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FOREWORD

This Manual of statistical procedures is intended for use by scientists
and engineers. However, especially iii the planning stages of tests and
experiments, it is advisable to supplement the information by occasional
consultations with statisticians.

The proper use of modern statistical methods provides not merely a
precise summary of the conclusions that may be drawn from an experiment
already performed but also, with a small amount of prior information or
by making reasonable assumptions, a reliable prediction of the information
that can be gained from a proposed experiment. The latter feature has to
some extent already placed the planning of tests and experiments on a
substantially more rational basis, and further progress can be expected
in the future.

Although the Manual is not intended to be a textbook or treatise on the
one hand, or merely a set of tables on the other, it is rendered somewhat
self-contained by the inclusion of Chapter 1, Definitions and Distributions,
and the Appendix table., and charts. Attention is called particularly to
Appendix Table 8, which enables confidence limits for a standard devia-
tion to be obtained immediately, and to Charts 1I--X, which facilitate the
determination of the sample sizes required for various experiments.

The preparation of the Manual was first undertaken at the Naval Ord-
nance Test Station in 1948, under Task Assignment NOTS-36-Re3d-439-3,
as authorized by Bureau of Ordnance letter NP36(Re3d)AAF:bc dated
26 October 1948, which also provided for the basic statistical study of the
programs of the Station. Work on the manuscript was not completed at
the termination of this task assignment, and the continuation of its prep-
aration from 1950 to 1955 was supported by funds from explorto,-y and
foundational research and general overhead. Although the book was
prepared primarily for uise at the Station, it may well be of value at other
Department of Defense establishments.
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FOREWORD

The Manual was reviewed for technical accuracy in three sections:
Chapters 1, 2, and 3 were reviewed by R. M. McClung, A. W. Nelson,
and Nancy L. Seeley; Chapters 4, 7, and 8, by D. E. Hartvigsen, Paul
Peach, and R. W. Reynolds; and Chapters 5 and 6, by J. R. Harvey, J. P. "
Vanderbeck, D. S. Villars, and J. E. Walsh. In addition, the Manual was
reviewed as a whole by J. R. Harvey, R M. McClung, H. A. Meneghelli,
Paul Peach, and J. E. Walsh.

Comments and corrections will be appreciated. They should be directed
to Commander, U. S. Naval Ordnan~ce Test Station (Code 507), China
Lake, California.

D. B. YOUNG, CAPT., USN WM. B. McLEAN
Commander Technical Director
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INTRODUCTION

The Manual has been prepared for those engineers and scientists who wish
to use statistical procedures to improve the efficiency of their experiments.
Emphasis is placed on (1) consulting with a statistician while an experi-
ment is in the planning stage, (2) specifying what a decision in a sratistical
test means by stating the risks involved, and (3) attaching confidence
limits to an estimate. The reader who frequently needs to use statistical
methods should find a university course helpful. A group of engineers and
scientists who desire specific instruction might profitably organize a seminar
under the leadership of a statistician.

Users of the Manual may find the following procedure useful:

1. Read Chapter 1 for basic definitions. Since this is a manual rather
than a textbook, the explanatory material is brief. References 1.3
and 1.5 are suggested for fuller explanations of points that seem
difficult.'

2. Study the Table of Contents so that the appropriate part of the book
can be found readily when a problem arises. Specific items are listed
in the Index.

3. Consult with a statisticia, while the experiment is being designed. He
can indicate the sections in the Manual that describe the proper
technique to be used.

4. Read the general explanation of the technique to be used and note
the formulas and relevant Appendix tables or charts. Substitute the
pertinent data in the general formulas, using a worked example as
a guide.

1 Reference numbers refer to the publications listed in the Bibliography section of

each chapter. Thus, Ref. 1.5 is the fifth bibliographical reference at the end of
Chapter 1. All publications mentioned are available in the Technical Library at the
Naval Ordnance Test Station.
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INTRODUCTION

5. For fuller treatments, refer to the various texts and papers listed in
the Bibliography at the end of each chapter. Derivations and proofs
have been omitted in an effort to make the book useful to a reader
with only a general mathematical background. (The occasional
occurrence of an integral sign should not deter the experimenter who
is rusty in mathematics. The sign is merely a convenient symbol for
the area under a curve, and the techniques of calculus are not needed.)

The application of statistics in experimentation may be divided into three
main steps, as follows:

1. Design of the experiment. Conclusive results from an experiment
depend upon an efficient plan. Properly designing the experiment pays
dividends in time and money by decreasing the number of computations
and increasing the amount of information obtainable. Planning includes
the specification of a mathematical statistical model for the phenomena
being investigated. It is helpful, but not always possible, to specify the
form of the equations; the unknown element then consists of a set of
constants called "parameters" (denoted by Greek letters, such as /A and a).

In nearly all of the methods in the Manual, it is assumed that it is most
practical to take a prescribed number of observations. However, if the
results of each trial or group of trials can be made available without delay,
it is economical to judge the accumulated data at each step by the method
of "sequential analysis." Two important types of sequential analysis are
given in Sec. 8.4, and many other sequential methods are available in the
references.

2. Reduction of data-estimation. By following the appropriate example
in the Manual, experimenters will be able to compute characteristics that
summarize their data. Such a characteristic of the sample is called a
"statistic" and is denoted by an italic letter such as R or s. Those statistics
which are the best possible estimates (evaluations) of the unknown param.
eters are of particular interest. Experimenters sometimes use rough methods
of data reduction because the best methods are not easily available, but the
use of such methods is often equivalent to throwing away a large propor-
tion of the observations. This Manual is intended to make the best methods
easily available.
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INTRODUCTION

3. Examination of significance. To an extent that depends upon the
original experimental design, it will be possible to test hypotheses about
the "population" on the basis of the experimental "sample" from that pop-
ulation, or to state the limits of precision in the estimation of parameters.
If reasonable care is taken, and if the risks of error are included, these
conclusions can be stated rigorously.
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Chapter 1

DEFINITIONS AND DISTRIBUTIONS

1.1. Definitions

1.1.1. Population and Sample

The population is the whole class about which conclusions are to be
drawn; for instance, a production lot of propellant grains, rather than
100 grains selected as a sample from that lot. Frequently it is impossible,
or at least impractical, to take measurements on the whole population. In
such a case, measurements are taken on a sample drawn from the popula-
tion, and the findings from the sample are generalized to obtain conclusions
about the whole population. For example, if the population is made up
of the time to target of every rocket of a certain design, the population
may be so large as to be considered infinite. By launching only a sample
of the rockets, instead of expending every rocket made, information can
still be gained about the time to target of all rockets of the given design.

To permit good generalization to the population, a random sample is
selected; that is, the sample is chosen in such a manner that every individual
in the population has an equal chance of being chosen for the sample.
For itstance, if there are 1,000 rockets in sforage and we want to estimate
time to target by firing 50 of them, the 50 should be chosen by lot from
among the 1,000, as in a raffle, or by using a table of random numbers
(Ref. 1.7) so that each has an equal chance of being one of the 50 fired.
In many cases where a true random selection is not feasible, an adequate
substitute can be found (Ref. 1.6, Chap. 8). For a test of randomness, see
Sec. 4.1 of this Manual.

If separate random samples are drawn., the two samples are independ-
ent if we select the second sample by lot with no reference to the make-up
of the first sample. Thus, in comparing the performance of a rocket of
type A with that of i rocket of type B on tho basis of a sample of 10 of
each type, we should not let the choice of the 10 type-A rockets influence

3
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the choice of the 10 type-B rockets in any way. (Sometimes the time at
which each observation is made excrts such an influence.) We speak of
two variables as being independent when fixing the value of one has no
effect on the relative frequency with which each value of the other is to be
expected. For instance, the horizontal deflection and the vertical deflection
of shots at a target are independent if fixing the horizontal deflection has
no effect on the probability of obtaining each vertical deflection. Also, in
the case of an infiaiite population, the observations in a random sample are
all independent of one another.

When two events are independent, the probability that they both happen
can be found by multiplying the probability of the first event by the prob-
ability of the second event. ("Probability" is defined in Sec. 1.1.2.) For
instance, if the horizontal deflection of a rocket has a probability 0.7 of
L.ing less than 10 mils and is independent of the vertical deflection, which
has a probability 0.3 of being less than 10 mils, the probability that the
rocket will land in a position such that both its horizontal and vertical
deflections are less than 10 mils is 0.7 X 0.3 = 0.21.

1.1.2. Distribution

To get a good picture of the sample as a whole when the sample is fairly
large, it is desirable to construct a frequency diagram which will show
the number of observations that occur within a given interval.

In Table 1.1, 50 measurements of range of a particular type of rocket
are listed; in Table 1.2, the frequency distribution of these measurements

TABLE 1.1. MEASUREMENTS (IN YARDS) OF RANGE OF

A TYPE OF ROCKET

1,472 1,799 1,850 1,251 2,107
1,315 1,372 1,417 1,422 1,668
1,984 1,420 2,057 1,506 1,411
1,900 1,612 1,468 1,651 1,654
1,646 1,546 1,694 1,687 1,503

1,709 1,255 1,776 1,080 1,934
1,780 1,818 1,456 1,866 1,451
1,571 1,357 1,489 1,713 1,240
1,681 1,412 1,618 1,624 1,500
1,453 1,775 1,544 1,370 1,606
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TABLE 1.2. FREQUENcY DISTR'1UTION OF

DATA IN TABLE 1. 1

Frequency

Range, yd (No. of rounds)

999.5-1,099.5 1
1,099.5-1,199.5 0
1,199.5-1,299.5 3
1,299.5-1,399.3 4

1,399.5-1,499.5 11
1,499.5-1,599.5 6
1,599.5-1,699.5 11
1,699.5-1,799.5 6

1,799.5-1,899.5 3
1,899.5-1,999.5 3

1,999.5-2,099.5 1
2.099.5-2,199.5 1

Total 50

is given. Most of the information is preserved if the data are grouped into
intervals of 100 yards, and it is customary to begin the intervals at 999.5,
1,099.5, 1,199.5, etc., in order to chow clearly the group in which each
measurement belongs. Since the impo't of the data is more quickly grasped
if the frequency distribution is presened in graphical form, a diagram of
the data is made, as shown in Fig. 1.1. Such an arrangement can easily be
made with a typewriter.

It is often of more interest to know the relative frequency or per-
centage frequency (100" times the relative frequency) of observations
falling in a given interval than the actual number. In Fig. 1.2, which is a
histogram or bar diagram, the percentage frequencies i-_ .vell as the
actual frequencies are given. (If there were more sample members and
shorter intervals, the outline of the histogram would probably show a
smoother curve.)

In dealing with a population, rather than a sample, we use the
theoretical equivalent of the relative frequency; that is, the probability
of observations falling in a given interval or, more generally, the prob-
ability of any event out of a given set of events. Since the probability of
an event E, denoted by P(E), is essentially defined as the relative frequency
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FIG. 1.I. A Graphical Presentation of a Frequency Distribution. (Precise intervals
begin at 999.5, 1,099.5, etc.)

of occurrence of E in a long series of trials, any probability lies in the range
from 0 to 1. Probabilities can be operated on according to two basic laws.

For any two events, denoted by A and B:

(1) P(A and B) = P(A) X P(B if A has occurred)

= P(B) X P(A if B has occurred)
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(la) If A and B are independent events

P(A and B) = P(A) X P(B)

(Examples at end of Sec. 1.1.1 and 1.2.1.)

(2) P(A or B or both) = P(A) + P(B) - P(A and B)

(2a) If A and B are mutually exclusive events

P(A or B or both) = P(A or B) = P(A) + P(B)

These can be extended to any number of events (Ref. 1.2).

As an analog of the sample frequency distribution, we introduce the

population frequency distribution or probability distribution of a
variable x, often called merely the distribution of x. (In the example

given at the beginning of this section, x would be the range of the rocket.)
The distribution of x shows the relative frequencies with which all possible
values of x occur. A population distribution can be pictured in terms of a

curve f(x), which is well approximated by a relative-frequency histogram,
made with rectangles having unit width, for a large sample from the

population.

To see the precise meaning of the curve f(x), let AF be the probability

that an observation will fall in the interval of length Ax extending from

30 15

z X
:3J> 20 10

00 0>
W Z

LW. o=zIz

> 1o 5

U

10 II 12 13 14 i5 16 17 18 19 20 21 22

RANGE, IN HUNDREDS OF YARDS

FIG. 1.2. A Histogram.
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x to x + Ax. Then AF/Ax can by physical analogy be called the average
probability density in the interval. If we let Ax approach zero, the average
density can be considered as approaching a limiting value f(x), which we
call the probai.ility density at x. This is represented in symbols by the
equation

AF dF
lim -- =--=(x) '
W tee )Ax dx

We therefore call I(x) the probability density function of x. It is also
called the distribution function of x or, loosely, the distribution of x.
When f(x) is drawn as a graph (Fig. 1.3), the probability that a random
observation x will fall in any interval a to b is the area under the curve
f (x) from a to b. This area is expressed as an integral

P(a < x < b) = f(x)dx

P(a < X b)

a b

FIG. 1.3. A Probability Density Function.

The cumulative distribution function F(x) (Fig. 1.4) is a function
whose value at each point c is the probability that a random observation x
will be less than or equal to c. Thus, at each point c the height of F(c) is
equal to the area under /(x) from - oo through c. It is the cumulative dis-
tribution function that is usually tabulated, and enables us to get a probabil-
ity over any interval simply by subtracting one area from another:
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P(a < x < 1b) =ff(x)dx - f (x) dx =F(b) - F(a)

Since a random observation x is sure to have some value, the total area
under the curve f(x) is unity:

Jt0 (x) dx 1

Correspondingly, the cumulative distribution function approaches 1 as x
gets large: F(+ oo) = 1. Likewise F(- oo) = 0. Also, the probability density
function f(3), for example, is not itself the probability of obtaining a
random reading of 3, since the probability of obtaining a particular mathe-
matical number for a random observation is zero; that is, for any number a,
the area at a is

f (x)dx = 0

This discussion of probability distributions has considered just one of
two main types, in which the variable may take all values in an interval and

p (x)

- --------------------------------------------

P

FIG. 1.4. A Cumulative Distribution Function.

• • • u • • • •)
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is represented by a smooth curve. In the other main type, the variable takes
on only discrete values; e.g., the non-negative integers 0, 1, 2, • • . . The
two types of distributions are called continuous and discrete distributions,
respectively. An example of the discrete type is obtained by making repeated
tests of 10 fuzes in many different lots. In each test, x fuzes are found
defective, where x may take on any one of the 11 values 0, 1, 2, ' ' 10,
but no others (in particular, no fractional values). If a sample of 10 fuzes
is drawn from each of 50 lots and the 50 samples are tested, a histogram
may be constructed (Fig. 1.5) just as for the rocket ranges above, each J

rectangle being of unit width and centered at an integer. However, the
abutting rectangles are drawn merely for visual interest, and it should be
remembered that each frequency or relative frequency is concentrated at
a point.

If infinitely many lots could be tested, we would obtain the theoretical
model (the probability distribution), but this distribution would still be
represented graphically by rectangles rather than by a smooth curve. See
Sec. 1.2.2 on the binomial distribution for the most important example of a
discrete probability distribution; this distribution can be used as a model for
the fuze-testing problem above and many similar problems.

1.1.3. Measures of Central Location

As indicated above, the data can be reduced considerably by grouping,
and a good over-all picture of the values can be obtained by graphing. To
reduce the sample data further, we shall want to know where the values
are centered, We can use one or the measures in the following paragraphs
(Sec. 1.1.3a-1.1.3d) to summarize that information. Of the four measures,
the first is the most common.

a. Mean. The mean or average

'Ai

of the n sample readings is familiar as a description of the central location
of school grades, For the data of Table 1.1

3 =-5--(1,472 + 1,315 + + 1,606) 1,589.8yards

A mean 1i can be defined for the whole population also, though it must 4
be defined slightly differently if the population is infinite. Physically, the

A5
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PERCENTAGE
FREQUENCY

50%

40%

10%

0 I 4 X

FIG. 1.5. A Discrete Probability Distribution.

mean I is the x-coordinate of the center of gravity of the area under the
probability density curve for the population. ':he mean R of the sample
readings is generally the be..: ostimate of the mean i of the population from
which the readings were drawn.

b. Median. The median is the halfway point in the readings when
they have been arranged in order of size (the middle reading of an odd
number of readings, or the average of the middle two for an even number).
For the data of Table 1.1, the median is 1,588.5 yards, halfway between
1,571 and 1,606.

The population median is the fiftieth percentile of the population; that
is, the number R such that the area under the distribution curve to the left
of M is 0.5.

The population median and mean may not be equal. In the case of the
normal distribution (Sec. 1.2.1), where the two are equal, the sample
median may be used to estimate the population mean; however, the median
is not so good an estimate as is the sample mean, in the sense that it does
not draw the maximum amount of information from the sample. The
median is less affected by a few wild readings than is the mean.
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c. Mode. A mode is a peak value of the frequency distribution. A single
mode of high frequency gives a rough but quick measure of central location.
The idea of mode is not useful, however, if the distribution has more than
one high point, as in Fig. 1.2, or does not show a single, well-defined peak.
More than one high point may indicate the need for regrouping the data.

d. Midrange. The midrange is the average of the smallest and the
largest readings. This is a good measure of the central location for samples
of five or fewer, though it is not so good as the mean.

1.1.4. Measures of Dispersion

In reducing sample data, it is also necessary to know how the values are
distributed about their center. There are several common measures of

dispersion:

a. Standard Deviation. The standard deviation s of a sample of n
observations x,, x2, , x,, is

f= (x, -RIn- I )=

The variance j2 of the sample values is the square of s; that is, essentially
the average of the squares of distances from the mean-aside from a factor
n/(n- 1).

The population parameters corresponding to s and .' are called the
population standard deviation and variance, respectively, and are denoted
by a and a 2, following the convention of using Greek letters for population
parameters.

The reason for defining the sample variance s2 with n - 1 rather than n
in the denominator is that the sample variance is of most importance as an
estimate of the population variance U2 and, when defined as above, it is an
unbiased estimate of a2 . "Unbiased" indicates that the values of S2 from
all the hypothetically possible samples from the same population will
average to a 2. The sample variance s2 is the best estimate of a2 in the case
of a normal population. (As an estimate of a, s is slightly biased. See
Ref. 1.3, p. 72.)

The computing of s2 is simplified by using the algebraically equivalent
form

A
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S2 n(n~l - )n. ~~2

For the data of Table 1.1 

s2  50(1,4722 + 1,3152 + + 1,6062) - (79,490)2 4
(50)(4)) 48,683

s = 220.6

b. Range. The range wv is the difference between the smallest and the
largest readings in the sample. In the case of a normal distribution (Sec.
1.2.1), the range multiplied by the appropriate factor from Appendix
Table 12 gives a good measure of the population r for a small sample
(n < 10), though not so good as s (Ref. 1.3, p. 239). For the data of
Table 1.1, the range is 2,107 - 1,080 = 1,027. Using the factor 0.222
from Table 12, we get an estimate 0.222 X 1,027 C 228 for o.

c. Mean Deviation. The mean deviation is the average of the dis-
tances from the mean of the n sample members (all distances being taken
as positive). The mean deviation is also often defined as the average of
distances from the median rather than from the mean. For estimating a, in
a normal population, the mean deviation is not so efficient as s, but can be
multiplied by a factor (Ref. 1.3, p. 240) to give a fairly good estimate for
sample sizes n < 10.

d. Various Percentile Estimates. Estimates of the population 0' based
on percentiles of the sample can be made, but they are not so good as the
sample standard deviation. For instance, (P.3 - P07) (0.3388) can be used.
To find P93, arrange the values in order of size and count off 93% of them.
The value that appears nearest that point is used for P,,. Other percentile
estimates using more than two percentiles (and consequently deriving more
information from the sample) can be found in Ref. 1.3, p. 231. For the
data of Table 1.1, we find (P,, - P,,) (0.3388) = 230, as compared with

= 220.6.

e. Probable Error. The probable error (PE) is a deviation from the
population mean 14 such that 50% of the observations may be expected to
lie between /p - PE and p. + PE. For the normal distribution, Appendix
Table 2 shows that the probable error equals 0. 674o,. The probable error
can be converted to statidard deviation by multiplying by 1.4826. The more
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modern standard deviation is in wider use as a measure of dispersion than
is the probable error, because the standard deviation arises naturally in the
derivations that underlie the statistical tests in common use.

1.1.5. Coding

Computation of the measures defined in Sec. 1.1.3 and 1.1.4 can often
be simplified by coding the data; that is, by replacing the readings them-
selves by coded numbers (usually shorter) at the beginning of computation
and decoding at the end. The following methods may be used: (1) sub-
tracting a constant, (2) multiplying by a constant, or (3) subtracting a
constant and multiplying by a constant. For instance, in computing the
mean of the readings in Table 1.1, subtracting 1,000 from each reading can
simplify the procedure. Thus, instead of

- 1
= 50 (1,472 + 1,315 + 1,984 + + 1,606) = 1,589.8

the equation would read:

= 1,000 + - (472 + 315 + 984 + + 606) = 1,589.8

Another example of coding is given in Sec. 2.2.2.

1.1.6. Sampling Distribution

Suppose we consider a population of 300 individuals. Taking all possible
samples of 10 (there would be 300!/(10! X 290!), or more than 1018 of

them) and recording the sample 3 of each would give a population of i's,
one for each sample of 10. That population would have a frequency dis-
tribution, called the sampling distribution, of 3 for samples of size 10.
Similarly, we have sampling distributions for s2, or for any other sample
statistic. The sampling distribution of Y has a mean and a standard devia-
tion, which can be denoted by yj and aj. The standard deviation of a
sampling distribution is usually called the standard error of the statistic.
For sampling from any infinite population of x's, it can be shown, for
example, that the mean t of the distribution of , is equal to the mean t
of the population of x's and that a-,, the standard error of T, is equal to

0/V n, where a is the standard deviation of the population of x's and n if
the number of observations in each sample. Thus 3 will tend to approximate
tt more closely, the larger thL sample size.

'I
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1.1.7. Tes. of a Statistical Hypothesis

We often drav, and analyze a sample for the purpose of testing an initial
hypothesis, cal'ed the null hypothesis, about the population. For example,
we might state as a null hypothesis that the variance 02 equals 15. This
might represent a coded variance of 0.0015 in2 on a molded part. It can be
shown that the fraction (n - 1) s2/' 2 has a certain sampling distribution,
which can be found in taLlks. For example, if 0,2 is indeed 15 and the
population has a certain type of distribution (the normal), then the statistic
(n - 1 )s2/15 computed from samples of size 11 has the sampling distribu-
tion shown in Fig. 1.6. The tabled distribution so graphed shows that the
probability that the statistic 10s2/15 falls below 3.25 or above 20.5 (that is,
the area under those portions of the probability density curve) is only 5%
if C,2 is actually 15.

To perform the test, we compute 10s2/15 from the sample. If it falls
outside the interval 3.25 to 20.5, we reject the null hypothesis that a 2 is 15

0.10

o

0 Z/
0

z
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0
.
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3IG..6.2 F n15 D i o251)

FIG. 1.6. Frequency Distribution of (n - 1) s/os (for n = 11 and , = 15).
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on the ground that if a
2 were 15, such a large or small value of 10s2/15

would be quite improbable.

In this example we have rejected the hypothesis whether 10s2/15 was too
large or too small, by using what is called an equal-tails test, with 2.5%
at each end of the area under the distribution curve included in the rejection
region. If we were interested only in whether the variance o2 was not greater
than 15, we would use the one-sided test with 5% rejection region
10s2/15 > 18.3.

If we do not reject the null hypothesis, we do not then categorically
conclude that the hypothesis is true (see the last paragraph of Sec. 1.1.8).
We merely recognize that the sample is compatible with the kind of popula-
tion described in the null hypot!iesis; that is, that the statistic computed
cannot be considered extreme if the null hypothesis holds.

1.1.8. Level of Significance a and Types of Error

In the example given above, we reject the null hypothesis if the observed
10s2 /15 falls in a region of extreme values to which the null hypothesis
assigns probability only 0.05. Here, 5% is called the level of significance
of the test and is, in general, denoted by a. There is a 5% risk of error, for
even if the null hypothesis does hold, there is a 5% probability that we will
reject it. This type of error, the rejection of the null hypothesis when it is
true, is called a Type I error. The risk of Type I error is a, the level of
significance. This level is arbitrary, but should be chosen when the experi-
ment is designed.

Sometimes when it is important to guard against Type I errors, as in
testing an expensive product, a level a of 1% or 0.1% is used. The level
of 5% is used throughout this Manual. (In some texts, results that are
significant at the 5 % level are marked with a star.)

The failure to reject a false hypothesis is called a Type II error. The risk
of a Type II error is denoted by fl. In the example above, suppose that
the variance is not equal to 15, but has some alternative value, say 25. It is
possible that the statistic 10s2/15 will fall between 3.25 and 20.5, leading
us to accept (fail to reject) the hypothesis that a.2 is 15, though it is
actually 25. The probability of making a Type II error depends on the
alternative value; for example, we would be less likely to accept the null
hypothesis when a2 equals 25 than when a2 equals 16.
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1.1.9. Operating-Characteristic Curve

An operating-characteristic (OC) curve shows the probability of a Type
II error for different alternatives. Examples appear in Appendix Charts
V-VIII. These curves are useful in determining the sample size for an
experiment. First, we choose the level of significance a at which a test is to
be conducted (i.e., the risk that we can take of rejecting the null hypothesis
if it is true). Then we decide on an alternative that we wish to detect or
guard against and the risk P3 that we are willing to take of making a Type II
error. (It is at this step that we key statistical significance to practical sig-
nificance in the problem at hand.) The OC curves will show what sample
size will satisfy the two conditions. The confidence interval, explained
below, is also useful in determining sample size. Details of these two
methods of determining sample size are given, with particular problems, in
following chapters of this Manual.

Most of us have some intuition about permissible risks in ordinary
problems, but some experimenters may object that it is about as difficult to
specify the risks a and P3 as to specify a sample size, or more difficult if a
budget has already been fixed. Even if the sample size has already been
specified, it is wise to determine the consequent risks from the appropriate
OC curve.

An alternative, but more difficult, method of determining sample size is
to choose it so that the total cost is at a minimum. If we denote the null
hypothesis under test by Ho and the alternative we wish to detect by H1, and
we make final acceptance of one or the other on the basis of the experiment,
then the total cost is given by the equation

Total cost = (risk of accepting H, if H1 is true)

5X (cost of accepting Ho if H1 is true)
+ (risk of accepting H1 if Ho is true)

X< (cost of accepting H1 if H0 is true)

4- (cost of experiment)

As the sample size increases, the first two terms decrease (because the risks
decrease), and the last term increases. Thus, the curve of total cost against
sample size may be expected to decrease at first but to increase ultimately.
The sample size giving the minimum point is the appropriate choice. The
risks can be evaluated by the theory of probability, but the costs must be
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specified by the user of the experimental results. This specification may
be difficult; consider, for example, the danger of accepting the poorer of
two weapons for general use for an unknown number of years to come.
However, the approach may be of value in many problems.

1.1.10. Confidence Intervals

In estimating a population measure, say A, by a sample measure, say F,
we need not be content with recording that t has a value somewhere
near T. Actually, we can make use of the sampling distribution of 9 to
construct an interval about Y and, with a specified confidence, state that L
lies in the interval. For a 95% confidence interval, the statement will be
correct 95% of the time, in the sense that if we drew many samples and
computed R and the corresponding confidence interval for each of them, in
about 95 cases out of 100 the confidence intervals would contain P.

The end points of a confidence interval are called confidence limits,
and the relative frequency with which the interval will contain jk (in the
sense cited above) is called the confidence coefficient. (The confidence
coefficient is frequently chosen as 0.95 or 0.99.) By specifying the length
of the confidence interval, we can often determine sample size.

If the standard error of a statistic is known or can be estimated, an
approximate 95% confidence interval can be constructed easily by using as
confidence limits the statistic plus or minus twice its standard error. For
example, such confidence limits for the mean are F ± 2a = R ± 2alV/-n,
where o is the standard deviation of an individual observation. If a is
known, we can use the length of the confidence interval, 4a1/rn, to deter-
mine the sample size n. Thus, if a, is 10 and we want to hold A to an
interval of length 5, we have 4(10)/A-n = 5, or n = 64.

1.1.11. Tolerance Intervals

Confidence limits enclose some population parameter (/A, for instance)
with a given confidence. Tolerance intervals are constructed from experi-
mental data so as to enclose P% or more of the population with the given
confidence 1 - a. That is, if tolerance intervals are constructed for many
samples according to the specified rules, then in 100(1 - a) % of the cases
they will enclose at least P% of the population. (See Sec. 4.9.) The percent-
age P may be called the population coverage.

I
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The tolerance intervals discussed here are computed from the sample to
show where most of the population can be expected to lie. They are, then,
different from the tolerances given in specifications which show where all
acceptable items must lie.

1.1.12. Degrees of Freedom

In the language of physics, a point that can move freely in three-
dimensional space has three degrees of freedom. Three variable coordinates,
x, y, and z, can take on different values independently. If we constrain the
point to move in a plane, it has just two degrees of freedom, this fact being
shown by a dependency relation among x, y, and z: ax + by + cz = d.

A similar concept is used in statistical language. The sum of n squares
of deviations from the sample mean

X , - 3)2 = (XI - FC2+ + • X. --C
1=1

where

x-.2 Xi

n ,=1

is said to have just n - 1 degrees of freedom, for if T is fixed, only n - 1
of the x's can be chosen independently and the nth is then determined.
The sampling distributions of some statistics depend on the number of
degrees of freedom. The most common examples of such statistics are t,
or Student's t (Chapter 2), X2 (Chapters 3 and 4), and F (Chapters
3 and 5). Their distributions are tabulated in the Appendix.

1.2. Particular D1- ributions

1.2.1. Normal Distribution

The normal distribution, which has the probability density function

f(x) -e-(X- 
) 2 oU

with mean /A and standard deviation o-. is of particular interest in both
applied and theoretical statistics. It occurs frequently in practical problems
and is easy to use because its properties have been thoroughly investigated.
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The normal distribution is illustrated in Fig. 1.7 in terms of the standard-
ized variable z = (x - u)/r. The transformation or change of variable

z = (x - 0)/o is in common use, for it permits us to use one table for all

normal distributions, irrespective of their different means and variances.

The distribution of z is normal with zero mean and unit standard deviation.

The normal curve is symmetric, with its one mode (or peak) and its median

at the mean /-.

If each of several independent variables x, has a normal distribution with

mean t, and variance uf, then the sum y = cjxj, where the c, are constants,
has a normal distribution with mean :ci/ij and variance Ica.

The cumulative distribution function of the normal distribution is

F (x) v fe(XL)12a2dX

A typical curve of this type is given in Fig. 1.8. Note that the height of the

curve F(x) at a point c equals the area under the curve (x) to the left of c.

9(z)

04
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0.1

- -2 -I I 2 3
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FIG. 1.7. Probability Density Function of the Normal Distribution.



§1.2. PARTICULAR DISTRIBUTIONS 21
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FIG. 1.8. Cumulative Distribution Function of the Normal Distribution.

Values of the cumulative distribution function corresponding to values
of z arm given in Appendix Table 1 along with a sketch showing the area
under the normal curve as it appears in a particular case. Values of z
corresponding to an area F are given in Appendix Table 2. The following
examples ilustrate the use of these tables.

Example. If x has a normal distribution, mean 10, and standard
deviation 20, what is the probability of a random observation falling
between 15 and 30? Between -5 and 20?

For the first question, we find

X1 P 15 - 10
z, 20.. 0.25- o, 20

X2 - 30 - 10 1.
a2 20
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From Appendix Table 1, the probability of a z less than z, is 0.5987,
and the probability of a z less than z2 is 0.8413. Then the probability of

a z between z, and z2 is 0.8413 - 0.5987 = 0.2426. (See Fig. 1.9.)

For the second question, we have

X1 -//A -5 - 10 -.zl = -- 0.75
or 20

2- 20 -10

Z2 2 =2 1 0.50
or 20

0.8413

ix

0.5987

-!o 0 1o 0 30 x

FIG. 1.9.

From symmetry, the probability of a z less than 0.75 is the same as the
probability of a z greater than -0.75. From Appendix Table 1, the prob-

ability of a z less than 0.75 is 0.7734; hence the probability of a
z less than -0.75 is 1 - 0.7734 = 0.2266. The probability of a z less
than z2 is 0.6915. The probability of a z between z, and z2 is then

0.6915 - 0.2266 = 0.4649. (See Fig. 1.10.)
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Example. What is the probability that a random normal number will
lie within 0.7o units of the mean?

We compute
Z =  - = 0.7

a" or

From Appendix, Table 1, the probability of a z less than 0.7 is 0.7580.
The probabilit; a z less than zero is 0.5000. Subtracting, the probability

0.7734 0.2266

0.6915

0.2266

-10 0 10 20 30 x

FIG. 1.10.

of a z between zero and 0.7 is 0.7580 - 0.5000 = 0.2580. From sym-
metry, the probability of a reading within 0.7 to the left of the mean is
also 0.2580. The total probability, then, is 2(0.2580) = 0.5160. (See
Fig. 1.11.)

Example. If x has a normal distribution with standard deviation 10,
find a balanced interval around the mean so that the probability is 0.95
that a random reading will fall in the interval.
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0.7580

I-

-0.7 0 0.7 Z

FIG. 1.11.

Since an area of (1 - 0.95)/2 = 0.025 must lie to the left of the
interval, we read from Appendix Table 2 that z = -1.960. From

X--

we have

x = / + z = u + (- 1.96 0) (10) = ,t - 19. 6 0

The desired interval is from t - 19.60 to t + 19.60. (See Fig. 1.12.)

From Appendix Table 2, we see that 50% of a normal population
falls within 0.674a of the mean. From Appendix Table 1, 68.3% falls
within 1 of the mean; 95.4% within 2o,; and 99.7% within 3o.
Some of the uses of the normal distribution function are listed below. it

can be used: I

1. As a curve to "fit" a set of data which appear to be approximately
normally distributed when the sample is fairly lage (> 50). (See
Chapter 4 for tests of normality.) The cumulative ncrmal distribution
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is "fitted" by substituting the sample mean and standard deviation for
the corresponding population values in the equation for F(x).

2. As an approximating distribution for certain sample statistics, such 0s
the mean, when the sample size is fairly large (> 30 for the mean).

3. As an approximation to other distributions such as the binomial (to
be discussed subsequently) when the samples are fairly large and
certain other criteria are satisfied. (See Ref. 1.11, pp. 152-59.)

4. As the basic distribution in most practical applications, for tests of
significance, quality-control work, design of experiments, and variables
sampling; that is, the variable x under consideration is assumed to be
normally distributed. (See Chapter 4 for tests of normality.)

One of the applications of considerable interest on this Station is deter-
mining the probability of a hit on a target when the shots have a normal
distribution. The technique to be applied depends on the shape and position
of the target. The following examples are typical.

Example (One Dimension). A plane flies low above a highway and
drops bombs. Call the perpendicular distance from the highway center
to each bomb-impact point its x-distance (positive to one side of the
road, negative to the other), and assume that the variable x has a normal

0.95.

FIG. 1. 12.
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distribution with mean zero and standard deviation 20 yards. What
proportion of the bombs dropped can be expected to fall within 6 yards
of the center of the highway? (See Fig. 1.13.)

We have z, = (-6 - 0)/20 = -0.3, and z2 = (6 - 0)/20 = 0.3.
From Appendix Table 1, F(0.3) 0.6179. Then the expected pro-
portion of successful shots (within 6 yards of the highway center) is
2(0.6179 - 0.5) = 0.2358.

Example (Two Dimensions, Rectangular Target). Suppose shots
aimed at a rectangular target are subject to random influences such that

6

0 •

F 1

FIG. 1.13.
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the horizontal deviations x and the vertical deviations y of the shots are "

independent and normally distributed. (See Fig. 1.14.) What propor-

tion of shots can be expected to hit the target?

Since the horizontal coordinate and the vertical coordinate are inde-
pendent, the probability that a particular shot will fall in the target area
is the probability that its horizontal coordinate will fall in the interval
(a, b) cut off by the target, denoted by P(a < x < b), multiplied by the
probability that its vertical coordinate will fall in the interval (c, d) cut
off by the target, denoted by P(c < y < d). Thus the expected propor-
tion is P(a < x < b) .P(c < y <d). Each of these probabilities can be
found by use of Appendix Table 1. For instance, if the mean values of

x and y are both zero and a = - 0.6745a, b = 0.6745a., c = -0.6745r v,

and d = 0. 674 5yrv, then P(a < x < b) = 0.5000 and P(c < y < d)"
0.500. Hence, the probability of a shot lying in the corresponding
rectangle is 0.2500.

Example (Two Dimensions, Circular Target). Suppose shots aimed
at a circular target are subject to random influences such that the hori-

y

* 000*

FIG. I1.*
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FIG. 1.15.

zontal positions and the vertical positions are independent and normally
distributed, with mean at the target center and common standard devi-
ation a,. What proportion of shots can be expected to fail within r units
of the target center? (See Fig. 1.15.)

By calculus (integration in polar coordinates) the probability can be
determined as

1- e - r 2/20 2

where e is the base -,f natural logarithms. Thus, if r is twice the standard
deviation, ,.- have
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1 - (2
a
'/2

a
2 = 1 - e-2 = 1 - 0.135 = 0.865

as the proportion expected to hit the target in this case. The radius of
the circle centered at the mean which contains 50% of the shots (called

the circular probable error) is o' 2 log, 2 = 1.1774a. The root-mean-
square radial error-that is, the square root of the average of the squared
radial distances from the mean point-is aV 2 = 1.4142o,.

Example (Two Dimensions, Any Target). For other target shapes
and positions a chart technique is available. Again we assume that the
horizontal and vertical deviations have independent normal distributions.
The target is drawn to scale on tracing paper and held over Appendix

Chart I.1 (In practice, it is preferable to use a suitable copy of Appendix
Chart I mounted on cardboard.) A count of the number of rectangles
covered by the target gives the probability of a hit, each rectangle repre-
senting a probability of 0.001. The scales for drawing the tafget, possibly
different for each of the two perpendicular directions, are fixed by the
condition that the standard deviation of the shots in each direction must
correspond to the length marked on the chart. Since the chart shows only
one quadrant, it must be rotated through four settings to give a complete
count.

Suppose that points of impact of a type of rocket have a two-
dimensional normal distribution about the target point with standard
deviation of 200 yards in range and 60 yards in lateral deflection. What
is the probability that a rocket will land within a circle of 100-yard
radius about the target point?

In order to use Appendix Chart I to obtain the probability, we must
first draw the target to scale, so that the lengths marked "1 standard
deviation" on the chart will correspond in the range direction to 200 yards
and in the lateral direction to 60 yards. The circle becomes an ellipse,
one quadrant of which (superimposed on Chart I) is shown ir, Fig. 1.16.
A count of the chart rectangles in this quadrant covered by the ellipse
gives 73.3. Multiplying by 4 to allow for the other (symmetric) quad-
rants, we have 293.2. Since each rectangle corresponds to a probability
of 0.001, the probability of a hit within 100 yards of the target is
about 0.293.

'The rectangular chart was introduced in the Bureau of Ordnance during World
War II by R. S. Burington, E. L. Crow, and A. D. Sprague.
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FIG. 1. 16.

1.2.2. Binomial Distribution

Suppose each sample member is to be judged on some yes-or-no basis,
such as a hit or a miss, a good item or a defective item, a head or a tail.
Suppose, further, that a random item has probability p of being a hit and
probability q of being a miss. Since it must be one or the other, we have
p + q = 1. The binomial distribution is defined by

p- (x) = C-np xq)&-x (x= 0,1,2,' n)

where

P,, (x) = probability of getting exactly x hits in n trials
Cn = number of combinations of n things taken x at a time, also

denoted by C(n,x), ,,C,, and()

n! n(n - 1) (n -2) •••(n -x + 1)

Cn=

C =x!.-x)'  (1)()(3) (x)
with ! defined as 1.16
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The probability of getting at least r hits in n trials is

XP.(x)

The mean and variance of x, the Dumber of successes in n trials, are given
by /A = np and a2 = npq.

Some of the uses of the binomial distribution function follow. It can
be used:

1. As a discrete distribution to fit a set of data which are classified in
two groups. (When just one sample of size n is available, the
binomial distribution indicates how well the unknown parameter p
is estimated by the sample proportion x/n. See Sec. 2.3.)

2. As the basic distribution in attributes sampling. (See Chapter 8.)

Tables of the binomial distribution are available (Ref. 1.9 and 2.1).

Example. Suppose that all the shots of a certain series are sure to hit
a circular target (Fig. 1.17), and that the probabilicy of a single shot
landing in any particular area of the target is proportional to the area.
Note that this differs from the normality assumption of Sec. 1.2.1. Then
the single.shot probability p of landing in the shaded bull's-eye is the
ratio of this area to the total, that is 7r(1.5)2/r(3)2 = . The single shot

TABLE 1.3. BINOMIAL PROBABILITIES FOR

n = 10 AND P =
Binomial BinomialNo. of probability cumulativebull's-eyes, x ~ ) ~ fnto

CO( 0/ )Y( /)o- function

0 0.0563 0.0563
1 0.1877 0.2440
2 0.2816 0.5256
3 0.2503 0.7759

4 0.1460 0.9219
5 0.0584 0.9803
6 0.0162 0.9965
7 0.0031 0.9996

8 0.0004 1.0000

9 0.0000 1.0000
10 0.0000 1.0000
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FIG. 1.17.

probability q of missing the bull's-eye is 3/4. In Table 1.3, the number n of
shots is taken as 10. For each entry in the first column, the second
column gives the binomial probability of getting exactly that number
of bull's-eyes out of the 10 shots. The last column gives the cumulative
binomial probability of getting that number of bull's-eyes or fewer. The
results are graphed in Fig. 1.18.

1.2.3. Poisson Distribution

As an approximation to the binomial distribution when n is large and p
is small, there is the Poisson distribution
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mfle"m

P(x) (x0, 1,2,

where m = np of the approximated binomial distribution and e = 2.71828,

the base of natural logarithms. Note that 0! - 1 and m ° = 1.

0.30

0.25

0.20

0.15

0.10

0.05

0
0 1 2 3 4 5 6 7 8 9 10

FIG. 1.18. Binomial Distribution for n - 10 and p - .
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The mean and variance of the Poisson distribution are equal: I = rn,
and V2 = m. Tables of the Poisson distribution are available (Ref. 1.8).

The Poisson distribution is applicable in some cases in its own right,
as well as serving as an approximation to the binomial distribution. For
example, suppose that in a manufacturing process at a pilot plant each
defective item occurs at a random time, not influenced by the time any
other defective is produced. Suppose, further, that the probability that d
defectives will be produced in a given interval of time is not affected by
the number of defectives in any other interval of time. Then, if the average
number of defectives per day is m, the Poisson distribution function

Mxlze-11

P(x) (x=0, 1,2, •

gives the probability of getting x defectives in one day. If production
figures are not in agreement with the predicted frequencies, we must decide
that defects are not occurring randomly and may be affected by some fault
in production. (For "goodness of fit," see Chapter 4.) In Table 1.4 (taken
from Ref. 1.1), the agreement is close, giving no reason to suspect a fault
in production. (See Sec. 4.2 for an exact test.) The method used can be
applied to any problem satisfying similar conditions. In any investi-
gation of defects, such as the distribution of fragments per square yard

TABLE 1.4. FITTING A POISSON DISTRIBUTION

No. of defects No. of occurrences Relative freq. of Freq. of occurrences
produced in of x defects occurrences of x predicted by

1 day, x in 1 day defects in 1 day Poisson distr.

0 102 0.5075 0.4741
1 59 0.2935 0.3538
2 31 0.1542 0.1320
3 8 0.0398 0.0328

4 0 0.0000 0.0061
5 1 0.0050 0.0009
6 0 0.0000 0.0001
7 or more 0 0.0000 0.0000

Total 201 1.0000 0.9998

NoTE: Total number of defects 150; total number of days on which observations
were made = 201; estimated mean number of defects = in = 150/201 = 0.74627.
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on a bombarded target, the distribution of flaws per yard of woven sleeving,
or the distribution of number of defective igniter squibs per lot, we are
interested in whether the occurrence of a flaw is a random result of satis-
factory production, or whether it can be ascribed to faulty production.
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Chapter 2

TESTS AND CONFIDENCE INTERVALS FOR MEANS

2.0. Introduction

This chapter gives tests and confidence intervals for population means
based on random samples from those populations. As used here, "test"
means a test of a hypothesis, set up prior to the experiment, that the
population mean has a specific numerical value. The test yields simply
the conclusion that the data are or are not consistent with the hypothesis.
The method of testing depends on whether the population standard devi-
ation is known or unknown. In experimentation, the case of unknown
standard deviation is the more important and usual; in repetitive work, such
as production quality control and standard tests, the standard deviation
may sometimes be calculated closely from the large amount of earlier data.

All statistical tests and confidence intervals are based on the assumption
that the samples are random, and most of them are based on the assumption
that the populations have normal distributions. We are rarely certain that
these assumptions are perfectly satisfied. Many large sets of physical and
chemical observations have shown at least approximately normal distribu-
tions, and experimenters may reasonabiy feel confident that their variables
essentially satisfy the normality assumption on the basis of previously
accumulated data of the same type. The results of s aoistical analysis are
in error an unknown amount, depending on the depat -ure of the actual
situation from the assumptions. The assumptions of randomness and nor-
mality can themselves be objectively tested by methods given in Chapter 4.

What is the importance of the population mean? Suppose we are
interested in the weight of a particular type of rocket. If we weigh several
of them, we will probably obtain several slightly different weights. Thus,
instead of a single weight, we will have a whole population of weights-
the weights of all rockets of the particular type considered. In fact, if we
make 10 weighings of the same rocket, we will probably note some variation
due to errors of measurement. Thus, even for one rocket the exact weight

37
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represents only an ideal measurement; actually, there may be a whole
population of weights for each rocket-the weights that would be recorded
in all possible weighings.

A natural answer to the question, "How much does this rocket weigh ?"
is the mean of the population of weights that would be recorded in all
possible weighings of that particular rocket. A natural answer to the ques-
tion, "How much do rockets of this type weigh?" is the mean of the
population of weights of ill such rockets.

Thus, the mean enters into any question of measurement, both because
of measurement errors and because of actual variation of the quantity
measured. It is, then, highly desirable to have objective methods for testing
whether an experimental mean value is consistent with some theoretical
value and for stating a confidence interval for the population mean ("true"
mean) on the basis of a sample.

If it is practical to take observations successively without specifying
beforehand the total sample size, the most economical method for testing a
mean is provided by "sequential analysis." (See Sec. 8.4 and its references.)

To find the mean for a quantity that cannot be measured directly, for
instance the minimum rocket velocity that will permit penetration of a
target, a "staircase" test is often desirable. (See Sec. 4.5 and 4.5.1.)

The 71 test in Sec. 2.2.1, the rd test in Sec. 2.5.3a, and the sign test in
Sec. 2.5.2a are useful for rapid computation, checking, or preliminary
tests of means.

2.1. Test for Mean / When Standard Deviation o Is Known

2.1.1. Assumptionsh

(1) The sample is a random sample.

(2) The population is normally distributed with known standard devi-
ation o--or else the sample size is large (> 30), in which case s may be
substituted for a (see Sec. 3.1).

2.1.2. Normal Test

Given a sample of size n, to test at a given significance level a whether
the population mean / has the hypothetical value a, compute the statistic
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,r Y - a
Z = o/

The distribution of z is normal with unit standard deviation, for o/lFn
is the standard deviation of means T.

For an equal-tails test of the null hypothesis that / = a, reject the
hypothesis if z falls in the rejection region IzI > Za/ 2, where Iz is the
absolute or numerical value of z. The value Z1i 2 is that exceeded with
probability a/2 by the normal variable z if the null hypothesis holds.

For a one-sided test of the null hypo, esis that t = a, against the

alternative that t > a, reject the hypothesis if z > z0.

For a one-sided test of the null hypothesis that g = a, against the
alternative that / < a, reject the hypothesis if z < -z.

From Appendix Table 2, for a 5% level of significance these rejection
regions are

IzI > 1.960 for an equal-tails test of p = a
z > 1.645 for a one-sided test of / = a against the alternative p > a
z < - 1.645 for a one-sided test of t = a against the alternative /A < a

If z falls in the rejection region for the test being made, reject the null
hypothesis that the population mean 1A equals a on the grounds that such a
large or small value of z would occur with probability only 5% if the null
hypothesis held.

