREREX 1 FEr ) oo
J[;‘,’<§:n.'¢1.0)=ffﬁ$ff«lfo'ﬁ SB[t +F Ul b+

+{ :,(I[)'l’r('t).‘. ..... }
- %ag‘fg'.’s(: D+FG L+ (5-120)

Finally the functional R defined by Eq. (4.75) can be expanded in the form:

R = /‘R, + R+ - (5.13)

where:

R,qm;a,e>=-J43§"Uf°'fJF,‘§%“ [{E"at th+)
HESOD+E %+ 1]
RAGIn2.00= - [ (B BB (£200, 11+
+ T:‘o s L)+"'} +{E""’{ il ‘,)4-5"’( ‘t..t)*"'} (5.140)
+{r;";‘up+p;;"np+--~}]

(5.1ka)
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Equation (5.13) starts with the first power of u, since:

R,(GInE6) = -[di2E [[spdp BB T05 4 )

is equal to zero, if f, is the Maxwell distribution in E (compare also Sec-
tion 4).

Substituting in the macroscopic equations (4.67) and (4.74) these ex-
pansions for PiJ’ Jy and R, one can then compare the continuity equation and
these equations with the hydrodynamic equations (5.1). Equating equal powers

of 4 one obtains:

N'GIn.0) = - 2L

29, (5.15a)

N“in,u8) = o ic2.3, oo

U'Gim,2.6) = - (U.(%%: + ﬁ%%) (5.16a)

U;§Ima.6) = "711'"725%4 (5.160)

@“}i,ﬂ,‘&,e) - {u‘%% *iwly e (5.17a)
t &I~ ER, )

Fimin (Aot BT

: -B%RJ}

e
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The internal energy equation obtained from (4.74) and (L.76) does not
play any particular role for the determination of the hydrohynamic equations,
but since we need the result later, we will also expand this in powers of u

analogous to (5.1):

| 2)
%’tg = /‘E”"'/“Et"'”” (5.18)

where:

E"Gim.0.0) =~ {usf + 4By, ) - % 53 (9:192)

a={y 2 !
E‘?fl‘".u'm {u,;% + ’7‘1"12??'[.'} - 3"7%% (5.19b)

and €,, €;... are the result of the u-expansion for the internal energy e€.

3. The expansion of the kinetic equation

i i
So far the development is purely formal. The functionals ﬁ( ) and 8( )

in the hydrodynamic equations as given by (5.16) and (5.17) still depend on
the unknown functionals f,, f,, etc. These have to be determined from the
kinetic equation (4.64), jJust as in the kinetic stage the unkrown functionals
Fg had to be determined from the B-B-G-K-Y equatioas.

To do this, we first expand the kinetic equation also in powers of u.

Writing:
- @
TtE’ o R B B A (5.20)

1) > & -

where the all depend on q, p and functionally on n, u and @, one obtains
by comparing (5.20) with the u-expansion of the@'s (ac given by Eqs. (4.41)
and (4.63) of Chapter IV, using (£.2) and again multiplying all derivatives

after § by the uniformity parsmeter u):



65

rwz’i,ﬂn.ﬁ,ﬁ) - 0:‘”“‘0) + a:”s< "0)+ Y (5.21a)
M0 - K3+ {@hpra il @i &t}
* {Q:ms‘ Lo+ @, [+ } (5.21b)
Mgma 0 -4 3 @t @ et

{ » [
Haal @ ol W a g b+ avaf, b+ )

+ {af)%"” ‘,'H'a:w(’t,, ‘;‘)4, .. J
t{aral, to+adaf, to+ |

(5.21c)

Since F; depends on the time only through the n, ﬁ, and 9, one has [similar

to (3.4a)]:

e 4R g

e = lan ) lse 0 s &)

where the & denote functional derivatives and the dn/dt, du/dt, 36/t are
given by the hydrodynamic equations (5.1). Introduce now, similar to the
operators D; in the kinetic stage (p.15), the operators #(1) guch that for

an arbitrary functional V(‘n,ﬁ,e):

poganin - (3.09+ (L 0567 o

Using these operators, expanding the lefthand side of (5.20) and equating

equal povers of u, one obtains:



0 = r'“) (5.23a)
.Dm ga = !—wm ’ (5.25)

o ~ ¢2)
Dm‘c + D" z' - r' | (5. 250)

and so on.

These equations are the basic integral equations which must be solved,
subject to the auxiliary conditions (5.3a,b,c) and (5.4). Note that the
first equation (5.23a) involves only fo and should therefore determine fo
completely. Knowing f, allows one to find the hydrodynamic equations in
first approximation. Therefore the second equaticn (5.23b) becomes an in-
iegral equation far f;. Knowing f3; one can find the hydrodyramic equations in
the next approximation, and in this way the successive approximation method
goes along. We will only discuss the first two approximations, which corres-

pond to the Euler and Stokes-Navier forms of the hydrodynamical equations.