If the population is finite of size N, rather than infinite, replace the
above statistic z by

z_--
Z r N-n

and proceed as before.

Notice thac besides the null hypothesis, there are several background
assumptions in force: that a is known, that the statistic z has a normal
distribution, and that the sampling was random. Rejection of the null
hypothesis ma, not nican that the hypothesis itself was false; it may mean,
instead, that some of the assumptions underlying the construction of the
mathematical working model were not satisfied.
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On the other hand, failure to reject the null hypothesis is not always
strong evidence that it holds. If the sample size is small, only a large
departure from the null hypothesis is likely to be adjudged significant.
Hence, it is important to plan experiments of sufficient size to hold risks
of error to acceptably low levels. Section 2.1.2a describes how to determine
suitable sample sizes for testing means when a is known. Section 1.1.7
may be consulted for a general discussion of statistical tests.

Example. The mean range of a type of rocket is 2,000 yards, and the
range standard deviation is 120 yards. Forty rounds fired after a year's
storage give a mean range of 1,863 yards. Test at the 5% significance
level whether storage changes the mean range.

We compute

o--az -/V-n

1,863 - 2,000=-- = -7.22
120/V 40

For a 5 % significance level, the equal-tails rejection region is Izi > 1.960.
Since -7.22 is less than - 1.960, it falls in the rejection region, and
we reject the null hypothesis that the mean / equals 2,000 yards. We
conclude that a year's storage does change the mean range of this type
of rocket.

An equal-tails rejection region was used under the assumption that
before the experiment was performed we were interested in a change in
range of this rocket in either direction. If we had been interested only in
whether the range decreased, we would have used the one-sided rejection

regiun z < -1.645.

a. Determination of Sample Size. When an experiment is to be per-
formed and the results are to be analyzed by the method of this section,
a decision must be made about the size of the sample to be used. Suppose
we wish to guard against the possibility of not rejecting the null hypothesis

= a if tt actually has a particular alternative value b. Let there be a
specified risk P3 of making such an error (called a Type II error; see
Sec. 1.1.8). We adopt the level of signif-cance a (the risk of rejecting
the null hypothesis when the mean actually is a; that is, the probability
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Example. Suppose that in the example given above in this section
there is a specified risk 0.2 of failing to detect a change of ±60 yards
in the 2,000-yard range. How large a sample size should be used in a
test at the 5% level of significance?

For P = 0.2 and an equal-tails test, curve A of Fig. 2.1 gives the
alternative mean a - 2.8a/ V n. Setting this equal to the alternative
b = 2,000 -4- 60, we have

2,000 ± 60 2,000 + 2.8(120) or n = 31.4V-
A sample of 32 rockets is required, showing that the sample of 40
actually used had a lower A risk than 0.2 for the alternatives 1,940
and 2,060 yards.

If, in the same example, we decide before the experiment that we
need be concerned only if the range is decreased by storage, we will adopt
the one-sided critical region z < - 1.645. Suppose there is a specified
risk 0.2 of failing to detect a decrease of 60 yards in the 2,000-yard
range. To determine the necessary sample size for a test at the 5% level
of significance, refer to curve C of Fig. 2.1. For P = 0.2, the curve gives
the alternative . = a - 2.5o'/\. Setting this equal to the alternative
1,940, we have

1,940 2,000 2.5(120) or n = 25

For this test only 25 rockets need be used.

Appendix Chart V serves the same purpose as the equal-tails curve of
Fig. 2.1, but is easier to use. Cc npute

Ib - al
0-

and enter the chort with X and ft. Use the sample size indicated on the
next lower cuive, or interpolate between curves.

Example. Tn the example given above

Lt,940 - 2,0001= 0.5 and /3 = 0.2
120
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r" of a Type I error). In the examples given here, the level a is taken to

be 0.05 and the charts included are applicable for that commonly used
level only.

From curve A, B, or C of Fig. 2.1, depending upon the type of rejection
region used, read off the value of the alternative mean /A = a + k/ac/n
for the given risk 3. Since the alternative specified to have risk ,P was
tk = b, we have

a + =b or n =

Using this sample size assures us that the experiment will enable us to
accept the null hypothesis t = a or the alternative hypothesis - = b with
satisfactorily small risks of being wrong in either case.

1.0

0.8 Y/

'0.6 ,\

a- 0.4

0.2/ "

-3r1' aO- 2crl~r " 0-1 cln" 0 o 41 a,14" 0+ 2rlvr 9+ 3 a, rr"

ALTERNATIVE MEAN, A O +ko-rl

FIG. 2.1. OC Curves for the Normal Test at the 5% Level of Significance. (A) Equal-
tails test, (B) one-sided test for an alternative b > a, and (C) one-sided test for an
alternative b < a.
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In Ap[ ndix Chart V, the next lower curve gives 40, but 30 is nearly
large enough. Interpolating, we take a sample size of 32 for an equal-tails
test.

2.1.3. Confidence Intervals

Sets of 100(1 - a)% confidence limits for the population mean /i are
47

Xt Za/ 2 - for an infinite population'V n

t Zor -N- n for a finite population of size N

where a is the known population standard deviation and za,/2 is the value
in the standard normal distribution such that the probability of a random
deviation numerically greater than Za/2 is a. (See Sec. 1.1.10 for a general
discussion of confidence intervals.)

Example. In an assessment process several measurements are made
on each photographic plate to determine the distance between two points.
For one plate the average of four measu~ements is 1.215 inches. Assume
that the population of measurements has a normal distribution with
standard deviation 0.01 inch. What is a 95% confidence interval for
the distance between the points?

From Appendix Table 2, we find z.025 = 1.960. Using the first
formula of this section, we obtain

1.215 -t 1. 960(0.01)

This gives the 95% confidence interval of 1.205 to 1.225 inches.

a. Determination of Sample Size. We can determine the necessary
sample size so that the confidence interval will be of length 2h (giving
confidence limits , - h). From

2za/2 ¢.= 2h

'r
we have

=, • 2 _
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Example. If in the example above we specify the length of a 95%

confidence interval to be 0.015 inch, how many measurements should

be made on each plate?

We compute

n 1.96o 0.-01)2 = 6.8
L 0.0075

A sample size of seven is required.

2.2. Test for When a Is Unknown

Two useful tests are given below for this case-the r1 test and the I test.

The first is quickly and easily applied, but is restricted to small samples

(2 < n < 10) and should not be used if the population is known, or

suspected, to be non-normal. It is often used for making a preliminary

check on a portion of a larger sample. The t test involves considerably

more computation, but it is the most powerful test available for this case.

It is valid for any sample size, and it is a good approximation, especially

for large samples, even though the population is non-normal to a noticeable

degree.

2.2.1. The rl Test

To apply a one-sided r, test of the null hypothesis /A = a, against the
alternative /t > a, on the basis of a random sample from a normal popula-

tion, compute

T1

where w is the range of the sample. Compare r, with the value in Appendix

Table 13(a) for the given sample size and the desired level of significance.

Reject the null hypothesis that / = a if T, exceeds the tabled value (Ref.

2.2). The equal-tails test is identical except that the sign of r is ignored

and the critical value used is that for a/2.
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2.2.2. The t Test

For a t test of the null hypothesis L = a on the basis of a random
sample, compute

R -a

where

S -2  = - (Xi - )2 n(, - - ( X x )2

as in the definition of Sec. 1.1.4a. For an equal-tails test, compare the
calculated value with the value ta/2,,-1 under P(t) = a/2 in Appendix
Table 3. The subscript n - 1 represents the number of degrees of free-
dom f. If Itl > ta/2,,n-1, reject the null hypothesis that tt = a.

For a one-sided test of the null hypothesis t = a, against the alternative
t. > a, use the rejection region t> ta,,- 

Example. The following readings represent the measurements of

outside diameter xi (in inches) for nine grains of the same type.

2.021 2.002 2.001
2.005 1.990 1.990

2.009 1.983 1.987

Assuming a normal distribution, we wish to test at the 5% significance
level whether the average diameter of this type of grain is 2.000 inches.

To simplify computation we code the data, replacing each xi by
y, = 1,000 (xi - 2.000). Then the computations are performed on the
yi's and

+ 2,000 s_
x= 1,000 ' x=1,000

We now have the following yj's:

21 2 1

5 -10 -10
9 -17 -13
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r" We compute

Ey+= -12

y - 1.333

= 2 + (-0.001333)

y =1,210

S2 1 [(9) (1,210)- (- 12)2] = 149.25

S - 12.22

s= 0.01222

2 + (-0.001333) - 2
I = 01223 = -0.3270.01222/3

From Appendix Table 3 we find t.o25,8 = 2.306. Since this is greater

than the absolute value f our computed t, we cannot reject the null

hypothesis that the average diameter of this type of grain is 2.000 inches.

The statistic t can also be computed directly from the coded values:

t= - 0 _ -1.333 _ 0.327

s./l f- 12.22/3

In this example, since 2 < n < 10, the less powerful 7, test could

have been used as an alternative procedure.

a. Determination of Sample Size. An experiment is to be performed

and the results are to be analyzed by the equal-tails t test described above.

As in Sec. 2.1.2a, we can determine the necessary spmple size for a t test

to be conducted at the significance level a if there is specified a risk P of

accepting the null hypothesis / = a when actually /t has the alternative
value b. It is necessary to have an estimate of the standard deviation

(obtained from past experience with similar data).

For a significance level a = 0.05, Appendix Chart VI can be used to

obtain the sample size. Compute

b- al
4"
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using for a an estimate of the standard deviation. Opposite X\ and P in
Appendix Chart VI, select the sample size n indicated on the next lower
curve, or interpolate between curves.

The absolute (numerical) value of b b- al is used since Appendix
Chart VI is for an equal-tails test.

Example. In the case cited above, find the sample size necessary to
test the hypothesis M = 2.000 inches at the 5% level of significance.
Assume that o, is thought from past experience to have a value between
0.005 and 0.010 inch, and that a P8 risk of 0.2 is specified for the error
of accepting the null hypothesis ju = 2.000 when actually tt has an
alternative value of 2.000 - 0.010.

Using the two extreme values for ,r, we obtain

-2.000 - 2.010i

0.005

12.000 - 2.0101
-2 -=1

0.010

For k. = 2 and 3 = 0.2, Appendix Chart VI gives n = 5. For X = 1
and /P = 0.2, the chart gives n = 10. Thus, to be sure of keeping the
probability of a Type II error as small as specified, a sample size of 10
should be used.

Notice t. .t no matter how small a sample we have (provided that n > 1,
so that s can be calculated), we can test the hypothesis / = a at any sig-
nificance level, say a = 0.001 or even less. Thus we make sure of avoiding
the error of rejecting the hypothesis tL = a when it is true; but we are likely
to miss recognizing an alternative situation p. = b when it is true. The only
way to make the risks of both errors sufficiently small is ro choose a sample
size that is sufficiently large.

2.2.3. Confidence Intervals

Confidence limits for the mean i with coefficient 100(1 - a)% are

' : ta/2,n-1

• • ww • •n
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where t a/2,n-I iN again the t deviate for = n - 1 degrees of freedom, the
probability of exceeding which is P(t) = a/2.

Example. A recently developed fuze is tested for the first time at
high temperatures. The coded mean of arming distances for 10 fuzes
is 42 units of distance. The value of s is 2.1. Under the supposition that
the arming distances have a normal distribution, find a 95% confidence
interval for the mean arming distance of the new fuze.

From Appendix Table 3 we find t.0 25, 9 = 2.262. From 3? ± ta,2,,,S/Vln

we have 42 -L 2.262 (2.1)/V 10. The desired confidence interval is
40.5 to 43. 5 units of distance.

a. Determination of Sample Size. If an estimate of o is available,
the equation

S(ta/ 2 ,n .
2

can be used to give the sample size necessary to obtain a 100(1 - a)%
confidence interval with expected length 2h. The actual length obtained
from the data will be calculated from the first equation in this section;
therefore it will depend on the s calculated from the sample, varying
randomly above or below 2h to an extent depending on the discrepancy
between a and s.

Example. How many readings of temperature should be taken if it
is hoped to specify the temperature within -±0.5° with 99% confidence?
From previous trials made with the same thermometer and the same
observer, the standard deviation of the readings is expected to be in the
neighborhood of 0.60.

In this case a = 0.60 and h = 0.50. Using Appendix Table 3, we
find by trial and error that for n = 13, (wt.005,,/h)2 = 13.44; and for
n= 14, (at.,,05  1j/h)2 = 13.06. This shows that for n = 13 the
expected length of the confidence interval will be slightly more than

the prescribed value 0.50, and for n = 14 it will be slightly less. In such
a situation, the usual practice is to choose the larger sample size, n = 14.

2.3. Test for Proportion p

Often the sample items are merely classified as having or not having
i certain characteristic; e.g., they function or fail to function, they succeed
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or fail, they are perfect or contain defects. Here the basic distribution is
the binomial (Sec. 1.2.2). We are interested in testing a hypothetical value

pto for the population proportion having the characteristic. The unknown
parameter p is estimated from a sample as the ratio r/n of the number r of
items having the characteristic to the sample size n.

2.3.1. Assumptions

(1) A proportion p < 0.5 of the items of a population have a particular
characteristic. The artificial restriction p < 0.5, which is a convenience in

constructing tables, is satisfied by considering p as the proportion not
having the characteristic, if the proportion having the characteristic is

greater than 0.5.

(2) The sample is a random sample, each item of which is tested for
the characteristic.

(3) Ideally, the population is infinite. If the population is finite (as in

a pilot lot), the methods described in Sec. 2.3.2 give good approximations
for lot sizes down to 10 times the sample size. (For finite populations, see

also the end of Sec. 2.3.3b.)

2.3.2. Test

a. Test for a Sample of Size n < 150. To test at the 5% level the
hypothesis that p has the value Po, against alternative values greater than

Po, find the smallest whole number r for which

ot ps(1 - po)n-s < 0.05

using one of the tables described in the next paragraph. Reject the null
hypothesis if r or more defectives are observed in the sample. Note that

this is a one-sided test.

The technique shown here is correct for any sample size, though its

practical use depends on the availability of tables. Table 2 of Ref. 2.5 lists

the values of the entire summation shown above for n < 50, for all values

of r, and for po from 0.01 to 0.50 in steps of 0.01. Ref. 2.7 extends the
table of Ref. 2.5 from n = 50 to n = 100 in steps of 5, and Ref. 2.1

expands the table to include all n < 150.
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Example. A sample of 40 rockets is chosen at random from a large
lot. Design a test for determining at the 5% level of significance
whether the proportion of rockets defective (in that they fail to arm) is
0.01, assuming that we are interested in detecting an alternative propor-

tion greater than 0.01.

Using Table 2 of Ref. 2.5, we find

C 40o (0.01)8 (0.99)40-8 = 0.007
8=,1

40 C? (0.01)8 (0.99)4°-8 = 0.061
8=2

Thus, if the sample contains three or more defectives, the lot should be
rejected as having a proportion defective greater than 0.01.

b. Test for a Sample of Size n > 5 /po. To test at the significance
level a the hypothesis that p = Po against the alternative that p > Po,
compute

r - np0 - /2

n-' po 01 - PO)

where r is the number of defectives observed in a sample of n. Compare z

with za (from Appendix Table 2 with F(z) = 1 - a) and reject the

hypothesis if z > z.

To test the null hypothesis p = Po against the alternative that p < Po,

compute

r - npo + 1/2

V npo(1 - po)
and reject the null hypothesis if z < -Za.

For an equal-tails test of the null hypothesis against alternatives greater

or less than Po, compute

=r- nol '/2

npo (1 Po)

and reject the null hypothesis if z > z,/ 2..
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These tests are based on a normal approximation that is sufficiently good
for n > 5/po. For a sequential test for a proportion p, see Sec. 8.4.1.

c. Determination of Sc-mple Size. The m cfhod for determining the
required sample size will not be taken up explicitly for the testing of
hypotheses. It is convenient to use the sample size n necessary to give a
confidence interval of given length (Sec. 2.3.3a) for the significance test
as well.

2.3.3. Confidence intervals

a. Graphical and Tabular Solutions. Appendix Charts II, III, and
IV give two-sided 90, 95, and 99% confidence limits, respectively, for p as
a function of the proportion defective in the sample for a number of sample
sizes. For n < 30, Appendix Table 21 (a) should be used. The confidence
coefficient is in each case at least as high as indicated; it cannot be made
exact because of the discrete nature of the distribution. The charts can also
be used to determine roughly the necessary sample size for a confidence
interval of specified length. (See the second example below.)

For one-sided confidence intervals, use Appendix Table 21(b). Appendix
Charts II, III, and IV can be used for one-sided intervals with confidence
coefficients of 95, 97.5, and 99.5%, respectively, by referring to only one of
a symmetrical pair of curves.

Example. The proportion defective in a random sample of 250
items checked on a go-no-go gage is 12%. What are 95% confidence
limits for the proportion defective for total production?

The desired confidence limits are marked off by the two curves for
n = 250 in Appendix Chart III at r/n = 0.12. We obtain a confidence
interval of 8 to 17%.

Example. In estimating the proportion defective, the maximum
allowable length for a 95% confidence interval is 0.10. What sample
size should be used ?

From Appendix Chart III, we find that the 95% confidence interval
has maximum length 0.14 for n = 250, and 0.06 for n = 1,000. Linear
interpolation with respect to 1/n should be used.
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r n 1,000/n Maximum length

250 4 0.14 00
400 2.5 3 0.10 0.08

1,000 1 0.06

4 004 (3 2.5
0.08

We find, then, n 1,000/2.5 = 400.

It is perhaps surprising to find that such a large sample size is required
to locate a proportion with an interval of length not more than 0.10
with 95% confidence; however, the significance of a proportion from a

small sample is often overrated. For example, if we test a sample of 10

new missiles and all 10 fly pruperly, we may feel confident of the mis-
sile, but the 95% confidence limits for the proportion defective are 0

and 0.267.

b. Numerical Solution. For a large sample, 100 (1 - a)% confidence

limits for p are given by

r + ~,2/2 ± (r + Z,2/22)2 - (n + 4,2)r2 /n

n + Za/2

where r is the number of defectives observed and z,/, is the normal deviate

exceeded with probability a/2. In case the population is finite of size N,

replace z2 by Z/, (N - n)/(N - 1).

2.4. Test for f, - j When a, ard a2 Are Known

2.4.1. Test Conditions and Assumptions

A random sample is drawn from each of two populations to determine

whether the difference between the two population means a. and /2 is

equal to d. The two samples may be independent, or the observations may

be made in pairs, one from each population, extraneous variables being

held constant for each pair. Let y denote the difference x 1 - x 2 of the

paired observations. If the standard deviation a, resulting from such pair-
ing is known and is less than V o2 + a2.,, then it is desirable to pair during

sampling. This situation will arise in general if the paired observations
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are positively correlated. (See Sec. 2.5 for discussion )f choice of method if
population standard deviations are unknown.)

Each population is assumed to be normally distributed with known stand-
ard deviation ai-or else the sample drawn from it is large (> 30), in
which case si may be substituted for ri (see Sec. 3.1).

2.4.2. Normal Test

a. Test for Paired Observations. Subtract the second reading of
each pair from the first and consider the resulting differences as sample
values of a new variable y. Test the null hypothesis that /L = d by the
method of Sec. 2.1 if a, is known, or by the method of Sec. 2.2 if av is
unknown. (It is known from theory that liy = Iii - 1'2.) Confidence inter-
vals for t,, and determinations of sample size can also be obtained by the
methods of Sec. 2.1 and 2.2.

b. Test for Two Independent Samples. To test at the significance
level a the hypothesis that /t - A, = d, compute

Z 1 - 2 - d

As in Sec. 2.1.2, reject the null hypothesis that /, - ju = d if z falls in
the rejection region Iz I > z/ 2 for an equal-tails test or z > za for a
one-sided test against alternatives greater than d.

If the two populations are finite of sizes N1 and N2, replace a2 by
j L(N1 - n,)/(Nm - 1) and a2 by a2 (N 2 - n2)/(N 2 - 1) in the formula

for z.

Example. A standard method of chemical analysis for determining
nitrocellulose in propellants is known, from the large number of previous
analyses, to have a standard devirtion a = 0.6. Each of two new pro-
pellants, assumed homogeneous, was subjected to five analyses. One
result was lost because of an accident; the other nine results were:

x1j " 63.12, 63.57, 62.81, 64.32, 63.76%

x2j: 62.54, 63.21, 62.38, 62.06%

We wish to test at the 5% significance level whether there is any real
difference in nitrocellulose content.
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The hypothesis to be tested is that /L = P2, or P,~- p-2 = 0. We

compute

7.58
1= 62 + 75 8 63.516

2.19
2= 62 + 4 62.548

Then

X, - 3'2 - 0 o.968Z 2 1 0.8 = 2.405
2 a.2 )%1-"i
n+ - 0.6 5

From Appendix Table 2, for F (z) = 1 - a/2 we find Z.0 25 = 1.960.

Since 2.405 is greater than 1.960, we reject the null hypothesis that

= =.. at the 5% level of significance.

c. Determination of Size of Independent Samples. To make most

effective use of a fixed number N of items allocated for sampling, choose

n, = N and n. = N - n,

a, + 0"2

If o - 02 = a, choose n = n2 = n. To determine n for an equal-tails test

at the 5% level of significance with an assigned risk fP of accepting the

hypothesis that lkl - MA2= d when it really has an alternative value b,

compute

_ Ib -dl

and refer to Appendix Chart V.

Example. A delayed-action fuze in present use has a standard devi-

ation in delay time of 0.004 seconds. An experiment is to be performed

to determine whether a new experimental fuze has the same mean delay

time. The test is designed to detect at the 5% significance level either

an increase or a decrease. The standard deviation for the two fuzes is

thought to be the same. How large a sample of each should be used, if

there is an assigned risk of 0.05 of deciding that p,- p = 0 when

pt, - p2i, has the alternative value of 0.005 ?
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Here d = 0, b = 0.005, and P3 = 0.05. To detect a change in delay time
in either direction, an equal-tails test will be used. Since a, 02 = 0.004,
we choose n, = n2= n. We have

A 0.005 - 01 08= - 0.88
(0.004) V-2

From Appendix Chart V for k = 0.88, a= 5%, and /3 = 5%, by interpo-
lating between curves we obtain the sample size n = 18. Thus, 18 fuzes
of each type should be tested.

2.4.3. Confidence Intervals

A set of 100(1 - a)% confidence limits for A - 1A for independent
samples is

( , -,, -+ zan \ n,+  0'2
(~I~2)

a. Determination of Size of Independent Samples. If the length
2z,12 [(i?/n2 ) + (a'/n)] / of the .00 (1 - a)% confidence interval for
/ - tL2 is specified as 2h, the total sample size should be

N = n, + n 2  [Z/2 (0"l + O")2

h

giving

n, = )" (al + 02) and n2 = (Z 02 (0" + 0 2 )

2.5. Test for p, - /-2 When 0" and a2 Are Unknown

2.5.1. Assumptions and Design of Experiment

The assumptions vary with the different situai,:ns and tests given below.
Random samples are necessary, as usual. Normal distributions are assumed
except in the sign test. Using the common normality assumption, we must
decide whether to sample the two populations independently, or to pair
observations so that conditions which usually fluctuate are the same for each
pair, though changing from pair to pair. Thus, in a durability test of paints,
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panels of two or more paints would be exposed side by side and would thus
give paired rather than independent observations. If the conditions that are
rendered the same by pairing are known to influcnce substantially the
characteristic x under observation, then it is probably desirable to pair obser-
vations. The advantage of independent samples lies in the doubling of the
number of degrees of freedom with no increase in the number of obser-
vations, but this advantage may or may not be overbalanced by the reduction
in variance afforded by Pairing; each problem must be examined carefully.
Pairing has the additional advantage of eliminating any assumption about
the equality of a1 and 0,.

2.5.2. Test for Paired Observations

a. Sign Test. (See Ref. 2.2.) The sign test provides a quick and simple
way of determining whether a set of paired readings shows a significant
mean difference between pair members. Unlike the t test described below,
this test does not depend on an assumption of normality; however, when
normality assumptions are valid, it is not as efficient as the I test. For the
sign test, it is unnecessary that the different pairs be oberved under the same
conditions, so long as the two members of each pair are alike. As used here,
it is an equal-tails test, but it can be adapted for use as a one-sided test.

Extimple. The first two lines of the tabulation below represent
the deflection in mils of rockets fired in pairs simultaneously from two
launchers, A and B. Can we say that there is a difference between the
performances of the two launchers at the 5% significance level?

To obtain the signs shown, we record a 'plus" whenever the A row
shows a higher value than the B row, a "minus" when it is lower, and
a zero when it is the same.

A ........ 4.4 -1.4 3.2 0.2 -5.0 0.3 1.2 2.2 1.3 -0.7
B ........ 3.2 7.7 6.4 2.7 3.1 0.6 2.6 2.2 2.2 0.9

Sign ....... + .- - - - - 0 - -

We note that there are fewer +'s than -'s, that the total number N of
+'s and -'s is 9, and that the number of +'s is 1. The zero is omitted
from all counts. In Appendix Table 9 opposite 9 under a = .05, we
find the number 1. Since the number of + signs is less than or equal to
the tahled value 1, we decide that there is a significant difference between
the performances of the two launchers at the 5% level.
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r b. The t Test on Differences. The t test, which depends on an assump-
tion of normality and requires that all pairs be observed under the same
conditions, gives more information than the sign test. Subtract the pair
values and consider the resulting differences as the data to be analyzed by
the method of Sec. 2.2.2.

2.5.3. Test for Two Independent Samples When 01 = 02

a. The Td Test. For small samples (n, = n, = n < 10) or for rapid pilot
computations using part of a large sample, compute

w, + w 2

where the w's are the respective ranges. Compare Td with Appendix
Table 13(b) and reject at the significance level a the hypothesis that the
means are equal if rd exceeds the value tabled under a. (See Ref. 2.2.) This is
a one-sided test, but the equal-tails test is identical except that the sign of 7 d

is ignored and the critical value used is that for a/2.

b. The t Test. In general, to test the hypothesis that 1q - l2 = d,
compute

Xl -x - d

so +n/

where

112

E (x, -- T)2 + 2 (x21 - x2)
2 j=1 j=1

n, " n+ - 2

is a "pooled" estimate (see Sec. 3.1). Compare t with the value ta/2,+ 2 _2
in Appendix Table 3, and reject the hypothesis if t exceeds the tabled value.
As in Sec. 2.2.2 for an equal-tails test, the value of t a/2,,l+,,-2 is the t value
for f = n, + n2 - 2 degrees of freedom such that the probability is a/2
of a random reading greater than ta/2,nl+n2-2 and a/2 of a reading less than

ta/2,n+ n2-2. For a one-:;ided test, compare t with ta,n +n2_2 .

To determine sample size for an equal-tails test at the 5% significance
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level with an assigned risk P8 of accepting the hypothesis /A - A, = d when

Al - 1A2 actually has the alternative value b, compute
S-id- bl

For a, use an estimate of the common standard deviation of the two
populations. Refer to Appendix Chart VI for the common sample size
n, = n 2 = N/2.

Confidence limits for 4, - A2 with confidence coefficient 1 - a are

(3,- T(2) ±ta/2,N 1 2.240(1 +_I

Example. The variability of two cutting machines is assumed to be
the same. One is set to cut pieces 3.00 mm shorter than the other to allow
for insertion of a compressible spacer. There is assigned a risk of 0.05
of accepting the hypothesis that the mean difference is 3.00 mm whe-i it
has an alternative value 3.00 -±t 1.00 mm. If the standard deviation in
both cases is of the order of magnittide of 0.5 mm, what sample size
should be used for a test at the 5% level of significance?

Taking n, = = n, we have

-{d-b =I _ 1.001 _ 1.412 0.5\N2

TABLE 2.1. LENGTH IN MM OF PIECES PRODUCED

BY Two CUTTING MACHINES

Machine 1, x11 Machine 2, xj

98.06 94.73
98.07 95.02
98.93 94.36
98.03 96.16
98.50 94.50

98.60 94.82
99.67 93.75
98.51 93.90
98.06 95.31
99.01 95.21
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From Appendix Chart VI for an equal-tails test with X = 1.41 and
/3 = 0.05, we read n = 10 for each machine.

Suppose that when the experiment is run, the readings in mm are
as shown in Table 2.1. After coding the readings by replacing xlj by
ylj = 100 (xlj - 98) and x2j by Y2j = 100 (x2j- 93), the data will
appear as shown in Table 2.2.

TABLE 2.2. CODED LENGTHS OF PIECES

FROM Two CUTTING MACHINES

ylj Y21

6 173
7 202

93 136
3 316

50 150

60 182
167 75

51 90
6 231

101 221

We compute

yjj = 544

3 = 98 + 0.544 98.544

y2 = 55,570

S(Yli -yl) 2 = n (- ylj)2 = 25,976.4

EY2j = 1,776

= 93 + 1.776 = 94.776

y2, = 360,636
1

2(Y2 -2) 2 = 45,218.4

25,976.4 + 45,218.4
s o 18 3,955.267
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soy = 62.891

SOX = 0.6289

98.544 - 94.776 - 3
/= -- =2.730

0.6289(1 + Y
10 ,

t.025,8= -2.101

We reject the null hypothesis that the mean difference between the
lengths cut by Machine 1 and those cut by Machine 2 is 3 m.n.

2.5.4. Test of ft - 1A, = 0 for Two Independent

Samples When al =A U2

For a general treatment of this subject, see Ref. 2.6, p. 91.

Label the samples so that n, < n2. Use the readings in the order of
observation or else randomize them by lottery choice. It is best in designing
such an experiment to make the two sample sizes equal, since the analysis
makes little use of extra sample items from either population.

Define

ui = xli -~ x n2 (i = 1, 2, • n , )

1 nt
i=_2 Ui

ni1 i=1
ttlnl l =l

Q = ni 2 (ui - V) = nx u - ( us)2
Si=1

Then compute

t- Y/ -R

\n 21(n,-)

where

1 i- n2 i=1

Reject the null hypothesis that / = t2 at the significance level a if t falls
in the rejection region Itj > t/,2,..- for an equal-tails test or the region
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t > ta, for a one-sided test. Appendix Table 3 gives percentage points
for the t distribution.

Example. Range data are given in Table 2.3 for two types of rockets.
The true (population) range dispersions are not expected to be equal.

TABLE 2.3. RANGE DATA FOR Two TYPES OF ROCKETS

Type II, Type I,

x,, yd xuyd X, X/n//n2 u, x4,--x2 V n7n2

1,472 1,747 1,343,7 403.3
1,315 1,618 1,200.4 417.6
1,984 1,521 1,811.1 -290.1
1,900 1,137 1,734.5 -597.5
1,646 1,374 1,502.6 -128.6

1,709 1,325 1,560.1 -235.1
1,780 1,821 1,624.9 196.1
1,571 2,351 1,434.1 916.9
1,681 1,883 1,534.5 348.5
1,453 1,613 1,326.4 286.6

1,799 1,843 1,642.3 200.7
1,372 1,796 1,252.5 543.5
1,420 1,507 1,296.3 210.7
1,612 1,387 1,471.5 -84.5
1,546 725 1,411.3 -686.3

1,255 1,041 1,145.7 -104.7
1,818 1,652 1,659.6 -7.6
1,357 1,595 1,238.8 356.2
1,412 1,679 1,289.0 390.0
1,775 1,557 1,620.3 -63.3

1,850 1,206 1,688.8 -482.8
1,417 192 1,293.5 -1,101.5
2,057 1,025 1,877.8 -852.8
1,468 813 1,340.1 -527.1
1,694 971 1,546.4 -575.4

1,776 .... ........
1,456 .... .... ....
1,489 ..... .. .
1,618 ..... ....
1,544 . .. .. .
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Test the mean ranges of the two types of rockets for equality at the 5%

significance level.

We compute

3=2 = 1,608.2 xl = 1,415.2

n2= 30 n, = 25

u= -1,467.2 u = 5,867,573.36

= 25 (5,867,573.36) - (-1,467.2)2 = 144,536,658.16

Q
n2 = 9,635.78

n Q 1) =98.16
- R1__ _ _ 193.0

Q_ _ _ 98.16
I I-(n -1)

From Appendix Table 3, ta/2,n-l = 1.025,24 = 2.064. Since 1.966 does
not exceed 2.064, the hypothesis that the two means are equal cannot be
rejected at the 5% significance level.

2.6. Test for a Difference Between Proportions, P1 - P2

To determine whether two samples come from binomial populations
having the same proportion defective, see Sec. 4.7.1 on contingency tables.

2.7. Test for Differences Among Several Means

Use the method of "analysis of variance" as described in Chapter 5.

2.8. Detection of a Trend in a Set of Means, Standard
Deviations Unknown but Assumed Equal

In addition to the sections below, see Chapter 6.

2.8.1. Assumptions

A random sample of size n is drawn from each of k normal populations
with the same standard deviation. The common sample size n may be 1.



§2.8. DETECTION OF A TREND IN A SET OF MEANS 63

2.8.2. Method

A trend in means is some relationship among the means which can be
represented graphically by either a straight line or a curve. The oidinary
formula for variance among means in a k sample problem is

1 k
k-i=

where = is the mean of the k sample means and j is the mean of the ith
sample. Now S2 will include the effect of a trend in means, if a trend is
present. An estimate of variance which reduces the trend effect is 1/282

where

-1 --

mean square successive difference

To test whether a trend in means is present, we compute 82/s 2 and compare
the result with the appropriate critical value of 82/s2 in Appendix Table 14.

TABLE 2.4. GLUCOSE CONCENTRATION OF FIVE

MIXTURES TESTED OVER A 35-WEEK PERIOD

No. of weeks Mean % glucose, R,

4 43.14
-0.98

8 42.16

2.84
12 45.00

-1.00
16 44.00

3.86
20 47.86

0.29

24 48.15

1.95
27.5 50.10

-1.05

30 49.05

1.10

35 50.15
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Three situations may occur.

1. If the data show no trend, we expect a 81-'is' near 2.

2. If the data follow some curve, we expect a 82/s2 less than 2.

3. If the data oscillate rapidly, we expect a a"/s" greater than 2.

Example. Five mixtures containing glucose are allowed to stand for
a total of 35 weeks. At approximately 4-week intervals, the % glucose
concentration is determined. The means (each being the mean of five
observations) are given in Table 2.4. We wish to test at the 5% signifi-
cance level whether the mean % glucose concentration increases with
time.

We compute

2 1-)2/(k - 1)

>2 1(- -1) )

31.1247
75.8454

- 0.4104

In Appendix Table 14 for k = 9, the 95% critical value for 82/s2 is
1.0244. Since 0.4104 < 1.0244, 82 /S 2 is significant at the 5% level.
Thus, a trend in mean % glucose concentration as a function of time
does exist.
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Chapter 3

TESTS AND CONFIDENCE INTERVALS FOR
STANDARD DEVIATIONS

3.0. Introduction

In this chapter, methods are given for (1) testing, by examination of a
random sample, thc hypothesis that the standard deviation a, (or the
variance o2) of a normal population has a certain hypothetical value, speci-
fied before the experiment; (2) calculating confidence limits for the estimate
of a; and (3) comparing two or more standard deviations.

What is the importance of the population standard deviation? It is a
measure of dispersion; in other words, a measure of lack of precision. As
such, it includes both lack of reproducibility and whatever measurement
error is present. A weapon cannot be used for tasks requiring precision if
test-firing shows that the standard deviation in distance from a fixed target
is large. On the other hand, if the standard deviation is small, but the
average distance of shots from the target line is large, it is possible that a
simple aiming correction will center the shots on the target. If the correction
can be made without increasing the dispersion, the weapon will be both
accurate and precise.

In production, a sudden increase in variability may indicate the appear-
ance of a production fault, such as the maladjustment of a machine or the
dulling of a cutter blade.

The tests presented here are based on the assumption that the population
is normal. This restriction can often be relaxed, especially in cases involving
large samples. All samples are taken to be random samples. (See Chapter 4
for tests of normality and tests of randomness.)

All the significance tests of Chapter 3 involve fixed sample sizes. How-
ever, if it is practical to experiment on one item at a time without knowing
the total number that will be required, the most econonical method is
provided by "sequential analysis." (See Sec. 8.4 and its references.)

67
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3.1. Computation of s

T7he sample variance, and best estimate of the population variance 02, is

I_- 1 It X, It Xi )2

- I (n x,)

The latter form is preferred for computation. The sum of the xi's and the
sum of the x's can be computed simultaneously on most desk computers
by accumulated multiplication.

If k samples from populations having a common variance are available

for estimating the variaace, the pooled estimate is
S (n,- 1)s,2 + (n 2 - l)S2+ + • m '+n- l~s?

2 = 1sso nl1 + n2 + + . +n- k

where (n, - 1)s2 is the sum of the squared deviations of observations in
the first sample from their mean, and so on. If the k samples are from
populations that may have different means, S2 should be used instead of
an over-all computed S2 as the latter will overestimate the variance by
including the differences among the means. The pooled estimate so may be
used to make significance test- and to find confidence intervals for the
common ,tandard deviation of the k populations with the number of
degrees of r-eedom ni + n2 + + nk - k. (An example of the use
of s2 occurs in Sec. 2.5.3b.)

If the x values are coded by letting yj = mxi + b, where m and b are
constant:,

1 ( - b) and s,2 s2

Examples of the computations appear throughout this chapter; see, for ,4
instance, Sec. 3.2.2.

If means and standard deviations must be obtained from data that have
been grouped toegther in intervals of length h, so that all observations lying
ir one interval are considered to be at the midpoint of the interval, we may
empl,;- "Sheppard's correction" to improve the approximation. This cor-
rection calls for subtraction of h2/12 from the S2 computed using midpoints.
The correction is appropriate if" the sample is taken from a distribution
that tapers to zero at the ends. (See Ref. 4.4, lp. 359-63.)
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If y is a linear function of several independent variables x,, x2, " xk,

y = alx1 + a2 x2 + + akxk + b
then the variance of y is

C= ar 2  + a2-a + + -Il

The standard deviation of y may be found in terms of the standard devia-
tions of the x's as

=v (aiu + a2 + + a"

Example. If y =(x + x2 + ' + x,)/n, where the xi's form a
random sample from a population with standard deviation ',, then
a2 = n(1/n)2a = a/n. Hence o =

T yrA -2 -r , ' Cf .- I
Ex arn . AAj % A 2 , Al -&- A , LA 1 means )L 111UC-

pendent random samples of size n, and n2, then

Y 1 2 n1  t12

If y = F(x, x2, , xk.), and the changes Axi in the x's are small, the
differential dy approximates the change Ay in y. Thus

aF 2F aF
Ay - y = IX + -XAX +- AXk

ax, aXk

If the changes Axi in the x's are independent, the variance in dy may be
approximated by

2 F- W ) + ( . I ) 2 +. . + ( )F ) 2

\a ( Xl /j 2 X2 +\aXk 1x~

with the partial derivatives evaluated at nominal values of x1 , X2, . . . I xh.

Example. The vacuum velocity of a rocket after burning can be
computed as

v = V0 loge m b + mP
Mb

The gas velocity v,, the "burnt" rocket weight mb, and the propellant
weight mp are assumed to have small independent variations. Find the

variance of the vacuum velocity v in terms of the variances of Vg, mb,

and mp.
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Taking the total differential, we have

di v AvgA + --aAmb + -a Mav0  ~ m

S(log,b + mp) Avg + [ --mVg 1 +( v
b mb(m-b + mp) r mb + in

and the variance of v is approximately

U, loge n) mb / ± mpvg T o.b+ Mb_+___ p P

If a new type of rocket is to have v. = 8,000 feet per second, mb= 50
pounds, and mP = 50 pounds, we can compute

-r 0 480rT + 6, 4 00ff2._ - 6.400o',,-'-I,,/ "".b -..p

3.2. X2 Test for u' in a Normal Distribution

3.2.1. Assumptions

(1) The population has a normal distribution.

(2) The sample is a random sample.

3.2.2. Test

To test the null hypothesis that the normal population has standard
deviation a = ao at the significance level a on the basis of a sample of
size n, we compute the sum of the squared deviations from the sample
mea,, (n - 1)s2, and form the chi-square statistic

2 - (n -1)s

Appendix Table 4 gives values of the X2 distribution for f = n - 1 degrees
of freedom. If the computed X2 is less than X1-a/,7,-1 for P = 1 - a/2, or
greater than X2/2,n-1 for P = a/2, we reject the null hypothesis that the
standard deviation is go, for if the standard deviation actually is go, such a
large or such a small sample variance will occur with a probability of
only a. (See Sec. 1.1.7 for a general discussion of statistical tests.) The
number X,/2,,.-, is the X2 value exceeded with prebability a/2 for n - 1
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degrees of freedom. Similarly, for n - 1 degrees of freedom, XIa/2,n-1 is

the X2 value exceeded with probability I -- a/2. (See Sec. 8.4.2 for a
sequential test for a.)

Example (Equal-Tails Test). The data in Table 3.1 represent the
burning times of 13 grains. Assuming that the distribution of burning

'FABLE 3.1. ACTUAL AND CODED BURNING

TIMES OF 13 GRAINS

Burning time, sec Coded value
(x,) (y, - 1,000x, - 500)

0.516 16
0.508 8
0.517 17
0.529 29
0.501 1

0.521 21
0.539 39
0.509 9
0.521 21

0.532 32

0.547 47
0.504 4
0.525 25

times is normal, test at the 5% level of significance whether the standard
deviation of the population is 0.01 (i.e., a = o0, = 0.01). We compute

Ey, = 269

Ey' = 7,809

(n - 1)s = nY_ -(y)

= (13)(7,809) - (269)2 _ 2,242.769
13

(n - 1)s: = 2,242.769 X 10-(;

(n - 1)s- _ 2,242.769 X 10-  2
X 2 2 10-4 22.43
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From Appendix Table 4 for 12 degrees of freedom, we read
75,1= 4.404 and = 23.34

Since 22.43 lies inside this interval, we cannot -eject the hypothesis that
o = 0.0i.

Example (One-Sided Test). If in the case of burning time we are
interested only in whether a exceeds 0.01, and are quite satisfied with
an), smaller standard deviation, we compare x' = 22.43 with

X.0.1 _= 21.03

Since 22.43 exceeds 21.03, we reject at the 5% level of significance the
hypothesis that a < 0.01. and conclude that a exceeds 0.01.

a. Determination of Sample Size. We can determine the necessary
sample size for a one-sided test of the null hypothesis that the standard

deviation a equals some hypothetical value a(, rather than alternative values
greater than a0 at the significance level a. (As defined in Sec. 1.1.8, the
significance level a is the risk of rejecting the hypothesis that the standard

deviation is a, when the standard deviation actually is a(.) We want the
risk to be not more than P6 of accepting the hypothesis that a is a0 when
actually a has the alternative value a1 = Xa. Appendix Chart VII gives
OC curves for several sample sizes for a one-sided test (A > 1) conducted
at the 5% level of significance. Compute

A--- a",

Oro

and enter the chart with X and fP. Use the sample size indicated on the next
lower curve, or interpolate between curves.

Example. We wish to make a one-sided test at the 5% level to
determine whether the standard deviation of length of grains made by
a new process is larger than the standard deviation obtained under the
former process. We will accept a risk of 0.1 of riot detecting a standard
deviation half again a., large as the old standard deviation. How large
a sample size should be used ?

In this case X = 1.5a/a = 1.5, and f3 0.1. Appendix Chart VII
shows that a sample size of 28 is necessary. Using this sample size
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assures us that we can accept the null hypothesis a = o, or the alternative

hypothesis or = a = 1.5o, , with satisfactorily small risks of being wrong
in either case.

3.2.3. Confidence Intervals

A set of 100(1 - a)% confidence limits for the standard deviation o of
a normal population may be computed from a sample of size n as

2 and n- I s-
L x ,12,n-1 X!.-a/2,n-1

where (n - 1),2 = y(x, - 3)2 . Unlike the confidence limits for the mean
(Sec. 2.1.3), which are symmetric about the estimate 3, these limits are not
symmetric about the estimate s.

Alternatively, Appendix Table 8 enables us to obtain 90, 95, or 99%

confidence limits for a from a sample of size n by multiplying the factors
b, and b2, given for f = n - 1 degrees of freedom, by the estimate i com-
puted from the sample.

Example. A sample of 20 gage measurements of pressure has a
sample standard deviation of 11 pounds per square inch. What are 95%
confidence limits for the population standard deviation a?

From Appendix Table 4, we find

X.o25,19 = 32.85 and X .075,19 = 8.907

With s 7= 11, we have as 95% confidence limits for a( 9 -3 ()11) =8.4 psi and ( 98--.)-7 (11) = 16.1 psi

Notice that the limits are not symmetric; that is. they are not equally
far from s.

The following method is preferable in practice. From Appendix
Table 8, for f = n - 1 = 19 the factors b, = 0.760 and b., = 1.461

yield the 95% confidence limits

(0.760)(11) = 8.4 psi and (1.461)(11) = 16.1 psi

a. Determination of Sample Size. We can determine the sample size
necessary to estimate a within p% of its true value with confidence coeffi-



74 TESTS FOR STANDARD DEVIATIONS §3.3.

cient 1 - a. Appendix Chart IX gives the desired sample size as a function
of p and f.

Example. In estimating the precision of a new weapon, how large
a sample size should be used to specify the standard deviation within
30% of its true value with 95% confidence?

From Appendix Chart IX, for p = 30% on the curve for confidence
coefficient 0.95, we find 21 degrees of freedom. Since for our test the
number of degrees of freedom is n - 1, the necessary sample size is 22.

3.3. F Test for 1/,u2 for Normal Distributions

3.3.1. Assumptions

(1) The populations have normal distributions.

(2) The samples are random samples drawn independently from the

two populations.

3.3.2. Test

To test the null hypothesis that the ratio 2r/ur' of the variances of two
normal populationS is 1 (i.e., al = U2) at the significance level a, on the
basis of a sample of size n, from population 1 and an independent sample
of size n. from population 2, compute the statistic

F - _

with the larger s2 in the numerator so that the computed F is always greater

than 1. Enter Appendix Table 5 of the F distribution with f/ = n,- 1
degrees of freedom for the numerator and 12 = n2 - 1 degrees of freedom

for the denominator. Reject the hypothesis if F exceeds the tabled value
Fll(n1- 1, n2 - 1) for P(F)= a/2, because a ratio F that large or
larger can occur with probability only a if the null hypothesis holds. For

an equal-tails test, we force the computed F to be greater than 1 by the
choice of numerator and denominator; hence, we use F > F,,12 as the
rejection region instead of the double region F > F1/2 and F < F1 _ 12.

For an equal-tails test of the null hypothesis o,/u, = R # 1, compute F

as the ratio of s2 and Rs,, using the larger quantity in the numerator.
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A one-sided test is appropriate if we are interested only in whether popu-
lation 1, specified before observing the data, has greater variability than
population 2. We compute

where s- represents the estimated variance of population 1 (not necessarily
greater than s-' as in the equal-tails test). If F exceeds the tabled value
F, (n, - 1, n2 - 1), we reject the null hypothesis that O.' < o' and decide
that population 1 has more variability than population 2. If the computed
F < 1, we can immediately accept the null hypothesis that r, < 0'2 , since the
tabled value of F is always greater than 1.

Figure 3.1 shows the probability density function of F for two pairs of
numbers of degrees of freedom.
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Example (Equal-Tails Test). To determine whether two types of
rocket have different dispersions and should, therefore, be recommended
for different uses, an F test is made on data already available. From a
random sample of 61 rockets of one type, the computed s2 is 1,346.89 .
mils2. From a random sample of 31 rockets of the other type, the com-
puted f

2 is 2,237.29 mils2. Is there a significant difference at the 5% level
in the standard deviations?

Since 2,237.29 exceeds 1,346.89, we label the sample of 31 rockets
Sample 1. To test the null hypothesis a, = a 2 , we compute

F = s_ - 2,237.29= 1.66
s2 1,346.89

From Appendix Table 5, F.025 (30, 60) = 1.82. Since 1.66 is less than
1.82, we cannot reject the null hypothesis that the population standard
deviations are equal. We need not, as far as this experiment indicates,
differentiate between the two rockets with respect to their dispersion.

Example (One-Sided Test). A personnel department plans to dis-
tribute a form to job applicants to aid in placement. Two forms, one
2 pages long and one 3 pages long, involving grading systems, have been
designed. A test is made to determine whether the 3-page form has a
larger standard deviation of scores than the 2-page form. Here a wide
spread of scores is preferred.