4. The ideal fluid equations (Euler)
Clearly one should expect that the solution of (5.23a) for f, is the

local eguilibriun distribution:

L Gimd6) = nGng g3 8) (5.2ka)

with: *
- i

3. cm C. a2my
’mﬁnc"‘%f =g p

(5.24v)
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The auxiliary conditions (5.3a,b,c) are then clearly satisfied. It will be
sufficient for our purpose to show that (5.24) satisfies the equation r‘(o)= 0
From the properties of the functions n, [see (4.32)) and w, [see(4.56a)] dis-
cussed on p. 43 and especially from their Galilei invariance, one easily ob-

tains from (4.37a) and (4.59a) 1f F, is given by (5.24), that:

FYqirrif,) - z;;:'f;wc’g";“ -+
FoigaRRiL - « FXY4, 1,1,

*
L

(5.25)

These pair distribution functions have therefore the same form as in equili-
-> -
brium except that the P and 2 occur instead of the F and P, . A8 a re-
sult one proves exactly as in the equili_rium case (Chapter IIT, Sect. 6)
0)s
that all the a( ) (§,% |fo) are zero, so that also r“°) = 0.
There remains the question whether (5.24) is the only solution of the

(o)s
'

equation r.(o) = 0. Since, as we saw, can be transformed to the fa-
miliar Boltzmann collision integral, one can appeal tc the E-theorem to
show that (5.24) is the only function which makes afo)s equal to zero.
We have not attempted to generalize the He-theorem to show the same fact for
the higher 's.

Using the explicit form (5.24) for f,, from (5.5), (5.6), and (5.7a,b)

one obtains the zeroth approximation of the pressure tensor Py 3,0 in the form:
-~ -» )
JB1nE.0) = PGIne Yy (5.26)

where the scalar pressure p as function of the density n is given by the

equilibrium virial expansion, which is:

peng [-Bpw-iFEp0-- ) 27
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where

B’(e) | : —J— Zz. ‘gu

64(9) = _j‘TfJigJi, ‘/2&3 {:3

using as in Chapter III the Mayer notation:

‘q‘ =C'i¥p -1

For the proof of (5.27) see Appendix I.

Using (5.26) one gets from (5.16a):

UG 1m,,6) = -(usg + 71‘;;%&) N

and therefore in this approximation the hydrodynamic equations become the

Euler equations:

on
ot 29, (5.29a)

“U; | - & [
3¢ T W g nn%g% (5.29v)

Note that the functional 8(1)(§|n,ﬁ,0) is not completely determined by
f,» since R involves f;. In this approximation it is therefore not possible

to write down an equation for 39/0t. However it is possible to find an energy

equation. First note that from (5.10), (5.11a) and (5.12a) follows that:

K ¢ $2
:7é;0 = (.0 = :J;'o (5.30)
As to be expected, the total lLeat current is therefore zero in this spproxi-

mation. From (5.19a) one then finds that:

4
{
{
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E?” = - {u.,, Lg——} (5.31)

with:

g =30 +E
30 + Faflldpdi ¢ {FU0+ FlUga+ ) e
30+ 4 [t q‘c"?'{n s fdg gl )
=0 (% +§9§’f&+-ﬂ~9§&+ ...... }

The energy density €, is therefore found from the virial expansion of p

accorcing to the formula of equilibrium thermodynamics. Hence the energy

equation becomes

% - -E

expressing the fact that all changes occur adiabatically in this approximetion.
For the following we will need a simplified expression for 6(1), which
can be obtained since the second part of the expansion for R; [see Eq. (5.1lka)]

can be evaluated. One finds:

(nglﬂ u,f) = -[U.%% ag-{r+nacm)+nscl'i+ )3__
+~31 Ji%{ﬁ#.}"ﬁ_ﬂ{g'w {.,‘.)*”"}] (5.34)

where:

" - AR EY AR 201 R T, GEAD 0
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Cj "==ﬁ-faﬁJPJﬁ%‘&%meiJa‘Jﬁsﬁyy;‘)é-%u%(l},?,n,.’}..ﬁ,) (5.35)

Prcocf: By explicit calculation one finds:

F:"?nt,) = 2 91"1{# + :}%%‘:—j
Fortify = w0 (A0 2fn 4o afpt 4 coy )

where:

@b D) <[44 g FEID
gL h) =fdjdi gpgap BT,
AAEE =] dj, A4, ,7:’[5'}?,) @,,;

akh = [4A44, Tap S - Do,

c‘.&’(l,i.’.) - J J?,J‘f,ﬁ):zzi(%)é %"Q)"l' |

We mentioned in Chapter IV that the n's and w's are isotropic tensor fields
depending on ?,’ ,x, and*,t. As a result the A, 8, and ¢ are isotropic
tensor fields depending on T ,; and ’, . For a general isotropic tensor

Iik...1 of this kind, the integral:

f‘”‘?"ﬁ%%hamc

vill be & numerical tensor of the same rank.* Hence the numerical tensors

-

'y
For a proof of this theorem, and some information about isotropic and numeri-
cal tenrors see Appendix II.