The 3- by 5-inch index cards of information filled out by each new
employee during one week's hiring are shuffled, and 16 cards are selected
at random. The 16 employees thus selected are requested to fill out the
3-page form (Sample 1). Their cards are returned to the deck and all
the cards are reshuffled. Again 16 cards are drawn at random, and the
employees thus selected are asked to fill out the 2-page form (Sample 2).
Notice that the two samples are independently drawn. Since the first 16
cards drawn ,re replaced, their selection has no effect on the selection of
the second set of 16. If an employee's card is selected in both drawings,
he fills out both forms.

After scoring, the 2-page form gives s = 12.3, and the 3-page form
gives s = 40.2. Is the standard deviation for the 3-page form signifi-
cantly greater at the 5% level than that of the 2-page form?
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To test the null hypothesis a, < 9 2, we compute

40.2F- -=3.27
12.3

and compare with F.o., (15, 15) = 2.40. Since F > F.,, we reject the null
hypothesis, and conclude that the standard deviation of scores for the

3-page form is greater than that for the 2-page form. If the 2-page form
had shown greater standard deviation (as could often happen under the
null hypothesis), we would have kept to our one-sided test by merely

stating that no significant departure had been shown.

a. Determination of Sample Size. Suppose we are using the one-sided
test described in this section to determine at the significance level a whether

a, exceeds o2 , with an assigned risk /3 of accepting the null hypothesis
that a/la 2 = 1 when actually 91/a 2  X > 1. If samples of equal size
1Z = n 2 = n are to be taken from the two populations, the necessary sample

size n can be found in Appendix Chart VIlI cpposite X and /3 for the

special case a = 0.05.

Example. It is suspected that the aiming error of a pilot at high alti-
tudes will be greater (1) without the use of a pressurized suit, than
(2) with a pressurized suit. A test is to be made by having a pilot fire
n= = n shots under each condition. We will accept a risk of 0.1 of
deciding that the standard deviations a, and U2 of the shots are equal,
when actually o,1 = 2a2. What sample size should be used if the test is
to be made at the 5% level of significance?

From Appendix Chart VIII for A = 2 and/3 = 0.1, we find n = 20.

3.3.3. Confidence Intervals

A set of 100(1 - a)% confidence limits for the rat,. . /a 2 may be

computed. The lower limil is

S, 1

S2 V Fa/2(" - 1, n2 - 1)

and the upper limit is

s ___ ,___,(______-___,_ _. __- ) - s V Fal.(n - 1, ni - 1)

S2 \f Flal2(n1 - 1, n., - 1) S2
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The latter form of the upper limit should be used for computation. i

a. Determination of Sample Size. We can determine the sample size
necessary for estimating the ratio aol/o2 within p% of its true value with

confidence coefficient 0.90, 0.95, or 0.99 from the number of degrees of

freedom 1 = 12 = shown in Appendix Chart X.

Example. How large a sample should be drawn from each of two

populations in order to estimate the ratio g1 /a 2 within 20% of its true
value with confidence coefficient 0.95 ?

From Appendix Chart X for p = 20%, we find the number of degrees

of freedom f = 99. Therefore the sample size n, = n, = n = 99 + 1

= 100.

NOTE: From Appendix Charts iX and X it follows that a total of
slightly more than four times as many observations are needed to compare

two unknown standard deviations with any given accuracy as are needed to

compare one unknown standard deviation with a known value with the

same accuracy.

3.4. M Test for Homogeneity of Variances

3.4.1. Assumptions

(1) The populations have normal distributions.

(2) The samples are random samples drawn independently from the
respective populations.

3.4.2. Test

To test the null hypothesis that k populations, from which k samples of

sizes ni, n2 , , nk have been drawn, have the same variances, we compute

k

Mv log, -= ]Ij log, sV,
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where

fi =n - 1, the number of degrees of freedom in computing s4 for
the ith sample

k

= estimate of the variance of the ith population

loge = 2.3026 log(,

If we wish to use common logarithms (base 10), we substitute "logo" in
the formula wherever "loge" occurs and multiply the final result by 2.3026.

Appendix Table 6 gives values of M at the 5% significance level. If the
computed value of M exceeds all the values in the rows for the given k, it
is significant at the 5% level, and we reject the null hypothesis that the
variances are all equal. If M is less than all the values in the rows, it is not

significant at the 5% level, and we cannot reject the null hypothesis. If M
falls within the range of tabled values for the given k, a more refined
technique is necessary. We compute

k 1 1

To be significant, M must exceed the appropriate value under cl (interpo-

lating between values of c, if necessary), opposite the given k. For the
,computed c,, the appropriate critical value lies between the value in row (a)

and the value in row (b).

The (a) value is a maximum, obtained when all the values fi are equal.

Thev (b) value is a minimum, obtained when some of the values fi = I and
the rest are infinite. In case neither condition (a) nor condition (b) applies
and the computed Al lies between the (a) and (b) values (as will rarely

happen), this borderline case may be attacked by methods of Ref. 3.5.
Ref. 3.5 gives both 1 and 5% points.

Refer to Chapter 5 for a test of homogeneity of means, which can be

applied if the M test shows that the variances are homogeneous.

Example. Table 3.2 gives statistics on 10 samples of 6 from the
production of 10 different machines. Is the variability the same for all
machines ?
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TABLE 3.2. DATA ON SAMPLES FROM 10 MACHINES

Machine s4 oge sxi

1 95.46 4.559 11.7

2 26.16 3.264 6.2
3 9.20 2.219 1.0

4 14.70 2.688 2.5

5 14.96 2.705 3.2

6 14.16 2.650 3.2
7 25.36 3.233 6.2
8 24.16 3.185 8.8

9 3.06 1.118 6.3
10 26.70 3.285 4.5

Total 253.92 28.906 53.6

With k = 10, n= n =- 6, and f = f = 5, we compute

k

I -1

2 f is, I
Ss- s = 25.3924) 10

loge -'s, = 3.234

M (50) (3.234) - (5) (28.906) = i7.17

In Table 6 opposite k = 10, we see that the values range from 16.92 to

19.89. Since this range includes our M value, we go on to compute

) = '5 I - I = 2 -- 0.02 = 1.98

The value M = 17.17 is less than the (a) values for both c, = 1.5 and

c, = 2.0; hence no interpolation is necessary for c, = 1.98. We conclude

that no difference among the variances has been shown at the 5% signifi-

cance level. (Note that here the (a) value is the pertinent one, since all

the f' are equal.)
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Chapter 4

TESTS OF DISTRIBUT. IONS AS A WHOLE

AND ALLIED PROBLEMS

4.0. Introduction

In Chapter 2, tests were given to determine whether a sample came from
a population having mean /. In Chapter 3, there were tests designed to
show whether a sample came from a normal population having standard
deviation o,. In this chapter, tests are given to determine whether a sample
comes from a pepulation having a distribution of any specified form. Such
information is often valuable. For instance, several of the tests of Chapter
2 and Chapter 3 required a normal distribution. With the criteria of this
chapter, we can test whether a normal-distribution requirement is satisfied.

Several miscellaneous topics are treated, such as randomness, sensitivity
testing, independence, gross errors, and tolerance intervals.

4.1. Run Test for Randomness

In all the tests given in this Manual, it is required that the sample be
irawn at random from its population. (See Sec. 1.1.1.) Sometimes it is

difficult, without examining the sample itself, to be sure that the selection
does not involve some hidden trend. The run test for randomness, which
can be applied as a one-sided or an equal-tails test, is illustrated by the
following example.

Example. Coded measurements of the weights of 20 grains are
recorded in Table 4.1 in the order in which they were obtained. Test
at the 5% level of significance whether the 20 weights represent a ran-
dom sample from which to estimate the average weight for the population
of all such grains.

We find that the median of the 20 readings is 26 (that is, the average
of the tenth and eleventh when the readings are arranged in the order of

83
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r- TABLE 4.1. CODED MEASUREMENTS OF

WEIGHTS OF 20 GRAINS

12 23 29 28
14 25 10 28

22 27 25 30
21 25 30 30
22 28 30 28

size). We mark with minus signs rea-'ings less than 26 and with plus
signs those greater than 26, as in Table 4.2. Here we are interested not
just in the numbers of these signs (as in the sign test, Sec. 2.5.2a), but
in how they are interspersed. If the sample is random, we should expect
low values and high values (values below 26 and values above 26) to
be fairly well scattered; for instance, we should not expect all the low
values to precede all the high values. On the other hand, we should not
expect them to alternate. If we count an unbroken sequence of plus
signs or minus signs as one "run," the data show that the number of
runs v is 6.

Appendix Table 10 is a tabe of critical values for runs. The table is
entered with quantities n, and n,, the numbers of objects of the two
kinds in the sequence. In this case n, = n, = 10, since there are 10 items
below and 10 items above the median. Thus we find v, 5 = 6 and
v.o,, = 16. A number of runs greater than 6 but less than 16 is consist-
ent with the null hypothesis of randomness at the 5% level of signif-

TABLE 4.2. CODED WEIGHTS OF 20 GRAINS SEPARATED IN RUNS

Run no.

1 2 3 4 5 6

12- 27+ 25- 28+ 10- 30+

29+ 25- 30+
22- 28+
21- I 28+
22- 30+
23- 30+
25 - _ _28+
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,r

icance. A value of 6 or below, or of 16 or above, indicates that the
hypothesis should be rejected at this level, since if the hypothesis is true,
a number of runs either so small or so large would happen with prob-
ability not more than 0.05. (See Sec. 1.1.7 for a general discussion of
tests of hypotheses.)

Since here the conclusion is that the sample is not random, we should
look for possible causes. If the weight readings were taken on the 20
grains at the time of production and in the order of their extrusion, we
should look for a factor (such as the warming-up of a machine) that
would cause an increase, with time, in the weight of the grains. If rejec-
tion had beet.i on the grounds that there were too many runs (> 16),
we should look for a factor in production that tends to cause alternate
heavy and light grains.

Another application of the run test appears in Sec. 4.7.2. For a test of
trend in means, see Sec. 2.8. For a test of the randomness of occurrence of
defects in production, see the example in Sec. 4.2.

4.2. The X2 Test for Goodness of Fit

Suppose the sample values from an experiment fall into r categories. To
decide at the significance level a whether the data constitute a sample from
a population with distribution function f(x), we first compute the expected
number of observations that would fall in each category as predicted by
f(%) The grouping should be arranged so that this theoretical frequency
is at least five for each category. If necessary, several of the original groups
may be combined in order to assure this. To compare the observed fre-
quencies, n, for the ith category, with the expected (theoretical) frequencies,
ei, compute

r
1--1 ei

If the calculated value of x2 exceeds the value X2,r-_-g for f r - 1 - g
degrees of freedom in Appendix Table 4, reject at the significance level a
the nill hypothesis that the distribution function is (x). An explanation of
the subtracted g follows.

If, before the experiment, the distribution function f(x) to be tested
is completely specified (for instance, in an experiment to determine whether
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a coin is "true" by comparing the numbers of heads and tails tossed with
those predicted by the binomial distribution with proportion p = 1/2), then
g = 0. If, before the experiment, we can specify the type or form of the
distribution f(x) which we want to test, but we cannot specify f(x) com-
pletely (for instance, in an experiment to see whether aiming errors have
a normal distribution, or in an experiment to see whether burning time has
a normal distribution with standard deviation 0.01 second), then g stands
for the number of quantities necessary to complete the specification. These
quantities must be obtained as estimates from the experimental data them-
selves. For instance, to decide whether aiming errors have a normal dis-
tribution, we compute from the sample as an estimate of [ and s as an
estimate of o,, and since we use g = 2, the test shows whether the observa-
tions are consistent with the hypothesis that the data come from a normal
distribution. To decide whether burning time has a normal distribution with
standard deviation 0.01 second, we need to estimate / only; here g - 1.

Example. In Sec. 1.2.3, plant records are given showing the fre-
quency of occurrence of x defects in a production day; these data are
repeated in "able 4.3. Test at the 5% level of significance whether defects
are occurring randomly.

i \BLE 4.3. FITTING A POISSON DISTRIBUTION

No. of defects Actual no. Theoretical no.
produced in of occurrences of occurrences of
a day, of x defects in a day, x defects in a day,
X ni e,

0 102 95.3
1 59 71.1
2 31 26.5

4 0 9 1.2 8.0
5 0.2

6 or more 0 0.0

If defects are occurring .andomly, the relative frequencies should fol-
low the Poisson distribution

P(x) (x = 0,1, 2, .X!
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Since we do not know which specific Poisson distribution to expect
(namely, which value of m to use), we must use for m the mean of the
sample, 0.74627. We multiply the total n,-nber of days, 201, by the
theoretical relative frequency in each category, P(x), to obtain the
theoretical number in each category.

In order to have the theoretical frequency in each category at least 5,
we group the last four figures together. We then compute

i-i e,

- - + + (. 3.42

95.3 71.1 26.5 8.0

Taking g 1, because we estimated m from the sample, we find from
Appendix Table 4 that Xo5 .4-1-1 = 5.991. Since 3.42 does not exceed
this ,va!e, we have no reason to reject the hypothesis that defects are
occurring randomly.

4.3. Testing the Fit of a Normal Distribution

To test the hypothesis that a random sample comes from a population
having a normal distribution, w- may fit a normal curve to the data and
then test to see whether the hypothesis is justified. The testing may be
done by means of a X2 test for goodness of fit, in which case the mean
and standard deviation for the ftted normal curve should be estimated
from the grouped sample data. (See Chernoff and Lehmann, Annals of
Mathematical Statistics, vol. 25, pp. 579-586 for the error in applying the

X2 test when ungrouped data are used in fitting.)

An obvious but rough check on normality can be made by plotting the
fitted normal curve to the same scale as the histogram of the grouped data.
(See Fig. 4.1 below.) A more convenient graphical approach calls for the
use of normal-probability graph paper (Keuffel & Esser Co., No. 358-23
and 359--23). If the population is normal, a plot of the sample cumulative
percentage frequencies should approximate a straight line. However, in both
of these graphical approaches there will be difficulty in judging by eye how
much departure from the ideal pa'tern we must expect. Even the plot for a
sample of 1,000 drawn from a population known to be normal often
exhibits substantial irregularity.
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Besides the approach through goodness of fit of the best possibie normal
curve, there are other tests such as the b1, b2, avd a tests; however, many
statisticians now consider the X2 test superior.

Example. A grouped sample of 300 observations of lateral deflection
yields 3 = 0.88 mil and s = 52.53 mils as estimates of the population
mean and standard deviation. The computation was made from the
grouped data of Table 4.4, using Sheppard's correction. Test at the 5%
level of significance whether these data came from a normal distribution.

The observations were to the nearest 0.1 rail; therefore, intervals
beginning at -150.05, -130.05, etc., were used to avoid ambiguity in
grouping. Each group end-point is shown in column 2 as a numbcr of s
units away from 3, so that Appendix Table 1 (the cumulative normal
distribution table) can be used to find column 3. Differencing ,olumn 3
gives the relative frequency for each group a: predicted by the normal
distribution. This frequency, shown in column 4, is multiplied by 300 to
give the theoretical frequencies ej of column 5. Since the theoretical
frequencies are very small in the first and last few groups, all deflections
less than - 110.05 are combined int6 one new g.oup and all deflections
greater than 109.95 into another. Because the net number of groups is
13, and sample statistics, Y and s, were used to estimate the corresponding
population measures, t and a, the number of degrees of freedom for X2

is 13 - 1 -" 2 = 10. From Appendix Table 4, we find that X2  -
.05.10

18.31, and summing the values in column 7, we find that X2 = 4.89. We
conclude that at the 5% level of significance the sample distribution is
consistent with the hypothesis that the parent distribution is normal.

A frequency histogram for the grouped data of Table 4.4 is given in
Fig. 4.1, along with the normal curve with the same mean and standard
deviation.

4.3.1. Transformations To Obtain Normality

Many physical situations produce data that are normally distributed;
others, data that follow some other known distribution; and still others, data
that can be transformed to normal data. For example, when the reaction
rate in a chemistry experiment is proportional to the concentration of react-
ing substances the distribution of rates is not likely to be normal, but the
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TABLE 4.4. GROUPED DATA USED IN COMPUTATION

V FOR X2 TEST OF NORMALITY

- 0.88 Cumulative Theoretical Theor.tical Observed ,)'x normal relative frequency, e, frequency, n,
52.53 probability frequency e[ e

(1) (2) (3) (4) (5) (6) (7)
-00 -0 0

-150.05 -2-873 0.0021 
1

0.0043 1.29 5.19 26 0.6
-130.05 -2.492 0.0064

0.0109 3.271 4

-110.05 -2.112 0.0173

0.0244 7.32 6 0.238
-90.05 - 1,731 0.0417

0.0468 14.04 17 0.624
-70.05 -1350 0 0885

0.0775 23.25 18 1.185
-50.05 -0.970 0.1660

0,.1119 33.57 31 0.197

-30.05 -0.589 0.2779 " 93'5 __01

0.1397 41.91 49 1.199
-10.05 -0.208 0.4176

0.1511 45.33 46 0.010

9.95 0.173 0.5687

0.1411 42.33 41 0.042
29.95 0.553 0.7098

0.1150 34.50 33 0,065
49.95 0.934 0.8248 -- -

0.0810 24.30 28 0,563
69.95 1.315 0.9058

0.0492 14.76 13 0.210

89.95 1.696 0.9550
0.0260 7.80 6 0.415

109 Q5 2.076 0.9810 4
0.0120 3.60 4

129.95 2.417 0.9930
0.0047 1.41 0

149.95 .88 0.9977I
0.0017 0.51 5.70 0 6 0.016

169.95 3.219 0.9994
0.0004 0.12 2

189.95 3.599 0.9998

0.000" 0.06 0

1.0000 300.00 300 4.890

distribution of their logarithms may be theoretically normal. The most com-
mon transformations are y = logx (frequently used in sensitivity testing),

and y = x. An easy way to decide whether one of these transformations is
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50

4J40
APPROXIMATING
NORMAL CURVE

- 30

20

..

~ 0

-170 -150 -130.-10 -90 -70 -50 -30 -10 10 30 50 TO 90 110 130 150 ITO (90 210

LATERAL DEFLECTION, MILS

FIG. 4.1. Frequencies of Lateral Deflections, Showing the Approximating Normal
Curve With 3 = 0.88 Mil and s = 52.53 Mils for Sample Size 300. (Precise inter-
vals begin at -150.05, - 130.05, etc.)

likely to produce normality is to make use of special graph papers that are
commercially available. For instance, if y = logx produce3 normality, the
sample cumulative distribution curve plotted on log-probability graph paper
will approximate a straight line.

4.4. Confidence Band for Cumulative Distribution

To construct, on the basis of a random sample of size n, a 100(1 - a)%
confidence band for the cumulative distribution of the population, draw
the cumulative-percentage histogram for the sample. Find in Appendix
Table 11 a quantity d corresponding to the sample size n and the con-
fidence coefficient 1 - a. Draw two "staircase" lines parallel to the sample
histogram, one 100da percentage units above the histogram, the other
100da percentage units below. In the long run, confidence bands so con-
structed for random samples from populations will, in 100(1 - a)% of
the cases, completely contain the population cumulative-distribution curve.

Example. In Sec. 2.5.3b, data were given on the lengths in mm of
parts produced by two machines. The lengths for Machine 2, x2 j,
arranged in order of size, are:
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93.75 94.36 94.73 95.02 95.31

93.90 94.50 94.82 95.21 96.16

Construct the sample cumulative histogram and a 95% confidence band.

The cumulative histogram of these data (Fig. 4.2) shows that 0% of
the sample had lengths less than 93.75; 10%, lengths less than 93.90;
20%, lengths less than 94.36; .. . ; 90%, lengths less than 96.16;
and that all 10 lengths were 96.16 or less. Reference to Appendix
Table 11 gives for n = 10 and a = 0.05 the value d,, = 0.41. Thus we
construct the boundaries of the confidence band 41 percentage units
above and 41 -)ercentage units below the histogram.

If we superimpose on a graph like Fig. 4.2 the cumulative distribution
curve F(x) for some theoretical distribution 1(x) and if the curve leaves
the confidence band at any point, we can reject at the significance level a
the null hypothesis that the population was distributed according to 1(x).
Thus, the confidence band gives us a possible test method, though the
method of Sec. 4.2 is more powerful.

If we wish to test whether a distribution is of some general form, such
as normal, but not to test specific values of constants (parameters), esti-
mates of the latter are made from the sample. The test may --ill be made,
but it lack3 discrimination, in the sen.e that it will not reject the distribution
unless its form is very different from that of the null hypothesis. It may be
used correctly to reject such a distribution at a significance level no greater
than a, but it will reject much too seldom.

4.5. Sensitivity Testing

"Sensitivity testing" is testing in which an increasing percentage of items
fail, explode, or die as the severity of the test is increased. In such testing
we cannot measure the precise severity of test (that is, the precise magnitude
of the variable concerned) which would barely result in failure, but can
only observe whether an applied severity results in failure, or does not.
For instance, in a test to discover the minimum range to target at which a
particular rocket will function as intended, we might find a given range to
be either too short for proper functioning or long enough for proper func-
tioning (but probably not the minimum length). The rocket expended in
the first trial cannot be used again. The same difficulty arises in tests for
determining the lethal dosage of a poison (Ref. 4.2). Any given dosage
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FIG. 4.2. Cumulative Histogram With 95% Confidence Band.

either kills or does not kill the experimental animal. The animal, having

been affected or killed by the first trial, cannot be used again. In the

determination of critical height (the minimum height from which a weight
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must be dropped on a charge to explode it), a charge is either demolished
or changed in its characteristics as a result of the trial. In al! these cases we
see that each item has its own critical level of severity, so that in a whole
population of items there is a probability distribution of critical levels.

Sensitivity tests for finding the mean, standard deviation, or percentiles
in such cases may be analyzed by "staircase" methods (see Sec. 4.5.1 for a
particular staircase method and R-f. 4.3 for others) or by "probit analysis"
(see Ref. 4.2 and 4.6). Both methods depend upon an assumption of
normality in the quantity being studied. A rough but quick method for the
critical-height test, for instance, is to plot the percentage of items explod-
ing below each given height on the commercially available arithmetic-
probability graph paper and fit a straight line by eye. This fitting provides
a chick of normality also, and may suggest a transformation of the inde-
pendent variable which will give approximate normality if the data do not
lie near a straight line. Probit analysis does the fitting more precisely and
gives a measure of the precision, but staircase methods are more efficient
when they are applicable. The staircase methods are recommended when
the effect on each item is known immediately or soon after each application,
and when the independent variable can be readily adjusted. For instance,
staircase methods are appropriate for the charge critical-height test described
above. Probit analysis is recommended when it is not practical to measure
one item at a time; for example, when the ultimate effects of given amounts
of radiation are to be measured on a group of small animals, such as a pen
of hamsters or mice. If it is inconvenient to adjust the independent variable,
as in the case of tests of rockets at different temperatures, probit analysis is
appropriate. For detailed application of probit analysis and the method of
Sec. 4.5.1 to fuze safety and reliability, see Ref. 4.11.

4.5.1. Up-End-Down Method
A valuable and frequently used method of sensitivity testing of the stair-

case type is the "up-and-down," or "Bruceton," method (Ref. 4.5, pp.
279-87). Normal distribution and ready adjustment of the independent
variable to any prescribed level are required. The method is especially
applicable to estimating the mean A (50% point) of the distribution because
it concentrates the observations in the neighborhood of the mean; it can
also be used for estimating the standard deviation o and other percentage
points, though less accuracely.
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Example. For estimating the distribution of the minimum functioning
range of a type of rocket against a given type of target, the target would

first be placed at a range y' (the best guess for /, the range at which 50%
of the rockets would function, though it is not necessary that y' be a good
guess). A rocket is fired at the target. If it functions, a second rocket is
fired at a target at range y' - d, where d is chosen beforehand as about
0.5a if t is to be estimated with maximum precision, and as about 1.5a
if the 10 or 90% point is to be estimated with maximum precision. If the

first rocket does not function, the second rocket is fired at a target at range
y' + d. Subsequent firings are at similarly altered ranges; i.e., the target
or the launcher is moved closer by d after f :nctioning, farther by the
same amount after nonfunctioning, until all the rockets of the prescribed

sample are expended. The results can be recorded as shown in Fig. 4.3,
where x denotes a functioning rocket and o a nonfunctioning rocket. The

notation x and o could be reversed or replaced; in some other type of test

the probability of explosion might decrease as distance increases, for

example.

500- x

>- 400 - 0 x x

0300 - x o x o x x x

<200" 0 x x 0 0 x 0 x 0

100 "0 0 0 0 0

FIG. 4.3. Type of Chart Used in Up-and-Down Method of Sensitivity Testing.

The analysis involves only the symbol occurring less frequently. Since

there are 13 o's and 12 x's, the latter are used. Let Yo be the smallest range

(lowest level) of the symbol occurring less frequently; let y, = y0 + id;
and let ni be the number of these symbols at the level y,. Thea we can

summarize the data and analysis as in Table 4.5, and make the following

estimates in terms of the column sums N, A, and B.
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TABLE 4.5. EXAMPLE OF DATA ANALYSIS FOR UP-AND-DOWN
METHOD OF SENSITIVITY TESTING

Range i n, T i n,

500 3 1 3 9
400 2 2 4 8
300 1 5 5 5
200 0 4 0 0

Total ..... N 12 A =12 B = 22

Estimate of /: =yo + d A

(+ if based on symbol at smallest value, here o;
- if based on symbol at largest value, here x)

Estimate of a: s= 1.620d (NB-A2 + 0.029)

(valid only if (NB - A2)/N 2 > 0.3)

Estimate of 100p% point t + zpa': y + zps

(z, is the z for F(z) p in Appendix Table Z)
_6s+d

Estimate of standard deviation of y: sp - 6 N

(valid only if d < 3a)

1.1s + 0.3s2/d
Estimate of standard deviation of s: s, = 1

(valid only if d < 2u)

Estimate of standard devip'ion of y + z,,s: sp+,p, = s-+z s

Approximate 100(1 - Y) % confidence limits for any parameter are

obtained by taking its estimate and adding and subtracting ta/2,,N-1

times the estimate of its standard deviation. Thus, applying the formulas

given above to the data of Table 4.5, we have:



96 TESTS OF DISTRIBUTIONS AS A WHOLE §4.5.

y-(200+ 100 12 - I = 250
(12 2,

. -- 162 1 + 0.029 =140
144/

10% point = 250 + (-1.28) (140) 71

6(140) + 100 38.8

7(3.46)

1.1(140) + 0.3(196)-- = 61.5

1.21.1 V (38.8)" ± (1. 28 7 i.5)2. = 87.8

Approximate 95% confidence limits for the 10% point are

71 - (2.201) (87.8) = 71 -'- 193 or - 122 and 264

In this example, the distribution is certainly confined to positive values,
so -122 can be replaced by 0.

The general formulas shown above can also be used to determine
sample size. In the present example, since the parameters are seen to
be but poorly estimated by this;samp,- o.1" size 25, a larger sample size
would be desirable. If an estimate of a can be made from previous
experience or design aims before the experiment, this estimate should
be substituted for s in the formula shown above for sp, s., or s-o..,,
in order to determine the sample size required for a prescribed precision.
The totai sample size is at least Iu ice the N of the formulas given above.
Thus, to determine the 10% point within ±50 with 95% confidence,
(,, _s_. must be not greater than 50, so that s must be about
25 or its square about 625. If, from previous experience, a is thought
to be about 100, and d is consequently taken as 1.5a, = 150, then

625= N L 0+ (1.28)2 (110 + 3,000N2 7 / 1 150 ,

39,100

N

N 63
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"I

Therefore, the required number of rockets is about 130. In this way the
cost of the test required for the prescribed precision may be found. If
this cost is prohibitive, it becomes necessary to re-examine the importance
attached to knowing the desired parameter with the prescribed precision,
and to rebalance the costs and the risks involved.

4.6. Test for Independence in Contingency Tables

Table 4.6 shows a sample of size n classified according to two charac-
teristics (I and II). The number of sample members in the cell in the ith
row and the ith column is n s. Such an array is called a continL ancy table.

TABLE 4.6. CONTINGENCY TABLE FOR Two
CHARACTERISTICS OF A SAMPLE

Character- Characteristic I
istic 121 2 ... J

1 nil flu . .. Nis X31.
2 n, ul . . X3i, #2.

r flr • . frv #r.

Total n. n., . . . n.@ n

If the two characteristics are independent of each other, the expected

number of sample members in any cell is calculated by simple proportion
from the marginal totals to be ni.n.i/n. We use the X1 test to test the null
hypothesis that the two characteristics are independent by comparing

(nij - nin.j/n)2 _2
i,) nii~/N\, . .j

with the value in Appendix Table 4, rejecting the hypothesis at the signif-

icance level a if X2 > X2,(r-,.)-1. The number of degrees of freedom,
f, is (r - 1) (s - 1). As in Sec. 4.2, the application of the X2 test is reliable
if every expected frequency is at least 5.
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In the contingency table, the headings of the rows and columns need
not be numerical groupings. The following combinations, for instance, are

possible:

Characteristic I, degree of damage: no damage, damaged slightly, com-
pletely demolished.

Characteristic 11, age of structure: old, new.

Characteristic I, estimate of applicant's ability: excellent, good, fair, poor.
Characteristic II, person making estimate: Appleby, Badger, Christofer.

Example. An experiment on 75 rockets yields data on the character-
istics of lat(,al deflection and range as shown in Table 4.7. Test at the

5% level of significance the hypothesis that these two characteristics are

independent.

TABLE 4.7. CONTINGENCY TABLE FOR EXPERIMENT
WITH 75 ROCKETS

Lateral deflection, mils Total

-250to-51 -50to49 50to199

0 to 1,199 5 9 7 21
1,200 to 1,799 7 3 9 19
1,800 to 2,699 8 21 6 35

Total 20 33 22 75

We note that the minimum expected frequency is at least 5 and

compute

\jj ni.n.-
I 2 92 7 "3

5____ __ 72 72 3

- 75 (21)2) + (21)(33) + (21)(22) + (19)(20) (19)(33)

+ t+ 8__ _ 21 •_6 _ -1
+ (19)(22) + (35)(20) ( (33) (35)(22) j

= 75(0.13955) = 10.466
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When the form

X 2 (= n y( n i n j .

is used, we must carry extra decimal places to obtain an accurate value,
because of the order of operations (a small difference between relatively
large numbers, multiplied by a large number).

From Appendix Table 4, we find thatX20.5.(2)(2) = 9.488. Since 10.466

exceeds this value, we reject the hypothesis that lateral deflection and
range are independent characteristics.

rhe X2 test is an approximation which improves as the cell frequencies
increase. In the case of 2-by-2 tables (i.e., contingency tables for which
r = s = 2), the approximation can be improved by applying Yates's conti-

nuity correction. If we have the entries shown in Table 4.8, then on the
null hypothesis that the two characteristics are independent, the expected
frequency (with the given marginal totals) corresponding to the observed
frequency a is (a + c) (. + b)/n. Applying Yates's correction, we replace
a by a + 1/2 if (a + c) (a + b)/n > a, and by a - 1/2 if the reverse inequality
is true; then the other frequencies b, c, and d must be changed by 1/2 so as
to preserve the same marginal totals. (Actually, it makes no difference
whether we start with a, b, c, or d.) The correction thus decreases the differ-
ence between each pair of observed and expected frequencies by 1/2. If each

observed frequency is so close to the expected frequency that the correction
reverses the algebraic sign of the difference, then the agreement is as
good as possible, the null hypothesis is immediately accepted, and no

detailed calculation is necessary to test it. Otherwise Yates's correction

TABLE 4.8. CONVENTIONAL NOTATION FOR A 2-BY-2
CONTINGENCY TABLE

Character- Characteristic I Total

isticlI 1 2

1 a b a+b
2 c d c+d

Total a + c b+d n
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should always be made in 2-by-2 tables; this is especially important for smail
expected frequencies. If small expected frequencies, say less than 5, occur in
a 2-by-2 table, it may be desirable to apply an exact test. (See Ref. 4.7, 4.8,
4.9, and 4.10. Table 38 of Ref. 4.9 gives the exact probability of each
2-by-2 table with row (or column) sums up to 15; Ref. 4.8 extends this
table to row (or column) sums up to 20. See Sec. 4.7.1 for an example of
the use of Yates's correction.)

For a 2-by-2 table, after the application of Yates's correction, the formula
simplifies to

n(a'd' - b'c' 2

(a + b)(a+ c)(c + d)(b + d)

where the primes indicate that Yates's correction has been applied.

4.7. Consistency of Several Samples

The x2 test of Sec. 4.7.1 may be used on data in the form of frequencies
to determine whether several samples are "consistent," that is, drawn from
populations having the same distribution. For data not in the form of
frequencies, the run test of Sec. 4.7.2 is applicable when only two samples
are involved.

4.7.1. The X2 Test

Let s different samples be drawn and the degree of a certain characteristic
be observed for each one, the frequency nij with which the ith degree of
the characteristic (i = 1, 2, . • • , r) occurs in the jth sample being recorded
in a table of the same form as Table 4.6.

To test, at the significance level a, the null hypothesis that the s samples
were drawn from populations having the same distribution, proceed with
the X2 test exactly as in Sec. 4.6, even though the statistical model is now
different; that is, the column totals 're not random but are the specified
sample sizes.

Example. The results of testing fuzes at -40 arj 130°F are shown
in Table 4.9. Is there a significant difference at the 5% level in the pro-
portion of failures at the two tcmperatures?

We apply Yates's continuity correction described in Sec. 4.6. Here the
expected frequency of failue, at 130'F i- (59 X 15)/13. = 6.705 > 6.

I

• *n m m nil n9'
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ir TABLE 4.9. RESULTS OF EXPERIMENT WITH 132 FUZES

Effect of Fuzes tested
_______ _______Total

test At -40 F At 130"F

Successes 64 53 117
Failures 9 6 15

Total 73 59 132

Therefore, we replace 6 by 6.5, and adjust the other frequencies to pre-
serve the marginal totals. The adjusted data are shown in Table 4.10.
If the expected frequency had been 6.4, for example, we would not have
replaced 6 by 6.5; we would have accepted immediately the hypothesis
of consistency, since 6 is different from 6.4 by less than 2.

TABLE 4.10. TABLE OBTAINED BY APPLYING YATES'S
CORRECTION TO TABLE 4.9

Effect of Fuzes tested Total
test At - 40*F At 130F

Successes 64.5 52.5 117
Failures 8.5 6.5 15

Total 73 59 132

Using the simplified formula for a 2-by-2 table, we have

+ n(a'd'- b'c')2

(t + b) (a + c) (c + d) (b + d)

_ 32[(64.5) (6.5) - (52.5) (8.5)]2 = 0,1273

(117) (73)(15)(59)

Since the tabled value x2,," 1 = 3.841 is greater than 0.01273, we cannot
reject the null hypothesis that the proportion defective is the same at the
two temperatures.

4.7.2. Run Test for Comparing Two Samples

The run test described in Sec. 4.1 can be used also to determine whether
two random samples, say x's and y's, were drawn from populations having
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the same distribution. The form of the distribution need not be specified
or even known.

Arrange all the readings, x's and y's together, in order of size. Count v,
the number of runs in x's and y's (instead of +'s and -'; as in Sec. 4.1).
Reject the null hypothesis of consistency if v is less than or equal to the
value v., of Appendix Table 10. (This gives a test at the 5% level of
significance.)

Example. In Sec. 2.5.3b, two samples of ten were given whose
respective populations were assumed to have normal distributions with
the same standard deviation and with means 3.00 mm apart. Test at the
5% significance level whether the difference is 3.00 mm.

We subtract 3.00 mm from the readings of Sample 1 and list all 20
readings in order of size, as shown in Table 4.11. The number v of runs
is 6. For n, - n, = 10, Appendix Table 10 gives v.,, = 6. Thus, we
reject the null hypothesis. Note that the test says nothing about whether
the distributions are normal, but merely considers whether they are the
same.

TABLE 4.11. LENGTH IN MM OF

PARTS FROM Two MACHINF.S

93.75 95.07"
93.90 95.21
94.36 95.31
94.50 95-50a
94.73 95.510
94.82 95.60a

95.02 95934

95.03a 96.01"

95.06a 96.16
95.06a 96.674

'Readings from Sample 1, with 3.00 mm
subtratecd.

4.8, Gross Errors

Often an experimenter wants to discard from his sample a reading that
appears too large or too small, feeling that it will ruin his results. When
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is he justified in doing so? There is a simple answer in physical terms:
He is justified whenever the reading in question did not come from the
population he intenced to sample but from some other population. For
example, if h, learns that the powei supply was erratic during the period
from 0840 to 0845, he is justified in throwing out readings known to have
been taken doring that five minutes, under the supposition that they did
not come from the population with the intended power supply.

Whenever possible, such a physical criterion as this should be used when
data are to be discarded. The experimenter who discards a reading just
because it looks too large compared with the others may be in error, for
"outside" readings are often correct!y drawn from the right population and
should influence the results, especially in small samples. For instance, it can
be shown that in the long run one out of every 10 samples of size 3 from
the same normal population will have one of the readings at least 16 times
as far from the middle one as the other.

If the experimenter wants a statistical test to help satisfy himself that a
reading is too extreme to have come from the right population and if he is
dealing with a normal population, Appendix Table !6 may be used ar f,)l-,
lows: Arrange the sample in order of size, x1, x., * • , x,,, starting with
the smallest or the largest, depending on which value is to be considered for
rejection. According to the sample size n, compute the ratio shown in
Appendix Table 16. If it exceeds the critical value given under a = .05,
reject at the 5% level of significance the null hypothesis that x, is from the
same normal population as the other sample members. In this case, omit x,
from further calculations and us: the values x,, x,, • " " , x, 1 , x,.

Example. Burning times for -,*y firings, from a normal distribution,
were recorded as follows:

0.505 0.511 0.519
0.478 0.357 0.506

Since the reading 0.357 is much smaller than the other readings, should
it be discarded? Suppose the experimenter suspects that the reading was
subject to an observer's error, an unusual condition in firing, or a faulty
gage, but wishes to apply a statistical test to help satisfy himself that his
explanation is correct.
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For the six readings given .bove

X2 - x1 _ 0.478 - 0.357r1 - 035 0.747
x - x, 0.519 - 0.357

Since 0.747 exceeds the tabled value 0.628, listed undcr a = .05, the
probability is less than 5% that six readings from the same normal popu-
lation would include one reading so remote from the rest.

4.9. Tolerance Intervals

To construct, on the basis of a sample n from a normal population, a
pair of symmetric tolerance limits (Sec. 1.1.11) for 100P% of the population
with confidence coefficient I - a, obtain a coefficient K from Appendix

Table 17. The desired limits are then Y - Ks, where 3 ai.d s are computed
from the sample. If many samples n are drawn and the limits 3 + Ks

computed in each case, then 100(1 - a) % of the time the tolerance limits

so computed will enclose at least looP% of the population from which the

sample was drawn.

For more material on tolerance intervals, see Sec. 1.1.11; for more exten-

sive tables of K, see Ref. 4.10.

Example. A sample of 28 has mean 10.02 and standard deviation
s = 0.13. Find tolerance limits, having confidence coefficient 0.95, for

90% of the population.

For n = 28, a = 0.05, and P = 0.90, Appendix Table 17 gives K =

2.164. We compute

-±. Ks = 10.02 -± (2.164) (0.13)

= 10.02 -- 0.28

The tolerance limits are 9.74 and 10.30. If tolerance limits - 2,164s
are constructed for many samples of size 28, in the long run 95% of such

pairs will enclose at least 90% of the nogmal population sampled.

A one-sided upper tolerance limit U can be constructed so that with

confidence coefficient I - a at least lOOP% of the normal population will be I
less than U (Ref. 4.10). We have

U = -Y + ks
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where

k = K-, + ] K'p - al'
a

K2

,a a
2(n - 1)

lb =KiP K

n

with K, defined so that the area under the standardized normal curve to

the right of K, is equal to e as in Fig. 4.4. Similarly, a one-sided lower

tolerance limit is given by L =77 - Ks.

e

FIG. 4.4.

Ext'Aple. Find a one-sided tolerance limit for the preceding example.

We read opposite F(z) = 1 - e in Appendix Table 2 the desired

Ke, and compute
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KI-1, = K.1, = 1.282

K, = K,, = 1.645

n= 28

a- - -(1.645)2=0.48

2(27)

b (1.282)2 - _1.645) = 1.546928

k -1.282 + V (1.282)2 - (0.94989) (1.5469)_ 1.789

0.94989

U -" + ks = 10.02 + (1.789) (0.13) = 10.25

Thus, we may be 95% confident that at least 90% of the population
lies below U = 10.25.
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Chapter 5

PLANNING OF EXPERIMENTS AND
ANALYSIS OF VARIANCE

5.0. Introduction

An experiment is generally conducted (1) to determine whether some
conjectured effect exists, and (2) if the effect does exist, to determine its
size. If the experimenter is interested only in the effect of one factor (or
variable) on one other variable, the design of his experiment may-be
simple. But if he is concerned with more than one factor, as is frequently
the case, his experiment or experiments will be more complex and may be
conducted in various ways. The classical method is to restrict attention to
one variable at a time, the other factors being held fixed; however, this
method also restricts conclusions. When several factors are of interest,
more reliable and more general conclusions can be reached by introducing
further levels of these factors in the initial design.,

Allowing more than one factor to vary in a single integrated design
also permits determination of the interaction of factors; for instance, we
may learn that increasin'g a constituent of propellant powder increases the
burning rate more at one powder temperature than at another.

Aside from the factors that we want to investigate, there are background
conditions which may affect the results of the experiment. Some of them
may be taken into account explicitly in the design. The influence of the
others should be minimized by scheduling the experiments with all the
desired combinations of levels and factors in a random order that has
been determined, for instance, by consulting a table of random numbers.

There may be variations in background conditions that are unknown
to the experimenter. To be able to conclude validly that a postulated effect
exists, he should plan the experiment so that a control item will be sub-
jected to the same background conditions (except for random fluctuations)
as each experimental item. For example, it cannot be concluded that a

109
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new type of rocket has a smaller dispersion than a previous type unless the
two are fired under the same conditions; for instance, one rocket of the
previous type might be fired as a control with each new rocket.

Measurements are not precisely reproducible; therefore, to an extent
depending on t.ie size of the experimental error, the experiment must be
repeated in order to draw valid conclusions. Each complete repetition of
an exeriment is called a replication. The most efficient procedure would
be to (1) estimate the experimental error before the experiment on the
basis of previous experience, (2) determine the number of replications
accordingly, and (3) perform all the various parts of the total experiment
in a random order.

The reliability of experimental conclusions can also be increased by
refining the experimental technique (reducing the standard deviation of
the experimental error). Since a few replications of a refined technique
can achieve the same reliability as many replications of a coarse technique,
the choice of method in a particular investigation may be made on the basis
or cost.

These general principles are exemplified in later sections. However, there
are many designs more complex than those given in this Manual; for these,
the experimenter should consult a statistician or study the references at the
end of this chapter.

The data obtained from an experiment involving several levels of one
or more factors are analyzed by (he technique of annlysis of variance.
This technique enabls us to break down the variance oi the measured vari-
able into the portions caused by the several factors, varied singly or in
combination, and a portion caused by experimental error. More precisely,
analysis of variance consists of (1) a partitioning of the total sum of
squares of deviations from the mean into two or more componen. sums of
squares, each of which is associated with a particular factor or with experi-
mental error, and (2) a parallel partitioning of the total number of degrees
of freedom.

Let us :,..sider an experiment on the extrusion of propellant grains in
which we desire tc determine the effects of extrusion rate and die tempera-.
ture on grain port area. Ambient temperature and humidity during extru-
sion are background conditions that may affect the results. Values of port
area might be observed at several levels of each factor, at extrusion rates
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of 15, 20, and 25 in/min and at die temperatures of 120 and 1400 F. Each
combination of one level of extrusion rate with one level of die tempera-
ture is called a treatment; for instance, an extrusion rate of 20 in/min
with a die temperature of 140 0 F. (Some authors call this a treatment com-
bination rather than a treatment. The levels of each factor then become
the treatments.) If the background conditions were controlled at each of
several levels, each treatment would alSo include one level of ambient
temperature and one level of humidity. Alternatively, ambient temperature
and humidity might be (1) held constant (thus restricting the range of the
conclusions); (2) allowed to vary as usual, but with their effects randomized
by randomizing the order of treatments; or (3) recorded during the experi-
ment and later treated by analysis of covariance. (For information on the
analysis of covariance, see Ref. 5.5, 5.14, and 5.15.)

Analysis of variance, analysis of covariance, and regression analysis are
specializations of the more general theory of testing linear hypotheses.
(For an explanation of regression analysis, see Chapter 6 of this Manual;
for the theory of testing linear hypotheses, see Ref. 5.10, 5.11, and 5.12.)

5.1. Common Designs for Experiments

The following considerations apply g,.nerally in designing experiments or
comparing designs. Some specific designs are treated in Sec. 5.1.1-5.1.4.

The precision of an experiment is measured in terms of o, the standard
deviation (assumed common) of the populations of observations for each
treatment-in other words, the experimental error. (See Sec. 5.3.) If the
design is given m replications, so that each treatment is applied m times,
the standard deviation of the estimate of the difference between two treat-
ment effects is proportional to r0/\"m. Thus, as the number of replications
increases, the error decreases. This formula applies only if the replications
are independent and the experimental material remains homogeneous as
the experiment increases in size. Elaborations of such error considerations
make it possible to determine how large an experiment should be for
detection of effects of a prescribed size, somewhat in the manner that
Appendix Charts V-X can be used in simpler experiments. (See Ref. 5.4
and 5.10.)

csi-,ns may be compared on the basis of the number of degrees of
freedom for estimating the standard error ao. A decrease in the number
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of degrees of [:eedom will decrease the sensitivity of the experiment.
Suppose that an observed variable, compressive strength of grain, is to be
tested with four levels each of three factors: temperature, extrusion rate,
and humidity. Let us consider the following methods:

1. We may use a full-scale 4 X 4 X 4 factorial design (Sec. 5.1.1) with
64 treatments. This will yield 27 degrees of freedom for estimating the
error variance.

2. We may decide to include only two of the three factors if the results
obtained from these are to be applied to only one level of the third factor,
or if the four levels of the third factor are expected to have about the
same effect on the compressive strength of the grain. (If this assumption
is not justified, the standard error o( will be increased by the variation
among the levels in case the four levels of the third factor are included
by randomization. If only one level of the third factor is included, the
results will apply only to that level.) Using a 4 X 4 factorial design with
16 treatments will yield nine degrees of freedom for estimating the error
variance if the two factors are independent; i.e., if their interaction can be
neglected.

3. We may replicate the 4 X 4 design of paragraph 2 four times
to give 64 applications of the 16 treatments (four each). This procedure
will yield 48 degrees of freedomn for estimating the error variance. Then

the standard error for the difference between two treatment effects will be
the same as in paragraph 1 and one-half that in paragraph 2.

4. We may use a 4 X 4 Latin-square arrangement (Sec. 5.1.4) of two
factors, with the four levels of the third factor superimposed according
to a randomly selected 4 X 4 Latin square. This design assumes that all
three factors are independent and gives information on all three with a
minimum number of treatments-16 in the example. However, there are
only six degrees of freedom for estimating the error variance; as a result,
substantial real effects of the factors may go undetected because of the
large random fluctuation which must be allowed for error.

Which of the above designs is best cannot be decided categorically
without further knowledge of the conditions to be met. Under various

conceivable circumstances any one of these designs, or some other design,
might be chosen. Whatever the bases for decision, it is essential that a
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systematic method be used for selecting and carrying out the design. The
following list provides a useful general routine for designing and running
an experiment.

1. State the objectives of the experiment.,

a. Use in!ormation from previous experiments.
b. Choose experi, iental conditions to represent the conditions under

which the results will be applied. This may be done by either
systematic choice or randomization.

c. State the precise hypotheses that are to be tested.
2. Draw up a preliminary design.

a. Take into account the experimental error, and the number of
degrees of freedom for estimating it, provided by each proposed
design.

h. Consider the cost of experimentation versus the cost of wrong
decisions.