RN S
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obtained from Atl.;.’.’ and a(ﬁ,’.’,) must be zero, while the numerical ten-
sor CiJ obtained from the € (%, ’,i) mist be constants multiplied by the

Kronecker 54 3 Therefore the second part of R; hecomes:

j""’g%ﬁdfdﬁ 3n { ol + F::)s(;{.w-----}
= {.na :;’ +'n3c:';+.... }_‘3_%

.}?Uﬂ

={n‘C"’+fn’c‘"+- 53,

R

From {5.17b) using (5.26) and (5.30) one ther finds (5.34).

2+ Determine-ion of the form of f;

a. General metnod.--To derive the hyirodynamic equations in the next

approximation, one first ha: to determine f; from the kinetic equation (5.23b).
wil

From the definition (5.27) of the uperetor D' , one has:

ﬁm[. ___L NmJ +[ U.(.“J +[‘§§‘:(‘}“’J
-{""2'”("""5"”“, (ma z)f@w} -%)
"G ot

[

(1) U;f;) and 6(;) from the previous section

#

where, using the results for N

and writing again fo

q, =-y[1?§gn +{( ,—%>a.+#}?~gi
* {3’-2}5-»'* %&}%ﬁ‘]

(5.37a)

-~ il e

ot s 8 o
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Quin b 3. (6 Pgr + R B - Ll
+(yg-;--%)(<§‘- -#)%: (5.370)
W (35~ DS [ pddarong, 1]

By writing‘ﬁ(l)fo, except for so far as f; 1s concerned, as a power series
in the density n, we have separated the density dependence due to the inter-
action of the molecules in pairs, triples, etc., from the dependence on the
relative changc of the macroscopic quantities n, ﬁ, and O, which are a meas-
ure of the non-uniformity oi' the gas and which are taken into account up to
the first order. One can also say, that the uniformity parameter u is a
function of n, since 4 measures the relative change of n, ¥, and @ over a
mean free path, and at higher densities the mean free path A is no more in-
versely proportional to n and should be written in the form:
A~ m{rﬁ_(l‘nlma;wm-) (5.38)
InsEq. (5.2%b) we will therefcre also develop the functic;nsl r'(l)in

povers of n. One obtains:

L — [_’%.(%ﬂ-l + ‘%%) - O:”s(lf,,‘:)]

(5.39)
+n* [E"% 19y + @73+ A9, L))
: R

vwhere for abbreviation we have put:

aMag = Mg +s %fﬂ,ﬁ‘ QAN fldg BT (5:40)

ke . AR o v
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We will now seek a solution for f, also in the form of a power geries

in n. Putting: °

{' = {ho + m {M 4oeoe oo (5.41)

and equating in (5.23b) equal povers of u, cne cbtains:

q, +# (e P - Q703 L 5100

Q.90 - 27 - avag -aoig,. b

= Q/"‘"( ’9.. {m) | (5.42b)

These are inhomogeneous linear integral equations for f, o, fy,) which have
to be solved successively. Since the auxiliary conditions (5.4) must hold
for all densities, both fj 0 and f;,; must fulfill these conditions.

b. The Chapman-Enskog theory.--In our formulation this theory gives the

goluticn for f3,0. The left hand side of (5.42a) cen be simplified and written

in the form:

5,0 (aba-DEYL + (bp- <575y 2]

The right hand side m .’n L) is a lipear integral operator, which is iso-
tropic in the f—sp-ce. One now can make use of the following theorem:
If\’ (f) 1s a linear isotropic operator in ;-space and R“,“.(’) is an

isotropic tensor in this space, then a solution of the inhomogenecur equation:

j({) = Rq--m (i)

———— . -



T
vill be an isctropic tensor of the seme rank as R. If the homogeneous e-
quation J(f) = O has no solutions this isotropic tensor will be the only
soJution. Otherwise we have to add to the isotropic tenscr a lirear com-
bination of the solutions of the homogeneous equation mu.itiplied with the
appropriate numerical tensors.