3. Review the design with all collaborators.
a. Reach an understanding as to what decisions hinge on each out-

come. Keep notes.
b. Encourage collaborators to anticipate all factors that might affect

the results.
c. Discuss the experimental techniques in sufficient detail to discover

any procedures that might lead to bias.
4. Draw .,p the final design.

a. Present the design in clear terms to assure that its provisions can be
followed without confusion.

b. Include the methods of analysis as part of the design, ascertaining
that conditions necessary for the validity of these methods will be
met.

5. Carry out the experiment.
a. During the course of the experiment, maintain communication

among all collaborators, so that questions arising from unforeseen
experimental conditions or results may be answered in keeping
with the design agreed upon.

6. Analyze the data.

a. Follow the methods outlined in the final design (Step 4).
7. W!rite a report.

a. Present the data and results in clear tables and graphs.
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b. Compare the results with the stated objectives of the experiment
(Step 1).

c. If the results suggest further experimentation, outline the course
that such experimentation should take.

5.1.1. Complete Factorial Design for Treatments

The complete factorial design for arranging the treatments to be tested
calls for the use of every combination of the different levels of the factors.
Applying the complete factorial design to the example in Sec. 5.0, the
number of treatments would be 3 X 2 = 6, as shown in Table 5.1.

TABLE 5.1. TREATMENTS FOR COMPLETE FACTORIAL

DESIGN OF PROPELLANT-GRAIN EXPERIMENT

Extrusion rate, Die temperature,
Treatment in/min OF

1 15 120
2 15 140
3 20 120
4 20 140
5 25 120

6 25 140

Note that in this design both factors, extrusion rate and die temperature,
are investigated simultaneously, whereas in the classical method all varia.
bles but one remain fixed. The advantages of complete multiple factorial
design are (1) the increased generality of the conclusions for each factor,
which may apply to several levels of the other factors rather than to one
fixed level; and (2) the possibility of checking for interactions (i.e., effects
produced by two or more factors jointly that go beyond the total of their
individual effects). Examples of interaction are common in chemistry: the
properties of a mixture may differ widely from the properties of the
components.

To compare only two treatments-an extrusion rate of 15 it nin and
a die temperature of 120OF with an extrusion rate of 20 in/mi. and a die
temperature of '20°F-and to estimate the experimental error by the
variability within each treatment, we could use the t test (Sec. 2.5.3b).
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Also, all six treatments mentioned abo, e could be compared pairwise in
(6 X -)/2 = 15 t tests, but these tests would not be independent. More

information can be extracted from the data if we study all the treatments
together.

5.1.2. Complete Randomization for Background Conditions

Suppose we wish to test the effects of the use of Friden, Marchant, and
Monroe desk computers (three treatments) on the time it takes to compute
sums of squares of 12 four-digit numbers, and to obtain conclusions
unaffected by the variability among operators.

Several background conditions, though not of prime importance in the
experiment at hand, are likely to influence the results. If only one oper-
ator is used, he may have a natural preference for one of the machines,

so that the experimental results will apply only to him. If several operators

are used, one may be so much more skilled than the others that his com-
puter will appear best even if it is not. The order of the trials may make a

difference. Each operator may become more relaxed during the test and
his speed may consistently increase as the test progresses, or he may tire

and his speed may consistently decrease. If he uses the same twelve num-

bers in each trial, his proficiency will almost certainly increase.

Some of these conditions may be varied systematically. For instance, we

can arrange the experiment so that each operator will use each machine for
the same number of trials. Other conditions, such as the order of trials,
can be randomized by flipping coins or by drawing numbered chips from
a bowl. This procedure may still favor some particular machine (by placing

it last, say) unless the entire experiment is repeated several times to yield
several replications. Familiarity with the same numbers can be avoided by

drawing anew 12 four-digit numbers from a table of random numbers for
each operator-macine combination.

Successful experiments depend heavily on ingenuity in spotting possible

sources of bias and eliminating them by a well-organized plan. Before the

experiment, we should decide upon and record the procedure that will be
followe d for every contingency that may arise during the experiment, and

the conclusion that will be drawn from every possible outcome. In the

computing experiment, for instance, we shovld decide on the procedure
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in case one of the sums is computed incorrectly, or if a claim is presented
later that one of the machines was out of adjustment.

Complete randomization is recommended for small experiments on
material known to be homogeneous and, because of ease in analysis com-
pared with other designs, for any experiment likely to contain failures that
must be omitted from the analysis.

5.1.3. Randomized-Block Design for Background Conditions

In larger experiments the background conditions may lack homogeneity,
so that complete randomization of the whole background at once would
introduce an unnecessary amount of error. In this case, we may decide to
randomize one block of the background at a time, keeping each block
intact so that its effect will appear explicitly in the analysis.

In the test of desk computers described above, considerable variation
might occur if an operator were trained on a particular machine, or had
used it the most, or preferred it. Restricting the test to operators trained
on Fridens would limit our conclusions to such operators. Randomizing
the selection of operators according to their training and analyzing the
total data would not ascertain whether the training of the operator had
affected the results; if there was such an effect it would appear as experi-
mental error. We might prefer to consider the operators trained on the
three different machines in three separate blocks, preferably of equal size.
W~ithin each block we would still randomize the order of use of the com-
puters. At the end of the experiment we could assess the effect of the type
of training on computing speed.

5.1.4. Latin-Square Design for Background Conditions

To test k treatments under k choices for one background condition and
k choices for a second, independent background condition, we can use a
Latin-square design; i.e., a square array of letters such that each letter
Lppears exactly once in each row and exactly once in each column. (For
further material on Latin squares, see Ref. 5.9; for examples of Latin
squares of various sizes, see Ref. 5.7.)

Suppose we wish to test the effect of office noise level on the speed of
computing, taking into account as background conditions the desk computer
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tion, are available to meet specific needs (Ref. 5.4, 5.10, and 5.15). For the
analysis of these and other basic designs, see Ref. 5.10.

Most designs have symmetries that make their analysis simple. However,
designs that are unsymmetrical (because data are missing, for example) may
be analyzed according to the general theory of testing linear hypotheses
(Ref. 5.11). This theory has become somewhat easier to apply since the
advent of high-speed electronic computing machines.

5.2. Types of Analysis of Variance

There are two mathematical models to which the analysis of variance
applies-a model for Type I problems (Sec. 5.2.1) and a model for Type
II problems (Sec. 5.2.2). This Manual does not treat the more complicated
case of "mixed" mociels; material on this subject may be found in Ref.
5.1 and 5.15.

5.2.1. Type I Problems

When particular levels of a factor arc selected purposely for study
because they are the only levels of interest or are considered the most
promising, the analysis of variance becomes a comparison of the mean
effects of those particular levels. Statistical tfsts (F tests) are made to see
whether the observed differences in mean effects are real or random. If
the differences are real, the population constants or parameters (main effects
and interactions) may be estimated easily as averages. In these Type I
problems, the analysis of variance refers to the finite number of treatments
actually chosen, and the variation is called systematic. The problems
treated in most elementary texts are of this type (Ref. 5.5). The experi-
ments on desk computers described in Sec. 5.1.2 and 5.1.3 involve the
systematic variation of machines from Friden to Marchant to Monroe.

5.2.2. Type II Problems

When levels of each factor are drawn at random, the analysis of variance
is concerned not so much with the particular levels appearing in the experi-
ment as with the larger finite or infinite population of levels that had an
equal chance of being drawn. The analysis of variance provides statistical
tests (F tests) to see whether the random variation of levels of eAch factor
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used and the operator making the trial. We might choose fou supposedly
like computers at random from the entire production of a given model and
four operators at random from a large office staff. The trials might then be
arranged in a Latin square as in Table 5.2, operator 1 computing on
machine 3 at noise level D, for instance. The order of the trials could be
randomized to take care of the learning factor. Only 4 X 4 = 16 tests are
required. If more than 16 tests are desired, further randomly selected Latin
squares of the same size may be used.

TABLE 5.2. A 4 X 4 LATIN SQUARE FOR NOISE-LEVEL EXPERIMENT

The letters A, B, C, and D represent levels of noise, the volume increasing from
A toD.

Background Background condition I (computer)
condition II
(operator) 2 3 4

1 B C D A
2 D B A C
3 C A B D
4 A D C B

Advantages of the Latin-square design ai'e economy of samples and ready
analysis. The main disadvantage is inflexibility, since the same number of
choices is required for each variable and the number of degrees of freedom

is thereby determined also.

The restriction that the two background conditions and the factor to be
tested be independent (no interactions) is sometimes a hard one to meet.
For instance, in the noise-level experiment it must be assumed that the
level of noise has the same effect on the speed of computing, regardless of
the operator. If one operator is particularly bothered by noise or another
operator is unusually oblivious to noise while he computes, the conclusions
of the experiment will be made unreliable.

5.1.5. Other Designs

Generalizations of these designs, such as the Greco-Latin square (k
levels of each of three background conditions), incomplete block designs,
and designs using "confounding" including those using fractional replica-
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actually contributes variation to the variable under study. These tests for
Type II problems are of the same form as those used for Type I problems;
however, the objective in Type II problems is the estimation of the com-
ponent of variance contributed by each factor to the total variance of the
variable under study, rather than the estimation of the main effects and
interactions at particular levels of each factor, as in Type I problems (Ref.
5.6).

In the noise-level experiment of Sec. 5.1.4 we drew four computers at
random from the total production of one model and four operators at
random from a large office staff. Here, then, conclusions as to the effect of
noise level can be drawn for all computers of that model and for all
operators on the staff. The experiment will also show the variability of
computers and the variability of operators in their effects on speed of
computing.

5.3. Assumptions of Analysis of Variance

(1) Observations are random with respect to any conditions not sys-
tematically varied or removed from the analysis by covariance methods.

(2) Means and variances are additive. In the Type I model we look upon
each observation (xijt, for example, which receives factor 1 at level i and
factor 2 at level j) as composed of the separato parts

x t u ft + ai + #~j + eip

where

/A over-all mean
a- mean effect cf factor 1 at level i

= mean effect of factor 2 at level j
e =i random deviation from the mean position of the tth item receiving

the treatment ij. The eip are assumed to have populalon means
of zero.

In the Type I model a , /3f = 0.

In the Type II model we again take the observation xijt as a sum of the
terms given above, but now every term except tk is random, so that the
variance of a random observation x,j t is the sum of a variance component
caused by factor 1, a variance component caused by factor 2, and an error
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variance not caused by either factor. In many problems the variation caused
by several factors is greater than the sum of their independent effects, so that
other joint effects (interactions) must be added, as in Sec. 5.5.2.

(3) Experimental errors eijt are independent.

(4) Variances of the experimental errors eip for all pairs i, J are equal,
with the common value o,.

(5) Distribution of experimental errors is normal.
To estimate mean effects or components of variance, we need only the

first four assumptions. To make significance tests of the means or com-
ponents, or to determine how precise (or good) our estimates are, we must
satisfy all five assumptions. If certain of the assumptions are not met, the
analysis of variance provides only an approximate procedure; however, this
approximation is usually the best available. (See Ref. 5.3 for a discussion of
the effects of deviations from the assumptions, and Ref. 5.2 for methods
of inducing normality.)

5.4. One-Factor Analysis

Table 5.3 shows in general form the tabulation that would result from
an experiment to compare r different treatments, levels of a single factor.
Each treatment has been used (replicated) m times. There is some random
variation among the readings for any one treatment, but it is the treatment
sample means that are compared. The difference among the means is
not considered significant unless it is large compared with the random
within-treatments variation.

Throughout Sec. 5.4.1 and 5.4.2 the reader may find it helpful to follow
the examples given in Sec. 5.4.2 and to compare Table 5.5 with Table 5.3
and Tables 5.6 and 5.7 with Table 5.4.

5.4.1. Assumptions

For general assumptions of the analysis of variance, see Sec. 5.3. The
assumptions for one-factor analysis follow.

(1) The m replications xi,, XN, . . . , , of the experiment for any

one treatment i represent a sample drawn at random from a normal popula-
tion (see Table 5.3). Each observation xit can be written as
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"I

tz + a., + eit (i-1 ,•"",r; t =1,2, •••,m)

where

/ = over-all mean

ai = mean effect of the ith treatment (or row)

ej t = random deviation from the mean position of the Ith item receiving

treatment i. The eit have independent normal distributions with
mean zero and common variance o2.

In the Type I model, a = 0.

In the Type II model we assume that the variance of the population of
row effects is a2.

(2) For a Type I problem, the r treatments are chosen systematically by
the experimenter as important levels of the factor. For a Type II problem,
on the contrary, we assume that the r levels of the factor are chosen at
random from a normal population of levels of the factor.

TABLE 5.3. ONE-WAY CLASSIFICATION

Replications
Treatment

1 2 't m

1 X11 X1 ... X11 . " Xis

2 X21 X22 ... X2t ... X2,

* *i 1 . Xis ... X(s.

Xri Xr2 Xrt " Xrw

r = number of tested levels of the factor (number of rows)

m = number of replications of each treatment (number of measurements per
treatment)

n = rm = total number of observations

x,, = replication i of treatment i (trial t in row i)

x, = _ x' = ith treatment mean (mean of the ith row)

S X, - x,, = grand mean
r, n
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5.4.2. Analysis

The sum of the squared deviations of all n - rm observations from the
grand mean . can be written as m times the sum of squared deviations of
the r treatment means from the grand mean plus the sum of squared
deviations of individual observations from their respective treatment means

i=1 t=1 i=1 ~ =

In the case of a Type I problem we make the null hypothesis that the
means of the normal populations of observations xit for the r treatments
are all equal; that is, that the a1 are all zero. If the null hypothesis is true,
we have three unbiased estimates of the common variance a2 of the r popu-
lations, obtained by dividing the sums of squares in the equation above
by their respective degrees of freedom. The estimates are

1
s'_'- 1 2 2 (tt - x)2

n - t

m
f--::- x - X)2

r_ ~ (X.

I t

(but the algebraically equivalent computing forms in Table 5.4 are prefer-
able for numerical work).

TABLE 5.4. ANALYSIS OF VARIANCE FOR ONE-WAY CLASSIFICATION

Source of S Degrees Mean ExpectedSoaraton Sum of squares of square mensur

freedom mean square

Among treat- rE ( xi) 2 - (E xit) 2  (2)

ments (2)= ' A -at

Within treat- 23)(3

ments .... (3) (1) - (2) n - r

T o ta ! ...... ( 1 " ' ** *n -- I
nl



§5.4. ONE-FACTOR ANALYSIS 123

If the null hypothesis of equal means is true, the last two quantities
should be about equal (except for sampling error) with a ratio near one,
for they represent independent estimates of ao2. We divide the second by
the third, and reject the null hypothesis at the significance level a if the
quotient F exceeds the critical F value from Appendix Table 5 for

f = r - 1 and f 2 = n - r degrees of freedom. A value for F greater than
or equal to the tabled value F, (r- 1, n- r) would occur in random
sampling with probability only a if the null hypothesis were true. For the
F tests in this cthapter, we are interested in only one tail of the distribution,
since the variability we want to detect can only tend to increase the among-
treatments variance, never to decrease it.

If the null hypothesis is false, only s2 of the three mean squares is an
unbiased estimate of 0,

2 . In this case, the xi. are the best estimates of the
different population means p. + ai.

If the quotient F does not exceed F,(r - 1, n - r), the data are con-
sistent with the null hypothesis that the means are all equal. In this case
the sample grand mean 3 is taken as the best estimate of the common
population mean t. The calculations of the three estimates of 0'2 can be
made conveniently as shown in Table 5.4. The last column of the table is
appropriate only in Type II problems.

As is indicated by comparison of the last two columns, s2 estimates the
variance U2 caused by variability within the individual treatments; and if
the treatments represent a random selection from the population of levels
taken on by the factor (Type II problem), the quantity

sa = m

estimates the variance cr caused by variability among the treatments (vari-
ability among rows). Notice that the estimate s-' obtained from considering
the dispersion of the r treatment means includes some fluctuation caused
by within-treatment variability, which the operation expressed by the
equation above removes, in accordance with the last column of the table.

The expressions in the second column of the table (the sums of squares)
have been abbreviated to (1), (2), and (3) for convenience.

The estimate s2 = (1)/(n - 1) of the variance could be formed also, but
is dependent on (2) and (3), which answer directly the usual questions of
interest.
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Unequa, sample sizes mi for the different treatments are allowable, but
not recommended. The analysis is the same except for the formula

(2) = sj"
M i  n

1"

where n is the total number of observation,, mi.
i=1

The following example could be either Type I or Type II, according
to the circumstances. The analysis is in great part the same for both, and
will be carried out for both types.

Example (Type I Problem). The data of Table 5.5 (a specific case of
the tabular form shown in Table 5.3) represent coded readings on widths
of propellant carpet rolls from 10 production lots, with 12 samples
selected randomly from each lot. The factor to be considered for its
effect on width of roll is the lot. The r = 10 levels of the factor are the
treatments, each of which received m = 12 replications. The lots show
different mean sample widths. Is this difference large enough compared
with the variability within lots to indicate a real differcrnce among lots?

TABLE 5.5. ONE-WAY CLASSIFICATION OF PROPELLANT

CARPET-ROLL DATA

Lot Samples
1 2 3 4 5 6 7 8 9 10 11 12

1 40 30 38 23 35 38 52 59 28 37 44 54
2 52 44 47 3 31 2 2 50 59 32 2 60

3 59 5 3 5 44 8 46 0 19 19 15 29
4 44 12 23 21 32 6 40 3 52 32 29 44
5 50 35 50 25 4 50 40 3 32 28 22 54 4

6 20 55 31 30 40 40 42 46 30 52 15 46
7 19 58 40 8 54 38 56 45 50 24 21 0
8 57 7 46 33 4 19 7 38 47 52 24 42
9 10 42 24 9 54 35 18 16 50 48 38 15

10 49 7 43 33 39 2 3 IJ 25 6 3 138

NOTE: r = 10 treatments; m = 12 replications; n = 120 observations;

= 30.8.

II
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TABLE 5.6. CALCULATIONS ON CARPET-ROLL DATA

In using a machine computing technique, only the total, not the separate
entries, for the column of squared sums would be tabulated.'

Lot (Xxt.) 2  X

1 478 228,484 20,332
2 384 147,456 18,436
3 252 63,504 9,444
4 338 114,244 12,224
5 393 154,449 16,183

6 447 199,809 18,311
7 413 170,569 18,427
8 376 141,376 15,626
9 359 128,881 13,715

10 258 66,564 9,136

Total 3,698 1,415,336 151,834

,. ,., I!20(151,834) - (3,698)2
n1 120 37,873.967

n 120

- (X 10(1,415,336) - 3,984.633
(2) = 120 3,8463

ft 120

(3) = (1) - (2) 4,544,876 - 478,156

(3 =() ()= 120 = 33,889.333

For a Type I problem, the 10 lots of carpet rolls in Table 5.5 are
assumed to be lots of paticular interest specified by the experimenter,
say the first 10 lots produced. We assume (Sec. 5.4.1) that the widths
for each lot are distributed normally with variance a2.

From the data of Table 5.5 we form the sums of Table 5.6. (In using
a machine computing technique, only the total, not the separate entries,
for the column of squared sums would be tabulated. The separate squares
are shown to accustom the reader to the summation notation.) Table 5.7

is our analysis-of-variapce table.

To test the null hypothesis that the 10 treatment means are equal, we
compute the quotient F of the among-treatments mean square by the
within-treatments mean square. To make the test at the 5% significance

level, we compare
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F- 442.737
308.085

with F, (r - 1, n - r) = F.,5 (9, 110). From Appendix Table 5 we find
that F.05(9, 110) is at least 1.96. Since 1.437 is less than F.o5(9, 110), we
cannot reject the null hypothesis that the lot means are equal; in other
wocds, the data are consistent with the null hypothesis.

Analysis of variance in the example above is a way of determining
whether the production process is in statistical control; a control chart on
means answers the same question more simply and rapidly, though more
roughly (see Chapter 7).

Example (Type II Problem). In the preceding example, the 10 lots
were specified by the experimenter. They could have been any 10 specific
lots of interest to him.

Suppose that 10 lots are not specified, but selected at random from a
population of lots whose mean roll widths are distributed with variance
a, and that the widths within each lot have a normal distribution with
variance a2. Now we have a Type II problem and we may extend the
analysis to include components o' variance. Our object is to estimate the
between-lots variance 4, (by s2 ), and the within-lots variance r (by s3).

Using Tables 5.4 and 5.7, we find the estimates

= 308.085 and msa + s3 = 442.737

Then

442.737 - 308.085
s 12= 11.221

The estimated standard deviation caused by variability among all lots
of the population is V 11.221 - 3.350. The estimated standard deviation

TABLE 5.7. ANALYSIS OF VARIANCE FOR CARPET-ROLL DATA

Source of Sum of Degree,; of Mean
variation squares freedom "

Among treatments ..... 3,984.633 9 442.737

Within treatments . 33,889.333 110 308.085

Total ............... 37,873.967 119
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caused by variability within the individual lots is V 308.085 = 17.552.

The estimated total variance in carpet-roll widths in the population of

lots is

S2 + S = 11.221 + 308.085 = 319.306

5.5 Two-Factor Analysis

5.5.1. Two-Factor Analysis Without Replication

To investigate r levels of factor 1 and c levels of factor 2, we may take

the n = rc observations shown in Table 5.8. We have the underlying

assumption that each observation may be written

x, = A + ai + /j + eij (i = 1, 2, . r; j= 1,2, , c)

with

Xai = = 0
i j

in the Type I model; i.e., it is the sum of an over-all mean, a row effect, a

column effect, and a random error. It is also assumed that the errors ejj are

independently and normally distributed, with mean zero and common
variance o,.

Only one observation is taken for each treatment; i.e., the experiment is

not replicated. There are n = rc treatments-each level of factor 1 is used
once with each level of factor 2. The typical analysis-of-variance table is

shown in Table 5.9. The last column, indicating the components of vari-
ance o , o.A, and 0o, applies only to Type II problems. We notice that, in

addition to the inclusion of the among-columns values, Table 5.9 differs
from Table 5.4 in that it gives "residual" values instead of within-

treatments values. Since here each of the rc treatments receives only one

triai, we do not have a direct estimate of the variance of a whole popula-

tion of observations of that treatment. However, under the assumptions,

this variance is 0,2 and can be estimated by the residual mean square. The

row or column mean square provides an estimate of ,2 only if the cor-
responding null hypothesis that every a, = 0, or that every 3, = 0, is true.

Hence, to test the null hypotheses, we compare the row and column mean

squares with the residual mean square.
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" To test at the significance level 0.05, for example, the null hypothesis
that all row means are equal (that factor I has no effect), we compare

with F r- 1, (r - 1)(c - 1)1 from Appendix Table 5, and reject the
null hypothesis if F exceeds the tabled value. To test the nuil hypothesis

that the c -tumn means are equal (that factor 2 has no effect), we compare

F=F - ...

with F.,,. c - 1, (r - 1)(c - 1)j. The significance test for row effects is
"orthogonal to" the test for column effects; i.e., the presence or absence of
column effects does not influence the test for row effects (and vic,  versa),
but the two test ratios have the same denominator and as a result are not
statistically independent. (See Ref. 5.12, p. 321.)

In the case of a Type II problem (Sec. 5.2.2), the expected-mean-squar,.
column set equal, term by term, to the mean-square column can be used to
obtain

s' = estimate of the variance U2 not caused by either factor by itself (Ref.
5.12, pp. 342-44)

S2 = estimate of the variance U2 caused by factor I

sp = estimate of the variance aA caused by factor 2

Example (Type I Problem). Table 5.10 shows the results of an
experiment to determine the effects of two factors (volume of sample and
operator) on the variable (percentage of nitroglycerin) in a chemical
determination. The experiment is designed to test whether the chemical
determination of the percentage of nitroglycerin in a solution depends
on the volume of the sample drawn for analysis.

The data have been coded. Three levels of operator were chosen (three
specific operators), and each operator made determinations on five
samples of different volumes. In Table 5.10 only the total, not the
separate squares, in the next-to-last row and column need be tabulated.
Table 5.11 gives the analysis of variance.
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TABLE 5.10. Two-WAY CLASSIFICATION (WITHOUT REPLICATION)

OF NITROGLYCERIN DATA
In using a machine computing technique, only the total, not the separate

squares, would be tabulated for the next-to-last row and column.

Volume Operator

of , (" x,,) x
sample No. 1 No. 2 No. 3

V1 4 0 7 11 121 65
V2  1 2 1 4 16 6
V3  6 3 8 17 289 109

V4  7 0 6 13 169 85
VK 2 9 8 19 361 149

x, 20 14 30 64 956

( x41 ) 400 196 900 1,496

x 106 94 214 414

NOTE: C - 3; r = 5; n 15.

TABLE 5.11. ANALYSIS OF VARIANCE FOR

NITROGLYCERIN DA LA

Source of Sum of Degrees of Mean
variation squares freedom square

Among volumes ...... 45.600 4 11.400
Among operators ..... 26.133 2 13.067
Residual ............ 69.200 8 8.650

Total ............... 140.933 14

15(414) - (64)" = 2,114 = 140.933
15 15

5 (956) - (64)' = 684 = 45.600
15 15

3(1,496) - (64)' = 392 26.133
15 15

2,114 - 392 - 684 = 1,038 = 69.200
15 15
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To test at the 5% significance level the hypothesis that the volume of
the sample used in the determination has no effect on the result, we
compare

11.400
F - - =1.3188.650

with F.,,(4, 8) =3.84, from Appendix Table 5. We cannot conclude

that the percentage of nitroglycerin reported depends on the volume of
the sample.

To test the null hypothesis that the column means are equal; i.e., that
the choice of operator has no effect on the percentage of nitroglycerin
found in the sample, we compare

13.067F- -=1.511
8.650

with F.,5 (2,8) = 4.46 from Appendix Table 5. Since 1.511 does not
exceed 4.46, the data are consistent with the null hypothesis that the
choice of the operator does not affect the percentage of nitroglycerin
detected.

Example (Type I Problem). Suppose the three operators in the
example above were chosen at random from a large number of chemists,
and the five volumes were selected at random from lists showing the
voiumes drawn for determinations during the past year. In this case we
would be justified in analyzing the components of variance.

Referring to Tables 5.9 and 5.11, we find the estimates

cs2 + s24= 11.400

rsA + s2 = 13.067

S24 = 8.630

so that
s = 0.917 and s = 0.883

The estimate of the total variance of a random observation is

0.883 + 0.917 + 8.650 = 10.450
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We can use the F tests of the previous example (Type I problem) to
test whether a2 = 0 and whether oA = 0. The variability caused by the
operator and the variability caused by the volume are thus shown to be
not significantly different from zero. Aside from the statistical significance
(in the technical sense of the size of the effect relative to the random
fluctuation), we see by inspection that the standard deviation of a ran-
dom determination (N" 10.456 = 3.23) is, in a practical sense, negligibly
more than the standard deviation of a determination with operator and
volume effects eliminated (V 8.650 = 2.94). The experimental data indi-
cate that little increase in the reproducibility of determinations is achieved
by holdi'g either operator or volume fixed; however, the variance esti-
mates are subject to considerable uncertainty because of the small size
of the experiment.

5.5.2. Two-Factor Analysis With Replication

Only the Type I problem is treated here. Suppose that in Table 5.8 the
set of treatments is applied not once, but m times under the same conditions.
Then the cell, or treatment, (i, j) will contain the m observations xq,,
XJj2 , . . . ) Xij,. (Reference 5.13 treats the case in which the number of
observations varies from cell to cell.) Here we have the mathematical model

xijt = 1i+ai + fi+ ij + eipt (i= 1, 2, •..,r)

( = 1,2, . ,c)

where

/A = over-all mean

a, = row main effect

pi = column main effect

8ii = interaction of factor 1 at level i and factor 2 at level j (a joint
effect, beyond the total of their individual effects)

eip = random deviation from the mean position of the tth item receiv-
ing factor 1 at level i and factor 2 at level j. The eijt have
independent normal distributions with mean zero and common
variance go.

• 01m • •• •
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In theType I model, Y2a, = j3 , = 0, i=0 for ;= 1, 2, . .. , c,

and , 8,j = 0 for i=1, 2, . . . , r. The replication of the treatments
j

makes it possible t.- estimate the interaction. The total number of observa-
tions n is rcm. The choice of successive items for each cell and the order of
experimentation on them should be random among all rcm observations.

We begin the computations by carrying out the operations indicated in
Tables 5.8 and 5.9 on the sums of the observations in each cell, with
n = rcm. Let

Inl

Xis = x,'.t
=

The calculations on the X's yield the first four rows of the analysis of
variance shown in Table 5.12. The remaining two rows are then computed,
using the total sum of squares

r , c , ? r , '

nl t - I

As the first step in significance testing, we test the interaction against
the within-treatments mean square. We compare

F =s4

with Fa[(r - 1)(c - 1), rc(m - 1)] from Appendix Table 5. If F < Fc,
we cannot reject the null hypothesis that the interactions are zero. if
F > Fa, we reject at the significance level a the null hypothesis that there
is zero interaction, on the grounds that such a large value of F would
occur with probability only a if the null hypothesis held.

Interaction can appear to be present for the following reasons:

1. The two factors operating together have effects beyond the com-
bination of their separate effects; that is, a non-zero interaction is actually
present. For instance, this might occur in the example given in Sec. 5.5.1
if une operator, though accurate when using large samples, tended to under-
e z ;mate the Dercentage of nitroglycerin in small samples.

2. Significant interactions will appear with probability a as a result of

random fluctuations alone.
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3. Apparent interactions may be one of several unexplained effects

occurring when important variables are left out of the analysis.

To test for row or column main effects, we form an F ratio with the
row or column mean square in the numerator and a mean square that is
an ap, ropriate estimate of uncontrolled variability in the denominator. In

an experiment designed with proper randomization, such an estimate is

provided by the within-treatments mean square (s2 in Table 5.12). Unfor-

tunately, however, experiments may be performed without adequate ran-

domization of the order in which treatments are applied, so that background

conditions may remain nearly constant within each treatment, but vary
from treatment to treatment. As a result, the uncontrolled variation in
background conditions tends to enlarge the mean squares for interaction

and main effects, but not the within-treatments mean square. The appro-

priate estimate of uncontrolled variability is, in this case, the interaction

mean square s2. (For further discussion related to the somewhat contro-
versial question of which denominator to use, see Ref. 5.5, pp. 136-39;

Ref. 5.12, pp. 337-49; and Ref. 5.15, pp. 119-23.)

When significant effects, especially with interactions, are found in an

analysis of variance, it is helpful to present them graphically. (For a sample

graph, see Fig. 5.1 in Sec. 5.6.) If interactions are significant, further

analysis may be desirable (Ref. 5.4, pp. 139-46; Ref. 5.1, pp. 270-72;

and Ref. 5.9, pp. 456-79).

Example. In the course of deciding on tactical uses for two rockets,
an operations analyst iequests the experiment reported in Table 5.13.

Three types of planes are used five times with each of two types of
rockets. The entries in Table 5.13 represent coded evaluations of the

target destruction obtained in the tests. The experiment is designed to
test whether the target destruction depends on the type of rocket or the

type of plane, or on the interaction of the two factors, making use of

significance tests at the 5% level.

To analyze the data, we replace the five values in each cell by the sum

of those values, and carry out the preliminary calculations shown in
Table 5.14. (In this table only the sums have been entered in the next-

to-last row and column.) Table 5.15 shows the analysis of variance.
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TABLE 5.13. Two-WAY CLASSIFICATION (WITH

REPLICATION) OF ROCKET-COMPARISON DATA

Rocket Plane type

type II III

A 0 1 6
2 3 5
3 3 7
6 5 6
5 6 6

B 3 2 6

5 3 7
7 4 5
2 3 8

5 6 8

TABLE 5.14. CALCULATIONS ON ROCKET-COMPARISON DATA

Plane typeRocket - E X,, (yX,,)' Ex",,
type I II III j j

A 16 18 30 64 1,480

B 22 18 34 74 1,964

X') 38 36 64 138 9,572

('V X )" 6,836

X~, 740 648 2,056 3,444

Test for interaction

0.93 3
F = - 93 - 0.314

2.967

Since this F value is less than I and therefore certainly less than

F.o5(2, 24), the interaction is not significant. Incidentally, F values 'ess

than 1 occur with a substantial frequency in such compatations if the n ill
hypothesis is true.
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Tes/ fior rocket eff cs

F = 3.333 = 1.12 and F..,(1, 24) = 4.26
2.967

We conclude that the difference among rockets is not significant.

Jest for plane effct s

24.400_
F = 24.40 = 8.22 and F.05 (2, 24) = 3.40

2.967

We conclude that the difference among planes is significant.

TABLE 5.15. ANALYSIS OF VARIANCE FOR

ROCKET-COMPARISON DATA

Degrees of
Source of variability Sum of squares freedom Mean square

Among rockets ....... 3.333 1 3.333
Among planes ......... 48.800 2 24.400
Interaction ........... 1.867 2 0.933

Subtotal . ............. 54.000 5

Within treatments .... 71.200 24 2.967

Total ................ 125.200 29

6 (3,444) - (138) = 1,620 5
30 - 30- 54.00()

30 30

2 (9,572) - (138) " = 00 3 3 3
30 30

3 (6,836)"-- (138)" =. 1,464
30 - - . -=48.800

1,62C - 1,464 - 100 _ 56 .

30 - 3 1.86730 30 _ _

30 (02 + 22 + j2 + 62:+ 52 + 3' + 5' + • + 8') -(138)" 2.0
_____--~__ __0- 125.20030

125.200 - 54.000 "- 7 1.200
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5.6. Multiple-Factor Analysis

The methods described above can be extended to cover any number k
of factors. We treat such data in k individual (k - 1)-factor tables obtained
by summing observations over each factor in turn. After the (k - 1)-factor
tables have been calculated separately, the residual for an experiment with-

out replication is found by subtracting all sums of squares in the (k - 1)-
factor tables from the total sum of squares of deviations of individual
observations from the over-all mean. The complexity and number of
interactions increase rapidly, of course, but the method is general.

The following example shows the analysis of an experiment involving
three factors.

Example. The observed variable (coded) is the outside diameter
of a propellant grain. The purpose of the experiment is to study the
effects on outside diameter of intentionally varying extrusion conditions.
The factors are extrusion rate (factor A, three levels), die temperature
(factor B, three levels), and charge temperature (factor C, two levels).
The upper number of each pair of entries in Table 5.16 corresponds

to charge temperature C1; the lower, to charge temperature C2.

First we compute 3 two-factor analyses on the sums of observations
over each factor individually. Each of these analyses is obtained by
considering the levels of one factor as replications and proceeding as

TABLE 5.16. THREE-WAY CLASSIFICATION (WITHOUT

REPLICATION) OF OUTSIDE-DIAMETER DATA

The upper number of each pair of entries corresponds to charge
temperature C2 ; the lower, to charge temperature C2.

Die Extrusion rate A
temp.

B A, A2  A3

B, 78 66 56
34 23 5

B2  85 84 75

70 52 54

B3  92 93 96
79 70 64
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in Sec. 5.5.2. In Table 5.17, for instance, the data for extrusion-rate
versus die-temperature analysis were obtained by summing over the two
levels of charge temperature for each entry. Table 5.18 shows the
analysis of variance for this case.

Tables 5.18, 5.20, and 5.22 can be summarized, and the three-way
analysis completed as in Table 5.23. The sums of squares are carried to
several decimal places to provide sufficient significant figures in the
relatively small residual sum of squares obtained by subtraction. An
experienced variance analyst can omit intermediate Tables 5.17-5.22
by adjoining simple sums (but not sums of squares) to Table 5.16 and
entering the final sums of squares directly into Table 5.23.

The F ratios for testing significance of the main effects and two-factor
interactions are formed by dividing the appropriate mean squares by the
residual mean square. Thus we have

F ratio Critical value Significance

324.667
FA - 21.806 = 14.89 F. 5 (2, 4) = 6.94 significant

2,340.667
FH = 21.806 - ]..34 significant

4,170.889
F,.- 21.806 = 191.27 F,,(1,4) - 7.71 significant

F,AB - 54.083 = 2.48 F.,., (4, 4) = 6.39 not significant
2 1.806
48.222

F.. -10 2.21 not significant

_272.222

FB - 27.222 = 12.48 significant
-21.806

.ill three factors thus have real main effects, but the effects of die
temperature and charge temperature are not independent. Just what
these effects are should be evaluated by referring to the original data in
Table 5.16. The effects may then be presented graphically, as in Fig.
5.1. If interactions are significant, further analysis may be desirable
(Ref. 5.4, pp. 139-46 and Ref. 5.1, pp. 270-72).
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TABLE 5.17 Two-WAY TABLE DERIVED FROM

OUTSIDE-DIAMETER DATA

Die Extrusion rate A
tem p. ..- E X ,, ( X ,,)' '5 X 2,

B A, 1 A. A.,

B, 112 89 61 262 24,186

B2  1 155 136 129 420 59,162
Bs 171 163 160 494 81,410

Xjj 438 388 3,0 1,176 489,080

X1)-2 464,888

X2) 65,810 52,986 45,962 164,758

TABLE 5.18. ANALYSIS OF VARIANCE FOR

Two-WAY TABLE 5.17

Soure o varatin -Degrees of
Source of variation Sum of squares freedom Mean square

Extrusion rate A ....... 649.333 2 324.667
Die temperature B ..... 4,681.333 2 2,340.667
Interaction A X B ..... 216.333 4 54.083

Subtotal A X B ....... 5,547.000 8

9 (164,758) - (1,176)Y 99,846-_ =- 5,547,00
18 18

3 (464,888) - (1,176)2 11,688 4
18 18

3 (489,080) - (1,176) 84,264 ,681.333
18 18

99,846 - 11,688 - 84,24 3,894 2
18- 18 216.33318 is

If several observations had been taken for each of the 18 treatments,
we would have had a within-treatments mean square and could have
tested the significance of the three-factor interaction A X B X C also.
Our failure to replicate must be based on an assumption that the three-
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TABLE 5.19. Two-WAY TABLE DERIVED FROM

OUTSIDE-DIAMETER DATA

Charge Extrusion rate A Squared Sum of
temp. Sum Sua sumrof

C A, A, A, sum squares

C1  . ... .. .  255 243 227 725 175,603
C2 ....... 183 145 123 451 69,643

Sum ...... 438 388 350 1,176 729,026
Squared
sum .... 464,888

Sum of
squares. 98,514 80,074 66,658 245,246

TABLE 5.20. ANALYSIS OF VARIANCE FOR

Two-WAY TABLE 5.19

Degrees of
Source of variation Sum of squares freedom Mean square

Extrusion rate A ....... 649.333 2 324.667

Charge temperature C .. 4,170.889 1 4,170.889
Interaction A X C ..... 96.444 2 48.222

Subtotal A X C ....... 4,916.667 5

6(245,246) - (1,176)" _ 88,500 4,916.667
18 18

3 (464,888) - (1,176)" = 11,688 649.333

18 18

2,(729,026) -- (1,176)- 75,076- =-- 4,170.889
18 18

88,500 - 11,688 - 75,076 = 1,736 = 96.444
18 18

factor interaction is negligible compared with the uncontrolled vari-
ability. The analysis of variance for the three-factor experiment with
replication is obtained from the analysis without replication by the same
extension used for two factors (Sec. 5.5.2); with proper randomization
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TABLE 5.21. Two-WAY TABLE DERIVED FROM

OUTSIDE-DIAMETER DATA

Charge Die temperature B
temp. - Sum Squared Sum of

C BI B. B3  - sum squares

C ....... 200 244 281 725 178,497

C2 ...... 62 . o176 213 451 80,189

Sum .... 262 420 494 1,176 729,026
Squared I

sum .... 489,080
Sum of

squares. . 43,844 90,512 124,330 258,686

TABLE 5.22. ANALYSIS OF VARIANCE FOR

Two-WAY TABLE 5.21

Degrees of
Source of variation Sum of squares freedom Mean square

Die temperature B ..... 4,681.333 2 2,340.667
Charge temperature C... 4,170.889 1 4,170.889
Interaction B X C ..... 544.444 2 272.222

Subtotal B X C ....... 9,396.667 5

6(258,686) - (1,176)2 _ 169,140 = 9,396.667

18 18

3(489,080) - (1,176)" 84,264 = 4,681.333
18 18

2(729,026) - (1,176)" = 75,076 = 4,170.889
18 18

169,140 - 84,264 - 75,076 _ 9,800 = 544.444
18 18

of the order in which observations are made, the within-treatments

mean square is the appropriate denominator for all the F ratios. If, on
the other hand, the experiment were performed with replication but
without adequate randomization, then for testing main effects and two-

factor interactions, the appropriate denominator would be the three-



144 ANALYSIS OF VARIANCE §5.6.

r

TABLE 5.23. THREE-WAY ANALYSIS OF VARIANCE

FOR OUTSIDE-DIAMETER DATA

Source of Sum of Degrees of Mean
variation squares freedom square

Extrusion rate A ... 649.333 2 324.667
Die temperature B ... 4,681.333 2 2,340.667
Charge temperature C. 4,170.889 1 4,170.889
Interaction A X B ... 216.333 4 54.083
Interaction A X C ... 96.444 2 48.222
Interaction B X C ... 544.444 2 272.222
Residual ........... 87.224 4 21.806

Total .............. 10,446.000 17

18(782 + 342 + 852 + 702 + 92' + 79 + 662 + 232 + "'. + 642) - (1,176)
18

(18)(87,278) - (1,176)2 = 10,446.000
18

10,446.000 - (649.333 + 4,681.333 + 4,170.889 + 216.333 + 96.444 + 544.444)

" 87.224

factor interaction mean square. (See the similar discussion in Sec. 5.5.2,
where references are given.)

The analysis of the corresponding Type II problem has a similar gen-
eral form but differs in the formation of the F ratios; see the references
in Sec. 5.5.2.
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Chapter 6

FITTING A FUNCTION OF ONE OR MORE VARIABLES

6.0. Introduction

Often we want to predict the value of a variable y for any given values of
one or more variables xj. Sometimes a physical law connects the variables
so that y may be expressed as a function of the x's. For instance, the formula
y = 1/2 gx2 enables us to predict the distance y traversed by a falling body
in time x. However, the x and y values may follow a regular law only
ideally, so that if they are plotted as points on an xy plane, they lie scattered
about the curve that represents the ideal formula. Experimenters find such
a "scatter diagram" valuable in exploratory work for relationships among
variables. (For an example of a scatter diagram see Fig. 6.3 in Sec. 6.1.1.)

From past theoretical or experimental work it may be hypothesized that
the relation among several variables is of a given form (e.g., a second-
degree polynomial) without necessarily specifying the numerical values of
all the constants in the equation. Regression analysis provides a systematic
technique for estimating, with confidence limits, the unspecified constants
from a new set of data, or for testing whether the new data are consistent
with the hypothesis.

An important special case of a function of x's for predicting y is the
linear function. Section 6.1 treats y as a linear function of one other
variable x; Sec. 6.2 treats y as a linear function of several x's; Sec. 6.1.6
gives a test for linearity; Sec. 6.3 discusses transformations of non-linear
data to reduce the problem to the linear case and, in particular, treats y as
a polynomial function of x; and Sec. 6.4 considers the important statistical
question of planning the experiment for fitting a function.

By means of analysis of variance (Chapter 5), we may determine whether
certain chosen values of each of several variables x,, x2, ' • , xk differ
in their effects on a dependent variable y; the xj need not be continuous
variables, and their effects need not have any given functional form. By

147
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regression analysis we may determine the functional effect of continuous
variables x1, x., . , xk. Regression analysis can be considered a special
case of variance analysis, but it is treated separately because of its special
techniques and importance. A third method, the analysis of covariance, is
especially important when some condition of the experiment cannot be held
constant. By covariance analysis we can describe and (if desired) remove
the effect of this changing condition, and test the effect of the other
variables on the remaining variation in y. For analysis of covariance, see
Ref. 6.4, Chap. 12; Ref. 6.13, Chap. 12; and Ref. 5.15, pp. 173-81.

A statistically significant regression relation of y on x (and similarly for
more than one independent variable) is no indication that the "independent"
variable x causes the observed change in the "dependent" variable y, as
both may be caused to vary by a neglected third variable. For example, *i
the order is not random during an experiment (as when the successive x
values are chosen in decreasing order), a change in y may reflect not the
influence of x, but that of some hidden variable, such as temperature
warm-up or tool wear, that changes steadily during the course of the
experiment. If the identity of the basic causative variables is known from
scientific or engineering knowledge of the phenomenon, regression analysis
of appropriate data serves to estimate the constants of the relation (see Ref.
6.7, pp. 522-26, 613-14, and 634).

Though a regression equation is not necessarily built on a causal relation-
ship, it does provide a valid prediction of the y value for each possible set
of x values to within assessable random fluctuation. However, the prediction
is no longer valid if the situation has changed since the data were taken.

The true or population regression curve of y on x gives for each x
the mean of the corresponding y distribution. The equation or curve
obtained as a result of data analysis is an approximation to the true
regression curve and may be used to predict y values. In the linear case,
the curve is called the "regression line." When there are several factors
xl, x2, , xh., the preceding statements hold if the words "surface" and
"plane" are substituted for "curve" and "line."

Regression analysis may be applied to data gathered in two ways
(Fig. 6.1):

1. The amount of the effect y may be measured for certain values of the
factor x chosen at will by the experimenter (Type I problem).
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2. The points (x, y) may be chosen at random from a two-dimensional
normal distribution of points in the xy plane (Type II problem).

Thus, to investigate the effect of propellant-grain weight on rocket
range, we may (1) load the different rounds with grains having particular
weights of interest and observe the range for each one (Type I problem);
or (2) measure the grain weight and the range for each of several rounds
drawn at random from the population of rounds (Type II problem).

In either case, the y value observed is considered to be a random observa-
tion from a normal population of possible y's for each particular x used.
These y populations are assumed to have a common standard deviation. The
assumptions of normality and common variance are not necessary for simply
fitting an equation from data, but are necessary for significance tests and
confidence intervals given here.

The joint two-dimensional normal distribution from which the point
(x, y) is drawn at random in Type II problems is illustrated in Fig. 6.2. Not
only is each of x and y normally distributed by itself irrespective of the
value of the other variable, but for each fixed x it can be shown that
the distribution of y is normal, with its mean a linear function of x, and
that all the y distributions have a common standard deviation. By the
previously giver, definition, the regression curve of y on x is a straight line
in this case, as shown in Fig. 6.1b and 6.2. In Type I problems the regres-
sion curve need not be straight; if it is, the Type I and Type II problems
have so much in common that almost all the analysis is the same, and
often the types have not been distinguished.

When) a regression function has been derived from the data to represent
the relationship between the effect and the given factor, we may test the
reliability of that function, which is subject to the sampling error of
the original data. It is in the investigation of reliability that the analyses for
Type I and Type II regressions differ slightly.

As shown in Fig. 6.1, we have a whole population of y's for each x. All
these populations have a common standard deviation, denoted by o',.. If
o-,. , is large, the regression line (or more generally, the regression surface),
which predicts only the man of the population of y's for a given x, will
be of little use. Indeed, li the number of observations (x, y) is small, not
even the mean will be estimated very precisely by the fitted regression
equation.
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In a regression analysis the assumption is made that the mean of y is a
linear function of the x's (more generally, a function of given form). If
the resulting equation is used for predicting beyond the range of x's for
which this assumption holds tiue, errors not accounted for in the confidence
intervals for the regression will occur. For this reason, extrapolation is
inadvisable.

The general method used in estimating a population regression curve
from sample data is the method of least squares. The sample regression
curve of y on x of given degree is the curve among all those ot that degree
that minimizes the sum of squares of vertical (y) deviations of the observed
points from the curve. The method of least squares has general application
in curve fitting (Sec. 6.3).
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r Not all the possible types of problems in fitting equations to data can

be treated rigorously by the methods of this Manual; that is, as Type I or
Type II problems. Models that are of neither type arise whenever the
observations on x include measurement error in addition to any inherent
variability. (The variation of y in Type I and Type II problems may result
from measurement error or inhcrent variability, or both.) A statistician
should be consulted if a problem does not appear to fit the models provided
here; however, rigorous solutions to some of the more complicated problems
are not known.

6.1. Linear Regression (Two Variibles)

It is assumed that there are only two variables of interest, an "independ-
ent" variable x, and a "dependent" variable y, and that a sample (xi, yi;
x2, Y2; ' * * ; xn, yn) is drawn. The curve of the y mean values for the
population is assumed to be a straight line. A test of this assumption is
given in Sec. 6.1.6. If the curve is not straight, it may be known, or perhaps
can b- assumed, to be of a form that can be treated as explained in Sec. 6.3.