For an indication of the proof, see Appendix II. In our case the
homogeneous equation a,(°)° = O has the five solutions 1, j and F* corres-
ponding to the number, momentum and energy conservation in the binary col-
lision. Since the solution of (5.42a) has to be orthogonal to these five
quantities (with weight ,o) according to the auxiliary conditions (5.4), it
is clear that the solution will be uniquely determined. Define the functions

v (°)(7) and W (o)(’) &8 the golut’ons of the following integral equations,
i i3

vhich are orthogonal to 1, P;and P'with veight function Po:

Q2,20 = -9 (g - L) & (5.138)

i

’3(%“3'559‘) (5.L3b)

(

arClg,aw

lo -
According to the theorem V' )(’) and Wy 4 O)(}) must be an isotropic vector

resp. tensor field, since the right hand side of (5.43a,b) have this property.
(o) (o)

Therefore V4 and Wy 4 must have the form:

S = Vi (e

ng(f) = Wtn (& - -,g',_s,v) (5.1bb)

vhere V(o) and w(o) are two scalar functions of I’l

L T
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From the form (5.4L4b) one sees easily that Wy 3 (o) is orthogonal to 1, p; and

B this 1s aleo the case for V1(°)1f:

Jdp B9,V =0 (5.45)

In terms of these functions one can then express f;,o in the form:

LG RIn20) = - o { v e gt

(5.46)
o ¢ ]
+Wtn (M -5k %) )
There remains the problem of finding the scalar functions V(o) and w(°).

This can only be done in successive approximation, either by using varia-

(o) and W(o) in an appropriate set of ortho-

tional methods or by developing V
gonal functions. For the details see the book of Chapman and Cowling, Chape
ter 8.

c. The effect of triple collisions. Knowing f; 0, the left hand side
of (5.42b) is completely known, and we can therefore determine £, in the
same way as f;,0. Note that the integral operator in (5.42b) is the same
as in (5.42a) and involves therefore only the binary collision cross section.
The triple collisions enter in the left side of (5.42b) btecause of the term
aq(o)ﬂ(lﬁ;,fl ,0)» The left hand side therefore becomes much mere complicated.

Using the isotropic tensor property of a, and the properties of numeri-

cal tensors one can show that:

[ [ h g g d =0

The proof is completely analogous to the calculation of the second part of

Ry outlined on p.TO. That the result is zero is due to the fact that since
the trace of Wy J(°) is zero the corresponding numerical tensor of the second
rank must also have zero trace and is therefore identically zero. Therefore

@= vecomes:

—— - . - .. . .- - e - PR — P . C e e - - -
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Ch(13,0) = 9, (40242 + b, +6/0)2al

.., (5.47)
+ (i - 3 - $67) 3]
é:nA(’?.) = 3; [e,(f)a-'gf‘ +‘,(‘}.)2%Q +c (’)p"]
aa';su?.) =9 [ &(’,B&Q +& ff)D, (5.48)
a;o’(lg.,f“) = 9, [ 7\'(})% +}l,,(f)]2’]
a,(¢) = PI‘% (5.49n)

@ = {(7!}* -f—)% +?—/Ju'{-3»€§]# (5. 49p)
T %(% - 8j) (5.49¢)

iv-sime Bane Mot a0
aqq;-mg’z’][q}q.gg Qg—v f g6, (5.49e)
A‘(i)- "EM‘YMC ;’ zzvﬂiepﬁ#&fd. (5.491)

}‘ij")ﬂ 5%”61%%&&6 -r%w W’Pl‘wn@- (5.49g)

e P o et et o

SN

- - -
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In here the x,; and w, [given by (4.35b), (4.56a) of Chapter IV) are writ en
as functions of P, P2, and ¥. Because of their properties mentioned on p. i3,
31 ’ 31.1’ Ay and ,‘.“ are isotropic tensors. Furthermore since the trace of

Uu(c) is zero, the trace of P13 is also zero. Therefore Cne can vwrite:

i =ik (5.508)
o = ap(LF-lpsy) raps o
NG = apE (5.500)

i) = AP - -5,1;,-;-&;) (5.504)

Therefore (5.42b) can be written in the form:

a’csly =9, (L% + MyPD,} o

with:

L:H = [$p+Po) “(7% “3:)% -
-Hhof et - o2k
My = [- (B +aqeaX B - 35 5)

+{#FGh - 1) +aq)s, ]

Note that the term with 3 log n/dqy cencels.

(5.52a)

(5.52v)

Corresponaing to the V1 (O)F) ana vy () (@) ve tntrosuce Vi (V@) ana
V‘J("('i as the solution of the integrsl equations:
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ar<le. v = -9 L@ (5.5%)

()8 (o - ¢ (5.530)
A, €19, 3w = — g MyP >%

One can conclude again that the Vi(l) and Wij(l) are isotropic tensor fields
and that they must have therefore the form:
VG = Vip A (5.5%s)

W' = W - 1‘58‘/)4"\'/“(.')&‘ (5.54b)

where V(l), w,(‘) and Wg(l) are three scalar functions, which still must ful-

11l the conditions:

[F7av=c. [hgwy = fhFad =0 o

in order to fulfill the auxiliary conditions (5.4). One gets two functions
() (1)

because the trace of Wy, will not be zero since the trace of My is

not zero.
6. The Stokes-Navier equations

With the known form of the distribution function f; one can find the

stress tensors PiJ?x and Pia?x given by (5.7a), (5.7c) in first approxima-

tion and hence the hydrodynamic equations up to order p’. The stress becomes:

(5.96)

Pii= B+ PL = - 27,005~ $0.59)- 1,0.8

vhere:




e a ok 8

9

u)
(LA

]

L e s s e o
?L = ‘n"L +

e
[

(5.57)

and:

,,,'m . 7‘5”!‘)? 'in% 3.(” Wm(f) (5.58a)
N = 75 dp weg W, -
- S fi B B B h g
c LWy s% 8 ) mar kD
T = 4fdi& gpwiep (o-28)

The tctel stress tensor pby, +f’13,1 has therefore the familiar Stokes-

(5.58b)

Navier form for viscous fluids. Two viscosity coefficients appear, the shear
viscosity coefficient n; and the bulk viscosity coefficient nz, for which
one obtaint expansions similar to the virial expansion for the pressure. The
zeroth approximetion nl(o) is the Chapman-Enskog value; ql(l) consists of two
parts, one depending on the triple collisions (which come in through w,(l))
and the other depending on the potential energy #(r). The bulk viscosity
na is in this approximetion proportional to the density and is a consequence
of higher order collisions through Vg(l).

The hydrodynamic equations up to order p¥® become:

% - -
W - - (ulr kB ok A

(5.59)
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vhere to be consistent we should use for the pressure p the virial expane
sion up to the third virial coefficient.
By substituting the form of f; into the formula (5.10), (5.11b), (5.12v)

fc. the heat current densifty and taking terms up to order®, one obtains:

Jo = J,,ﬁ + c’: +J:f =-T (5.60)
¢

with:
T - T(o) +n fr(‘)+ e e o (5.61)

and:
0 - 4 a
T - ‘j-]Jf 2,"23 }i‘f’V«’(P) (5.62a)

T = +{d5 7E S Vip
- $fdidpdy B = OB didi, smpgap -
PR TERRLD e
- fdidsdy ¢ S fdf 45, g g,
DML e ACA BRI R B

Equation (5.60) is the Fourier law for heat conduction and T (except for a
factor (k/@))is the heut conductivity coefficient, for which one obtains

(o) is again the

again a virial like expansion. The zeroth approximation r
Chapmen-Enskog value. The first approximation +§1) consist 1ike m(l) of a
triple collision and a potential energy part.

As in Section 4, it is not possible to vwrite down the @-equation up %o
the corresponding order in u, since 8(') depends on fg and is therefore not

completely determined. From (5.34) one cen calculate 0(3) and one can

e -SSP, TH: ST TR N e Ak R
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simplify the cxpression for 6(') . However, since iLhe results would only be
needed in the next epproximation, we omit the detailed formula.

One can write down the energy equation up to order u?, The result is:

% - ’(“*%% *?&'Pﬂn+#eh,2.’+—%%:“-) (5.63)

£ - e vgt

where &, 1s given by (5.32) and:

&t = Hffdpdi kg [{ET0L 10 + FUL) (e,
HF i+ Fjate- ]

~ D



CHAPTER VI
COMPARISON WITH THE ENSKOG THEORY JF DENSE GASES

i. Introduction

For the special molecular model of rigid elastic spheres, Enskog8 de-

veloped many yeers ago a theory of dense gases, in which only binary col-
lisions were considered. For an account of this v 2ory see also Chapter 16
of the book of Chapman and Cowling.7 In order to compare Enskog's theory
with ours, we will calculate the first density corrections to the viécosity
and heat conduction coefficients from our formula using the elastic sphere
model. We will see, that the results are identical with EnskOg'éhresults
if we consider only thoee parts of the density correctioui Wwhich are due to
the binary collisions. Hovever we were'unable to calculate explicitly the
contribution of the ternary collisions, and it is quite unlikely that this
contribution vanishes for elastic spheres. Even for this simple mcdel, the
complete density corrections are therefore not yet known.