6.1.1. Regression Line

The equation of the sample regression line of y on x is

V1 = a + bx

where the regression coefficient, the slope of the regression line, is

b - I(x- 3)(y - y)._ njxy - Exjy
3 (x - flX -(IX)2

and the y intercept is

- b- - b l x

(See Sec. 6.1.6 for formulas if there are several values of y for each value
of x.) The general equation may also be written as

y,'- = (x -

which sho-As that the line passes through the center of gravity of the
observed points. The prime (y') distinguishes a predicted or calculated value
from an observed value.
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TABLE 6.1. DATA FOR LINEAR-REGRESSION EXAMPLE

Young's modulus
Propellant Nitrocellulose, % at 70°F, in

lot i thousands
lot x of psi

y

1 55.77 83.9
2 55.05 66.4
3 54.27 73.1
4 50.63 66.7
5 49.86 30.1

6 53.04 36.2
7 51.33 22.8
8 56.70 66.5
9 55.07 37.0

10 55.76 58.0

11 54.40 71.9
12 55.39 83.1
13 57.49 66.2
14 57.56 72.3
15 58.76 65,9

16 59.32 123.5
17 57.21 116.8
18 68.55 160.1
19 65.04 158.2
20 66.98 152.2

21 63.69 134.8
22 58.34 87.3

The regression coefficients are

83,876.437
11,404.3817 = 7.35476

1,832.9 - (7.35476) (1,260.21) 337.983

22

Therefore, the equation of the sample regression line of y on x is

y' = -337.98 + 7.3548x

This line is plotted as the central solid line on the scatter diagram of

Fig. 6.3. (Other curves shown in this figure will be described in Sec.

6.1.2 and 6.1.4e.) To check the values for a and b, substitute them

in the equation
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The sample regression line given here is an estimate of the true or
population regression line of y on x. The sample regression line is such
that the sum of squares of vertical deviations of the observed points from
this line is smaller than the corresponding sum for any other straight line;
i.e., the sample regression line is a least-squares estimate of the unknown
true line.

In a Type I problem, although the observations are made by observing
y at values of x chosen by the experimenter, it may be desired to predict
what value of x would yield a specified value of y on the average; this may
be done by solving for x in the regression equation of y on x given above.
In a Type II problem, on the other hand, when we know y and wish to
predict x, the regression line of x on y is appropriate and would be deter-
mined mathematically by minimizing the sum of squared horizontal devia-
tions. This line is different from the regression line of y on x (unless all
points lie exactly on one line), since the latter minimizes the sum of squared
vertical deviations. The formulas are completely analogous, and can be
obtained by interchanging x and y in the formulas given above. More
simply, the predicted variable can always be labeled y, as in this Manual.

For some purposes, a satisfactory line can be fitted to the scatter diagram
by eye, without computations.

Example. Fit a regression line of y on x to the data (Type II) of
Table 6.1. This table gives 22 paired values of % nitrocellulose and
Young's modulus in thousands of psi.

2x- 1,260.21 2
2= 72,706.0739

y = 1,832.9 y2 = 187,657.71

n = 22 xy = 108,805.243

A partial check of the sums of squares and cross-products is given by
the relation

2 (x- y) 2 -  x2--  2 xy+ 2 y2

where the two sides of the equation are computed independently.

)

42,753.2979 = 72,706.0739 - 2 (108,805.243) + 187,657.71

- 42,753.2979
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E xy =ax + b X2

which should hold, except for rounding error.

108,805.243 - (-337.983) (1,260.21) + (7.35476) (72,706.0739)

108,806.168
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FIG. 6.3. Graph for Table 6.1, Showing Regression Line, -+-sv, and ±_2svj Limits
for Individual Observation (Sec. 6.1.2), and 95% Confidence Limits for Regression

Ordinate (Sec. 6.1.4e).



156 FITTING A FUNCTION §6.1.

To illustrate the use of the regression line in predicting values of y,
we compute y', given x = 55.77%.

y' = -337.98 + (7.3548) (55.77) = 72.20 X 10: psi

The observed value of y is 83.9 X 103 psi.

6.1.2. Variation About the Regression Line

The scatter, in the vertical (y) direction, of the observed points about
the regression line is measured by s,,,, where

s x X (y, - y )2 , ,
=I S 2 -s) - A. 2s (1 - r2)

Either of the latter two forms is to be used for computing. (Section 3.1
shows how to compute S2 and s2; r, the sample correlation coefficient, is
defined in Sec. 6.1.3.) The quantity sl estimates that part of the variance
of y left unexplained by the regression of y on x. It is defined with n - 2
rather than n - 1 in the denominator (Sec. 1.1.12) because two degrees of
freedom are absorbed by the estimates a and b. The positive square root,
svl , is sometimes called the standard error of estimate.

The sum of squares of deviations of the yj from their over-all mean
can be separated into two parts

S(y, - Y)2 (y, - y )2 + (y', - Y)2-

That is, the total sum of squares equals the sum of squares of the devia-
tions from the regression line plus the sum of squares of the deviations
of the regression values from y. This separation into two parts is similar
to that described in the analysis of variance in Chapter 5. If we call
C.', = I (y' - y)2/(n - 1) the variance accounted for by the regression,
then (neglecting only the slight difference between n - 1 and n - 2) we
can write the total variance S,, like the total sum of squares, as the sum
of two parts

s'- s2 + S1

In a Type II model, a similar relation holds exactly for the c'rre:sponding
population variances

4

0r2 (2 + U
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This separation into parts is discussed further in Sec. 6.1.3.

If it is assumed that the y populations for the various x's have normal
distributions about the true regression line with common standard devia-
tion ar , then 68% of the combined populations lie within of the
true regression line and 95% within ±2o' x. With a large sample we expect
to approximate this situation, taking the sample regression line and sva,,
as good approximations to the true regression line and ayj, respectively.
For a more precise description of the distribution of the population about
the regression line, see Sec. 6.1.4f; see also Ref. 6.14 or tolerance intervals
for the regression line. (Tolerance intervals are defined in Sec. 1.1.11.)

Example. For the data of Table 6.1, we calculate

n2 - n x2 - (E x)2X n - ) = 24.6848
n(n-1)

s2 -n y2 - (2 y)2
s= n (n- 1) - = 1,664.3879

n 1)

sv1 = n - 2 (sl - b2s) = 1.05(329.126) = 345.582

So, = 18.59 X 103 psi and sy = 40.80 X 103 psi

Lines are drawn on Fig. 6.3 at vertical distances of ±s,1 and ±2svi:
units from the regression line. We see that 16 of the points (73%) lie
within ±s. X of the regression line, and that all 22 points (100%)
lie within ±2s l .

6.1.3. Fraction of y Variance Accounted for by

Regression-Correlation Coefficient r

From Sec. 6.1.2 it follows that the fraction of the population y variance
accounted for by the regression on x is

0,Y22

1 2

The square root of this fraction is the population correlation coefficient
p; the sign is taken as positive or negative to agree with the sign of the
slope of the population regression line. (A negative correlation indicates
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that high values of y are associated with low values of x.) The best estimate
of p from the sample is the sample correlation coefficient

I (x - 3) (y - Y)

(n - 1)s SS

nE xy - Ex y

V [nXx2 - (X)1] [,Iiy2 -(Xy) 2]

If the regression coefficient has already been calculated, we can use ihe form

-b S2.
SY'

The correlation coefficient always lies between - 1 and + 1. If, and only if,
all points lie on the regression line, then r = - 1. If r = 0, the regression
does not explain anything about the variation of y, and the regression line
is horizontal (y' = y).

The correlation coefficient is defined primarily for Type II problems,
where r is an estimate of the true correlation coefficient p of the joint
two-dimensional normal distribution (Fig. 6.2), irrespective of the random
set of x's obtained. The correlation coefficient does not have such an
interpretation in Type I problems, where the regression coefficient b is
ordinarily used; however, it is formally correct and sometimes convenient
to use the notation r and some of the associated formulas.

Example. For the data of Table 6.1, we calculate

(n xy- 2x2y)2
[" -X2 -(2 x) ][ny - ( y)2]

(83,876.437)2 0802254

(11,404.3817) (768,947.21) 2

r= 0.8957

We see from r2 that the regression of y on x accounts for about 80% of
the variance of y.

6.1.4. Reliability of Regression Measures

The significance tests and confidence intervals given below are exact only
under the normality assumptions discussed in Sec. 6.0. With the exception
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of Subsec. b, all of Sec. 6.1.4 is applicable to Type I problems, but the
test in Subsec. a is identical with a special case of Subsec. c, so that only
Subsec. c to f need be considered in Type I problems. All of this section
is applicable to Type 11 problems, Subsec. a again being equivalent to a
special case of Subsec. c. (The tests of 'typotheses in Subsec. c and d have
somewhat different operating characteristic (OC) curves in Type I and
Type II problems, but the difference is not a practical concern. See Sec.
1.1.8-1.1.9 for OC curves.)

a. Significance of Sample Correlation Coefficient r. Appendix Table
7 gives 1 and 5% critical points for the absolute value of r, denoted by Irl.

We read the critical value under two variables and opposite n -- 2 degrees
of freedom. If the computed Irl exceeds the critical value, we reject at that
level of significance the null hypothesis that the population of x's and y's
has zero correlation.

Example. For the data of Table 6.1, r = 0.896. Suppose we wish
to test the hypothesis that there is zero correlation between the % nitro-
cellulose and Young's modulus at the 5% level of significance. From
Appendix Table 7, under two variables and opposite 22 - 2 = 20
degrees of freedom, we read 0.423 for the 5% critical point. Since
0.896 exceeds 0.423, we reject the null hypothesis. As explained in
Sec. 1.1.7, the hypothesis is rejected because if it were true such a high
value of !rl would occur with probability less than 5%. The test is an

equal-tails test, appropriate when we are interested in either positive or
negative :orrelation, as is usually the case.

b. Confidence Interval for Population Correlation Coefficient p.
This subsection applies only to Type 11 problems. With the help of Appen-
dix Chart XI we can construct, on the basis of the correlation coefficient r
from a sample of size n, a confidence interval for the true (population)
correlation coefficient p. In 95% of our experiments the interval so con-
structed will contain p.

Example. For the data of Table 6.1, r = 0.896. Construct a 95%
confidence interval for p.

Entering Appendix Chart XI with this abscissa, we obtain for sample
size 22 (interpolating between curves labeled 20 and 25) the 95%
confidence interval 0.75 to 0.96.
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c. Significance Test and Confidence Interval for the Si ne b of
the Regression Line. The standard error of the regression coefficient b
can be estimated from the sample as

sb V n -1

where

__ 1
n -,(n - )n x- x]

and

n - 1
Y. n s -~ 2 s

To test the null hypothesis that the slope P6 of the true or population
regression line has any stated value, say B, compute

b-B
b= - B

Sb

Reject the null hypothesis at the significance level a if tl exceeds the
criticai -'alue t /,,,-2 given in Appendix Table 3 for P(1)= a/2 and
/ = n - 2 degrees of freedom (Ref. 6.2, pp. 402-3 and 548-51).

A 100 (1 - a)% confidence interval for the true slope 8 is

b - t/2,n-2$b

Example. For the data of Table 6.1, test the null hypothesis that
f? has the value B = 0.

We compute

=fb SYJ. 18.5898 -0.81649

fb , -l v (24.6848) (21)
and

b 7.35476
1=--9.008

Sb 0.81649

Since Appendix Table 3 gives t.025 ,2 0 = 2.086, we find the computed t,
and hence b, significantly different from zero at the 5% level of
significance.
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To find a 95% confidence interval for the true slope 3, we compute

b ± t.0 25,2oSb = 7.35476 ± (2.086) (0.81649)

We find a 95% confidence interval of 5.652 to 9.058.

d. Significance of the Difference Between the Regression Coeffi-
dents bl and b2 of Two Separate Equations. If two lines y' = a, + blx
and y = a, + b2x have been determined from two sets of data with
comparable variables, the t test can be used to test the significance of the
difference between the slopes, under the assumption that the population
standard errors of estimate for the two relations are equal. (This assump-
tion can be tested as in Sec. 3.3 by forming the F ratio of the two values
ofs say s2  and S2  and comparing it with the critical value in

Appendi:- Table 5 for n, - 2 and n2 - 2 degrees of freedom.)

We compute the best estimates". of the common variance 0,2

(n1 - 2) + (n, - 2)
SuIX ll + n2- 4

Based on the pooled information from both samples, the estimate of the
variance of tie regression coefficient bi is

'2s'b, - (,,, -i =) 1, 2)

and the standard deviation of the difference b, - b2 is estimated from

1 1

-b: +" -" s n - 1)s,, - 1)sj

To test the null hypothesis that the difference 31 - /32 between the true
(population) regression coefficients has any stated value, say A, compute

b- - A
Sbx-42

Reject the hypothesis at 'he significance level a if I tl exceeds the critical
value t,/ 2,,,,+, 2-4 given in Appendix Table 3.

For the comparison of more than two regression coefficients see Ref. 6.4,
Chap. 12, or Ref. 6.7, Sec. 18.9.
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e. Confidence Interval for an Ordinate to the True Regression Line.
The ordinate of the sample regression line for any given x = X (which
need not be any of the observed x's) is calculated as

y' =a+ bX

This y' differs from the true or population mean ordinate at x = X which
would be obtained if infinitely many observations could be made with the
same value X of x. We can show how good our estimate y' of the true

mean ordinate is by calculating 100(1 - ai)% confidence limits

1 +(X -- 3)2
Y' 'a/2,n-2 SY~z1X +sX 2

n (n - 1)s

where ta/2,n-2 is obtained from Appendix Table 3. In this way we can
construct a confidence interval for any particular ordinate of interest. Notice
that if X is set equal to T in the equation y' = a + bX, we have y' =

If X = 0, then y' = a, the y intercept.

To make an equal-tails test of the null hypothesis that the ordinate to the

true regression line at the chosen X has any stated value Y, we compute

1=- y- y
t 

Y

s HJ (X-)

We reject the hypothesis at the significance level a if ItI exceeds the critical
value t,/2..-2 given in Appendix Table 3.

Example. Using the data of Table 6.1, calculate a 95% confidence
interval for the ordinate to the regression line of Fig. 6.3 for the percent-
age x = X of nitrocellulose.

We compute

(x-
Y - ta'.- syl +,,

Y1 +(7- 1s (

with n =22, 3 = 57.28, sX = 18.59, (n - 1)s X = 518.38, and
y' = -337.98 + 7.3548X. From Appendix Table 3, we find t.o25,2o -

2.086. Hence the 95% confidence limits for the ordinate are
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-337.98 + 7.3548X ± (2.086) (18.59) 1 + (X 5 78 )2
22 518.38

= -337.98 + 7 ;S48X ± V 68.35 + 2.901 (X - 57.28)-

These limits are the curved lines plotted in Fig. 6.3. Note that the error
in estimating the true mean ordinate is smallest at X = 3, and increases
steadily as IX - ;I increases.

f. Prediction Interval for Individual Value of y. For any given x
the individual values of y are scattered above and below both the true and
the sample regression lines. In practice, it may more often be of interest to
know how closely one can predict an individual value of y rather than the
mean value given by the regression line (Sec. 6.1.4e). The individual value
of y corresponding to a given x = X is, as in Sec. 6.1.4e, calculated as

y' = a + bX

The formula for a 100(1 - a)% prediction interval for y (explained
below) is

Y ± /2,n-2 + snJ + 2 +

To see what such an interval means, suppose that we conduct an experiment
of n observations and construct an interval for the value of y corresponding
to some given x = X; and suppose that we take a single further observation

Y,,+ at x = X. The length of the prediction interval is determined so that
in many repetitions of this whole procedure, on the average 100(1 - a)%
of the intervals will contain the corresponding additional obse-va tion Yn+.

(See Ref. 5.12.)

Example. For the data of the example in Sec. 6.1.4e, the 95% predic-
tion interval for a single observation y at x = X = 60 is

,/ 1 (X - 57.28)"
-337.98 + 7.3548X ± 38.78.1 + 2"-2 + 518.38

= -337.98 + 7.3548X -+ V 1572.2 + 2.901 (X -- 57.28)2

= 103.31 - V 1593.7 = 103.31 ± 39.92

63.39 and 143.23
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Evidently a single value of y (Young's modulus) can be predicted but
poorly; this is because of intrinsic variability from sample to sample
rather than lack of knowledge of the true regression line, as shown by
the relative sizes of the square-root quantities here and in Sec. 6.1.4e.

6.1.5. Summary of Computations for Two-Variable
Linear Regression

We show below the calculations for the data of Table 6.1. Accumulated
multiplication on a desk computer should be used to find sums and sums of
squares simultaneously.

1. Sums and variances

x = 1,260.21 X2 = 72,706.0739

y = 1,832.9 Ey2 = 187,657.71

n = 22 , xy = 108,805.243

s n X2 - (2 X)2 11,404.3817
n (n - 1) (22)(21)

•, n Xy 2  
- ( y~) _ 768,947.21 ,. 30079

n(n - 1) (22)(21) - 1,664.,,'

2. Reg.'ession line

y' = a + bx
b - n~xy - _xy_ - 83,876.437

b =I -Ex__ 2 y - ___ = 7.35476
n x2 - (Ix)2 11,404.3817

a y - = T-bX _ 1,832.9- (7.35476) (1;260.21)= -337.98

_ -n 22

3. Correlation coefficient -

S [n xy - (2_x)(2 y)]

_ (83,876.437)2 -0.802254

(11,404.3s17) (768.947.21)

. = V 0.802254 = 0.8957
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4. Standard error of estimate

n - 1

-YX n- 2 (sY - b2s') = 1.05 (329.126) = 345.582

s , = V 345.582 = 18.5898

5. Standard error of regression coefficient b

b sYJX 18.5898- ____- _- 0.81649
sV n - 1 V (24.6848) (21)

6. Significance of r. Compare Irl with the critical value in Appendix
Table 7 for 2 variables and n - 2 degrees of freedom.

7. Significance of b. Compare It = Ibj/sb with the critical value in
Appendix Table 3 for n - 2 degrees of freedom.

For further information on the calculations given above, see Sec. 6.1.4.

6.1.6. Test for Linearity of Regression

If the regression function of y on x is known, to be a polynomial, the tests
given in Sec. 6.3.1 and 6.3.2 can be used to determine the degree of that
polynomial. In the latter cas,. the x values used must be equally spaced.
If the degree of the polynomal is one, the relation is linear.

A cruder test of linearity can be made by considering the sequence of
signs of the deviations yi - y from the fitted regression line in order of
increasing xi, and applying the run test for randomness described in Sec.
4.1. For example, in Fig. 6.3 the sequence of signs of y, - ,,, is

with 10 +'s, 12 -'s, and 12 runs. If the population regression curve is
non-linear, the number of runs usually tends to be less than if it were linear.
For a test of linearity at the 5% significance level we compare 12 with the
critical value v 95 = 7 in Appendix Table 10 for n, = 10 and n., = 12. Thus
we do not reject the hypothesis of linearity. The same test can be applied to
any fitted curve, not merely a straight line.

A much better test of linearity, or of any form of curve, is available in a
Type I model if more than one observation of y is made for each selected
value of x. An F test can be made of the variance about the regression
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relative to the variance within groups, similar to the methods of Chapter 5.
Let the nj values of y for each chosen x value xi be called yo, where
=1, 2, • .,i aznd i = 1, 2,. m > ,m2.

To test for a gncrai r relation between x and y

y=a+3x

where the values of a and 3 are not specified, calculate the m means

i, (i= 1,2, , m)

and the m estimates of variance

_n, -1 ( Yjj)2] (i = 1,2, ,m)

n) (nj 1) ',=,' =

These j~i estimate the variances of the yij'S for each x1 . In the regression
model these variances are all assumed equal (to U2 1.). This assumption can
be tested as in Sec. 3.4. The m estimates of variance s2, can be combined
to give an estimate of the common variance (r2

(ni - 1)s2

SN-rn

,vith N - m degrees of freedom, where N = 2 ni. Here, and throughout
the following summations, the index of summation is i and the range (from
1 to M) will be omitted for the sake of simplicity.

The constants a and P3 are estimated by the least-squares line

y'= a + bx

fitted to the data, where

b - ",n xJ, - (2 ,,,x,) (2 ny,)
N nx, - (2 ",lx)2 ny

and

= nj, - b 2 nixi-
N

(These follow directly from Sec. 6.1.1 by denoting the equal values of x
by the same symbol.) Using the values y' given by this least-squares lne,
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we form

= n,?l (yt -S~- = )
- m-2

N' niy - (2 ny)2 - b [N 2 ,ixiyi -- (E nx,) ( niyi)]
N(m - 2)

with m - 2 degrees of freedom. The latter form is preferred for computing.
If the hypothesis of linearity is true, s2 also estimates a25~.; if not, s' tends

to exceed a 2 To test the hypothesis of linearity, compute the F ratio

S,

s l

Reject the hypothesis at the 5% significance level if the calculated F is larger
than the critical value F~.,(m - 2, N - m) in Appendix Table 5.

If the hypothesis of imearity is not rejected, the significance tests and
confidence intervals for b and any pa,'ticular y' (such as a) can be made as
in Sec. 6.1.4 on ungrouped data, except that s-,, is replaced by s2 and the
number of degrees of freedom n - 2 is replaced by N - r.

If the hypothesis of linearity is rejected, then some other less simple form
of relation must [,. considered. The data inay be used to discover such a
relation, ',mt rigorous statistical tests of the validity of the relation suggested
by the data cannot be made with the same data. An entirely new set must
be gathered.

See Ref. 6.7 (Sec. 18.3, 1S.4, and 18.7) for a more extensive discussion
of linearity tests.

The test has much more general application than that described above.
It can be used with only slight changes to test any form of relation in which
y' is linear in the constants to be determined; e.g., for testing a polynomial
in x. The only changes are the following: (1) the equation of interest, rather
,14n a straight line, is fitted by least squares as in Sec. 6.2 or 6.3; and (2) if
the number of constants to be determined is k + 1 rather than 2 (where
k + I < in), then m - k - I replaces m - 2 as the number of degrees of
freedom in the denominator of the first expression for s2,, and the second
expression for s'? does not apply.
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6.2. Multiple Linear Regression

If the variable y depends linearly on several factors, it is best to use a

formula involving all of them for predicting y. Denote the k such factors, or
variables, by x,, x2, , xk. A sample of n observations would consist of

n sets of values: x11, x21, , Xk1, yl; x 12, X, , Xk2, Y2; ; and
x11, x ', * ' , Xkn, yn. The subscript denoting the particular observation

is usually omitted, and the representative factor is denoted by xj where

j 1,2, ... ,k.

The general discussion of the meaning of the regression equation in

Sec. 6.0 and 6.1 applies to multiple as well as simple regression. If the
whole population of values of (x,, x2, • • • , xk, y) were known, the ordinate

to the true or population regression plane at the x point (x1, x2, ' * ' , xk)

would be the y mean for that x point (Fig. 6.4). The values of

X1, X2, , xk may be specified by the experimenter or they may occur

Y

xI

FIG. 6.4. Regression Plane.
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randomly, giving rise to the Type I and Type II problems mentioned in
Sec. 6.0. Intermediate mixed types may occur. The restrictions on Type I
and Type II models in the multiple-regression case ire analogous to those
in the simple-regression .ase. In any case, each sample value of y is assumed
to be a random observation from a normal population. These populations
have' a common standard deviation, but different means, depending linearly
on xx 2, • * ' , Xk.

The methods of this section presuppose a linear relationship between the
mean value of y and the other variables. A rough ch'ck on thiis assumption
can be made by graphing y against the x's taken one at a time (see Ref. 6.5,
C, 1 1, 14, and 16). A general test of a regression surface, which requires
several observations of y for each point x1, x2, • , xk, is available in

Sec. 6.1.6.

If the regression curves seem to have a form other than linear, a trans-
formation of variables may yield a linear relationship which w.)uld make
the methods of this section applicable. However, if the forms of the
curves are discovered from the data under analysis, they represent a
hypothesis rather than an established fact and should be tested with a
further experiment.

6.2.1. Multiple Linear Equation

The predicted value y' is expressed by the sample regression equation

Y a + bx +b 2x2 + + bkxk

where the xj are the variables affecting y, the partial regression coeffi-

cients bj are determined as shown in Sec. 6.2.2, and

a = y -. b,-21 - b 2.., ... bk-!',

the sample averages being y, x, 3.., Thus the regression equation

could also be written

Y, - y= b,(x, - + ) b..(X2. - :,)+ ..+ bk(xk-

This equation represents the best-fitting plane for the sample data plotted
in k + I dimensions, in the sense of the least sum of squares of y deviations.
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6.2.2. Determination of Partial Regression Coefficients

We determine the partial regression coefficient bj in the regression
equation by solving the normal equations

b,y,(x, - R,)* + b-yj(x, -;,)(x- -) + ... + bj(x,-.0(x' - Xk) = x, - R,( - )

bl(x:.. - )( , ') + bE(X2 - k2)" + 4 b (x. - X,)(Xk - 3,) -- - ?.)(y - Y)

. . . .. . . . , . . . . . . . . . . . . . . . . . . . . . . . , . . . .

b,y(Xk - Rk)(XI - ,) + b., (x - -5(k ) - ... 4- b (X - 3- (Xk -- kk)(y - )

Each sum has n terms for the n sample members. Thus

S(XI - 3 = ) (Xii - Tl
Il

but the second subscript has been omitted from these equations for
convenience.

To simplify the notation, we let

a,,, = ,nZ (x,, - ,,) (x - 3) = n E x,1xj - 2 xXh2

Note that

'ihj = aph (e.g., a2 3 = 32=n2 x2X3 - 2 X2 I x3 )

and

aijs = nX x - (X x,)" (e.g., aii= ,X - X,)2)

Also let

a= n ExY - E Xs 2 Y (e.g., aay - 2 X 2y - x 2  y)

and

,= " - ( y) 2

With this notation the correlation coefficient rhi b:i' -e' n xh and x can
,be written

ah

r ahhajj
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For ease in computing, we consider the normal equations multiplied by n
and written in the form

anlb, + a12b2 + + alkbk =a,

a21b, + a 2b2 + + a~kbk a2,
. . . . . . . . . . . . . . . . . . . . .

ak b + ak2b2 + + akkbk =aky

References 6.7 (pp. 642-49) and 6.9 give methods for solving simul-
taneous linear equations. Any familiar method may be used, but a large-
scale problem (more than three independent variables, or many repetitions
with three or fewer) may be solved most readily by high-speed machine
methods. The technique most readily adapted to machine methods and to
assessing the precision of the results is that of inverting the matrix of
coefficients a4h. This involves solving for the b's by replacing the column
of constants a successively with 1, 0, 0, , , getting values el,
e12, elk; with 0, 1, 0, , 0, getting e.,, e22 , , ek;
and with 0, 0, - • . , 0, 1, getting ek,, ek2, , ekk. For example, ell,

e,, " elk satisfy the equations

a11 ell + a 12e 1 2 + + alkelk = 0

a.21el1 + a 2 2 e1 2 + + a2 k6'1 = 0

a3le,, + a32e.,2 + + a3kelk-- 0

akiell + ak2 el2 + + akkelk = 0

Then the solution of the original equations is

k

bj = 2 ahyehj (j= 1,2," •, k)
1=1

Since the ah, are the same in all cases, an efficient computational form, such
as the one shown in Ref. 6.7 (pp. 648-49), enables us to obtain all the e1,1
and the b simultaneously, and provides easy and valuable step-by-step
checks.

Example. Rocket propellant grains are F. oduced by extrusion through
a die under pressure. The major inside diameter y depends not only on
the die shape, but also on the kind of powder, its initial temperature x,,
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the die temperature x., and the extrusion rate X:3. Experiments have
indicated that the average influence of x,, x., and x:, on y can be
adequately represented by a linear equation

y' = a -- blx, + bIx, + b:,x:,

Table 6.2 lists 19 observations taken on a particula: type of grain
for the purpose of evaluating a, b1, b2, and b:,. The values of the xj,
except, for small variations, are 110 and 130 0 F for x,; 120, 140, and
158 0 F for x.,; and 10, 20, and 28 in/min for x:,. Thus, the problem is
better classified as Type I than as Type II.

TABLE 6.2. DATA FOR MULTIPL1'-REGRESSION EXAMPLE

Powder temp. Die temp. Extrusion rate [ID(in.) -- 1 i0:'
- 10, OF -100, OF in/min Y+ EX

X1 X2 X:3 Y

11 58 11 126 206
32 I 20 13 I-9 157

14 22 28 108 172
26 55 28 119 228
9 41 21 103 174

30 18 20 83 151
12 56 20 113 201
29 40 26 109 204
7 38 9 130 184

28 57 10 106 201

1() 19 19 104 152
31 37 18 92 178
12 21 10 94 137
33 40 11 95 179
9 42 27 109 187

12 57 29 103 201
10 21 12 82 125

33 40 19 85 177
30 58 29 104 221

The computation is simplified by subtracting 1000 F from the powder
temperature and the die temperature, and by subtracting 1.100 inches
from the inside diameter and expressing this last difference in thou-
sandths of an inch. The column of sums y + 2 x, is included to provide
an over-all check of the calculation of the normal equations, as shown
in Table 6.3. The check is given by the identity



§6.2. MULTIPLE LINEAR REGRESS!ON 173

n (y +, Xj -[ (y + Xj)]2

- ai, + aH + 2 ajy + 2 ' ahi
1 J hi<j

In this example both sides of the identity are found by separate calcu-
lation to be 261,348.

TABLE 6.3. COMPUTATION OF SUMS OF SQUARES AND PRODUCTS

n =19.

Quantity xI X. x y y + xj

x) 378 740 360 1,957 3,435

x 9,424 32,896 7,778 204,845 634,767
all 36,172 77,424 18,182 62.206 261,348

XIXj 14,860 7,222 37,865

a,, 2,620 1,138 -20,311

x2xj 14,505 78,213

ai J 9,195 37,867

2 x~gy 3 7,247
xy 37,2173 Check sum:a 313 261,348

3 19.89 38.95 18.95 103.00

From Table 6.3, the normal equations for this example are

36,172b, + 2,62Ob 2 + 1,138b 3 = -20,311

2,620b1 + 77,424b 2 + 9,195b3 = 37,867

1,138b. + 9,195b., + 18,182b = 3,173

By first (or simultaneously) solving the like equations in the ehi's by an
appropriate method, we obtain the results

el 1 27.7444 X 10--l e,2 = -0.7794 X 10-1 e,3 = -1.3423 X 10'
e2 = --0.7794 X 10-6 e.,., = 13.7631 X 10-" e23 = -6.9115 X 10-1,

= -1.3423 X i0 1 er = -6.9115 X 10- 1 e33 = 58.5787 X 10- 6

b. = -0.597290 b2 = 0.515068 b3 = -0.048583

We can then write the regression equation in the form of the last
equation of Sec. 6.2.1, using the mean values at the bottom of Table 6.3
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y'- 103.00 = -0.5973(x I - 19.89) + 0.5151(x 2 - 38.95)
- 0.0486 (x:, - 18.95)

Multiplying and collecting terms, we can write

y' = 95.74 - 0.5973x, + 0.5151x 2 - 0.0486x:,

The value of the original dependent variable, the major inside diameter

in inches, is predicted for given values of x1, x,, and x:, by dividing the

y' calculated from the above equation by 1,000 and adding 1.1. If the
equation were to be used frequently, a nomogram could be constructed
to give the results in chart form (Ref. 6.1). If x = 11, x 2 = 58, and

x, = 11, then y' = 118.51 and the predicted major inside diameter is
1.2185 inches. This predicted value may be compared with the first

observed value, 1.226 inches (coded as 126) in Table 6.2. The regression
equation gives a prediction of the average value of y for the given values
of x,, x, and x., as shown in Fig. 6.1 and 6.4. Individual observations,

future as well as past if background conditions remain unchanged, will
tend to cluster about the sample regression plane if sufficient data are
used to make it a good approximation to the population rcgression plane.
The usefulness of the equation is examined in the following sections.

6.2.3. Variation About the Regression Plane

The concepts associated with multiple regression analysis are to a great

extent similar to those associated with a simple regression line. In par-
ticular, the scatter in the vertical (y) direction of the observed points
about the regression plane is measured by the standard error of esti-

mate s.1 ,...k, where

1 is

S2  
- ------- (y - y/V2y, i2k - '-''(

It can be calculated as

"- (--k -1) (auu "- bialy - b2a2 - .-... bkaky)

or, as will be seen in Sec. 6.2.4, as

1), (1 -
n-_k - 1- .
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where rY,,.,... is the multiple correlation coefficient.

If sY, 12 ... k is based on a sufficiently large sample, it is a good estimate of
the scatter of the population about the true or population regression plane.
If the deviations from the plane are normally distributed, about 95% of
the points in a large sample will lie within ---2sV,12...k of the plane
(measured in the y direction).

Example. For the example of Table 6.2, we calculate

I
s2 (19)(15) [62,206 - (-0.597290) (-20,311)

-(0.515068) (37,867) - (-0.048583) (3,173)]

- 107.81

stI/123- 10.383 X 10- 3 inch

whereas
A =_ally _ 62,206 181.89

$ n=(n - 1)- (19)(18)

s.. = 1 3.497 Y 10-3 inch

If the deviations are approximately normally distributed, about 68%,
or 13, of the 19 observed inside diameters should lie within 0.0104 inch
of the values predicted from the corresponding xj values by the regression
equation; actually 12 do so. Likewise about 95%, or 18, should lie
within 0.0208 inch, and 19 do so.

6.2.4. Relative Variation (Type II Problem)

a. Multiple Correlation Coefficient. Just as in the case of one inde-
pendent variable, the population multiple correlation coefficient
squared, p2v) ... ,, is defiiied as the fraction of the total variance of y that is
accounted for oy its regression on the variables x,, x., • , and xk. The
best estimate of P,1.,..,k,. from the sample is the sample multiple correla-
tion coefficient squared

2 b1aly + b2a2, + . . + btlkyr J 12 ..,k  - a

The multiple correlation coefficient itself is always taken as the positive
square root of r2Y12...k, and it is never greater than one: 0 < r 1 2...& 1.
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A value of zero indicates no correlation between y and xj; a value of one
means that all sample points lie precisely on the regression plane. Since,
because of random fluctuations, r 1j 12 ... k is almost never zero even when
there is no correlation between y and the xj in the population, it is
important to test its statistical significance; this is easily done as shown
in Sec. 6.2.5b.

As in the case of simple correlation in Sec. 6.1.3, the multiple correlation
coefficient is appropriate only in Type II problems (in which the variables
x, vary randomly rather than as chosen by the experimenter). In both §

Type I and Type II problems, the size of SYl2...k is used to assess the
goodness of fit (Sec. 6.2.3).

No numerical example will be given here since the numerical data in
Table 6.2 are for a Type I problem.

b. Partial Correlation Coefficients. This subsection, like Subsec. a, is
appropriate only for Type II problems. The sample partial correlation
coefficient r 3 1 24 . .,, for example, estimates the correlation between y
and x3 after the influences of x1, x2, x4, . , and xk, as estimated from
the sample, have been removed. The partial correlation coefficient squared,
r231124 ...k, is approximately the fraction of the otherwise unexplained part
of the variance of y that will be accounted for by considering the remaining
variable x. The meaning of the partial correlation coefficient should be
sharply distinguished from that of the simple correlation coefficient rY3; the
former systematically eliminates, but the latter merely ignores, the variation
caused by x1, x 21 X1, I , and xk.

For a three-variable regression (k 2) we can calculate the partial
correlation coefficients fron the simple correlation coefficients rhj by the
formula

merely interchanging the 1 and the 2 to obtain rY1 12 . (See Sec. 6.2.2 for
calculation of the rh,.) Thi3 formula shows that ry2 may be positive while
r.21, is zero or negative, so that little or nothing about basic relations can
be concluded directly from the simple correlation coefficient if there is some
further variable influencing y. For example, if ry, = 0.5, and r., = r2, = 0.8,
then r 211 = -0.389.
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For a four-variable regression we have

% r311 - rY21 rs3211,

-Y3112 r2 )131V211 3211 W

and similarly for the other coefficients. In this formula, the three coeffi-
cients rhj 1 on the right must be calculated from the six simple coefficients rh,.

Each partial correlation coefficient lies between -1 and + 1. The inter-
pretation of the coefficient is analogous to that of th', correlation coefficient
for two variables. Significance tests and confidence intervals can also be

constructed as in the case of two variables (Sec. 6.2.5c and d). In most
applications it is sufficient to calculate the partial regression coefficients,
the bj, and not bother with the partial correlation coefficients.

6.2.5. Reliability of Multiple Regression Measures

As in simple regression (Sec. 6.1.4), the significance tests and confidence
intervals given below are exact only under the normality assumptions j
discussed in Sec. 6.0. Subsections a, e, f, and g are appropriate to Type I
problems. Numerical examples are not given for the other subsections,
since the problem of Table 6.2 is better classified as Type I than as Type II.
All of this section may be applied to Type II problems, but Subsec. b and c

are equivalent to special cases of Subsec. a and e, respectively. Problems
of mixed type may arise in multiple regression.

a. Significance of Regression as a Whole. The regression plane
could fail to be statistically significant because (1) the assumed form of
the equation is not the true form (i.e., the true regression surface is not a
plane), or (2) the variation of observed points about the fitted plane,
though random, is so large that the fitted plane could have arisen by

random sampling from a population with all the partial regression coeffi-
cients equal to zero.

We caa apply the method of Sec. 6.1.6 to test the linearity of the
regression relation if several observations of y are made for each combina-
tion of vaiues of x,, x,, , xk.

We can test the hypothesis that all true partial regression coefficients
equal zero by an F test of the variance accounted for by regression, relative
to the error variance j12 ... k
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2$Y112...t

bia1, + + bkkkn2

knsJ 12... k

with k and n - k - 1 degrees of freedom. We compare the F calculated

from the data with the critical value tabulated in Appendix Table 5, and
reject the hypothesis that all true partial regression coefficients equal zero
if the calculated F is larger.

Example. Test at the 5% significance level whether the true partial
regression coefficients are zero in the example of Table 6.2.

We find from Sec. 6.2.3 that

31,481 - 5
(3) (19) (107.81) .

with 3 and 15 degrees of freedom, which is larger than the critical
value F.05 (3, 15) = 3.29 in Appendix Table 5. Hence we reject the
hypothesis, concluding that the variance accounted for by regressiun is
more than could reasonably be expected if all the true partial regression
coefficients were zero.

b. Significance of Multiple Correlation Coefficient. We can test
.. for significance at the 1 or 5% level by comparison with the value

in Appendix Table 7 for k + 1 variables and n - k - 1 degrees of free-
dom. We reject the null hypothesis that the population multiple correlation
coefficient is zero if ry112... exceeds the tabled value. If we reject the null
hypothesis, we conclude that the regression of y on x1, x2, • and xk
accounts for a significant amount of the variation observed in y. This test
of significance of the multiple correlation coefficient is actually equivalent
to the F test of Sec. 6.2.5a.

c. Significance of Partiai Correlation Coefficients. We can test any
partial correlation coefficient, rv1123 ... for instance, for significance at the
1 or 5% level by comparison with the value in Appendix Table 7 for
n - k - 1 degrees of freedom and two variables. If Iry, 2 3 ... k I exceeds the
tabled value, we reject the null hypothesis that the population partial
correlation coefficient PV1123 ... k is zero. Note that, although we use the
table column for two variables (the variables x, and y, in this case), we
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take care of the deletion of the other variables by using n - k - 1 degrees
of freedom. Thus, for k = 3 and n = 19 the critical value of j ry,12.i at the
5% significance level is 0.482.

d. Confidence Intervals for Partial Correlation Coefficients. This
subsection, like the preceding two, applies only to Type II problems. To
conatruct a 95% confidence interval for the population partial correlation
coefficient, say PY31124 ... , enter Appendix Chart XI with the sample coeffi-
cient rva1i 2,...k and find the interval cut off by the curves labeled n - k + 1.
In 95% of the experiments so treated, the resulting confidence interval will
contain the population coefficient. Thus, if k = 3, n = 19, and r 311

= 0.6,

confidence limits of 0.16 and 0.83.

e. Significance Tests and Confidence Intervals for Partial Regres-
sion Coefficients. The standard error of the partial regression coefficient
b1 can be estimated from the sample as

S= 112...kv nej (i = 1, 2, . .I k)

The values of the eji are the diagonal elements of the inverse matrix of the
normal equations computed in Sec. 6.2.2.

To test the null hypothesis that the partial regression coefficient//j in
the population has any stated value B, compute

bj-

Reject the null hypothesis at the significance level a if J i exceeds the
critical value t ,/2,,,-k-1 given in Appendix Table 3 for n - k - 1 deg-ees
of freedom.

A 100 (1 - a)% confidence interval for the population coefficient pj is
b, ± ta/2,,,-k-1 Sb1

Example. In the continuing example, we have

b= = -0.597290 e,1 = 27.7444 X 10 6 = 10.383

b2= 0.515068 e22 = 13.7631 X 10 -6 19

b3 = -0.048583 en = 58.5787 X 10- 6
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where rY1 12 ... k is the multiple correlation coefficient.

If Sy1,**... k is based on a sufficiently large sample, it is a good estimate of
the scatter of the population about the true or population regression plane.
If the deviations from the plane are normally distributed, about 95% of
the points in a large sample will lie within _ 2s I2...k of the plane
(measured in the y direction).

Example. For the example of Table 6.2, we calculate

1
s2r,.: - (19)(15) [62,206 - (-0.597290) (-20,311)

-(0.515068) (37,867) - (-0.048583) (3,173)]

- 107.81

slj, -23  10.383 X 10- 3 inch

whereas

2 al l 62,206 181.89S--n(n- 1)-(19)(18)

s.. = 13.497 Y I0 - 3 inch

If the deviations are approximately normally distributed, about 68%,
or 13, of the 19 observed inside diameters should lie within 0.0104 inch
of the values predicted from the corresponding xj values by the regression
equation; actually 12 do so. Likewise about 95%, or 18, should lie
within 0.0208 inch, and 19 do so.

6.2.4. Relative Variation (Type II Problem)

a. Multiple Correlation Coefficient. Just as in the case of one inde-
pendent variable, the population multiple correlation coefficient
squared, p2 -,..., is defiiied as the fraction of the total variance of y that is
accounted for oy its regression on the variables x1, x., , and xk. The
best estimate of p2W,.. , from the sample is the sample multiple correla-
lion coefficient squared

2 baly + b2a2. + . . + bkakY,r 1 2 .. k  -=

The multiple correlation coefficient itself is always taken as the positive
square root of rl~2 ... k, and it is never greater than one: 0 < rY!12...k < 1.
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Hence 3
sb = 10.383 V 5.2714 X 10-' = 0.23839

sb, = 10.383 -2.6150X 10-4 = 0.16790

1 = 10.383 11.1300 X 10 - = 0.34639

To test at the 5% significance level the null hypothesis that a popula-
tion partial regression coefficient P3j is zero, we compute tj = bj/sb and
compare its absolute value with t.025,1 5 = 2.131 from Appendix Table 3.
Since b, is much smaller numerically than its estimated standard error, it
is not significant (i.e., not significantly different from zero) whatever
reasonable significance level might have been chosen, but

t, = -2.506 and t2 = 3.068

Hence we reject the hypotheses that fP = 0 and P, = 0.

We may construct 95% confidence limits for fi as

b, ±t 2 .131 b, = -0.5973 ± 0.5080

= - 1.1053 and - 0.0893

Likewise 95% confidence limits for P. are

b2 - 2 .1 3 15b, = 0.5151 - 0.3578

= 0.1573 and 0.8729

Hence fi and P2 are but roughly determined by the 19 observations
available.

In general, when a partial regression coefficient, say bh, is not statistically
significant, we may choose one of three courses of action:

1. Retain the term bh (x% - xh) in the regression equation

2. Calculate a new regression equation, preferably on the basis of a
further sample, omitting observations on xh entirely

3. Discard the term and use the regression equation with the other terms
already calculated

The first course is the safest, but it may be unnecessarily complicating when,
as in the example below, the term can be discarded on the basis of its
negligible practical importance. If a term is discarded, course 2 is the proper
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one in general, in order that the resulting reduced equation be a least-squares
estimate of the (reduced) population regression plane. If the experiment is
designed with such symmetry that the off-diagonal coefficients ahi (h # j)
of the normal equations are zero, following course 3 is equivalent to
following course 2 without drawing a new sample. Also, course 3 is some-
times justified as an approximation to course 1 when, as in the example,
the differences between the y"s as predicted by the resulting reduced
equation and by the equation using all the variables are negligible.

In any case the choice of equation is aided by comp,.'ison of the sizes
of the standard errors of estimate s a... of the various equations con- I
sidered. In an extreme case the regression as a whole may be significant
according v) Sec. 6.2.5a, although no b, is significant individually. It may
happen in suh a case that some subset of the original set of independent
variables yields practically as useful a regression as the original. This is
exemplified in Ref. 6.7, p. 646, together with a method of finding the
appropriate subset of independent variables.

Example. In the previous example, we found that two regression
coefficients, b, and b,, were significant, but the third, b,, was not signifi-
cant. What would the practical effect in estinmating y be if we were to

discard the term in x,?

Over the range of applicability of the regression, the maxi-
mum error introduced by discarding the term b. (x, - 3,) would be
(0.0486) (10.05) (10-3) = 0.00049 inch. Therefore, we should follow
course 3 of the explanation above, discarding the term becarse its
contribution is not only not significant statistically but is also negligible
numerically.
f. Confidence Interval for Ordinate to the True Regrebsion Plane.

Confidence limits for the true mean y value (not for an individual predicted

y) at the x point (X,, X2, • • • , XA) are

./ - . + nI Ohl (Xk - -h) (X, -
n ,j=i

where y' is calculated from the regression equation. The x point need not
be one of those used in finding the regression plane. Note that there are k2

terms in the summation, k squares plus two equal cross-products for each
pair (h, j).

__ __ '-
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r This confidence interval can be particularized to cover the case of the y
Po intercept by taking (X1, X 2, , X) = (0, 0, • , 0) or the case of

y by taking (X1, X2, . , XA;) = (3, R2, ', k). Significance tests
based on the t statistic can also be made.

Example. For the data of Table 6.2, calculate 95% confidence limits
for the mean y value (y' = 118.51 or (ID)' = 1.2185 inches) estimated
in Sec. 6.2.2 for x, = 11, x2 = 58, and xs = 11.

Using the values of e in Table 6.3 and the ehj calculated in Sec. 6.2.2,
we have

n e ehi(Xh - Th)(Xj - Te)

- 19 X 10-8 [27.74 (-8.89)2 + 13.76(19.05)2

+ 58.58 (-7.95)2 + 2 (-0.78) (-8.89) (19.05)

+ 2 (-1.34) (-8.89) (-7.95)

+ 2 (-6.91) (19.05) (-7.95)]
0.2481

Hence the confidence limits are

118.51 - (2.131) (10.383) (0.5484)= 118.51 ± 12.13

= 106.38 and 130.64

or 1.2064 and 1.2306 inches, in terms of the original scale for inside
diameter.

g. Prediction Interval for Individual Value of y. The appropriate
discussion here is the same as in Sec. 6.1.4f. A 100 (1 - a)% prediction
interval for an individual value of y for the x point (Xi, XP, • . . , Xk)

differs from the 100 (1 - a)% confidence interval for the ordinate to the
true regression plane given in Sec. 6.2.5f only in replacing the first term
under the radical, 1/n, by 1 + 1/n.

Example. For the data of Table 6.2, calculate a 95% prediction

interval for an individual value of y for x, = 11, x2 = 58, and x, = 11.

The calculation involves the summation evaluated in the example in
Sec. 6.2.5f. The prediction limits are
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118.51 -t (2.131) (10.383) (1.1405) =118.51 ±t 25.23

= 93.28 and 143.74
or 1.1933 and 1.2437 inches, in terms of the original scale.

6.3. Non-Linear Regression

This section applies to Type I problems but not to Type II problems (Sec.
6.0). As noted in Sec. 6.0, the method generally used for fitting a line,
curve, or surface is the method of least squares. If, except for random

fluctuation in y (which need not be normally distributed), y is related to
variables x,, x2  , xk by a function g (xi, X2 , xk; C1, c2, , Cm)
of given form with unknown parameters c,, c., c .,, then these

parameters may be estimated from observations x1,, xV, .., x1 , y
(where i = 1, 2, ' • , n) which have known "weights" wi by minimizing
the weighted sum of squared deviations

S (C1, C2, . C") 2 [Yi - g(X14,X21  ,Xk; C2, C2, CM] w...1

with respect to c, c., , Cm. (Throughout this Manual all w= 1.)
This minimization is generally done by differentiating S (c, C2, , Cm)

with respect to each . .v'd equating to zero, thus getting m equations for

estimating c, C2,. , Cm.