For elastic spheres of diameter r, the intermolecular potential $(r) is

given by:

p) = { (6.1)
0 2>,

It is often convenient to consider @(r) as the limit of an inverse s-th

pover law repulsion:

$t) = Lia

L

‘%i‘ (6.1a)
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with ro = lim xs‘/s.
S

Bogolubov has remarked that for elastic spheres one can transform the

binary collision term Ay (3, $|Fy) of the kinetic equation to the form:

AGRIR) = [di [ d2 22QD (Rq1OF Gt By -
q-0>o (C.2)
- F,‘({,P)F,'({-I.E,F,)}

In here & is an unit vector in the direction of the line of centers of the
two spheres in the collision (B,B;,) +($*,5,*) measured away from molecule 1.
Equation (6.2) has the Boltzmann 7orm, except that the difference in posi-
tion of the two colliding molecules is taken into account. It is the form
of the collision integral from which Enskog starts.® We could therefore
make the transition to the hydrodynamical stage similar to Chapter V but
gtarting now from (6.2). However we prefer to calculate directly the trans-

port coefficients from the formula derived in Chapter V.

2. B8ome intermediate results
Referring to the basic equation (5.51) for the determination of 1,1,
we will calculate for the elastic sphere model all terms in Li($0 and

.
MiJ(p) which depend only on binary collisions. Ore easily finds:

B =-fEA s B =o
#luvgpet e

*Except that Bnskog in addition multiplies the coilision cross section by
1 +(5/8)nd, b = (26/3) ro® = van der Waals' b, in order to take roughly the
triple collisions into account.

B - .- - .- - P e -
.- B & - -
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To calculate by and €yj we first have to find the integral:

[d3 di g, 7. A BRIRTD

Calling this integral ng) (Plm,n2), we will prove that:

m =__21.de JZ@e)c {S(P -N8G-7

+8Cp-9,)8¢p, -ﬁ,)}

where the notation is the came as in (6.2).

(6.3)

Proof: According to (4.35b)

.. = %')J/li 7T,

Lt
Since the intermolecular potential changes rapidly at r = r,, there will be

only a contributidn to the integral for r close to ry. Therefore one can

neglect the dependence on ;1 in Jri and replace it simply by ry. Using

the same cylindrical coordinates (f, b, #) for the TF integration as in

Section 5, Chapter III, one then can write:

QF = 4 [ [dg sdtdlgn G{ S ¢ 5¢-1))

J,I

For fixed (b,d) Sg)b(p-m)S(Bl-ﬁg) is a step function of { with discon-

tinuities at f; = +Vro2-b2 and fp = -~rg2-b2 . For 1 < I

2
s 8)p (3-8 (Br-n2) = B(B-1)8(F1-he) and 1> 1, 82)aE-)8(H-Re) -
b(p*-ru )S(pl’-qa) where p*, pl* are the momenta after collision. For

12 €1 <1 one can consider Sﬁg)s(f-ﬁl )5(51-7;;) equal to zero since the

momenta 5, 51 are then so high that they will never be close to ﬁl and Tb

In the f-integration the only contribution comes therefore from the neigh-
borhoods around £, and fz. Let the unit vector in the direction -T at

-
’ -¢, 1,) oe e, then one sees that:

LA S

R Sl Bt ¢

R A

sy RIS i+
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r4-90)=-ne , &9, L) =HRE

9 J, 8dé - /z.‘(go‘é)JE
with (E .&) > o. Using these results and carrying out the f-integration one

obtains (6.3).
Introducing (6.3) into the equations (5.49e,e) for bj and -c-i.j all

integrations can be carried out, andi one finds:

- - 3 2 .
i -42GhL -4
2
- - L4 S o . ve
5 = G 525 5)
Comparing this with the general form (%.50a,b), one concludes that:
5 - Awa J_;_ _35
¢ = 5 (Sn 2 ) (6.5)

- J
CI’-:%' 2 Cz'o

Next, from (5.35a) one can show by a partial integration, that one can write:

C‘” 3“3'5,-1;'0')—“[#‘5{:5% Ea(i)

and therefore for elastic sheres C(°) = 0, since .oa = 0.

(6.4)

Substituting these values in (5.52) one obtains:

L;®= %&(7;? "i')-é; +Lich (6.6)

sz(ﬁ) = ‘i/'}'ﬂ (%} = T)ér'éy) ' "‘l'(?)

SR i Aol e - - - -



86

~
vhere [4 and ﬁi J are the contributions from the triple collisions and
are given by:

Lich = - Carmo¥esba iy Tin W fhdi b

(6.7)

iy - ~cammoic HofAdi A Tond i fha 6, o

Since the integral equations (5.53 ) are linear, one can split the solutions
in & binary and a ternary collision part. Writing:

m

{) (3]
Vii = Vie + Vit

’

(6.8)

wm

m
Wi = Wy st W e
the binary part will fulfill the equations:

Q,M’(l?.,? ) = "‘"}}"23 (:mo "15:') ’%" (6.9)
a9, 9N ) = - 4249 (£# - 559 5)

which except for a constant have precisely the same form as the equations

(5.43 ) determining the zeroth order or Chapman-Enskog approximation. There-

fore one can conclude that:
Q] 3 .,
bim. F, V
w A1 g O
w’ ’ .‘.‘ = 15 w 2 w’o bin =0

As mentioned in the introduction the coantribution of the ternary col-

(6.10)

lisions has not been evaluated.