Many non-linear relationships can be analyzed by tranforming the

original variables into new ones that are related linearly. Thus, to fit a
cubic equation

y = a + b~x + b2x2 + b3X'

we let x, = x, X2 =x 2 , and X3  x1. With these meanings for x1, X2 , and
x., the formulas for multiple regression in Sec. 6.2 may be used immediately
for non-linear regression. The intercept on the y axis is estimated as

a = - - -- ,

where x is the mean of the squares of Ihe observed values of x and x3 is
the mean of the cubes of the observed values. We note that xj, x2, and x.

are certainly not statistically independent here, but independence is not
necessary in multiple regression analysis.

IA
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The methods detailed in Sec. 6.1 and..6.2 can be used whenever

Y= g (x1, x2, • , xk; C1, C2, , Cm) is lir'ear in the parameters to be
estimated. For example, the equation

y' = a + b,-z + b2z logz 2 + b3/z2

can be fitted, using the formulas of Sec. 6.2, by letting x, = z,
x. = z, log z2, and x, = 1/z2. The y intercept is estimated as

a = y - bV-z - b2 zg z2 - b3 (/

In particular, the test of a hypothetical form of an equation in Sec. 6.1.6
is available if, as is recommeided, several observations on y can be made
for each value of xj, x2, . , ' and if the random fluctuations in y
are normally distributed.

Sometimes a transformation of y' as well as x (or the xj in multiple
regression) may render y' linear in the parameters. For example, y'xb = c
becomes

logy' = logc - blogx

by taking logarithms. By letting Y1 = log y', C = log c, and X = log x,
the problem is reduced to the linear case of Sec. 6.1. Other transformations

of value are

SX = e and X =x

The latter transformation includes X = 1/xb and X = c since a can bef any known non-zero constant. Similar changes oi variable may be made
ony.

If a transformation of y' is used, say to log /, the fitted line or plane
minimizes the sum of squares of deviations of log y rather than of y; if y
is normally distributed, log y will not be. Although in this case the

f: theoretically bes, estimate of the regression curve of y on the x's is not
obtained, the approximation is often sufficiently close. In case the regression
function cannot be transformed so that the unknown coefficients are
involved linearly, the least-squares equations may be insoluble except by
a method of successive approximations. (See Ref. 6.12 and also Ref. 6.7,
pp. 558-70 and 649-57, for further discussion of the fitting of non-linear
equations.)
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6.3.1. Polynomial Equations

For curvilinear relationships, a polynomial is frequently fitted unless
there is some theoretical basis for using a different curve. The poJynomial
equation is

y'y b,(x - T) + b (X2 
-)+ + bk (x -)

where

S--x(j= 1,2, .k)

The normal equations of Sec. 6.2.2 for determining the coefficients hold
as before

a,,b, + a12b2 + " + alkbk =a,
a2lb 1+ a22b2 + +a kb =a2V

. . . . . . .,

akb + ak2b2 + •"+ akkbk = AV

where now

ahj= fl2xhj - xhIx!

aj, = n Y xJy - xJ 2 y ,

As in Sec. 6.2.2, the equations may be solved for the bi in the easiest
available way. All the methods of Sec. 6.2 for a Type I model can be
applied directly to the polynomial equation and need not be repeated here.
In particular, the variance about the regression curve is defined as

1 '
sYx n (y -- Y,,;2

and is calculated as

sYx =n (n - k - 1)(a - ar-bau . .. ba)

where
a y = nXyy2 - (1 y)2



186 FITTING A FUNCTION 16.3.

Since the present situation is simply that of multiple linear regression
with xj replaced by xi, the significance of any regression coefficient can
be tested by the method of Sec. 6.2.5e. If there is uncertainty about.the
degree of equation appropriate for the data, it is desirable to start with an

equation of the highest possible degree of interest, and subsequently to
discard those terms which contribute little to the total estimate y' and have
coefficients that are not significant. In this situation the use of orthogonal
polynomials (described in the next section) is convenient. The method does
not require further calculation for the reduced equation; however, its
application is practical only if the values of x are equally spacee.

6.3.2. Orthogonal Polynomials, When x Is Equally Spaced

When an ordinary polynomial is to be fitted (Sec. 6.3.1), all the
coefficients must be recalculated each time a power term is added or dis-
carded. With orthogonal polynomials an analysis of variance is per-
formed to apportion the variance among terms of the polynomial. The
contribution of each term is tested; if it is not found significant, the term
may be discarded without recalculating the previously obtained coefficients.
For fitting curves of higher degree, this method saves time. Furthermore,
the tests of significance of effects are isolated, as in the simpler cases of
analysis of variance.

The orthogonal polynomials themselves depend on the arrangement of
the values of the independent variable x. For the commonly tabulated
orthogonal polynomials used here, the values of x must be equally spaced.
The method yieids an equation

y, y + A, '(x) + AA.(x) + + At(x)

where the Aj are coefficients to be determined, and the J (x) are known
polynomials in x-orthogonal in the s that the products tJ, (with
h : j) over n equally spaced values of x sum to zero.

R. In order to tabulate the values of the otthogonal polynomials con-
veniently for iepeated use, the values of x-say xi-are taken to be one
unit apart, and J (x) is taken as a multiple X' of a corresponding poly-
nomial tj (x) with leading coefficient unity. The latter adjustment makes
all th.! tabulated values t (xi) integers. Thus, in particular, we have
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ji(X) = -kit,(X) X X -

tn -

"(x) =Xa s(x) =X3'[(x -K )3 -(x - ) 3n; - 7]2

(3nX-13 3 (n21n2-9)1

'(x) 560 J
an in general ( k (x) = (, , with the recursion formula

n2 - 133(n 1)n2 9

:r+1 = - 4(4r2 -1) r-1

where

t 1 and e = x -

The coefficients Aj of a fitted polynomial are calculated from the observa-
tions yj, using the formula

The values of the individual (xi) and the sums of squares 2 t (xi) are

given in tables of orthogonal polynomials. Appendix Table 15, which is

an excerpt from a more extensive table given in Ref. 5.7, illustrates the
arrangement of that table and suffices for the example below; the complete

table of Ref. 5.7 would have to be consulted in general. The tables also give
values of the X., which depend on n; with these y' can be expressed directly

in powers of x.

Example. From the data in columns 2 and 3 of Table 6.4, fit a

polynomial curve. The values of the independent variable x are coded

one unit apart in column 2 of the table. It is assumed that terms of
degree higher than four are known from theory not to be present or are

certain to be of negligible interest.

Columns 4-7 and the values of and X, are taken from the table

of orth(gonal polynomials, Appendix Table 15, for n = 15. The values

for x > 8 are given directly in that table. The values for x < 8 are the

same (symmetrically about T) for J and t, and the same except for
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TABLE 6.4. EXAMPLE OF USE OF ORTHOGONAL POLYNOMIALS

Original Coded __2_1__4

() (2) (3) (4) (5) (6) (7)

45.2 1 7.8 -7 91 -91 1,001
45.4 2 7.9 -6 52 -13 -429
45.6 3 8.8 -5 19 35 -869
45.8 4 9.3 -4 -8 58 -704
46.0 5 8.7 -3 -29 61 -249

46.2 6 8.4 -2 -44 49 251
46.4 7 7.8 -1 -53 27 621
46.6 3 7.2 0 -56 0 756
46.8 9 6.7 1 -53 -27 621
47.0 10 6.4 2 -44 -49 251

47.2 11 5.7 3 -29 -61 -249
47.4 12 4.6 4 -8 -58 -704

47.6 13 3.7 5 19 -35 -869
47,8 14 3.0 6 52 13 -429
48.0 15 2.0 7 91 91 1,001

280 37,128 39,780 6,466,460
................. 1 3 % S%2

........ 98.0 -128.4 -655.6 170.3 -937

change of sign for J' and '. The sums of products I y, (xi) must be

calculated and are given at the bottom of Table 6.4. The coefficients in
the regression equation are then obtained immediately as

Y= 6.5333

-128.4 170.3
A 28 - -0.45857 A3 = 0.0042810

280 39,780

-655.6 -937.5

A2 = 37,128 = -0.017658 A4 = 6,466,460 0.00014498

An analysis of variance (Chapter 5) is performed to test the signifi-
cance of the terms .A (x). We first compute the sum of squared
deviations of y from y, which is the total sum of squares; then in turn
we compute that part of the total stun of squares accounted for by theek
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linear, quadratic, cubic, and quartic regressions. These sums of squares,
their degrees of freedom, and the corresponding mean squares appear
in Table 6.5. The sum of squares accounted for by the jth degree term

Aj (x) is calculated as

The residual sum of squares, that part of the total not accounted for at
all except as random flactuation, is obtained by subtraction as shown in

the table.

In testing the jth degree polynomial term for significance, we are
testing the null hypothesis that the population has a polynomial regres-

sion with the true value of the coefficient Aj equal to zero. Rejection of
this hypothesis implies that the data are significantly better represented

by a polynomial which includes J (x) than by a polynomial which does
not. (It is possible, though perhaps not likely, that we might reject, for
example, the hypothesis that A4 = 0 and not reject the hypothesis that
A 2 = 0.) We compare the F values with F.(, (1, 10) = 4.96 f:r.-,i
Appendix Table 5, and we see that all terms but the quartic are signifi-
cant. Therefore we use only the first three in the equation

+ + A, (x) + A2 i(x) + A3 i(x)

With n = 15, A =1, ,k2 = 3, and X, = % from Table 6.4 we obtain
J'(x) =x - 8

2(x) =3,X2 - 48x + 136
1 X

W (x) = T (5x3 - 120x2 + 793x - 1,224)

Substitution of these and the values for y, A1, A2, and A3 in the equation
for y' yields

y1 = 0.00357x3 - 0.1386x2 + 0.955x + 6.93

where x is the coded variable. The equation is plotted in Fig. 6.5 along
with the original data.



190 FITTING A FUNCTION §6.3. f
'1j

oj
I-W N -4

N .

00
0

z a

0

0% -

000

o 4

0



IoI

o

o 0

6

5-

4

3

2

I *II I J !

1 2 3 4 5 5 7 6 9 10 i 12 13 14 15
x (CODED)

FIG. 6.5. Cubic Fitted to Data of Table 6.4.

6.4. Planning the Experiment for Fitting a Function

The general steps in designing and running an experiment outlined in
Se.. 5.1, as well as much of the discussion of Sec. 5.0, apply to the fitting
of functions. In particular, we should use one of the following procedures:
(1) hold background variables constant at the values of interest (thus
limiting the applicability of the results), (2) provide for including back-
ground conditions as independent variables in the analysis by controlling
or measuring them, or (3) randomize the effects of background conditions
on the observed variables. For instance, in estimating the regression func-
tion of y on one independent variable x, it would be poor technique to
begin with the smallest value of x and proceed to successively larger values,
because other variables affecting y (such as temperature or instrument cali-
bration) may change with time in a systematic manner. It would be better
to randomize the order of application of the values of x by consulting a
random-number table (Ref. 1.7).

In a Type I problem the experimenter chooses the values of x (or of
x2, x2, • ', for which to observe y. If he does not know the form of

t
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the relation between y and x, he should choose the x values at a number
of equidistant points over the range of interest. If he knows from theory
or past experience that the relation is expressible as a polynomial in x of
degree no higher than k, he can minimize the largest variance of the
ordinate to the fitted curve over the range of interest by choosing the x
values in k + 1 equal groups, spaced over the range. For example, if the
curve is known beforehand to be a straight line (that is, a polynomial of
degree one), the most prf.cise estimates of ordinates to the line are obtained
by taking half the observations at one end of the range and half at the
other. This gives no test of linearity; and, in general, the number of groups
of x's should not be restricted to k + I unless terms of degree higher than
k are certainly negligible.

In the case of Type I multiple regression, the values of the variables xj
should be chosen in a symmetric arrangement. Symmetry of some kind is
valuable not only for obtaining the maximum information per observation
from the experiment but also for simplifying the calculations. Symmetry
leads to simple normal equations in which each of the unknowns bi occurs
in only one of the normal equations so that it can be solved for immediately.
Furthermore, the t test of significance of each b, will be independent of
effects of the other x, variables; this desirable result is similar to that found
in fitting by use of orthogonal polynomials (Sec. 6.3.2), and in the analysis
of variance of an experiment designed with appropriate symmetry
(Chapter 5).

In the case of Type II problems it may happen that a large number of
independent variables are present and observable, so that the question may
arise as to whether th~ey should all be observed and included in the analysis.
Inclusion of a further independent variable in the analysis will always
decrease the sum of square-d deviations of the data from the fitted regression
function. However, if the additional variable actually has little effect on

the dependent variable, its inclusion may not decrease the mean square
deviation, since the number of degrees of freedom is decreased also. The
result is that the experiment is less sensitive; that is, all F ratios are decreased

and their critical values are increased.

Moreover, if regression analysis is being applied to a Type II problem,
two variables xj may be highly correlated; if so, one of them should be
omitted from the regression equation because the two regression coefficients



2 §6.4. PLANNING THE EXPERIMENT FOR FITTING 193

would be poorly determined, whereas one by itself can be well determined. .

An extreme example might occur in a regression on percentage composi-
tion of some measurable characteristic of a solid propellant. Each of the

components might conceivably be taken as an xs, but if the percentage of
one were determined as a difference between 100 and the sum of the other
percentages, it would be linearly dependent on the others, the determinant
of the normal equations would be zero, and the regression coefficients could
not be determined. One of the components should therefore be omitted
from the regression equation.

It is important to take a sufficiently large sample to determine the regres-
sion function with the desired precision, but it is somewhat complicated
to predict the sample size. In addition to the form of the regression equa-
tion, one must know approximately the population standard d.eviation r
about the regression function and the spacing of x values to be used. For
example, with a straight line and the values of x equally distributed at the
two end points of the range of x, the first equation of Sec. 6.1.4c indicates

that the standard deviation of the estimate of the regression coefficient is

O(b =

where 2L is the total range of x. Knowing r., L, and the desired precision

O0 b in estimating the slope, we can solve this equation for the number n of
observations.

The design of experiments for regression is treated in Ref. 6.7, especially
on pages 536 and 632-34.
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Chapter 7

QUALITY-CONTROL CHARTS

7.0. Introduction

Quality-control charts are a graphical means for detecting systematic
variation from the quality to be expected in a continuous production, line;
that is, variation greater than the random fluctuation which is inevitable
and allowable. The charts may be used as a simple method of performing
statistical tests (such as those in Chapters 2-5) of the hypothesis that
subsequently produced articles have essentially the same quality character-
istics as previously produced articles. Quality-control charts relate to a
production line or process in action and indicate when a process should
be examined for trouble; whereas acceptance sampling (Chapter 8) relates
to entire lots of product, and enables a buyer to decide on the basis of a
sample whether to accept a given lot from a supplier.

Both quality-control and acceptance inspection procedures are based on
judgment of the whole by a part; that is, they are based on sampling. These
modern techniques have been found preferable to screening (100% inspec-
tion) in most cases because of lower cost. The work load in screening
sometimes requires each inspection to be superficial or haphazard, so that
a sampling plan involving careful inspection may actually give more reliable
information about a whole process. Also, if tlie test destroys the item
inspected (a flash bulb, for instance), screening is out of the question.

Quality-control charts may be used to keep a process up to a specified
standard or simply to keep a process stable. A separate control chart should
be used for each part produced or each different operation intended to
produce different results. For instance, separate charts would be used for
the operation of cutting stock into lengths for fins and for the subsequent
shaping operation. To spot flaws close to their sourcc, a sample for each
control chart should be taken whenever there has been a possibility of
change in the process, as when the shift of workers has changed or the

195
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pressure has been increased. Thus, the flow of product is divided into
sampling units called rational subgroups, chosen so that a change between
two subgroups may give an indication of its cause.

In both quality-control work and acceptance sampling, a product may he
judged by attributes or variables. The attributes method involves merely
a decision as to whether an item is acceptable or defective; the variables
method involves taking and recording measurements. These two approaches
are familiar in assigning school grades, which may be recorded as "pass"
or "fail" (attributes), or as percentages (variables).

Variables testing preserves more information from the sample, but is
sometimes unnecessary or inapplicable. For instance, to test whether the
length of a fuze falls between 1 and 11/2 inches, we may record the
measured length, or we may simply record "within tolerances" or "not
within tolerances"; but to test whether an aluminum disk has been inserted
during assembly, we can only record "yes" or "no."

The technique of making quality-control charts is to set up, in graphical
t- form, limits for a sample statistic on the basis of approximately 25 pre.

liminary samples from production, all samples preferably having the same
number of items. If one of the preliminary samples yields a statistic outside
the computed control limits, the production was not initially under control
and should be stabilized before the control chart is set up. The sample
statistic may be the proportion defective, number of defective items, mean,
range, etc. The values of the statistic should duster about a central line
(central value), which may be a set nominal val:e in the case of produc-
tion to a specified standard, or the man of previously obtained values in
the case of production which is to be kept stable. The upper and lower
control limits (UCL and LCL, respectively) are usually set up symmetrically
at "+3u from the central line (where a is the standard deviation of the
statistic). Then so long as production remains satisfactory, the probability
that a value outside these limits will occur is less than 0.3% (for a normal
distribution). Therefore, if during the course of production a value from
one of the rational subgroups should be recorded outside the limits on its
control chart, it would be conduded that a change in the production process
had occurred and the process would immediately be investigated to deter-
mine the cause of the change. In this way many poor production practices
are caught and corrected before the prod.action of large numbers of defec-
tives. A typical control chart is shown ,; Fig. 7.1.

41
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t ii

N\
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FIG. 7.1. Typical Control Chart.

A control chart showing constantly increasing (or decreasing) values
may lead to an investigation before the control limits are actually passed.
Values falling consistently very close to the central l'ae should indicate
excellent production, but may reflect nonrandom sampling. Values consis.
tently below (or above) the central line may suggest trouble even when
they do not pass the control limits.

The steps in controlling quality by statistical charts are the following:

1. Decide on a statistic (based on attributes or on variables) for each
production operation.

2. Divide each process into rational subgroups.

3. Decide on a sample size ii.

4. Construct a control chart showing the central line, UCL, and TL.CL for
the statistic, based on at least 25 preliminary samples from satisfactory
production, all samples preferably having the same number of items. The
central line may have a preassigned standard value or may be determined

i from the preliminary srnples. (Sec. 7.1 and 7.2 explain the methods of
computing the limits.)

II



198 QUALITY CONTROL CHARTS 7.0.

5. Plot the values from samples taken during ,the course of production.
Consider as indications of trouble: (a) values falling outside the limits;
(b) values consistently too close to the central line; and (c) values con-
sistently above (or below) the central line.

6. If a situation listed in the preceding paragraph occurs: (a) locate and
correct any flaw in production; or (b) investigate the possibility of poor
sampling; or (c) recognize that production conditions have changed and
institute a new control chart (if, after the change, the process still yields a
satisfactory product).

Attention is called to the references at the end of this chapter. Also
applicable to the problems involved in controlling quality are Sec. 4.1, Run
Test for Randomness; Sec. 4.9, Tolerance Intervals; and Chapter 8, Accept-
ance Sampling,

In Sec. 7.1 and 7.2, the following notation is adopted:'
k Number of preliminary samples used to set up chart (at least 25).
n Sample size.

Sample average, computed as T I xi/n.
i=2

S Sample sum, computed as S = xj. Note that R = S/n. (S can be used

instead of 9 in a control chart. This eliminates any need for division
by n.)

R Sample range, computed as largest reading minus smallest reading in a
sample.

s Sample standard deviation, computed as

Fln.Zx - , xi)2

s=N n(n- 1)

Proportion defective in sample, computed as

number of defective items found
P = number of items inspected

'The formula and notation used here for the sample standard deviation s are

consistent with the rest of the Manual, but inconsistent with much of the control-chart
literature. In using references the reader should check to see how s or a has been
defined.
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c Number of defects in sample. If several defects are found in one item,
they are all counted.

S Weighted sample standard deviation obtained from k samples of
slightly differing sizes, computed as

ng, + n2 + ''" + nkS

,ell reduces to 7 if the sample sizes nj are equal.

NOTE: A bar over any statistic indicates an average taken over all the

values of that statistic. Thus, S = Y Si/k, that is, the sum of the~j1l
b,;ums Sj for each of the k samples, divided by k. Similarly,

X = I bc/k, the average of the k averages Te, and = pk,

the average of the k sample proportions defective.

The constant factors A, A0, A, A2, B1, B2, B3 , B4, c2, DI, D 2, Da, D,
and d2 are found in Appendix Table 18.

7.1. Charts Using Attributes

This section of the Manual is presented in tabular form for compactness
and ease of comparison. By using Table 7.1 the reader can readily determine
the central line and the control limits for any quality-control chart of the
attributes type.

Example. The average proportion defective T for 25 preliminary
samples of 50 igniters each is 0.10. What are the control limits for p
for samples of size 50?

The control limits are computed as

ff--3 1n i ) "0 'V4- 3 /O 0 90) 50

-0.03 and 0.23

Since a negative proportion defective is impossible, we replace the
lower control limit, -0.03, by zero.A
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These limits, along with the central line and the first 12 subsequent
sample values of p, are shown in Fig. 7.2. Samples 4 through 12 show
constantly increasing p. Since such a Ic g unbroken trend is unlikely to
result from chance alone, the production process may well be checked at
this point before production continues.

Example. In recent satisfactory production, an average of 4.1 flaws
has been found for each sample of 20 propellant grains. For instance,
the first sample of 20 grains contained one flaw in the eleventh grain

(c = 1); the second sample of 20 grains contained two flaws in the third
$ Igrain and one flaw in the seventeenth grain (c = 3). Construct a 3a-limit
4 control chart.

'The control limits are 3 -3 = 4.1 ± 3V4. = 4.1 ± 6.1. Since
c is never negative, we use LCL 0 0, UCL = 10.2.

From Fig. 7.3 the production process appears to be under control.

0.3

UCL

U;0.2
i0. CENTRAL LINE

i:0.1I. ...
0

o I

LCL

oI , a I -

01 C
5 ;0 15

SAMPLE NUMBER

FIG. 7.2. Control Chart for Proportion Defective.
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FIG. 7.3. Control Chart for Number of Flaws.

7.2. Charts Using Variables

Table 7.2 is to be used in conjunction with Appendix Table 18 for
setting up the central line and control limits for any quality-control chart

of the variables type. Allowance for varying sample sizes is made only in

two cases. Reference 7.1 (pages 60-99) gives methods and examples for
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A

TABLE 7.3. MEAN AND RANGE DATA IN SECONDS FOR

SAMPLES FROM FLARE PRODUCTION

Sample Mean, 3? Range, R Sample Mean, T Range, R

1 64.97 9.8 14 66.60 0.6
2 64.60 9.8 15 66.12 6.3
3 64.12 8.4 16 63.22 7.5
4 68.52 3.9 17 62.85 6.7
5 68.35 7.6 18 62.37 4.9

6 67.87 8.7 19 61.97 6.7
7 64.97 0.1 20 61.60 9.9
8 64.60 9.7 21 61.12 6.9
9 64.12 7.7 22 65.72 0.1

10 63.22 7.5 23 65.35 8.3

11 62.85 1.2 24 64.87 5.2
12 62.37 I 9.8 25 61.97 3.2
13 66.97 6.4

these and other cases of varying sample sizes. The average sample size
may sometimes be used when variation is slight (Ref. 7.1, p. 116).

Example. Twenty-five samples of three are taken from production
of flaes for the purpose of establishing 3a control limits for the time of
the illumination. The times of the first sample are, for example, 60.5,
70.3, and 64.1 seconds, giving a mean of 64.97 seconds and a range of
70.3 - 60.5 = 9.8 seconds. Sample data are given in Table 7.3.

We compute

3 = 1,611.29 2R = 156.9

= 64.452 R = 6.28

n= 3

From Appendix Table 18, A, = 1.023, D3 = 0, and D. = 2.575.

Control limits for the mean 3 are

64.452 ±t '1.0236.28) = 70.88 = UCL
-=58.03 = LCL
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Control limits for the range R are

D8R = (0) (6.28) =0
DR = (2.575)(6.28) = 16.17Figre 7.4 and 7.5 aecontrol charts uigthese limits.
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Chapter 8

ACCEPTANCE SAMPLING

6.0. Introduction

The use of statistical charts by a producer in controlling quality during
production was explained in Chapter 7. This chapter will deal with
acceptance sampling; that is, with methods by which the buyer may

discriminate between acceptable and unacceptable lots of product. The
methods also produce incidental information that can be useful in the
control of quality. (So-called "continuous sampling" does not require divi-
sion of the product into lots, but uses samples drawn directly from the
production line. See Ref. 8.4.)

If a buyer finds that it is too expensive, too difficult, or impossible to
screen a production lot (that is, to inspect it 100%), he may decide from
a sample whether to accept or to reject the entire lot. A Navy inspector may
decide on the basis of a sample from each lot of fuzes delivered by a con-
tractor whether to accept the production lot.

Acceptance sampling may be based on either attributes or variables.
An inspector checking fuzes for delay times, for instance, might judge each
fuze as satisfactory or defective (attributes), or he might record the delay
time for each sample fuze and compute a statistic for deciding whether
to accept the whole lot (variables). (See also Sec. 7.0.)

In the attributes case, the lot is rejected if the sample contains too many
defectives. In the variables case, the criterion may be one-sided or two-
sided, depending upon specifications. If, for example, the specifications set
an upper limit U on the acceptable delay time, the inspector computes the
statistic (U - 3)/s + 10 from the delay times of the sample and rejects
the lot if this quantity is less than an acceptance constant Au; otherwise he
accepts the lot. If, instead, the specifications set a lower limit L, the
inspector rejects the lot if the statistic (L - 3)/s + 10 exceeds an acceptance
constant AL; otherwise he accepts the lot. In case the specifications set both

209
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upper and lower limits on the delay time, the inspector should use a
two-sided criterion rather than two one-sided criteria. References 8.2 and
8.3 provide slightly different plans for this case, that of Ref. 8.2 being
the more accurate and that of Ref. 8.3 being the more easily applied.

Variables inspection may provide for bounds on 3 alone or on r alone,
instead of on a combination. For these techniques, see Ref. 8.1, pages
79-116.

The plans commonly used by naval ordnance inspectors for acceptance
sampling by attributes are given in Ref. 8.5; those for acceptance sampling
by variables, in Ref. 8.3. A collection of variables plans is given also in
Ref. 8.2. This chapter will acquaint the reader with the plans given in Ref.
8.2, 8.3, and 8.5, and explain briefly the construction of such plans.

8.1. Attributes or Variables
The decision whether to use attributes or to use variables may be made

on the basis of over-all cost, keeping in mind the following points:
1. A larger sample is required for attributes sampling than for variables

sampling to obtain equivalent discrimination between good and bad lots.
Therefore, variables inspection is preferred if sample items are costly and
inspection is destructive. This consideration is important, for instance, in

the case of a weapon that is expensive or in short supply.

2. The actual measurements and computations required for variables
inspection may be more costly than the yes-or-no decision and tallying
required for attributes testing. This must be taken into account whenever
the testing itself is difficult, expensive, or time-consuming.

3. Variables methods produce as a by-product information that can be
valuable in diagnosing production ills.

4. Variables plans depend for exactness on an assumption of normality
in the distribution of the variable measured, though the plans may be used
as approximate methods when the distribution departs from normality.
Attributes plans are not subject to such a restriction. (See Sec. 4.3 for tests
of normality.)

5. Attributes sirnpling is more widely known than variables sampling

and therefore may require less training of inspectors.
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8.2. Choice of Plan

There are many possible bases for choosing one sampling plan rather
than another. In some cases a physical situation or the limitations of a
budget may dictate the sample size or other aspects of the plan. The methods
given here, which follow those of Ref. 8.2, 8.3, and 8.5, base the choice
of a plan on setting the risks of rejecting a good lot or of accepting a

K, bad one.

t ?Having decided what is to constitute an inspection lot of the product
(this may be a production lot, part of a production lot, or several produc-
tion lots taken together), what is to constitute a unit or item in the lot, and
whether to test by attributes or by variables, we must decide on (1) an
acceptable-quality level, (2) the number of groups of items to be sampled,
and (3) the inspection level. These factors will be dealt with in the sections
that follow.

8.2.1. Acceptable-Quality Level (AOL)

Each sampling plan has the property that the more defectives a lot
contains the more likely it is to be rejected. Since the inspection is not
100%, however, lots with a few defectives will often be accepted. The
AQL is the percentage of defective items in a lot that we are willing to
tolerate most of the time. The plans in Ref. 8.3 are arranged so that, on
the average, lots with AQL% defective, will be accepted from 90% of the
time for small lots to 99% for large lots; the plans in Ref. 85 will accept
lots having AQI.% defective from 80% of the time for small lots to 99.8%
for large lots; and the plans in Ref. 8.2 will accept lots having AQL%
defective 95% of the time.

In Ref. 8.5, a range of AQL values is approximated by one value in that
range. For instance, to appli, the plans for any specified AQL from 0.040
to 0.069%, we use the tabled value for AQL 0.065%. (See Table I in
Ref. 8.5 for these representative AQL's.) In Ref. 8.5, AQL's over 10.0%
refer only to the number of defects per hundred items (allowing several
defects per item), rather than to the percentage of defective items in the
lot. Reference 8.3 gives plans for six AQL's: 0.10, 0.25, 1.0, 2.5, 4.0,
and 6.5%. Reference 8.2 gives plans for 15 ranges of AQL.
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8.2.2. Single, Double, or Multiple Sampling

A buyer may make his decision to accept or reject a lot on the basis of
one sample; that is, he may use a single-sampling plan. Or he may use
a double-sampling plan, under which he draws a first sample and then
makes one of the following decisions. If the first sample is sufficiently
good, he will accept the lot without testing further; if it is sufficiently poor,
he will reject the lot; if it is intermediate, he will inspect a second sample
before deciding. A multiple-sampling plan extends the same idea to
several samples drawn in sequence from the same lot, with the possibility
of a decision on the lot (without further sampling) at each stage.

An attributes plan specifies an acceptance number Ac and a rejection
number Re for each step of sampling. If the sample has Ac or fewer
defective items, the buyer accepts the lot without further sampling. If the
sample has Re or more defective items, he rejects the lot without further
sampling. If the number of defectives is between Ac and Re, he draws
another sample before deciding. After each successive sampling, he makes

a decision on the basis of the total sample accumulated, using the acceptance
and rejection numbers for that stage. For the last possible sample in each
plan (the only sample for a single-sampling plan, the second sample for a
double-sampling plan, and the final sample for a multiple-sampling plan)
we have Re = Ac + 1, so that the lot will either be accepted (Ac or fewer
defective sample items) or rejected (Re or more defectives) with no further
sampling.

For variables inspection, only single. and double-sampling plans are
available; see Ref. 8.2 and 8.3. To carry out, for example, a double-
sampling plan, the buyer makes use of constants k., k7, and kt given in
Ref. 8.2. He computes for the first sample the mean

n

and standard deviation

x.1 ix- X2 x) 2X
= n (n - 1)

If 31 + kasi < U (upper limit), he accepts the lot. If 3e + ks, > U, he
rejects the lot. If neither decision can be made, he draws a second sample.

t4
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Computing

Xt =

nl+

and

St (n, + n2)( x + 1 x) - (YxI + 2x2)2

= + ( +n 2)(n + n2 - 1)

for the total sample, he accepts the lot if Tt + ktst < U and rejects it if
et + ktst > U.

In contrast to the single-sampling plan, a plan that allows several samples
does not specify in advance how many items will be required, since the
number depends on whether one of the early samples yields a decision.
However, the maximum number of items that could possibly be needed for
the total sample is specified by the plan. The average sample number for a
given lot quality can be computed (with some difficulty) by formulas given
in Ref. 8.9, pp. 203-11, for double or multiple sampling by attributes. For
double sampling by variables, the average sample number can be computed
by formulas given in Ref. 8.2, p. 128. This average sample number is
usually smaller than the fixed sample size of a single-sampling plan, because
a multiple plan gives the buyer a chance to make his decision on the basis
of one of the relatively small early samples if it happe,,. to be poor enough
or good enough.

8.2.3. Inspection Level

After a decision has been made to use a single-, double-, or multiple-
sampling plan, an inspection level must be chosen. Three levels of
inspection, designated I, II, and III, correspond to the different levels of the
importance of detecting defective items at the expense of large sample
sizes. Inspection level III is appropriate if defectives must be rejected
whenever possible, regardless of the size of the sample, as might be the
case when safety from blowups is a consideration. If, on the other hand,
the cost of testing is unusually high and the acceptance of some defectives
is not a serious matter, inspection level I is appropriate. Level II, a com-
promise, should be used unless there is a special need for one of the
other levels.

- i
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0/ The choice of an inspection level and of the entire sampling plan should
be made only after careful consideration of the risks of error involved, the

cost of inspection, and the costs associated with incorrect decisions. The
risks of error of a particular plan may be obtained from an operating-
characteristic (OC) curve, as described in Sec. 8.3 below. Special problems,
for instance those involving safety, may requiire construction of special plans.

8.2.4. Sample Size and Severity of Inspection

Table III of Ref. 8.5, Table III of Ref. 8.3, or Table A of Ref. 8.2 will
yield the sample-size code letter for a given lot size. This code letter is
required when entering later tables for the characteristics of the desired
sampling plan, in particular the sample size.

The severity of inspection influences the code letter and hence the
characteristics of the plan itself. Unless previous inspection has indicated
otherwise, normal inspection is used. References 8.2, 8.3, and 8.5 provide
also for reduced inspection and tightened inspection at each level, and
the criteria for their use. The standard of inspection may be reduced
when the quality of production has been uniformly good over a period of
time, or tightened when the quality has been poor.

Example. For an attributes plan for a lot of size 100, we find from
Table III of Ref. 8.5 the code letter F for normal inspection at level 11.
For a variables plan, we find from Table III of Ref. 8.3 the code letter B
for normal inspection at level II.

If the sample size n is a constant proportion of the lot size N, the cost
of inspection per unit produced remains constant; however, the risks of
wrong decisions are not constant, but increase with decreasing lot size. In
the plans of Ref. 8.2, 8.3, and 8.5, therefore, the sample sizes are not
decreased in proportion to the lot sizes, but are given compromise values
to keep the risks of rejecting good lots or of accepting bad lots from rising
inordinately as the lot sizes are decreased. In acceptance sampling demand-
ing particular attention to the risks, as in the case of safety considerations, it
may be preferable to choose the sample size n (in single sampling) accord-
ing to the approximation

= Nn.

N + n.,
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where N is the lot size and no is the sample size that would give the
specified risks for an infinitely large lot size.

8.2.5. Plans for Normal Inspection

The normal inspection plan corresponding to the specified AQL and
sample-size code letter can now be found as follows.

a. Attributes. For the acceptance and rejection numbers of an attributes-
sampling plan, turn to Ref. 8.5, and enter Table IV-A for a single-sampling
plan; Table IV-B for a double-sampling plan; and Table IV-C for a
multiple-sampling plan.

Example. A buycr needs an attributes double-sampling plan to test
lots of 7,000 items each. He is willing to accept, most of the time, lots
that contain 0.30% defective items. What is the plan recommended by
Ref. 8.5 for such a case?

From Table I of Ref. 8.5, for a specified AQL falling between 0.280
and 0.439% the representative AQL value is 0.40%. F,',m Table III

of Ref. 8.5, for a lot size of 3,201 to 8,000 the sample-size code letter
r is M for inspection level II. For convenience, part of Table IV-B

(double-sampling plan) from Ref. 8.5 is reproduced as Table 8.1, and
the appropriate figures have been italicized.

ITABLE 8.1. ExCERPT FROM TABLE IV-B OF REF. 8.5
CAQL for normal inspection

Sample. Sample
size code Sample size sample 0.25%

letter size
Ac Re Ac Re Ac Re

t M First 150 150 1 3 2 5 2 7
Second 300 450 2 3 4 5 6 7

The buyer is instructed to draw a random sample of 150 items from
the lot to be tested. If among the 150 he finds 0, 1, or 2 defective items,
he should accept the lot. If he finds 5, 6, 7, or more defective items, he
should reject the lot. If he finds 3 or 4 defective items in the first sample,
he must draw a second sample in order to reach a decision. The second
sample should contain 300 items, making a total of 450. If the number
of defectives from the first sample plus the number from the second is
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4 or fewer, the buyer should accept the lot. If the total number of
defectives is 5 or more, he should reject the lot. Notice that he will
either accept or reject at this stage, if he has not done so before, so that
no further sampling is required.

b. Variables. To get the acceptance constant Au or A, of a variables-

sampling plan, enter Table IV in Ref. 8.3 (which deals with single-sampling
plans only) with the desired AQL value and the sample-size code letter.

In operation, the single-sampling plan calls for calculating from the
sample

nx

n

and

=N n(n - 1)

If U is the specified upper limit of the measurement x for a nondefective
item, compute the lot-quality index

CU = 3e+ 10

and accept the lot if Cu > Au or reject the lot if Cu < Au. For a lower

specification limit L, compute the lot-quality index

CL, + 10
S

and accept the lot if CL, < AL or reject the lot if CL > AL.

Example. Suppose that the Navy buys explosive charges from a
contractor. Since a charge having a heat of explosion less than 400
calories per gam is considered acceptable, the buyer is willing to accept,
most of the time, lots in which not more than 0.25% of the charges
have heats of explosion greater than 400 calories per gram. The charges
are easy to test, and it is imperative that faulty charges be discovered.
There are 2,000 charges in each lot. What is the single-sampling plan
recommended by Ref. 8.3 ?

From the statement of the problem, the upper specification limit U
is 400 calories per gram, the AQL is 0.25%, and the inspection level
is III.

' V
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From Table III of Ref. 8.3, the sample-size code letter is F for normal

Iinspection at level III for a lot of size 1,301 to 8,000. Part of Table IV
of Ref. 8.3 is reproduced as Table 8.2. From this table we find that for
AQL 0.25% the acceptance constant Au is 12.45.

TABLE 8.2. EXCERPT FROM TABLE IV OF REF. 8.3

AQL for normal or
reduced inspection

Sample-size code letter Sample size 0.10% 0.25% 1.0%

_ _ _ _Au Au Av

F 130 12.70 12.45 12.01

To dispose of each lot of 2,000 charges, the buyer draws a random
sample of 130. He measures the heat of explosion xi for each one, and
calculates

1 130

[ and

an,, = X(130) (129)

He computes

400 -CV- _+ 10

and compares it with the acceptance constant Au = 12.45, accepting the
lot if Cu > 12.45, arid rejecting the lot if Cu < 12.45.

8.3. Operating-Characteristic (OC Curve and Its
Use in Designing Plans

Since the plans described in this chapter involve sampling, there is a
risk of error. References 8.2, 8.3, and 8.5 give operating-characteristic (OC)
curves for the plans they include. These OC curves should be considered
carefully, because the method for determining the plan to use does not
fully describe the plan itself, especially with respect to the buyer's risk of
accepting lots he considers definitely unsatisfactory. The OC curve shows
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for each possible percentage of defective items in a lot the probability of
acceptin-, a lot of that quality. The ideal plan would have a steep curve,
which would discriminate sharply between good lots and bad lots. (This
is a special use for the OC curve described in Sec. 1.1.9. Examples of such
curves appear in Appendix Charts V, VI, VII, and VIII.)

One important quantity available from the OC curve is the producer's

risk a. For the lot pioportion defective P, specified by the AQL, the curve
gives the probability of accepting a lot of that quality. This probability
is 1 - a. (See Fig. 8.1.) For the plans of Ref. 8.2 the producer's risk is
5%, so that each curve passes through the point (AQL, 0.95). As mentioned
in Sec. 8.2.1, however, this is not true for the plans of Ref. 8.3 and 8.5.

It is also important to check the OC curve for high proportion; of
defective items; for instance, the point (p,, /f), where P2 is a definitely
unsatisfactory proportion defective and /P is the consumer's risk of
accepting a lot of that quality. A commonly used pair of coordinates is
(LTPD, 0.10), where LTPD stands for lot tolerance percent defective
and 10% is a conventional choice for the consumer's risk.

Peach (Ref. 8.8) gives a method for designing a single- or a double-
sampling plan by attributes with an OC curve that passes near the two
given points (P,, 0.95) and (P2, 0.05). Following this method, with

pi = AQL, form the operating ratio

Ro -=p

For a single-sampling plan, enter Appendix Table 19(a), using Ro or the
next larger tabled value to obtain the acceptance number Ac and npl.
Divide np1 by pi to get the sample size n. (Re = Ac + 1.)

To determine the actual abscissas p,* and P2* for the ordinates 0.95 and
0.05 of the OC curve of this plan, let c = Ac, and compute

c+1
c + 1 + (n - c) F1

P2* (c+ 1)F2

n - c + (c + 1) F2

where F, is the 5% point of the F distribution with/f = 2 (n - c) and
f2= 2 (c + 1) degrees of freedom, and F2 is the 5% point of the F dis-



§8.3. OC CURVE AND ITS USE IN DESIGNING PLANS 219

k

I-

0

WG

0

?: I-

0

* °
! a.

0
O I-

PROPORTION DEFECTIVE IN LOT

FIG. 8.1. Typical Operating-Characteristic Curve.

tributioa with =2 (c + 1) and ] =2 (n - c) degrees of freedom. (See
Appendix Table 5.) If these actual values do not come close enough to the

t desired p, and p.., they can be adjusted by changes in Ac and n. Since np,
S remains nearly cons .ant, an increase in n produces a dec-rease in 0*

t
4
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For a double-sampling plan, enter Appendix Table 19(b), using R, or the
next larger tabled value to obtain Ac,, Re,, Ac2, and n~p,. Divide nlp, by
P, to get n,, the size of the first sample. If the number of defectives in the
first sample is greater than Ac, but less than Re,, take a second sample of
size n2 = n,. For the total sample, the acceptance number is Ac 2 and the
rejection number is Re2 = Ac2 + 1. (The double-sampling plans of Ref.
8.5 and 8.9 differ from this plan in having n 2 --- 2n, and Re2 = Re1.)

Example. Design a double-sampling plan that will accept lots con-

taining 10% defective items 95% of the time, and lots containing 35%
defective items only 5% of the time.

The OC curve of the desired test is to pass through the points
(0.10, 0.95) and (0.35, 0.05); that is. p, = 0.10 and P2 = 0.35. We
compute the operating ratio

Ro = -. 35 3.5
pi 0.10

From Appendix Table 19(b), for Ro = 3.5, we read
Ac, = 2 Re, = 6 AC2 = 7 n~pi = 1.99

Therefore

andpi 0.10

n2 = n= = 20

Accordingly, the first random sample is made up of 20 items. If it con-
tains 0, 1, or 2 defectives, the lot is accepted. If it contains 6 or more
defectives, the lot is rejected. If it contains 3, 4, or 5 defectives, 20 more
items are drawn at random from the lot. If the combined sample of 40
contains 7 or fewer defectives, the lot is accepted; otherwise, it is rejected.

8.4. Sequential Plans

In double- and multiple-sampling plans, we take advantage of the fact
that a very poor lot or a very good lot can be expected to reveal its character
in a small first sample; usually, more extensive sampling is necessary only
for lots of medium quality. This idea has been exploited still further in

sequential analysis, which calls for drawing one sample item at a time
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with the possibility of a decision on the lot after each drawing. (Actually,
the method can also be used if items are in groups, as in multiple sampling.
In this case, the average increase in sample size over pure sequential
sampling is no greater than the group size.)

To perform a sequential test for, say, acceptance sampling by attributes,
the inspector needs a chart similar to Fig. 8.2, on which there are two
slanting parallel lines. The abscissa represents the number of items drawn
and the ordinate represents the number of defective items drawn. As the
inspector draws and tests each item, he plots a point on the chart one unit
to the right if the item is not defective; one unit to the right and one unit
up if the item is defective. If a continuing path connecting all the points
crosses the upper parallel line, the inspector will reject the lot. If it crosses
the lower parallel line, he will accept the lot. If it remains between the two
lines, he will draw another sample item.

This technique is economical in the use of sample items, is easy to apply,
and is adaptable to the following:

1. Acceptance sampling using attributes (Sec. 8.4.1)
2. Making a decision, based on attributes, between two methods or

products
3. Making one-sided and two-sided significance tests for the mean of a

normal distribution
4. Making a one-sided significance test for the standard deviation of a

normal distribution (Sec. 8.4.2)

Sequential analysis is not appropriate when it is inconvenient to wait for
test results on one item at a time, or when testing is inexpensive compared
with producing items for test, so that it is preferable to test all provided
items in a sample of fixed size. References 8.7, 8.10, and 8.12 give clear
expositions of the situations listed above, in addition to the following
treatments of situations 1 and 4.

8.4.1. Sequential Plan for Proportion Defective p

To construct a chart for use in a sequential-sampling plan for proportion
defective p with OC curve through the points (P,, 1 - a) and (P2, P), we
draw on graph paper a horizontal axis n to represent the number of items
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22 8-A

drawn, and a vertical axis d to represent the number of defective items
drawn. On these axes we draw the parallel lines

d,= -h, + sn (lower)

d, = h2 + sn (upper)

To find the intercepts -h, and h, aid the common slope s, we first compute
the auxiliary quantities

g, = log -  g=log=
Pi 1P2

a log 1 b= log a
a

(Taking all logarithms to the base 10, we find the values of a and b in
Appendix Table 20 for common values of a and /3.) Then we have

b h 2  a
g+ +g2 g

Once the chart has been drawn, its use is simple. For each item inspected,

the point (n, d) is plotted. This point shows how many items have been
inspected and how many of them were found defective. Notice that n will
increase by one each time, moving the point one unit to the right. If the
item is defective, the point will also move up one unit. As the sampling
continues, the series of points plotted may be connected by a continuing
path. If at any point this path crosses or meets the lower of the parallel
lines, we accept the lot. If it crosses or meets the upper line, we reject the
lot. As long as it remains between the lines, wve continue sampling.

A truncated sequential-sampling plan may be used to prevent the
possibility of requiring a very large sample-a possibility that is present in
the ordinary sequential plan, especially for borderline lots. If we agree to
stop sampling when

3abn-
gig2

the change in the risks a and jS of the ordinary plan will be negligible,
because it is rarely necessary to test this number of samples before a decision

I-|
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is reached. If n gets this large with no decision, we accept the lot if the

vertical distance from the last point to the lower line is less than the vertical
distance from the point to the upper line. Otherwise we reject the lot.

Example. Design a truncated sequential-sampling plan that will reject

only 5% of the time lots containing 0.1% defective items, but will reject
90% of the time lots containing 5% defective items.
We compute g, = 1.69897 and g2 = 0.02185. From Appendix Table

20 we have a = 1.255 and b = 0.978. Then

0.978 - 0.978 0

= 1.69897 + 0.02185 1.721 0.568

1.255 = 0.729
1.721

0.02185s--S = .2 0.01270
1.72 1

To truncate the plan, we agree to stop sampling after

3ab 3(1.255)(0.978) -99.2-99
g1g2  (1.69897)(0.02185)

items have been inspected, accepting if the continuing path is closer to
the acceptance (lower) line and rejecting if the path is closer to the
rejection (upper) line.

Figlare 8.2 shows the sampling chart used for a hypothetical sample of
99. The sampling technique led to acceptance of the lot.

? 20.729 + QO.6
U

NLME STO TESTSMPED

U-

0 d- t -ure + t0.0102 5

Lw

2i•W 0

z0 10 20 30 4 C 50 60 70 80 90 100
NUMBER OF ITEMS SAMPLED, n

FIG. 8.2. Truncated Sequential-Sampling Chart for an Attributes Inspection Plan.
The operating-characteristic curve passes through (0.00 1, 0.95) and (0.05, 0.10).
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8.4.2. Sequential Plan for Standard Deviation cr

If the measurements of a lot or process follow a normal distribution with
unknown mean u and standard deviation a, we can construct a sequential
method for testing the null hypothesis that a, has a hypothetical value a,1
against the alternative a = a2 > a . (See Sec. 3.2.2 for the non-sequential
one-sided test.) Suppose there is an assigned risk a of rejecting the hypoth-
esis when a, does equal a,1 , and an assigned risk P of accepting the hypothesis
when actually a has the higher value o'2 .

Let n stand for the number of sample items inspected, and let Z stand
for the sum of squared deviations from the sample mean. Then

z (x,- )2 nx, - (Jx 4 2

t=1 n'

The latter form is to be used for computing. Draw n and Z axes on ordinary
rectangular graph paper. The acceptance and rejection lines are then

Z, = -h, + s(n- 1) (lower)

Z2 = h, + s(n - 1) (upper)

respectively. To find the intercepts -h. and h2 and the common slope s,
we first compute the auxiliary quantities

= 10.43429

a = logi0 1/-

b = logic 1 a

Then we have

2b 2a
hi -2 h 2 = --

g g

logic o'7/a)
g

AppendiA 'fable 20 may be used to get a and b for common values of
a ar4 /.
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The chart for this technique, shown as Fig. 8.3, should be used in the same
manner as the chart for the proportion-defective test given in Sec. 8.4.1.

,REJECT

i - Z2 h2 + s( n - 1)

.17

I = I

FIG 8.3. Typical Sequential-Sampling Chart for Testing the Hypothesis That
ff = 01 Against the Alternative, o = a > ,.
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TABLE 1. CUMULATIVE NORMAL DISTRIBUTION *

F(z) = V - 2/2dz

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5'99 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5S96 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7201 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 -.7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .£023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573, .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

0 Use explained in See. 1.2.1. For more extensive tables, see National Bureau of Standards,
Tables of Normal Probability Function, Washington, U. S. Government Printing Office, 1953
(Applied Mathematics Series 23). Note that they show

Sf(z) dz, not f(z) dz

PMMNG P.&M BLAW-INOT FILM
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F(t)

2 0

TABLE 2. PERCENTILES OF THE NORMAL
DISTRIBUTION*

F(z) e - ' /2dz

F(z) z F(z) z
.0001 -3.719 .500 .000
.0005 -3.291 .550 .126
.001 -3.090 .600 .253
.005 -2.576 .650 .385
.010 -2.326
.025 -1.960 .700 .524.0,50 -1.645 .750 .674

.800 .842
.100 -1.282 .850 1.036
.150 -1.036 .900 1.282
.200 -. 842
.250 -. 674 .950 1.645
.300 -. 524 .975 1.960

.990 2.3k 6
.350 -. 385 .995 2.576
.400 -. 253 .999 3.090
.450 -. 126 .9995 3.291
.500 .000 .9999 3.719

Use explained in See. 1.2.1. For a normally distributed variable x, we
have x = A + zu, where -, -mean of x and a = standard deviation of x.
For more extensive tables, see R. A. Fisher and F. Yates, Statistical Tables,
4th rev. ed., Edinburgh, Oliver & Boyd, Ltd., 1953, pp. 39, 60-62.
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0 t

TABLE 3. UPPER PERCENTAGE POINTS OF THE t DISTRIBUTION *

P(t) = (1 + 1f/)(I+l)/2dt

.40 .30 .25 .20 .15 .10 .05 .025 .01 .005 .0005

1 .325 .727 1.000 1.376 1.963 3.078 6.314 12.706 31.821 6.657 636.619
2 .289 .617 .816 1.061 1.386 1.886 2.920 4.303 6.965 C.925 31.598
3 .277 .584 .765 .978 1.250 1.638 2.353 3.182 4.541 S,841 6.6924
4 .271 .569 .741 .941 1.190 1.533 2.132 2.776 37447 1 04 8.2610
5 .267 .559 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.869
6 .265 .553 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 .263 .549 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.408
8 .262 .546 .706 .889 1.108 1.397 1.860 2.306 2.896 3,355 5.041
9 .261 .543 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 .260 .542 .700 .879 1.093 1.372 1.812 JL.228 2.764 3.169 4.587

11 .260 .540 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 .259 .539 .695 .873 1.083 1.356 1.782 2.179 2.0381 3.055 4.318
13 .259 .538 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 .258 .537 .692 .868 1.076 1.345 1.761 2.145 2.6L4 2.977 4.14015 .258 .536 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 4.073

* 16 .258 .535 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 .257 .534 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 .257 .534 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.92219 .257 .533 .61S .861 1.066 1.328 1.729 2.093 2.539 2.861 3.88320 .257 .533 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 .257 .532 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.81922 .256 .532 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 3.79223 .256 .532 .685 .858 1.060 1.319 1.714 2.069 2.500 2.807 3.767
24 .256 .531 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 .2Z;6 .531 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725
26 .256 .531 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 .256 .531 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 .256 .530 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 .256 .530 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 .256 .530 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646
40 .255 .529 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 .254 .527 .679 .848 1.046 1.296 1.671 2.000 2.390 2.660 3.460

120 .254 .5-6 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
00 .253 .524 .674 .842 1.036 1.282 1.645 1.960 2.326 2.576 3.291

Use explained in Sec. 2.2.2. For a two-sided (-qual-tails) test the significance levels are twice
the above colu' .n headings. The reciprocals of the numbers of degrees of freedom, rather than
the numbers themselves, should be used for linear interpolation. To calculate the upper 0.5% point
for f = 34, use

c.704+ (1/34) - (1/40) (0046) = 2.728
.704 + (1/30) - (1/40)

which is correct to 3 decimal places, whereas ordinary linear interpolation would give 2.732. This
table was adapted with the permission of the authors and the publishers, from R. A. Fisher and
F. Yates, Statistical Tables, 4th rev. ed., Edinburgh, Oliver & Boyd, Ltd., 1953, p. 40. (The original
table is given in terms of the two-sided test probabilities.)



232 ,ico -eco

- Vcoq 000,40W t-cqm"4hf 0'i

- 4-4 " qC e c.ie N eq Ico
00 00

P40410c 00~
VC'00 0 14N" OM 08 c tvz 00--, 00v a okoo) OCIM 0100-4

o 61t64o~60 ;_ i66C . 6(1
eqN- q ~~~c

8 08 wl-m se4'c~cm 0 n11co"v4)

t~i ll q q i I C? OIoqiI qI

co-- @1@V1I'l 0-to (M q N MV t.1

eqPcq PD-4 '" 14"4".44 4csN 4

t~0 - WWeqe C'~~4hhoO-tU )O

", .410eqAP eqi-a oomo~e hw-i-qqc cholt .40000Woo

P- -4"P4 4.

Oclq, s40 ih keq q1 0h Iq m'0oeov

eq-01 w -cqe C4440 DttO

ol0 xco~ mOcomeNc M" t'-0 C'o ED I 1

m 0 P~l 4-4ci co ci )~1 h4ww O-t-000 -

C IO C~-O 0 C46W6 6Ot-006

XOVN -90cow -4M 4c4"s-4

. 4 qP4a og 9ZDOW-CN104



co 233

P-~ '4 0m o 01100 Q6 -ouc q '400cO4
R ~oc'W idcoa; c~ci "*c j00M ODNVO

00

eqq

ol-4-40U wco~O t-Co "OlO

eqc~~eA
clIfV- 000co"Cmc O-OO) O eC

t (Ot- O3 'V (Oc0 (C~o4e P40

eo~q eI-4oji4 i 6 0 ' O *.O .. .

P4.4ci -4-4-4i4i Ci CU OiCi'i .ii

oO) eq tq 4 CIA ) C4CIL

C! l j C I 4

ti

et C R Oim t m - Co~ V
0. e-oc 11)C4i6 4.6t g .

0 -4P - 4-4 4 44 -4 I''4

--

v'



234

cncowo 0 I-O Nq
0'-t.4 ~*0~

0404040404W

CD

' co*tcooc CMO

co 0 - 4t* 04O040

cD co 0400001

A~40 04 lC4

1- 00 c

eq ITCD 14 i *i4"

oi o Ci !Ci I

04 ,.owvcom 01"4040,04
to

> N oomt

co coq C 4 ) Collc

0.;0 t'1
0 4 v bic i c lc 4Co ko

Nm"

vmN40 -qp

(U mg'.0 we.44
r4-C.q OOCi~ '01i40 Iq"q lt q

u~~Ci t I

LI ~ m wv 0CD.0 I 0C-ID

~,-4I~h~ vICDC -4



235

vocoo-14mt-lcoc coot-0 OO8

~~~~~~~~o ti0Ot0 '-e.q c~~0~- 80001 r- t-00c QqhqQD t 1 hIolowI~i 4clO -l
4 "4 4 ,. 4 4q 4 "4 -4 P4 4 ",. 444 -

ookggo Qoscqqo 001Olo t- C4 miI

"4p4" .- 0 t- I-. R RRq I qI qI TI i 0

ci 00 t- Iqlqlq "4OO Ci 400PC

r"4

"4vciii - 4 P4-1 4 4 4 "4 v4 4 4 P-"4 -44 4 44 "-I >

10*1098~c t- 00c "4 C! 0999001 s s V "40 k 4 0 00 I n,

"4 cciip i q C4 . . . .'- 0 10 In It C

"4 ceccqc,4 4 cic-"P4-4 "44-44.4 444 ~4 "444 "

t'-4 00c0 Coc~00o c"00 0-t it c Qo I IT 'tN a Ci.4 c COOto O 4OO -00O o4c t4;44- 44-, - ~ "".. " 4.

eicicii c i 4 ii4"P4 P-4 ". 4 -q4 P4"P; 444"4 v4-4 4 P4 0.

C4 vi i Ci 4 P4 P4 -4 '"4 " ""4.4.444.q.4"04 m4 II

0 0!PI p pi-~k M t-i t: ci
1. qC 4N 0 - - - "4 1 4 P- "4"40 "0000 C000000v4 0000- P-4 r.4"

N 04 ol Nc v iiii "4NC - 4P444 "4 P-4, 4 04

ci~icii iic0 ei cqcig "4. R" . 14

eq 4 c 0 4 0i ci eq 4 "4 v4"4 "4 4 "teo "4 ~ "f14P41 - O
cicici ~ ~ ~ ~ 11 ci 1~c iiC ii~ i44

qqi -'kk' 0 -0 0 -..

.*440'0 k c400 OC 1 k 0)00 C44CO t- 0 WV 0 4
cIqi 't t i CiCi CiCi Ci cIciii iiiii Ci cic r - i

CRc C 4 4 c C 4 iC ci C4ciNci eq e cci c i C44- P441

"4ciC~~~~1D 000000 "4iO~1 00-00 c 8

cl W WWV vvlltc qqcqq i .Ci ! 0! ci~~i C1



236

10"eq

CjOIq0* g-otwwr wvwe 01 tj- WO? wt~dm N

NomwwvC~ '0O 00 NNc N ~ II Nq0e NI~I NN"4 "~e eq

eq % q RI eci0qeq 'tC e0 i lqqqq 0?e O aqqq . Iq -~ I,: Iq 1i-
040010 .iV) o Nql N W ueqN c

eq O 06 bi eqeqeqeq cfl o eq e 0104o'.4"p.~4~q ~

o;t-o ci i eo 4C 4 C9 O o 4 o **- 04 04oo4q oo -q

CR MO 10 icm~ 400410 10014 cq i oq0O o0- '

"4wooe IS4U'O %41" =01 1 cocq t~w~ tf a vozins o

C4 0000kov 0 c CO 44 eq 4MC eC41004" 04 N~~e N jo 0 4- -I.4 00

~~~~~~~~~C U'cO~ N''- 0U'-4 4U Pqt4 eq'401t P4eq 1

P4I P4-c)0- -04 00 c 0 0 -WONCQ 8t 0
M p~ ~ ' ee

scg tv'aS.nVoo gp-e ; U',s10-0 oseq t-14 400U) 000-1 -O

It 'e*~0~ VVVeq-- 00o 00 01 00-4"-t 0OMC

(iO' 0 0 ci ri *1 010400401 cii-i.e - eq 0004 444c400 ei.'.4

;11"18g OuWt-o- 00-480 g0c'0 t-U'cRW 000'eeq 00 -
OR. i"oocij, . c,.,cc . q .V c!,eqc 01, q eC4 o qq eqq e q

eq-ejU" kvvco- ww-g eq Fqq-4 140 0- 00 ,0 Nq t- ' eop -'4wq GOON~k v
go O* DQ* V4~*C0CO N N N N 04 0 0*I~OU 1 040" N C4.0 o

U'o vvi to togm SU'l-,3  gg~ r km-40U eq 004' m t t k coC4 00q 'J. 'UM4-0 q0Ubc!~ . . ?.. .. Q Iqc'e Iq lq 't V evv Oo
- oc 6 6- 40000k c coOOU1 0'441 04 o 01' a oo 4 o4 ~ 4 4 *444 o

.~~~~~~~~~ aeci~o~oo~q~'0O-00-q~U Ot-OW00 Wt0

n~~q Ci C? -i t aq q eqeqeqe in qqqc to 8ot

in am~do 4OCO CO c c*co o o ci l oi~ii~i 0i i Oi0i i O cio C



237

C0 0 0 0vNc 0b0l. 0---- M C1 00'a. AJ.4 o
qCI #qpidci5' q~q oqtoII ic~iqq . CC. C? ,-i "

0 Jt 0COMV g 010 CO~C40CDo "4OV140 4Oa-aN ?! ODC

"MO~C000vq cc a" CN N Ni~0~ Ic01~t N 01 N 4MM qqq," - q
09000c C0Oq000100 ~ '~CC 8.g-o o~- OP44~00 C') 8 al cITM i ?q :Itq O c" q tciecci "il c~ Cu~-4. q OOR Cammmo """N~co~

C.,-4 0 PI-9 4 - 01 0 P1 W o W -0 " M 4 04 w

lov cc) co i ce fq cqcece 0100140 04014 Nci NqeNcqNqN ".4"q~

14

g ~ ,~, el -ic c-Ieqq qcqcl IRR.' -tcl l C!qqee ci -1 Il- Cqtl 4
'0-M DC InvImc =M00 Nomo Nqc N a~~ N N-ANN 4
0 cl)~e uie.c P-4ee cee ecece ieeee q

P-44104 t-=-e C)00V)1 CsD~a a9Cq-eq2 W OV t-IMCIP M ktII 10 Vtt- U 0N0 I QDc lV4-!~q eqacqq t :10In Vi eqT qTt q q i -!R a

0!c t I :! uiii Iq* 'cc eqeqqeqeq 122- Mo i*clq qI
UCilLi6 ?C C icC %aeq ;- ts -

ri~Ece e joq q q tei c0L: eqI ."

06040W ~ ki'vc t~ M0 mo 0CO))N lN 0 e l- N@~ al ~ 04C4 -
"4COv 00(. NCC~C NC 00P -0000 vgsa t-*C hIn I CaC w C C qq q q'coc~. C? a q qq It

0)0
go o -4 0) 04 at~~iL 10Cvim C N N "4 P14 - "40q q t 4R6c eq

anog o0cqb);! agog.14 C*"4g-'1 'iVP400 1"'"w4* 'C' C .)

v g a itz 4 k6 e144 44--41 eq , ' i eq'~. C- ,~ea 6 co',~ C.) aIj e) clcg0
- DD QQ 8)'q (7 C o C13 qa, t- kM 9 k0 G-a,0o C400190) -e w C) -4 04.

M ce0 w -t--440 Col1-op If010f4Is h"wVwij Nvotw woo

qcI l. :I -!qa "4"44"qkl CiqqqeCc qqq -! qc.;

00-ovo)1-4 "t-0Cav 0 )'0 N C IN co) 0 0 4 M1'I C-0a, P1 8 t C0



238

coo DM(00

o) -*, o t-1 0'410 glOD 09001't Mt-4- NMM N
P-4 0 W 0) 0) clo ' MM O eq NN N 04 01"N 01010"N40 14,414 -1

"MOMMt-oov M4-(M000e Oo.'04a
MMN 4 ~ c~) C0C o~i~4CCOCC900v

(0

t-1OR41 IT(0~~ c((it 40i 01 q q "R n 14 tc (0 i Ql-I I-RV: 00

04 -Ig tC016'q'1' g~~lm c08glW0 0440044 40044 COO09'-

M S'T .. Q *!q!I~c16 LICICI u- 00000 . .. V tO-t-t . N0004
OMMO61'1 1'1'C')40404 cicqoqoqc9 0904090404 e 4O

(0', OVUM 0

(0N

004~61 t-4v4(1 0 It, 0N = 1-0V 0

60(ova (04clow o oo oM'ic , ciC6 --4Q4( C64 0; 0i 01 04 04(0c -4
~ 0 "04. O1D 1~'L---0 0-6

0 scv -xv v l .co M 66 6 P46~00 4 040400 04NO01-

(001-14 041616w 4666 COMM66~0 MCMO OI04 040404 04
00-4 N

t01-0(0 000 041 0 0 eit-01044 4cc0 0101

160 I ! (061 6ciIqIRU I 1 Ii'~ 'i 0ciC ' 0! Ci A .q .c'to Ii

OC0,41- '.0~ ~ 0 1-044400 00'414 - ^-0-tC 0(00 ^1 004t(0k
(0 icj( 1~ 1 RCO I O 0t!040 IR tv i6'W -I-

0010 MImo 164411 4 m)ccci 6o~~'c 66m .o4

.041-C 1640404 g400( 1I6- 440 N 4060 M o - moo -4

0 010 00!-404'T01 .. i a 161i44q 11't 14cCOOC c OCOOCq M q4040 CO

0400016w-I 0061010 vvvv 66166161 1 OM41' 141414 1441114 404 N

t, 6.40 NOMMO04 1-N10 11-0 4 -. 4040 14-40 060 0

NO MMMM00 0~l 04111 0440 M~t( 6160 1 e

q0".% tM4.? -1NWN0 C4-4 "0 t - "W-40 V 64414 Moma1- ONO 2

0 14

- jRVM04C 100001 40400?(0 16'404.-.-4 0000001 N-0 1 40

w-0; oo! 1 0 w-wol0 w-4040141 401-000 "cmo 8oom O

In-



239

0 1'10 c q 0'40 C4m C)0tIV( P40 0 0) ~100 l~ OD C~~C OMO-O 0o
8 va;.-46oi o ~~ ~~ 4o 6 6oie ici oi 01010v10101 i c c 0 0 iq~ 4-4,q

c0O01'- 0QDOI-' V"C- 010 4 clooi I~-o - 4 - 0 cm

0 in ovt-g cot-0 eq 4 01 00 1~ t-c'D0coeq VV00 CRReq 6,0ici m - 6 6 44 C6 C6 0C ci e c.).c.).). 011100 o0101ccioi 4 o '. .

Mo1m6 C4.-(0 "6 1i0o 0* ve-o M-480 - 0 16.it -colc 16C~o -

V040- W~COOD V 0-40 C WOD Nt- 0)6-MWN 16~ 1C
01o-1 41cw 10 0*-(m b0j 0 -001-CD 00t- Q QD 0010 k 0 j qc 0

;t't,-M 0-4 'it- 1001 0I6"4"'i WDCRN - 5') 0 01000
vv. 0 -ko 0 1COO V c"om oc t -c co Q001 01"m.ico goic o .;t: 6 " i 4 "i'i6C 'i i'c,6 64c,c.o 44ic 004 01

mtt0)6CDw-00 016001 60000 O-Ii4O0) 0104"-eO ai) 'i e

0 16t~ O0.-' cgg;000 P60)01.-IC 00001-mo001 0o ' t
2"r' 11 r!-o ri clO q 0 46q0M)DOO 0eq SC400 Ot-wkok V~vVM i c i"i'i '~i'00)0 0i C.))0 cq)0 01c icio
AP4'0 -c "'4

MO= " -" - 0 0- M4R M RN l~-P ot
ko (C;. ! q01 q T It0 q01601 0C0'i4(0 0 . q 016.iqt- li l I',
P-4 1400 gsimcm 0160100VV C ci 6 icimo oomo ot-1 ~i o

P4 0)0)00I 0,-.16 W" 101 vommm *16*14 o ommoo*0- 1401 C

94

.401-0 (00166161661441 ogim 1441140)00 N 0)

M C (0 016.- to I 01) O VV '.1-1- OMMMM MOOO MON(00 1 01

wOmlw -2 004 01601~t' 0 i -1-0(0C voccocok oI CO M

VOI" Pd

-MI Ci 01001 0)000 R0(00)01oq4 l I IC1 01610 0i000t ' 00) 0

N 140 OJ vt- "4(1 ).00 ~64400011 0-6 0

494'.4 - m-- 0'1L10V V V V v vv-4o ic

W000-140 ol0 I,. olta010 .- I1-t0 Go 0 co o01016 *0ow 0o

-i 0)61CO V0111 P416 .- 10c) 0

0 1comk. oq~ 9t- t s1-ol16.4 1090101.- 0014- N
p016.-000000 ) to1 N Go4 in0 00000 0000 r- 00 000m 1-,.40160)0 .44'4606.4t 66C6C16k k1 k 6 okim 4V41 i . 446-.-- i

'4- 4 044 "D1 01-000~g t-0 co Q1 100 -'010)14o1 01000 0 0 V

g 4v v-0 -d -4.i- -4-(qi.40 00000 1000 4001

w4-



240

* cowMto 0
0oi t. co.

0c C41 t: cc -4 . 4 .
eq ~~ t-C .

0M .4 M~ ~-

qq4 Cti% A a '014 ONA4 - 0

t.~.s . .-s - t-.4 vqe eqe Co- Ite lql rci ;- '), r, V f

CO Ng oi .4 C4 Cos e C.) 411 a
".4- .444 4 cqo eq" q~ ,..~M U~ qc cq ili4

1zc Go4 d C6OQ 064 Mo ) ' " "

0 t e coi jg got Ma "oi q~ M v N

5.1~~~~C eq C4e N' aqe es. C..i Ns1 (01- el( ets COlOs 5S.4

~. q 01~0000 e :I0l I 0 $whc gt- too~C

c C4 L4 "i m0 1irn ~e-i Yl 06t.MooC46 v 16
-4 -44P4 4 -44 04 4 0; I c0 4 -

4 14 .4 '.q "4 P4,4 .4 .4 qq N qe N qe N e M

-- v 0 0 4hC, 1Vw0 16010- ON M
1600 ~ ~ ~ I t~ 00 eqg t~ IT ' ~t 000--

0 -4) lo4 5 .-44 -4444-4 q- 0 qe eq.) eqeq

00e 5001 c C4 isc4 00 C0C ~5.4~kO
000 0t0 - - 044 ! '45 Iq IA -' 000 I 10 .-i- eqC aC1

ZI-4. 1 4-4 .ci eqqeeq e

0 mko1 cci 010 ko' eqeq *qt o 10 ! - 1 Ll0 , .
U1 P.0 N qC- c

16 P-4 "" -4 P-4 "q1- "q P" P-, 64P 4 ejcoC41 L4 al

00 w .0 go ln M; me 101 W5



241

TABLE 7. CRITICAL ABSOLUTE VALUES OF CORRELATION

COEFFICIENT r *

3% points and 1% points (in boldface) for equal-tails test of hypothesis p = 0.

Total number of variables Total number of variables
f -1 f

2 3 4 5 2 3 4 5

1 .997 .999 .999 .999 24 .388 .470 .523 .562
1.000 1.000 1.000 1.000 .496 .565 .609 .642

2 .950 .975 .983 .987 25 .381 .462 .514 .553
.990 .995 .997 .998 .487 .555 .600 .633

3 .878 .930 .950 .961
.959 .976 .983 .987 26 .374 .454 .506 .545

4 .811 .881 .912 .930 .78 .546 .590 .684
.917 .949 .962 .970 27 .367 .446 .498 536
.754 .836 .874 .898 .470 .538 .532 .615
.874 .917 .937 .949 8 .361 .439 .490 .529

.463 580 .573 .606
6 .707 .795 .839 .867 29 .355 .432 .482 .521

.834 .886 .911 .927 .456 .522 .565 .595
7 .666 .758 .807 .838 30 .349 .426 .478 .514

.798 .855 .885 .904 .449 .514 .555 .591
8 .632 .726 .777 .811

.765 .827 .860 .A82 35 .325 .397 .4,5 .482
9 02 .697 .750 .786 .418 .41 .523 .556.5 .800 .80 861 40 .304 .373 .419 .45510 .76 .67 .7286 .763 .393 .454 .494 .526

.708 .776 .814 .840 45 .288 .353 .397 .432
.372 .430 .470 .501

11 .553 .648 .703 .741 5O .273 .336 .379 .412
.684 .753 .793 .821 .354 .410 ,449 .479

12 .532 .627 .683 .722.661 .782 .773 .80 . .250 .308 .348 .38013 .514 .608 .664 .103
.641 .712 .75t .785 70 .232 .286 .324 .354

.302 .351 .386 .41314 .497 .590 .46 .686 80 .217 .269 .304 .332
.623 .694 .737 .768 .283 .330 .362 .389

15 .482 .574 .630 .670 90 .205 .254 .288 .315
.606 .677 .721 .752 .267 .312 .343 .368

16 .468 .559 .615 .655 ICO .195 .241 .274 .300
.590 .662 .706 .738 .254 .297 .327 .351

17 .456 .545 .601 .641 125 .174 .216 .246 .269
.575 .647 .691 .724 .228 .266 .294 .316

18 .444 .532 .587 .628 iS0 .159 .198 .225 .247
.561 .633 .678 710 .208 .244 .270 .290

19 .433 .520 .575 .615 200 .138 .172 .196 .215
I.549 .620 .665 .698 .181 .212 .234 .253

20 .423 .509 .563 A04 300 .113 .141 .160 .176
.537 .608 .652 .685 .148 .174 .192 .208

21 .413 .498 .552 .592 400 .098 .122 .139 .153
.526 .596 .641 .674 .128 .151 .167 .180

22 .404 .488 .542 .582 500 .088 .109 .124 .137
.515 .585 .630 .063 .115 .135 .150 .162

23 .396 .479 .532 .572 100 .082 .077 .088 .097
.505 .574 .619 .652 1 .081 .096 .106 .115

* Use explaned in Sec. 0.1.4a, 6.2.5b, and 6.2.5c. The iverse square roots of the number
of degrees of freedom, rather than the numbers themselves, should be used for linear interpo-
lation. Reproduced, with the permission of the at a he publher, from G. W. Snedecor,
StatsticalMethod , 4th ed., Ames. Iowa, Iowa State Colege Press, 1946 p. 351. Extensivetables and charts appear in F. N. David, Tables ol the Correlation Coeffcient, London,
Biometra Office, 1938.

0_ i h p of ho a dI f7,,..r
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TABLE 8. FACTORS FOR DETERMINING CONFIDENCE LIMITS FOR

POPULATION STANDARD DEVIATION c *

-n - 1 for single sample size n
n--i+n2+ + nk - k for k sample sizes of n, ' ,ni

90% 95% 99%

bt b2 bt bj bi b,
1 .510 15.947 .446 31.910 .356 159.576
2 .578 4.415 .521 6.285 .434 14.124

.620 2.920 .566 3.729 .483 6.468
4 .649 2.372 .599 2.874 .519 4.396
5 .672 2.089 .624 2.453 .546 3.485
6 .690 1.915 .644 2.202 .569 2.980
7 .705 1.797 .661 2.035 ,:88 2.660
8 .718 1.711 .675 1.916 .604 2.439
9 .729 1.645 .688 1.826 .618 2.278

10 .739 1.593 .699 1.755 .630 2.154

11 .748 1.551 .708 1.698 .641 2.056
12 .755 1.515 .717 1,651 .651 1.976
13 .762 1.485 .725 1.611 .660 1.910
14 .769 1.460 .732 1.577 .669 1.85415 .775 1.437 .739 1.548 .676 1.806

16 .780 1.418 .745 1.522 .683 1.764
17 .785 1.400 .750 1.499 .690 1.727
18 .790 1.384 .756 1.479 .696 1.65
19 .794 1.370 .760 1,461 .702 1.66C
20 .798 1.358 .765 1.444 .707 1.640

21 .802 1.346 .769 1.429 .712 1.617
22 .805 1.335 .773 1.415 .717 1.595
23 .809 1.326 .777 1.403 .722 1.576
24 .812 1.316 .781 1.391 .726 1.558
25 .815 1.308 .784 1.380 .730 1.542
26 .818 1.300 .788 1.370 .734 1.526
27 .820 1.293 .791 1.361 .737 1.512
28 .823 1.286 .794 1.352 .741 1.499
29 .825 1.280 .796 1.344 .744 1.487
30 .828 1.274 .799 1.337 .748 1.475

40 .847 1.228 .821 1.280 .774 1.390
50 .861 1.199 .837 1.243 .793 1.337
60 .871 1.179 .849 1,217 .808 1.299
70 .879 1.163 .858 1.198 .820 1.272
80 .886 1.151 .866 1.183 .829 1.250
90 .892 1.141 .873 1.171 .838 1,233

100 .897 1.133 .879 1.161 .845 1.219

>1011 1

I_±1.645/V'2 1 ± 1.960/V',7 1 ± 2.576/V"F

0 Use explained in Sec. 3.2.3. To obtain the limits, multiply sample standard deviation a
by bi and by b2. Thss table was prepared by Eleanor G. Crow, NOTS.
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P!a/2 P a/2

0 NUMBER OF +SIGNS N

TABLE 9. CRITICAL VALUES FOR THE SIGN TEST*

-.01 .05 .10 .25 .01 .05 .10 .25
I .... .... .... . ... 46 13 15 16 18

2 .... .... .... .... 47 14 16 17 19
3 .... .... .... 0 48 14 16 17 19
4 .... .... 0 49 15 17 18 19
5 .... .... 0 0 50 15 17 18 20

6 .... 0 0 1 51 15 18 19 20
7 .... 0 0 1 52 16 18 19 21
8 0 0 1 1 53 16 18 20 21
9 0 1 1 2 54 17 19 20 22

10 0 1 1 2 55 17 19 20 22
11 0 1 2 3 56 17 20 21 23
12 1 2 2 3 57 18 20 21 23
13 1 2 3 3 58 18 21 22 24
14 1 2 3 4 59 19 21 22 24
15 2 3 3 4 60 19 21 23 25
16 2 3 4 5 61 20 22 23 25
17 2 4 4 5 62 20 22 24 25
18 3 4 5 6 63 20 23 24 26
19 3 4 5 6 64 21 23 24 26
20 3 5 5 6 65 21 24 25 27
21 4 5 6 7 66 22 24 25 27
22 4 5 6 7 67 22 25 26 28
23 4 6 7 8 68 22 25 26 28
24 5 6 7 8 69 23 25 27 29
25 5 7 7 9 70 23 26 27 29
26 6 7 8 9 71 24 26 28 30
27 6 7 8 10 72 24 27 28 30
28 6 8 9 10 73 25 27 28 31
29 7 8 9 10 74 25 28 29 31
'O 7 9 10 11 75 25 28 29 32

7 9 10 11 76 26 28 30 3 .
32 8 9 10 12 77 28 29 30 32
33 8 10 11 12 78 27 29 31 33
34 9 10 11 13 79 27 30 31 33
35 9 11 12 13 80 28 30 32 34

36 9 11 12 14 81 28 31 32 34
37 10 12 13 14 82 28 31 33 35
38 10 12 13 14 83 29 32 33 35
39 11 12 13 15 84 29 32 33 36
40 11 13 14 15 85 30 32 34 36

41 11 13 14 16 86 30 33 34 37
42 12 14 15 16 87 31 33 35 37
43 12 14 15 17 88 31 34 35 38
44 13 15 16 17 89 31 34 36 38
45 13 15 16 18 90 32 35 36 39

* Use explained in Sec. 2.5.2a. In the sign test the test statistic is the number of + signs
or the number of - signs, whichever is smaller. A statistic less than or equal to the critical
value tabled under a will occur with probability not more than a. For values of N larger
than 90, approximate critical values may be found by taking the nearest integer less than
(N - 1)/2 - k V N -FT where k is 1.2879, 0.9800, 0.8224, and 0.5752 for the 1, 5, 10,
and 25% values, respectively. Reproduced, with the permission of the authors and the
publisher, from W. J. Dixon and F. J. Massey, Jr., Introduction to Statistical Analysis, New
York, McGraw-Hill, 1951, p. 324.
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P 4C.05 1 P4.05

P 0.025 P402

TABLE 10. CRITICAL VALUES FOR RUNS *

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3. .... .... ... . ... .... .... .... .... .... .... .... .... ... .... .... .... .... .... .
3 ... ... . ... . ... . ... . ... . ... : ... .. .. .. .. .. .. .. ... .. .. . ... . ... . ... . ... . .

4 .... .... . ... .. ... .. .. . . . .. . ....... -" .... .... .... .... .... .... ....

5 .... .... 2 .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

6 .... 2 2 3 3 .... ... . ... .... .... ... .. .. .. .. .. .. .. ..7 .... 2 2 3 3 5 .... .... .... .. .. .. .. .. .. .. .. .. ..8 .... 2 3 3 3 4 ......

9 .... 2 3 3 4 4 5 5 .... ................................S10 .... 2 3 3 4 5 5 5 6 .. .. .... .... .... .... .... ... . .... .... ....

* 11 .... 2 3 4 4 5 5 6 6 7 ..-................................
12 2 2 3 4 4 5 6 6 7 7 7 ........
13 2 2 3 4 5 5 6 6 7 7 8 8........
14 2 2 3 4 5 5 0 7 7 8 8 99 .....................
15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 ....................

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 .... .... .... ....
17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 ........
18 2 3 4 5 5 68 7 8 8 9 9 10 10 11 1 12 12
19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13
20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

nit = n.., V. 975 -" l , V.975 nI" = n2 V.915

21 15 32 24 55 45
22 16 34 26 60 49
23 16 36 28 65 54
24 17 38 30 70 58
25 18 40 31 75 63

26 19 42 33 80 68
27 20 44 35 85 72
28 21 46 37 90 77
29 22 48 38 95 82
30 22 50 40 100 86

Use explained in Sec. 4.1 and 4.7.2. The values listed are such that a number less than or equal
to V.915 wiloccur with probability not more than 2.5%; a number greater than or equal to v.025 will
will occur with probability not more than 2.5%. A number less than or equal to v.96 will occur with
probability not more than 5%; a number greater than or equal to v.os will occur with probability
not more than 5%. Adapted, with the permission of the authors and the editor, from C. Eisenhart
and F. Swed, "Tables for Testing Randomness of Grouping in a Sequence of Alternatives," ANNMATH STAT, Vol. 14 (1943), pp. 83-86.

* -..- ,.
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TABLE 10. (Contd.)

V.025

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .... .... ... ... .... .... .... .... .-.. .... ... .... .... .... .. .. ..... .... .... ....

6 .... . ... .. .. .... ... . .... .... ... . ... . ... . . ... . ... . .. .... . ... . ... .
7 .......... ............. ......................
8 .... .... ... .11 12 13 14... . ...... . ... . .... ... . ... ... .. . ... . ... .
9 ................ 13 14 14 15 .... ...........................
0 .... .... .... .... 13 14 15 16 16 .... .... .... .... ............... .... ....

8 .... ....... ... 13 14 15 16 17 17 ..... ........... .... ...............
S 12 ..... ....... .. 13 14 16 16 17 18 19.. .. .... ........... ...........
13....... ............ 15 16 17 18 19 19 20..
14 .................... 15 16 17 18 19 20 20 21.......................
15 ................... 15 16 18 18 19 20212...2 ....................

16. .............. .... 171819202 213........

17 ...................... 17 18 19 20 21 22 23 23 24 25 ............
18 .... .... .... .... .... .... 17 18 19 20 21 22 23 24 25 25 26 .... ....
19 .... .... .... .... .... .. - 17 18 20 21 22 23 23 24 25 26 26 27 ....
20 ....................... 17 18 20 21 22 23 24 25 25 26 27 27 28

n1 = n2 V.023 n, = n2 V.025 nli = n., V.025

21 29 32 42 55 67
22 30 34 44 60 73
23 32 36 16 65 78
24 33 38 48 70 84
25 34 40 51 75 89

26 35 42 53 80 94
27 36 44 55 85 100
28 37 46 57 90 105
29 38 48 60 95 110
30 40 50 62 100 116
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TABLE 10. (Contd.)

m NiJ2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .... . ... .. .. .... .... .... .... .... .... .... .... . . .... .... .... .... .... .... ....
42
5 ... 2 2 3. .... .......

6 .... 2 3 3 3 .... .... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ...
7 2 3 3 4 4 ........... ....8 2 2 3 3 4 4 6 .... .... .... .... .... .... .... ... .... .... .... ....
9 2 2 3 4 4 5 5 6......................................
10 2 3 3 4 5 5 6 6..................................

1 2 3 3 4 5 5 6 6 7 8 ...............................i12 2 3 4 4 5 6 6 7 7 8 .....8.

13 2 3 4 4 5 6 6 7 8 8 9 9 .... .... ... .... ...........
14 2 3 4 5 5 6 7 7 8 8 9 9 10 ........................
15 2 3 4 5 6 6 7 8 8 9 9 0 0 11 ....................

16 2 3 4 5 6 6 7 8 8 9 10 10 11 11 11 ................
17 2 3 4 5 6 7 7 8 9 9 10 10 11 11 12 12
18 2 3 4 5 6 7 8 8 9 10 10 11 11 12 12 13 13
19 2 3 4 5 6 7 8 8 9 10 10 11 12 12 13 13 14 14 ...
20 2 3 4 5 6 7 8 9 9 10 11 11 12 12 13 13 14 14 15

ni = V. fl = n- V. fli = n2 V.

21 16 32 25 55 46
22 17 34 27 60 51
23 17 36 29 65 56
24 18 38 31 70 60
25 19 40 33 75 65

26 20 42 35 80 70
27 21 44 36 85 74
28 22 46 38 90 79
29 23 ] 48 40 95 84
30 24 I1 50 42 100 88

II
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TABLE 10. (Contd.)

V.(15

nll 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .... ... .... .... .... .... .... .... .. .. .... .... .... .... .... .... .... .... ....

6 .. .. 9 .0... .... .... .... ..... .... ..... .... .... .... .1... .... .... .... ....

6 .... .... 9 1 0 11 .... .... .- .. .. .. .. .. .. .. .. ..... .... .... ... .. .. .. .. ....
8 ..... ..... ... 11 12 13 13 .... ... . ... . ... . ... .. .. .. .. .. .. .. .... . ... .... .
9 .... . ..... 11 12 13 14 14 .... .... .... ................................

10 ............ 11 12 13 14 15 16 .................... ... .... ........ .

11 .... .... .... .... 13 14 15 15 16 17 .... .... .... .... .... .... ... .... ....
12 .... .... .... .... 13 14 15 16 17 17 18 .... .... .... .... .... ... .... ....
13 .... .... .... .... 13 14 15 16 17 18 18 19 . ... . ... .... .... . ... . ....
14 .... .... .... .... 13 14 16 17 17 18 19 20 20
15 .... .... .... .... .... 15 16 17 18 19 19 20 21 21 .... .... .... .... ....

16 .... .... .... .... .... 15 16 17 18 19 20 21 21 22 23 .... ...........
17 .... .... .... .... .... 15 16 17 18 19 20 21 22 22 23 24
18 .................... 15 16 18 19 20 21 21 22 23 24 2425
19 ................... 15 16 18 19 20 21 22 23 23 24 25 2526....
20 .............. 17 18 19 20 21 22 23 24 25 25 26 2727

n1- n2 V.05 nIl = -" _V.o nt = n20.5

21 28 32 41 55 66
22 29 34 43 60 71
23 31 36 45 65 76
24 32 38 47 70 82
25 33 40 49 75 87

26 34 42 51 80 92
27 35 44 54 85 98
28 36 46 56 90 103
29 37 48 58 95 108
30 38 50 60 100 114

iI

i
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TABLE 11. HALF-WIDTHS da FOR CONSTRUCTION OF

CONFIDENCE BANDS FOR CUMULATIVE DISTRIBUTIONS 

.20 .15 .10 .05 .01

5 .45 .47 .51 .56 .67
10 .32 .34 .37 .41 .49
20 .23 .25 .26 .29 .36
25 .21 .22 .24 .27 .32
30 .19 .20 .22 .24 .29

35 .18 .19 .20 .23 .27
40 .17 .18 .19 .21 .25
45 .16 .17 .18 .20 .24
,50 .15 .16 .17 .19 .23

1.07 1.14 1.22 1.36 1.63
>O V it 1- V n V it "n

Use explained in Sec. 4.4. Reproduced, with the permission of the
authors and the publisher, from W. J. Dixon and F. J. Massey Jr. Intro-
duction to Statistical Analysis, New York, McGraw-Hill, 19 5 1, p. 348.

TABLE 12. FACTOR k FOR ESTIMATING NORMAL

STANDARD DEVIATION FROM THE RANGE w AS kw *

n k n k

2 .886 8 .351
3 .591 9 .337
4 .486 10 .325
5 .430 50 .222
6 .395 100 .199
7 .370 1000 .154

* Use explained in See. 1.1.4b. The factors for n = 2, 3, .... 10 are
reproduced, with the permission of the authors and the publisher, from
W. J. Dixon and F. J. Massey, Jr., Introduction to Statistical Analysis,
New York, McGraw-Hill, 1951, p. 315. The factors for n = 50, 100, and
1000 are reciprocals of entries in a table of mean rangee complete to
n = 1000 in L. H. C. Tippett, "On the Extreme Individuals a-d the
Range of Samples Taken From a Normal Population," BIOMETRIKA,
Vol. 17 (1925), pp. 364-87.
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0 r
TABLE 13. CRITICAL VALUES FOR TESTS USING

THE RANGE W *

(a) CRITICAL VALUES FOR T- I-

.05 .025 .01 .005

2 3.16 6.35 15.91 31.83
3 0.885 1.30 2.11 3.01
4 .529 0.717 1.02 1.32
5 .388 .507 0.685 0.843
6 .312 .399 .523 .628
7 .263 .333 .429 .507
8 .230 .288 .366 .429
9 .205 .255 .322 .374

10 .186 .230 .288 .333

(b) CRITICAL VALUES FOR 7d-=
:r W1 + W2

a2h1 .05 .025 .01 .005

2 1.10 1.71 2.78 3.96S3 0.487 0.636 0.857 1.05
4 .322 .406 .524 0.6185 .246 .306 .386 .448

6 .203 .250 .310 .357
7 .173 .213 .263 .300
8 .153 .186 .229 .260
9 .137 .167 .204 .232
10 .125 .152 .185 .210

Use explained in Sec. 2.2.1 and 2.5.3a respectively. Adapted, with the
permission of the author and the publisher, from E. Lord, "Te Use of
the Range in Place of the Standard Dev.ation in the t Test," BIOMET-
RIKA, Vol. 34 (1947), p. 41.
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TABLE 14. CRITICAL VALUES FOR 8 2 /S2 *j

For P = .50, W?/s' = 2 for all k

k .999 .99 .95 .05 .01 .001

4 .5898 .6256 .7805 3.2195 3.3744 3.4102

5 .4161 .5379 .8204 3.1796 3.4621 3.5839
6 .3634 .5615 .8902 3.1098 3.4385 3.6366
7 .3695 .6140 .0359 3.0641 3.3860 3.6305
8 .4036 .6628 .9825 3.0175 3.3372 3.5964
9 .4420 .7088 1.0244 2.9756 3.2911 3.5580

10 .4816 .7518 1.0623 2.9378 3.2482 3.5184

11 .5197 .7915 1.0965 2.9035 3.2085 3.4803
12 .5557 .8280 1.1276 2.8724 3.1720 3.4443
13 .3898 .8618 1.1558 2.8442 3.1381 3.4102
14 .6223 .8931 1.1816 2.8184 3.1068 3.3777
15 .6532 .9221 1.2053 2.7947 3.V77S 3.3467
16 .6826 .9491 1.2272 2.7728 3.0509 3.3174
17 .7104 .9743 1.2473 2.7527 3.0257 3,2896
18 .768 .9979 1.2660 2.7340 3.0021 3.2632
19 .7617 1.0199 1.2834 2.7166 2.9800 3,2383
20 .7852 1.0400 1.2996 2.7004 2.9593 3.2148

21 .8073 1.0601 1.3148 2.6852 2.9399 3.1927
22 .8283 1.0785 1.3290 2.6710 2.9216 3.1718
23 .8481 1.0958 1.3425 2.6576 2.9042 3.1520 I
24 .8668 1.1122 1.3552 2.6449 2.8877 3.1333
25 .8846 1.1278 1.3671 2.6329 2.8722 3.1154
26 .9017 1.1426 1.3785 2.6215 2.8575 3.0983
27 .9182 1.1567 1.3892 2.6108 2.8434 3.0818
28 .9341 1.1702 1.3994 2.6006 2.8300 3,0659
29 .9496 1.1830 1.4091 2.5909 2.8171 3.0505
30 .9645 1.1951 1.4183 2.5817 2.8049 3,0355

31 .9789 1.2067 1.4270 2.5729 2.7933 3.0212
32 .9925 1,2177 1.4354 2.5646 2.7823 3.007633 1.0055 1.2286 1.4434 2.b566 2.7717 2.9946
34 1.0180 1,2386 1.4511 2.5490 2.7614 2.9821
35 1.0300 1.2485 1.4585 2.5416 2.7515 2.970 1

36 1.0416 1.2581 1.4656 2.5344 2.7419 2.9584
37 1.0529 1.2673 1.4726 2,5274 2.7325 2.9469
38 1.0639 1.2763 1.4793 2.5208 2,7237 2.9360
39 1.0746 1.2850 1.4858 2.5142 2.7151 2.9254
40 1.0850 1.2934 1.4921 2.5079 2.7066 2.9151

41 1.0950 1.3017 1.4982 2.5018 2.6983 2.9050
42 1.1048 1.3096 1.5041 2.4958 2.6904 2.8952
43 1.1142 1.3172 1.5098 2.4901 2.6827 2.8858
44 1.1233 i.3246 1.5154 2.4846 2.6754 2.8767
45 1.1320 1.3317 1.5206 2.4794 2.6683 2.8680
46 1.1404 1.3387 1.5257 2.4743 2.6614 2.8596
47 1.1484 1.3453 1.5305 2.4695 2.6548 2.8516
48 1.1561 1.3515 1.5351 2.4649 2.6486 2.8439
49 1.1635 1.3573 1.5395 2.4604 2.6426 2.8365
50 1.2705 1.3629 1.5437 2.4563 2.6370 2.8295

51 1.1774 1.3683 1.5477 2.4522 2.6316 2.8225
52 1.1843 1.3738 1.5518 2.4483 2.6262 2.8157
53 1.1910 1.3792 1.5557 2.4444 2.6208 2.090
54 1.1976 1.3846 1.5596 2.4405 2 6154 2.8024
55 1.2041 1.3899 1.5634 2.4368 2.6102 2.7959
56 1.2104 1.3949 1.5670 2.4330 2.6050 2.7896
57 1.2166 1.3999 1.5707 2.4294 2.6001 2.7834
58 1.2227 1.4048 1.5743 2.4258 2.5952 2.7773
59 1.2288 1.4096 1.5779 2.4222 2.5903 2.7712
60 1.2149 1.4144 1.5814 2.4186 2.5856 2.7651

* Use explained in Sec. 2.8.2. From a paper by A. H. J. Baines, "Methods of Detecting
Non-Randomness in a Given Series of Observations," Technical Report - Series "R."
No. Q.C./R/12d Brtish Minstry of Suppl, as reproduced in Frankford Arsenal. Statistical
Manual: Methods ol Making ExperimentalInfercnccs, 2nd rev. ed., by C. W. Churchman,
Philadelphia, Frankford Arsenal. June 1951, Table V11I.
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TABLE 16. CRITICAL VALUES FOR TEST RATIOS FOR GROSS ERRORS *

RtoNumber n Critical values
Ratio of observations a = .10 a = .05 a = .01

3 .941 .970 .994
x2=--xt 4 .765 .829 .926T1 15 .642 .710 .821

6 .560 .628 .740
7 .507 .569 .680

8 .544 .608 .717
3 -19 .503 .564 .672r,-x - 10 .470 .530 .635

1a-- I1 .445 .502 .605
12 .423 .479 .579

13 .563 .611 .697
X3 _ -X1 14 .539 .586 .670

rn- 15 .518 .565 .647
16 .500 .546 .627
17 .483 .529 .610
18 .469 .514 .594
19 .457 .501 .580
20 .446 .489 .567
21 .435 .478 .555
22 .426 .468 .544
23 .418 .459 .535
24 .410 .451 .526
25 .402 .443 .517
26 .396 .436 .510
27 .389 .429 .502
28 .383 .423 .495
29 .378 .417 .489
30 .373 .412 .483

Use explained in Sec. 4.8. Values for a .01 and .10, n= 3, 4, 5, 6, and 7 are
adaptd from W, J. Dixon, "Ratios Involving Extreme Values," ANN MATH STAT, Vol.
22 (1951) pp. 68-78. Remaining values calculated by R. S. Gardner, NOTS. The above
values appl when deviations at either end of the sample are of interest, and it is not
speced efore seeing the data wL'ch end it may be; Dixon's tables apply when it is knownbefore seeing the data which end of the sample is of interest.
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TABLE 17. TOLERANCE FACTORS K FOR POPULATION

PROPORTION P OF NORMAL DISTRIBUTIONS *

a-0.10 a 0.05 a= 0.10 a =0.05

0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

55 1.901 2.265 1.976 2.354
2 15.978 18.800 32.019 37.674 60 1.887 2.248 1.958 2.333
3 5.847 6.919 8.380 9.916 65 1.875 2.235 1.943 2.315
4 4.166 4.943 5.369 6.370 70 1.865 2.222 1.929 2.299
5 3.494 4.152 4.275 5.079 75 1.856 2.211 1.917 2.285

6 3.131 3.723 3.712 4.414 80 1.848 2.202 1.907 2.272
7 2.902 3.452 3.369 4.007 85 1.841 2.193 1.897 2.261
8 2.743 3.264 3.136 3.732 90 1.834 2.185 1.889 2.251
9 2.626 3.125 2.967 3.532 95 1.828 2.178 1.881 2,241

10 2.535 3.018 2.839 3.379 100 1.822 2.172 1.874 2.233

11 2.463 2.933 2.737 3.259 110 1.813 2.160 1.861 2.218
12 2.404 2.863 2.655 3.162 120 1.804 2.150 1.850 2.205
13 2.355 2.805 2.587 3.081 130 1.797 2.141 1.841 2.194
14 2,314 2.756 2.529 3.012 140 1.791 2.134 1.833 2.184
15 2.278 2.713 2.480 2.954 150 1.785 2.127 1.825 2.175

16 2.246 2.676 2.437 2.903 160 1.780 2.121 1.819 2.167
17 2.219 2.643 2.400 2.858 170 1.775 2.116 ).813 2.160
18 2.194 2.614 2.366 2.819 180 1.771 2.111 1.808 2.154
19 2.172 2.588 2.337 2.784 190 1.767 2:106 1.803 2.148
20 2.152 2.564 2.310 2.752 200 1.764 2.102 1.798 2.143

21 2.135 2.543 2.286 2.723 225 1.756 2.093 1.788 2.131
22 2.118 2.524 2.264 2.697 250 1.750 2.085 1.780 2.121
23 2.103 2.506 2.244 2.673 275 1.745 2.079 1.773 2.113
24 2.089 2.489 2.225 2.651 300 1.740 2.073 1.767 2.106
25 2.077 2.474 2.208 2.631

26 2.065 2.460 2.193 2.612 350 1.732 2.064 1.757 2.094
27 2.054 2.447 2.178 2.595 400 1.726 2.057 1.749 2.084
28 2.044 2.43.5 2.164 2.579 450 1.721 2.051 1.743 2.077
29 2.034 2.424 2.152 2.564 500 1.717 2.046 1.737 2.070
30 2.025 2.413 2.140 2.549

31 2.017 2.403 2.129 2.536 550 1.713 2.041 1.733 2.065
32 2.009 2.393 2.118 2.524 600 1.71i 2.038 1.729 2.060
33 2.001 2.385 2.108 2.512 650 1.707 2.034 1.725 2.056
34 1.994 2.376 2.099 2.501 700 1.705 2.032 1.722 2.052
35 1.988 2.368 2.090 2.490 750 1.703 2.029 1.719 2.049

36 1.981 2.361 2.081 2.479 800 1.701 2.027 1.717 2.046
37 1.975 2.353 2.073 2.470 850 1.699 2.025 1.714 2.043
38 1.969 2.346 2.068 2.464 900 1.697 2.023 1.712 2.040
39 1.964 2.340 2.060 2.455 950 1.696 2.021 1.710 2.038
40 1.959 2.534 2.052 2.445 1000 1.695 2.019 1.709 2.036

45 1.935 2.306 2.021 2.408 co 1.645 1.960 1.645 1.960
50 1.916 2.284 1.996 2.379

VUse explained in Sec. 4.9. Abridged, with the permission of the author and the publisher,
from A. H. Bowker, "Tolerance Limits for Normal Distributions," in Selected Techniques ot
Statistical Analysis, ed. by Eisenhart, Hastay, and Wallis, New York, McGraw-Hill, 1947
pp. 97-110. The original reference contains five P values for each of four a values and
includes more n values.
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TABLE 19. CONSTANTS FOR A SAMPLING PLAN WITH OC CURVE

THROUGH (pl, 0.95) AND (P2, 0.05) *

(a) SINGLE SAMPLING PLAN

Operating ratioRo = p21p Ac npi
58. 0 0.051
13. 1 0.355

t, 7.7 2 0.818
5.7 3 1.3e68
4.6 4 1.970

4.0 5 26.
3.6 6 3.29
3.3 7 3.98
3.1 8 4.70
2.9 9 5.43

2.7 10 6.17
2.5 12 7.69
2.37 14 9.25
2.03 21 14.89
1.81 30 24.44

1.61 47 37.20
1.51 63 51.43
1.335 129 111.831,251 215 192.41

(b) DOUBLE SAMPLING PLAN

:Operating ratio
- = p2/p1 Act Rej Ac2 nipi

15.1 0 2 1 0.207
8.3 0 3 2 0.427
5.1 1 4 4 1.00
4.1 2 5 6 1.63

3.5 2 6 7 1.99
3.0 3 8 9 2.77
2.6 5 12 13 4.34
2.3 6 14 16 5.51

2.02 9 18 23 8.38
1.82 13 24 32 12.19
1.61 21 35 50 20.04
1.505 30 46 69 28.53
1.336 63 84 138 60.31

r* Use xplained in Se_. 8.3. Reproduced with the permission of the author and the pub-
lishers from Paul Peach, An Introduction to Industrial Statistics and Quality Control, 2nd ed.,
Raleigh, N. C., Edwards & Broughton Co., 1947, pp. 228-29.
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TABLE 20. TABLE OF a -" log 1 _ AND b = logo,,-

The upper number in each cell represents a, the lower number, b.