2. Calculation 9_{ the tnnsggrt coefficients

For elastic spheres the Chapman-Enskog value (reference to Chapter 10
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in Chapman and Cowling) for the viscosity coefficient is:

'l]“” = (:.ou----)#(-’?-)”- 7&' (6.11)

According to (5.58) the first density correction q§l) consists of two
)

parts., The second, or potential energy nrart of n;{l can be trancformed

for elastic spheres into the expression:

% (B ffaa,99 g T - 8 &) Ty

and from the result (6.3) for nﬁlz one then finds that this part” 1s equal
?
to

A pS g® -
/5 % 71

Together with the binary collision part of W(l), using (6.10), ore obtains

for the total "binary" contribution to the density correction:

W _ I.” )ls- (0 (6.12)
H“" /5 ° 7)

in agreement with Enskog. The bulk viscosity coefficlent 1o vanishes in
this approximation since the trace of Ekl is zero.

The Chapman-Enskog value for the heat conductivity coefficient is (see

Chapter 10, Chapman-Cowling):
 §
§or o (ors) B (LS

1
According to (5.62), the first density correction 1'( ) consists of three

parts. The first potential energy part can be transformed for elastic

1t corresponds to the part due to the effect of "collision transfer" in
the Enskog theory. See Chapman and Cowling, p. 281 and p. 282.

e i o o e - e P -
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spheres into:
()

| ]

'-L (-}

3 g‘r j\%—gqlrz ?o(?o)?'(q:)é qul) —'31“ Q""
and hence, using (6.3), one finds that this part” 1s equal to:
: | 2L Ao

=

The second potential energy part goes to zero for the elastic sphere model.
Together with the binary collision part of v(l), using (6.10), one obtains
therefore for the total "binary" contribution to the density correction of

the heat conductivity:

N _ 47~ (6.14)
Tom. =5 C

again in agreement with Enskog. It should be noted that the complete Enskog
results contain a rough estimate of the effect of triple collisions (see

footnote on p. 83) which in our terminology amounts to assuming that:

() m J
V‘m ye = W . we =3 N,

'It is again the part due to "collision transfer." See Chapman and Cowling,
p. 281 and p. 287.
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APFENDIX I

DERIVATION OF THE MAYER EXPRESSION FOR PiJ,O

We have to show that:

(o5 B, S o (Rl B o)

= na(l-%P,—~%mp,—... >S‘J

where the B, and Bz are the quantities defined on p. 68,

c/,

Our proof will be similar to the one used by Rushbrooke and Scoins.22

Using (5.24) and (5.25):

P: 4 ng + {-JJ«Z R (n'+n-*JJz’{ {,+ ]

)

Following Born and Green,llb introduce a scaling variable [ by:

gty vV

L

f@’g ,. = l‘falg j%{(l't,.)

Since the integrand vanishes for r}, > r,/f, the dependence on t of the

then:

domain of the integration can be neglected. Therefore

s ﬁ‘ld"n) = l‘frfdi,’l A
= l’ﬁ{("fdi{(m.)}
‘JIJi{ o = —3f

W o e ami—— - —



Next, one can write:

j v Ji ”"5{: f v d?, gu t::
-, bl

since the integrand is independent of the position of 51 if V is large. Us-

ing again the scaling varisble f, and the symmetry of the integrand:

Tl ada, rdfall,
Ui oot
- 3!\,4 ja dy'dg 47’ }‘ { [l fiba>f rh.'ﬁ}
£ (45 dg g { [ fetanfan)

-{ ﬁ (I & di § @niofanfnsy

>

since again in the a} and q3 integration the dependence on f of the do-
main of intersction can be neglected. Hence going back to the unprimed var-

iables the integral beccmes:

L 4{C [J445 1.0a1)
= -2 [ Baf (s = -+

The method can be extended to the higher virial coefficients, but since they

are not needed we omit the details of the proof.
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APPENDIX II
ISOTROPIC TENSOR FIELDS AND NUMEKRICAL TENSORS

Definition g{_eg isotrogig tensor field

Let an arbitrary orthogonal transformetion (proper or improper) of the

coordinates §4 be denoted by:

-

{' =Tz o i: = T.sz.t (1)

A tensor field is a set of functions Kjj...! of the ¢;, which in each

point transform as:

K:)l = _rid‘l;'”“-rly Kdr...r

The tensor field is isotropic if the transformcd components Kij"" are
the same functions of the transformed coordinates gi as the original com-

ponents were of the original coordinates, that is if:

(2)

{

K;’.e (5,',4!,',"') = th (g'l’ {.’o“‘)

If (2) is only valid for a proper orthogonal transformation, while for a

reflection one has:

/ 8
KZ}:‘ = = .T(T,QT;'“..-’;' K"P"" (2 )

one calls the “ensor field skew-isotropic.

Definition gg numericnl tensors

If for an arbitrary proper orthogonal transformation T' a tensor Nyj...t
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satisfies:
4
Nij--t = Tix 1;:...1;' Ny-y (3)

then we call the tensor a numerical tensor.

Note that in the books of Jeffreyau our numerical tensors are called
isotropic tensors.

From the definitions (2) and (3) it follows immediately that by inte-
grating an isotropic tensor field over the whole space one obtains a numer-
ical teusor.

In the following we list some properties of isotropic tensor fields
and numerical tensors which have been used in the text. For the proofs see

the articles of Robertson23 and the book of Jeffrey.eha'

Properties of isotropic tensor fields

a) The zeroth rank or scalar field must be a function Z(§) of
-
¢ = JE].

b) The first rank or vector field must have the form:

L; &) = Ly,

¢) The second rank tensor field must have the form:

QD = Q& + Quord;

and, especially if the trace of the tensor field vanishes:

Qj(z) = 0(&3;- 3{'59.)

Psgggrties gg.nunerical tensors

a) There is no first rank numerical tensor except zero.
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b) The only second rank numerical tensor which does not vanish is a
constant multiplied by the Kronecker 613. Therefore 1f the trace of the
tensor vanishes then the tensor vanishes.

¢) The only numerical tensor of the third rank which does not vanish

is a constant multiplied by €4)y» Where

1 (1,k,1) is even permutation of (1,2,3)
€ = {1 (1,k,2) is odd permutetion of (1,2,3)
ikt ’
0 otherwise

Therefore if the tensor is symmetric in any two indices, the tensor must
vanish.

d) The general numerical tensor Mikgm of the fourth rank is:

ﬂ"”q -/;, 5& SM +/" (&;[ Slm + Sim Sk[) +/J (St'l Sﬁﬂ - Slﬂ ght)

with constants uj. Especially if the tensor is symmetric in (i,k) or (f,m),

then
/Jt'”n = /" SM Slm +/‘J (50°l SM +S¢'n Sﬂl = :)& Sl—'l SA")

If in addition the traces formed from the first two or last two indices van-

ish, then
Mintm =/l, (i S...ﬂ-&‘ﬂgu - g‘g,,k Sg...)

Finally we will prove the theorem stated on p. 73. A linear isotropic
operator J acting on an arbitrary function r(ﬁl...ﬁs) of the set of vec-

tors M ...ns bhas the form:

d - f.’JJ"JiJ” K(?ﬁ..'”?,){" ’...7’) (4)



94

vhere the kernel K has the property that for any orthogonal transformation

Ts
K(TPITH,;.T9,) = K1, 3 (5)
Consider now the linear integral equation:
Jb = Ryg P (6)

where Ryj, ,,g(;) is an isotropic tensor field so that:

Rc/l (TP) = Tiﬂ;-, T;: R,,,...,(P) (7)

Let us assume first that the homogeneous equation J(f) = O has no solu-
tion except f = 0. For each set of values of the indices 1,},...1 there
will then be an unique solution of (6) which we dernote by £y J..0 From

(6) it follows that:

Rijo P2 = {f i KAFIF A fy 0 G T
= f_j J","‘J?’K(P’ RE ﬁ,){;j...;(T",;",Tv,)

where we have used the isotropy prorerty (5) of the kernel K. From (6),

(7) and (8) follows that:

o b, KB~ T g 70, -

- Tcﬂ;' "'7;, "...1(7,,'”.7‘)} =0

{from wvhich one concludes that:



{U'"‘(T?I'N"Tii) - Ti“';""'_lz, f"...,(ﬁ,,'”,v’)
vhich indicates that fyy  ,(h...%5) 1s an isotropic tensor fleld in the
space of the 7y having the same rank as the Ryy ;.

In the case where ’(f) = 0O has solution x(l),...,x(n) we obtain
again an isotropic tensor solution of (6) in the function space which is
perpendicular to the x(1), Then, adding to this isotropic tensor solution
the appropriate isotropic tensor which is composed linearly of the X's, we

will get the general isotropic tensor solution of (6).
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