0.001 0.010 0.050 0.100 0.200

0.001 3.000 2.000 1.301 1.000 0.699
3.000 2.996 2.978 2.954 2.903

0.010 2.996 1.996 1.297 0.996 0.695
2.000 1.996 1.978 1.954 1.903

0.050 2.978 1.978 1.279 0.978 0.677
1.301 1.297 1.279 1.255 1.204

0.100 2.954 1.954 1.255 0.954 0.653
1.000 0.996 0.978 0.954 0.903

0.100 2.903 1.903 1.204 0.903 0.602
0.699 0.695 0.677 0.653 0.602

fI

! I
: i
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TABLE 21. CONFIDENCE LIMITS FOR A PROPORTION

(a) Two-SIDED LIMITS*

Upper limits are in boldface. The observed proportion in a random sample is r/.

90% 95% 99% 90% 95% 99%

n l n =2

0 0 .900 0 .950 0 .990 0 0 .684 0 .776 0 .900
1 .100 1 .050 1 .010 1 1 .051 .949 .025+ .975- .005+ .995-

2 .316 1 .224 1 .100 1

n =3 n=4

0 0 .586 0 .62 0 .785- 0 0 .500 0 .527 0 .684
1 .035- .804 .017 .865- .003 .941 1 .026 .680 .013 .751 .003 .850
2 .196 .965+ .135+ .983 .059 .997 2 .143 .857 .098 .902 .042 .958
3 .464 1 .368 1 .215 1 3 .320 .974 .249 .987 .141 .997

4 .500 1 .473 1 .316 1

n =5 n= 6

0 0 .879 0 .500 0 .602 0 0 .45- 0 .402 0 .536
1 .021 .621 .010 .657 .002 .778 1 .017 .542 .009 .598 .002 .706
2 .112 .758 .076 .811 .033 .894 2 .093 .667 .063 .729 .027 .837
3 .247 .888 .189 .924 .106 .967 3 .201 .799 .153 .847 .085- .915 +

4 .379 .979 .343 .990 .222 .998 4 .333 .907 .271 .987 .173 .978
5 .621 1 .500 1 .398 1 5 .458 .988 .402 .991 .294 .998

6 .655+ 1 .598 1 .464 1

n=7 n=8

0 0 .816 0 .877 0 .500 0 0 .255- 0 .315 +  0 .451
1 .015- .500 .007 .554 .001 .648 1 .013 .418 .006 .500 .001 .590
2 .079 .684 .053 .659 .023 .764 2 .069 .582 .046 .685- .020 .707
3 .170 .721 .129 .775- .071 .858 3 .147 .745' .111 .711 .061 .803
4 .279 .830 .225 .871 .142 .929 4 .240 .760 .193 .807 .121 .879
5 .316 .921 .341 .947 .236 .977 5 .255- .858 .289 .889 .198 .939
6 .500 .985+ .446 .998 .357 .999 6 .418 .931 .315+ .954 .293 .989
7 .684 1 .623 1 .500 1 7 .582 .987 .500 .994 .410 .999

8 .745 1 .685- 1 .549 1

n=9 n =10

0 0 .232 0 .289 0 .4O2 0 0 .222 0 .267 0 .870
1 .012 .391 .006 .448 .001 .598 1 .010 .852 .005+ .897 .001 .512
2 .061 .515+ .041 .558 .017 .656 2 .055- .500 .037 .6083 .016 .624
3 .129 .610 .098 .711 .053 .750 3 .116 .648 .087 .619 .048 .708
4 .210 .768 .169 .749 .105+ .829 4 .188 .659 .150 .788 .093 .789
5 .232 .790 .251 .881 .171 ...895- 5 .222 .778 .223 .778 .150 .850
6 .390 .871 .289 .902 .250 .947 6 .341 .812 .267 .850 .218 .907
7 .485- .989 .442 .959 .344 .983 7 .352 .884 .381 .918 .297 .952
8 .609 .988 .557 .994 .402 .999 8 .500 .945 + .397 .968 .376 .984
9 .768 1 .711 1 .598 1 9 .648 .990 .603 .995- .488 .999

10 .778 1 .733 1 .624 1

n = 11 n = 12

0 0 .197 0 .250 0 .859 0 0 .184 0 .286 0 .821
1 .010 .815' .005- .869 .001 .500 1 .009 .294 .004 .846 .001 .445'
2 .049 .423 .033 .500 .014 .598 2 .045+ .898 .030 .450 .013 .555-
3 .105- .577 .079 .681 .043 .660 3 .096 .500 .072 .550 .039 .679
4 .169 .685- .135t .667 .084 .738 4 .154 .602 .123 .654 .076 .608
5 .197 .698 .200 .750 .134 .806 5 .184 .706 .181 .706 .121 .705+

*Use explained in See. 2.3.3. See Appendix Charts II, III, and IV for sample size n>80.
This table was calculated by Edwin L. Crow. Eleanor G. Crow, and Robert S. Gardner,
NOTS, according to a modification of a proposal of Theodore E. Sterne. These limits are
usually tighter than those obtained by the method of Clopper and Pearson used for Charts
II-IV, but the difference is not large for nZ30 (Edwin L. Crow, "Confidence Intervals for
a Proportion," BIOMETRIKA, Vol. 43 (1956), pp. 423-35).
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TABLE 21 (Contd.)

(a) Two-SIDED LIMITS (CONTD.)

r 90% 95% 99% r 90% 95% 99%

n-= 11 n= 12

6 .302 .803 .250 .800 .194 .866 6 .271 .729 .236 .764 .175- .825+

7 .315+ .831 .333 .865- .262 .916 7 .294 .816 .294 .819 .235- .879
8 .423 .895+ .369 .921 .340 .957 8 .398 .846 .346 .877 .302 .924
9 .577 .951 .500 .967 .407 .986 9 .500 .904 .450 .928 .321 .961

10. .685- .990 .631 .995+ .500 .999 10 .602 .955- .550 .970 .445+ .987

11 .803 1 .750 1 .641 1 11 .706 .991 .654 .996 .555- .999
12 .816 1 .764 1 .679 1

n =13 n =14

0 0 .173 0 .225+  0 .302 0 0 .163 0 .207 0 .286
1 .008 .276 .004 .327 .001 .429 1 .007 .261 .004 .312 .001 .392
2 .042 .379 .028 .434 .012 .523 2 .039 .365+ .026 .389 .011 .500
3 .088 .470 .066 .520 .036 .594 3 .081 .422 .061 .500 .033 .6084 .142 .545- .113 .587 .069 .698 4 .131 .578 .104 .611 .064 .6365 .17G .621 .166 .673 .111 .727 5 .163 .594 .153 .629 .102 .714

6 .246 .724 .224 .740 .159 .787 6 .224 .645 .206 .688 .146 .751
7 .276 .754 .260 .776 .213 .841 7 .261 .739 .207 .793 .195- .805+

8 .379 .827 .327 .834 .273 .889 8 .355- .776 .312 .794 .249 .854
9 .455 + .858 .413 .887 .302 .931 9 .406 .837 .371 .847 .286 .898

10 .530 .912 .480 .934 .406 .964 10 .422 .869 .389 .896 .364 .936

11 .621 .958 .566 .972 .477 .988 11 .578 .919 .500 .939 .392 .967
12 .724 .992 .673 .996 .571 .999 12 .635- .961 .611 .974 .500 .989
13 .827 1 .775- 1 .698 1 13 .739 .993 .688 .996 .608 .999

14 .837 1 .793 1 .714 1
n'=15 n=16

0 0 .154 0 .191 0 .273 0 0 .147 0 .179 0 .264
1 .007 .247 .003 .302 .001 .373 1 .007 .235+ .003 .273 .001 .857
2 .036 .326 .024 .369 .010 .461 2 .034 .305+ .023 .352 .010 .451
3 .076 .400 .057 .448 .031 .539 3 .071 .381 .053 .429 .029 .525-
4 .122 .500 .097 .552 .059 .627 4 .114 .450 .090 .500 .055+ .579
5 .154 .600 .142 .631 .094 .672 5 .147 .550 .132 .571 .088 .643

6 .205 + .674 .191 .668 .135- .727 6 .189 .619 .178 .648 .125+ .705-
7 .247 .675- .192 .706 .179 .771 7 .235+ .695- .179 .727 .166 .739
8 .325 + .753 .294 .808 .229 .821 8 .299 .701 .272 .728 .212 .788
9 .326 .795- .332 .809 .273 .865+  9 .305+ .765- .273 .821 .261 .834
10 .400 .846 .369 .858 .328 ...906 10 .381 .811 .352 .822 .295+ .875-

11 .500 .878 .448 .903 .373 .941 11 .450 .853 .429 .868 .357 .912
12 .600 .924 .552 .943 .461 .969 12 .550 .886 .500 .910 .421 .945-
13 .674 .964 .631 .976 .539 .990 13 .619 .929 .571 .947 .475+ .971
14 .753 .993 .698 .997 .627 .999 14 .695- .966 .648 .977 .549 .990
15 .846 1 .809 1 .727 1 15 .765- .993 .727 .997 .643 .999

16 .853 1 .821 1 .736 1

n 17 n =18

0 0 .140 0 .167 0 .243 0 0 .135- 0 .157 0 .228
1 .006 .225+ .003 .254 .001 .346 1 .006 .216 .003 .242 .001 .818
2 .032 .290 .021 .337 .009 .413 2 .030 .277 .020 .325- .008 .397
3 .067 .364 .050 .417 .027 .500 3 .063 .349 .047 .381 .025+ .466
4 .107 .432 .085- .489 .052 .587 4 .101 .419 .080 .444 .049 .534
5 .140 .500 .124 .544 .082 .620 5 .135- .482 .116 .556 .077 .603

6 .175+ .568 .166 .594 .117 .662 6 .163 536 .156 .619 .110 .682
7 .225+ .636 .167 .663 .155 + .757 7 .216 .584 .157 .625 + .145+ .686
8 .277 .710 .253 .746 .197 .758 8 .257 .651 .236 .675 .184 .772
9 .290 .723 .254 .747 .242 .803 9 .277 .723 .242 .758 .226 .774
10 .364 .775- .337 .833 .243 .845- 10 .349 .743 .325- .764 .228 .816
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TABLE 21 (Contd.)

(a) Two-SIDED LImTs (Contd.)

r 90% 95% 99% r 90% 95% 99%

n= 17 n= 18

11 .432 .825- .406 .834 .338 .883 11 .416 .784 .375- .843 .314 .855-
12 .500 .860 .456 .876 .380 .918 12 .464 .837 .381 .844 .318 .890
13 .568 .898 .511 .915 + .413 .948 13 .518 .865+ .444 .884 .397 .923
14 .636 .933 .583 .950 .500 .973 14 .581 .899 .556 .920 .466 .951
15 .710 .968 .663 .979 .587 .991 15 .651 .937 .619 .958 .534 .975-
16 .775- .994 .746 .997 .654 .999 16 .723 .970 .675+ .980 .603 .992
17 .860 1 .833 1 .757 1 17 .784 .994 .758 .997 .682 .999

18 .865+ 1 .843 1 .772 1

n=19 n=20

0 0 .130 0 .150 0 .218 0 0 .126 0 .143 0 .209
1 .006 .209 .003 .232 .001 .305+  1 .005+ .203 .003 .222 .001 .293
2 .028 .265 + .019 .316 .008 .383 2 .027 .255- .018 .294 .008 .375-
3 .059 .337 .044 .365- .024 .455+ 3 .056 .328 .042 .351 .023 .424
4 .095+ .387 .075+ .426 .046 .515+ 4 .090 .367 .071 .411 .044 .500
5 .130 .440 .110 .500 .073 .564 5 .126 .422 .104 .467 .069 .576
6 .151 .560 .147 .574 .103 .617 6 .141 .500 .140 .538 .098 .601
7 ."09 .613 .150 .635+ .137 .695- 7 .201 ,578 .143 .589 .129 .637
8 .238 .614 .222 .655+ .173 .707 8 .221 .633 .209 .649 .163 .707
9 .265+ .663 .232 .688 .212 .782 9 .255- .642 .222 .706 .200 .726

10 .337 .735- .312 .768 .218 .788 10 .325- .675+ .293 .707 .209 .791

11 .386 .762 .345- .778 .293 .827 11 .358 .745 + .294 .778 .274 .800
12 .387 .791 .365- .850 .305+ .863 12 .367 .779 .351 .791 .293 .837
13 .440 .849 .426 .853 .383 .897 13 .422 .799 .411 .857 .363 .871
14 .560 .870 .500 .890 .436 .927 14 .500 .859 .467 .860 .399 .902
15 .613 .905- .574 .925- .485- .954 15 .578 .874 .533 .896 .424 .931

16 .663 .941 .635+ .956 .545- .976 16 .633 .910 .589 .929 .500 .956
17 .735- .972 .684 .981 .617 .992 17 .672 .944 .649 .958 .576 .977
18 .791 .994 .768 .997 .695- .999 18 .745+ .973 .706 .982 .625+ .992
19 .870 1 .850 1 .782 1 19 .797 .995- .778 .997 .707 .999

20 .874 1 .857 1 .791 1

n'=21 n 22

0 0 .123 0 .137 0 .201 0 0 .116 0 .132 0 .194
1 .005+ .192 .002 .213 .000 .283 1 .005- .182 .002 .205+ .000 .273
2 .026 .245- .017 .277 .007 .347 2 .024 .236 .016 .264 .007 .334
3 .054 .307 .040 .338 .022 .409 3 .051 .289 .038 .326 .021 .396
4 .086 .853 .068 .398 .041 .466 4 .082 .340 .065- .389 .039 .454
5 .121 .407 .099 .455+ .065+ .534 5 .115- .393 .004 .424 .062 .505-
6 .130 .458 .132 .506 .092 .591 6 .116 .444 .126 .500 .088 .550
7 .191 .542 .137 .551 .122 .653 7 .181 .500 .132 .576 .116 .604
8 .192 .593 .197 .602 .155- .661 8 182 .556 .187 .582 .147 .666
9 .245- .647 .213 .662 .189 .717 9 .236 .607 .205+ .617 .179 .682

10 .306 .693 .276 .723 .201 .743 10 .289 .660 .260 .674 .194 .727

11 .307 .694 .277 .724 .257 .799 11 .290 .710 .264 .736 .242 .758
12 .353 .755 + .338 .787 .283 .811 12 .340 .711 .326 .740 .273 .806
13 .407 .808 .398 .803 .339 .845 13 .393 .764 .383 .795- .3r8 .821
14 .458 .809 .449 .863 .347 .878 14 .444 .818 .418 .813 .334 .853
15 .542 .870 .494 .868 .409 .908 15 .500 .819 .424 .868 .396 .884
16 .593 .879 .545- .901 .406 .935- 16 .556 .884 .500 .874 .450 .912
17 .647 .914 .602 .932 .534 .959 17 .607 .885 .576 .906 .495+ .938
18 .693 .946 .662 .960 .591 .978 18 .660 .918 .611 .935' .546 .961
19 .755+ .974 .723 .983 .653 .99. 19 .711 .949 .674 .962 .604 .979
20 .808 .995- .787 .998 .717 1.000 20 .764 .976 .736 .984 .666 .993

21 .877 1 .863 1 .799 1 21 .818 .995+ .795- .998 .727 1.000
22 .884 1 .868 1 .806 1
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TABLE 21 (Contd.)

(a) Two-SIDED LImTS (Contd.)

r 90% 95% 99% r 90% 95% 99%

n= 23 n = 24

0 0 .111 0 .127 0 .187 0 0 .105+ 0 .122 0 .181
1 .005- .174 .002 .198 .000 .265+ 1 .004 .165+ .002 .191 .000 .259
2 .023 .228 .016 .255- .007 .323 2 ,022 .221 .015+ .246 .006 .318
3 .049 .274 .037 .317 .020 .386 3 .047 .264 .035- .308 .019 .364
4 .078 .828 .062 .861 .038 .429 4 .075- .317 .059 .847 .036 .4165 .110 .381 .090 .409 .059 .500 5 .105- .870 .086 .390 .057 .404

6 .111 .431 .120 .457 .084 .571 6 .105+ .423 .115- .143 .080 .536
7 .173 .479 .127 .543 .111 .580 7 .165- .448 .122 .500 .106 .584
8 .174 .522 .178 .591 .140 .616 8 .165+ .552 .169 .557 .133 .686
9 .228 .569 .198 .639 .171 .677 9 .221 .553 .191 .604 .163 .638 1

10 .273 .610 .247 .640 .187 .702 10 .259 .587 .234 .653 .181 .687

11 .274 .672 .255- .883 .229 .735- 11 .264 .630 .246 .661 .216 .720
12 .328 .726 .317 .745+ .265+ .771 12 .317 .688 .308 .692 .257 .743
13 .381 .727 .360 .758 .298 .813 13 .370 .786 .339 .754 .280 .784
14 .431 .772 .361 .802 .323 .829 14 .413 .741 .347 .766 .313 .819
15 .478 .820 .409 .822 .384 .860 15 .447 .779 .396 .809 .362 .887

16 .521 .827 .457 .873 .420 .889 1C .448 .835- .443 .831 .364 .867
17 .569 .889 .543 .880 .429 .916 17 .552 .835+ .500 .878 .416 .894
18 .619 .890 .591 .910 .500 .941 18 .577 .895- .557 .885+ .464 .920
19 .672 .922 .639 .938 .571 .962 19 .630 .89i" 304 .914 .536 .048
20 .726 .951 .683 .963 .614 .980 20 .683 .925 + .653 .941 .504 .964

21 .772 .977 .745+ .984 .677 .993 21 .736 .953 .692 .965+ .636 .981
22 .826 .995+ .802 .998 .735- 1.000 2 .779 .978 .754 .985- .687 .994
23 .889 1 .873 1 .813 1 23 .835- .996 .809 .998 .741 1.000

24 .895- 1 .878 1 .819 1

n =25 n =26

0 0 .102 0 .118 0 .175+ 0 0 .098 0 .114 0 .170
1 .004 .159 .002 .185+ .000 .2,16 1 .004 .152 .002 .180 .000 .25-
2 .021 .214 .014 .238 .006 .305- 2 .021 .209 .014 .230 .006 .298
3 .045- .255- .034 .303 .018 .852 3 .043 .247 .032 .283 .017 .342
4 .072 .307 .057 .386 .034 .403 4 .069 .299 .054 .325+ .033 .393
5 .101 .362 .082 .384 .054 .451 5 .097 .343 .079 .374 .052 .442

6 .102 .390 .110 .431 .077 .500 6 .098 .377 .106 .421 .073 .487
7 .158 .432 .118 .475- .101 .549 7 .151 .419 .114 .465- .097 .526
8 .159 .500 .161 .525 + .127 .597 8 .152 .460 .154 .506 .122 .562
9 .214 .568 .185+ .569 .155+ .648 9 .209 .540 .180 .542 .149 .607

10 .246 .610 .222 .616 .175+ .658 10 .233 .581 .212 .579 .170 .658

11 .255- .611 .238 .664 .205+ .695+ 11 .247 .623 .230 .626 .195- .678
12 .307 .640 .296 .683 .245+ .754 12 .299 .657 .282 .675- .234 .702
13 .360 .693 .317 .704 .246 .755- 13 .342 .658 .283 .717 .235- .705+
14 .389 .745+ .336 .762 .305- .795- 14 .343 .701 .325 + .718 .298 .766
15 .390 .754 .384 .778 .342 .825- 15 .377 .753 .374 .770 .322 .805+

16 .432 .786 .431 .815- .352 .845- 16 .419 .767 .421 .788 .342 .830
17 .500 .841 .475- .839 .403 .873 17 .460 .791 .458 .820 .393 .851
18 .568 .842 .525 + .882 .451 .899 18 .540 .848 .494 .846 .438 .878
19 .610 .898 .569 .893 .500 .92S 19 .581 .849 .535- .886 .474 .903
20 .638 .899 .616 .918 .549 .946 20 .623 .902 .57P .894 .513 .927

21 .693 .928 .664 .943 .597 .966 21 .657 .903 .626 .921 .558 .948
22 .745+ .955+ .697 .966 .648 .982 22 .701 .931 .675- .946 .607 .967
23 .786 .979 .762 .986 .695+ .994 23 .753 .957 .717 .968 .658 .983
24 .841 .f96 .815- .998 .754 1.000 24 .791 .979 .770 .986 .702 .994
25 .898 1 .882 1 .825- 1 25 .848 .996 .820 .998 .765+ 1.000

26 .902 1 .886 1 .830 1
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TABLE 21 (Contd.)
(a) Two-SIDED LIMITS (Contd.)

r 90% 95% 99% r 90% 95% 99%

n = 27 n = 28

0 0 .093 0 .110 0 .106 0 0 .090 0 .106 0 .162
1 .004 .146 .002 .175- .000 .225- 1 .004 .140 .002 .170 .000 .218
2 .020 .204 .013 .223 .006 .297 2 .019 .201 .013 .217 .005+ .273
3 .042 .239 .031 .270 .017 .332 3 .040 .232 .030 .259 .016 .323
4 .066 .291 .052 .316 .032 .384 4 .064 .284 .050 .307 .031 .365-
5 .093 .327 .076 .364 .050 .419 5 .089 .312 .073 .357 .048 .408
6 .094 .3654 .101 .415- .070 .461 6 .090 .355- .098 .384 .068 .449
7 .145+ .407 .110 .437 .093 .539 7 .139 .396 .106 .424 .089 .500
8 .146 .447 .148 .500 .117 .581 8 .140 .435 + .142 .463 .112 .551
9 .204 .500 .175- .563 .143 .587 9 .197 .473 .170 .537 .137 .592

10 .221 .553 .202 .570 .166 .617 10 .208 .527 .192 .576 .162 .635+

11 ".239 .593 .223 .598 .185- .668 11 .232 .565- .217 .616 .175+ .636
12 .291 .635- .269 .686 .224 .702 12 .284 .604 .258 .619 .214 .677
13 .326 .673 .270 .684 .225- .716 13 .310 .645+ .259 .645 + .218 .727
14 .327 .674 .316 .730 .284 .775 + 14 .312 .688 .307 .693 .272 .728
15 .365+ .709 .364 .731 .298 .776 15 .355- .690 .355- .741 .273 .782 A

16 .407 .761 .402 .777 .332 .815+ 16 .396 .716 .381 .742 .323 .786
17 .447 .779 .430 .798 .383 .834 17 .435+ .768 .384 .788 .364 .825-
18 .500 .796 .437 .825 + .413 .857 18 .473 .792 .424 .808 .365- .838
19 .553 .854 .500 .852 .419 .888 19 .527 .803 .463 .830 .408 .863
20 .593 .855- .563 .890 .461 .907 20 .565- .860 .537 .858 .449 .888

21 .635- .906 .585+ .890 .539 .930 21 .604 .861 .576 .894 .500 .911
22 .673 .907 .636 .924 .581 .950 22 .645+ .910 .616 .902 .551 .932
23 .709 .934 .684 .948 .616 .968 23 .688 .911 .643 .927 .592 .952
24 .761 .958 .730 .969 .668 .983 24 .716 .936 .693 .950 .635+ .969
25 .796 .980 .777 .987 .703 .994 25 .768 .960 .741 .970 .677 .984
26 .854 .996 .825+ .998 .775+ 1.000 26 .799 .981 .783 .987 .727 .995-
27 .907 1 .890 1 .834 1 27 .860 .996 .830 .998 .782 '1.000

28 .910 1 .894 1 .838 1
~n =- 29 n-"30

0 0 .087 0 .103 0 .160 0 0 .084 0 .100 0 .152

1 .004 .185- .002 .166 .000 .211 1 .004 .130 .002 .163 .000 .206
2 .018 .190 .012 .211 .005+ .263 2 .018 .183 .012 .205+ .005+ .256
3 .039 .225- .029 .251 .015+ .316 3 .037 .219 .028 .244 .015- .310
4 .062 .279 .049 .299 .030 .354 4 .059 .266 .047 .292 .028 .345-
5 .086 .303 .070 .340 .046 .397 5 .083 .295- .068 .325- .045- .388
6 .087 .345- .094 .374 .065+ .438 6 .084 .336 .091 .364 .063 .430
7 .134 .385+ .103 .413 .086 .477 7 .129 .376 .100 .403 .083 .469
8 .135- .425- .136 .451 .108 .523 8 .130 .416 .131 .440 .104 .505+
9 .189 .463 .166 .500 .132 .562 9 .182 .455+ .163 .476 .127 .538

10 .190 .500 .184 .549 .157 .603 10 .183 .492 .175+ .524 .151 .570

11 .225" .537 .211 .587 .165+ .646 11 .219 .524 .205+ .560 .152 ,612
12 .276 .575 + .247 .626 .206 .654 12 .265- .554 .236 .597 .198 .655
13 .294 .615- .251 .660 .211 .684 13 .266 .584 .244 .336 .206 .671
14 .303 .655+ .299 .661 .260 .737 14 .295- .624 .292 .675* .249 .692
15 .345- .697 .339 .701 .263 .740 15 .336 .664 .324 .676 .256 .744
16 .385# .706 .340 .749 .316 .789 16 .376 .705 + .325- .708 .308 .751
17 .425- .724 .374 .753 .346 .794 17 .416 .734 .364 .756 .329 .794
18 .463 .775+ .413 .789 .354 .835- 18 .446 .735 + .403 .764 .345- .802
19 .500 .810 .451 .816 .397 .843 19 .476 .781 .440 .795- .388 .848
20 .537 .811 .500 .834 .438 .868 20 .508 .817 .476 .825- .430 .849

21 .575 + .865 + .549 .864 .477 .892 21 .545- .818 .524 .887 .462 .873
22 .615- .866 .587 .897 ,523 .914 22 .584 .870 .560 .869 .495- .896
23 .655* .013 .626 .906 .562 .935- 23 .624 .871 .597 .900 .531 .917
24 .697 .914 .660 .930 .603 .954 24 .664 .916 .636 .909 .570 .937
25 .721 .9S8 .701 .951 .646 .970 25 705+ .917 .675+ .932 .612 .955+

26 .775+ .961 .749 .971 .684 .985- 26 .734 .941 .708 .953 .655+ .972
27 .810 .982 .789 .988 .737 .995- 27 .781 .963 .756 .972 .690 .985+
28 .865+ .996 .834 .998 .789 1.000 28 .817 .982 .795- .988 .744 .995-
29 .913 1 897 1 .840 1 29 .870 .996 .837 .998 .794 1.000

30 .916 1 .900 1 .848 1
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TABLE 21 (Contd.)

(b) ONE-SIDED LIMITS*

If the observed proportion is rin, enter the table with n and r for an upper one-

sided limit. For a lower one-sided limit, enter the table with n and n - r and

subtract the table entry from 1.

r 90% 95% 99% r 90% 95% 99% r 90% 95% 99%

n=2 n=3 n=4

0 .684 .776 .900 0 .536 632 .785- 0 .438 527 .684
1 .949 .975- .995- 1 .804 .865- .941 1 .680 .751 .859

2 .965+ .983 .997 2 .857 .902 .9583 .974 .987 .997

n=5 n=6 n =7

0 .369 .451 .602 0 .319 .393 .536 0 .280 .348 .482
1 .584 .657 .778 1 .510 .584 .700 1 .453 .521 .643
2 .753 .811 .894 2 .667 .719 .827 2 .596 .659 .764
3 .888 .924 .967 3 .799 .647 .915+  3 .721 .775- .858
4 .979 .990 .998 4 .907 .N'7 .973 4 .830 .871 .929

5 .983 A)91 .998 5 .921 .947 .977
6 .985* .993 .999

n=8 n=9 n= 10

0 .250 .312 .438 0 .226 .283 .401 0 .206 .259 .369
1 .406 .471 .590 1 .368 .429 .544 1 .337 .394 .504
2 .538 .600 .707 2 .490 .550 .656 2 .450 .507 .612
3 .655+ .711 .802 3 .599 .655+ .750 3 .552 .607 .703
4 .760 .807 .879 4 .699 .749 .829 4 .646 .696 .782
5 .853 .889 .939 5 ,790 .831 .895- 5 .733 .778 .850
6 .931 .954 .980 6 .871 .902 .947 6 .812 .850 .907
7 .987 .994 .999 7 .939 .959 .983 7 .884 .913 .952

8 .988 .994 .999 8 .945 .963 .984
9 .990 .995- .999

n11 n=12 n=13

0 .189 238 .342 0 .175- .221 .319 0 .162 .206 .298
1 .310 .364 .470 1 .287 .339 .440 1 .268 .316 .413
2 .415 .470 .572 2 .386 .438 .537 2 .360 .410 .506
3 .511 .564 .660 3 .475+ .527 .622 3 .444 .495- .588
4 .599 .650 .738 4 .559 .609 .638 4 .523 .573 .661
5 .682 .729 .806 5 .638 .685- .765+ 5 .598 .645+ .727

6 .759 .800 .866 6 .712 .755- .825+ 6 .669 .713 .787
7 .831 .865- .916 7 .781 .819 .879 7 .736 .776 .841
8 .895+ .921 .957 8 .846 .877 .924 8 .799 .834 .889
9 .951 .967 .986 9 .904 .928 .961 9 .858 .887 .931

10 .990 .995+  .999 10 .955- .970 .987 10 .912 .934 .964
11 .991 .996 .999 11 .958 .972 .988

12 .992 .996 .999

n=14 n= 15 n 16

0 .152 193 .280 0 .142 .181 .264 0 .134 .171 .250
1 .251 .297 .389 1 .236 .279 .368 1 .222 .264 .349
2 .337 .385+ .478 2 .317 .363 .453 2 .300 .344 .430
3 .417 .466 .557 3 .393 .440 .529 3 .371 .417 .503
4 .492 .540 .627 4 .464 .511 .597 4 .439 .484 .569
5 .563 .610 .692 5 .532 .577 .660 5 .504 .548 .630

0 Use explained in Sec. 2.3.3. See See. 2.3.3 for sample size n > 30. This table was com-
puted by Robert S. Gardner, NOTS.
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TABLE 21 (Contd.)

(b) ONE-SIDED LIMrrs (Contd.)

r 0% 95% 99% r 90% 95% 99% t90% 95% 99%

n= 14 n = 15 n=16

6 .631 .675- .751 6 .596 .640 .718 6 .565+ .609 .687
7 .695+ .736 .805+ i .658 .700 .771 7 .625- .667 .739
8 .757 .794 .854 8 .718 .756 .821 8 .682 .721 .788
9 .815- .847 .898 9 .774 .809 .865+ 9 .737 .773 .834
10 .869 .896 .936 10 .828 .858 .906 10 .790 .822 .875-

11 .919 .939 .967 11 .878 .903 .941 11 .839 .868 .912'
12 .061 .974 .989 12 .924 .943 .969 12 .886 .910 .945-
13 .993 .996 .999 13 .964 .976 .990 13 .929 .947 .971

14 .993 .997 .999 14 .966 .977 .990
15 .993 .997 .999

n'17 n-= 18 n 19

0 .127 .162 .237 0 .120 .153 .226 0 .114 .146 .215+
1 .210 .250 .332 1 .199 .238 .316 1 .190 .226 .302
2 .284 .326 .410 2 .269 .310 ,391 2 .257 .296 .374
3 .352 .396 .480 3 .334 .377 .458 3 .319 .359 .439
4 .416 .461 .543 4 .396 .439 .520 4 .378 .419 .4985 .478 .522 .603 5 .455+ .498 .577 5 .434 .476 .554

6 .537 .580 .658 6 .512 .554 .631 6 .489 .530 .606
7 .594 .636 .709 7 .567 .608 .681 7 .541 .532 .655+
8 .650 .689 .758 8 .620 .659 .729 8 .592 .632 .702
9 .703 .740 .803 9 .671 .709 .774 9 .642 .680 .746

10 .754 .788 .845- 10 .721 .756 .816 10 .690 726 .788

11 .803 .834 .883 11 .769 .801 .855- 11 .737 .770 .827
12 .849 .876 .918 12 .815- .844 .890 12 .782 .812 .863
13 .893 .915 .948 13 .858 .884 .923 13 .825- .853 .891
14 .933 .950 .973 14 .R99 .920 .951 14 .866 .890 .927
1.5 .968 .97P .991 15 ,937 .953 .975- 15 .905- .925- .954

16 .994 .997 .999 16 .070 .980 .992 16 .941 .956 .976
17 .994 .997 .999 17 .972 .981 .992

18 .994 .997 .999

19n 20 n=21 n'"-22

0 .109 .139 .206 0 .104 .133 .197 0 .099 .127 .189
1 .181 .216 .289 1 .173 .207 .277 1 .166 .198 .266
2 .245- .283 .358 2 .234 .271 .344 2 .224 .259 .330
3 .304 .344 .421 3 .291 .329 .404 3 .279 .316 .389
4 .3a1 .401 .478 4 .315+ .384 .460 4 .331 .369 .443
5 .415- .456 .532 5 .397 .437 .512 5 .38 . .420 .493

0 .467 .508 .583 6 .448 .487 .561 6 .430 .468 .541
7 .518 .558 .631 7 .497 .536 .608 7 .477 .515+ .587
8 .567 .606 .677 8 .544 .583 .653 8 .523 .56: .630
9 .615+ .653 .720 9 .590 .628 .695+ 9 .568 .605- .672
10 .662 .098 .761 10 .t36 .672 .736 10 .611 .647 .712

11 .707 .741 .800 11 X79 .714 .774 11 .654 .689 .750
12 .751 .783 .837 12 .722 .755+ .811 12 .695+ .729 .786
13 .793 .823 .871 13 .764 .794 .845+ 13 .736 .767 .821
14 .834 .860 .90V. 14 .804 .832 .878 14 .775- .804 853
15 .873 .896 .931 15 .842 .868 .908 15 .813 .840 .884

1 .910 .929 .956 16 .879 .901 .935- 16 .850 .874 .912
17 .944 .95? .977 17 .914 .932 .959 17 .885+ .906 .938
18 .*73 .98Y .992 18 .946 .960 .978 18 .918 .935+  .961
19 .995- .997 .999 19 .974 .983 .993 19 .949 .962 .979

20 .995- .998 1.000 20 .976 .984 .993
2! .395+ .998 1.000
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TABLE 21 (Contd.)

(b) ONE-SmED LImTS (Contd.)

r 90% 9,% 99% r 90% 95% 99% , 90% 95% 99%

n= 23 n = 24 n = 25

0 .095+ .122 .181 0 .091 .117 .175- 0 .088 .113 .168
1 .159 .190 .256 1 .153 .183 .246 1 .147 .176 .237
2 .215 +  .249 .318 2 .207 .240 .307 2 .199 .231 .296
3 .268 .304 .374 3 .258 .292 .361 3 .248 .282 .349
4 .318 .355- .427 4 .306 .342 .412 4 .295- .330 .398
5 .366 .404 .476 5 .352 .389 .460 5 .340 .375+ .444
6 .413 .451 .522 6 .398 .435- .505- 6 .383 .420 .488
7 .459 .496 .567 7 .442 .479 .548 7 .426 .462 .531
8 .503 .540 .609 8 .484 .521 .590 8 .467 .504 .571
9 .546 .583 .650 9 .526 .563 .630 9 .508 .544 .610

10 .589 .625- .689 10 .567 .603 .668 10 .548 .583 .648

11 .630 .665- .727 11 .608 .642 .705- 11 .587 .621 .684
12 .670 .704 .763 12 .647 .681 .740 12 .625- .659 .719
13 .710 .742 .797 13 .685+ .718 .774 13 .662 .695- .752
14 .748 .778 .829 14 .723 .754 .806 14 .699 .730 .784
15 .786 .814 .860 15 .759 .788 .837 15 .735- .764 .815 +

16 .822 .848 .889 16 .795+ .822 .867 16 .770 .798 .845-
17 .857 .880 .91F 17 .830 .854 .894 17 .804 .830 .873
18 .890 .910 .941 18 .863 ,885+ .920 18 .837 .861 .899
19 .922 .938 .962 19 .895+ .914 .943 19 .869 .890 .923
20 .951 .963 .980 20 .925+ .941 .964 20 .899 .918 .946

A 1 .977 .984 .993 21 .953 .965+ .981 21 .928 .943 .966
22 .995+ .998 1.000 22 .978 .985- .994 22 .955+ .966 .982

23 .996 .998 1.000 23 .979 .986 .994
24 .996 .998 1.000

n-= 28 n-- 27 n-28
0 .085- .109 .162 0 .082 .105 .157 0 .079 .101 .152

1 .142 .170 .229 1 .137 .164 .222 1 .132 .1,9 .215-
2 .192 .223 .286 2 .185 +  .215+ .277 2 .179 .208 .268
3 .239 .272 .337 3 .231 .263 .326 3 .223 .254 .316
4 .284 .318 .385- 4 .275- .308 .373 4 .265+ .298 .361
5 328 .363 .430 5 .317 .351 .417 5 .306 .339 .404

6 .370 .405+ .473 6 .358 .392 .458 6 .346 .380 .445-
7 .411 .447 .514 7 .397 .432 .498 7 .385- .419 .484
8 .451 .487 .554 8 .436 .471 .537 8 .422 .457 .521
9 .491 .526 .592 9 .475- .509 .574 9 .459 .44 .558

10 .529 .564 .628 10 .512 .547 .610 10 .496 .530 .593

11 .567 .602 .664 11 .549 .583 .645+ 11 .532 .565+ .627
12 .604 .638 .698 12 .585- .618 .679 12 .567 .600 .660
13 .641 .673 .731 13 .620 .653 .711 13 .601 .634 .692
14 .676 .708 .763 14 .655t .687 .743 14 .635+ .667 .723
15 .711 .742 .794 15 .689 .720 .773 15 .669 .699 753

16 .746 .774 .823 16 .723 .752 .802 16 .701 .731 .782
17 .779 .808 .851 17 .756 .783 .831 17 .733 .762 .810
18 .812 .837 .878 18 .788 .814 .857 18 .765- .792 .837
19 .843 .866 .903 19 .819 .843 .883 19 .796 .821 .863
20 .874 .894 .927 20 .849 .871 .907 20 .826 .849 .888

21 .903 .921 .948 21 .879 .899 .930 21 .855+ .876 .911
22 .931 .946 .967 22 .907 .924 .950 22 .883 .902 .932
23 .957 .968 .983 23 .934 .948 .988 23 .911 .927 .952
24 .979 .986 .994 24 .958 .969 .083 24 .936 .950 .969
25 .996 .998 1.000 25 .980 .987 .994 25 N0 .970 .984

26 .996 .998 1.000 26 .981 .987 .995-
27 .996 .998 1.000
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TABLE 21 (Contd.)

(b) ONE-SIDED LIMITS (Contd.)

r 90% 95% 99% 90% 95% 99% J r 90% 95% 99%

n = 29 n = 30

0 .076 .098 .147 0 .074 .095+ .142
1 .128 .153 .208 1 .124 .149 .202
2 .173 .202 .260 2 .168 .195+ .252
3 .216 .246 .307 3 .209 .239 .298
4 .257 .2h8 .350 4 .249 .280 .340
5 .297 .329 .392 5 .287 .319 .381
6 .335- .368 .432 6 .325- .357 .420
7 .372 .406 .470 7 .331 .394 .457
8 .409 .443 .507 8 .397 .430 .493
9 .445+ .479 .542 9 .432 .465+ .527

10 .481 .514 .577 10 .466 .499 .561

11 .515+ .549 .610 11 .500 .533 .594
12 .550 .583 .643 12 .533 .566 .626
13 .583 .616 .674 13 .566 .598 .657
14 .616 .648 .705- 14 .599 .630 .687
15 .649 .680 .734 15 .630 .661 .716
16 .681 .711 .763 16 .662 .692 .744
17 .712 .741 .791 17 .692 .721 .772
18 .743 .771 .818 18 .723 .750 .799
19 .774 .800 .843 19 .752 .779 .824
20 .803 .828 .868 20 .782 .807 .849

21 .832 .855- .892 21 .810 .834 .873
22 .860 .881 .914 22 .838 .860 .896
23 .888 .906 .935- 23 .865* .885+ .917
24 .914 .930 .954 24 .89i .909 .937
25 .938 .951 .970 25 .917 .932 .955+
26 .961 .971 .985- 26 .941 .953 .972
27 .982 .988 .995- 27 .963 .972 .985+
28 .996 .998 1.000 28 .982 .988 .995-

29 .996 .998 1.000
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CHART I. RECTANGULAR NORMAL PROBABILITY CHART *

P = 0.001 per rectangle. One quadrant of the chart is shown.

II

- - I

I ~~o aOtI- RECTOW18A)

t_ __ .IYONO CHART
WPR QUAPANT)

Use explained in Sec. 1.2.1. This chart was constructed by A. D. Sprague, Bureau of
Ordnance, and Is reproduced with the permission of R. S. Burington and A. D. Sprague.
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CHART 11. 900% CONFIDENCE BELTS FOR PROPORTIONS *
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CHART 111. 95% CONFIDENCE BELTS FOR PROPORTIONS*

9

XY-
0

0

0a- i

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0
OBSERVEDO PROPORTION, rin

Use explained in Sec. 2.3.3a. Table 21 should be used for sample size n:5 30. It gives
tho interval explicitly for each sample size. This chart was takeni from C. J.Copiand
E. S. Pearson, "The Use of Confidence or Fiducial Limits Illustrated in ltheCaeof the
Binomial," BIOMiRTRIKA, Vol. 26 (1934), pp. 404-13.
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CHART WV. 99% CONFIDENCE BELTS FOR PROPORTIONS *
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CHART IX. NUMBER OF DEGREES OF FREEDOM REQUIRED To
ESTIMATE THlE STANDARD DEVIATION WITHIN P% OF ITS

TRUE VALUE, WITH PRESCRIBED CONFIDENCE*

1,000 - - _ _ _ -

800-

500

400- _ _

300--- _

200 -- - --

COEFICENT0. 90.9 5 0.9

U

30

5 3002 3 0 5

U 20xlie nSc .. a cluaecniec nevlsa nSc ... Aaptd

wihtepriso1f0oAeia ttsialAscain rmJ .GenodadMM

Sadmr."SrpeSz Rq~ ~ Etmtn heSadr DvainaaaPreto

It reVle, MSA SSC ,Vl 5 15) .25.(h ane fgahn
has..be.n.changed.)
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CHART X. NUMBER OF DEGREES OF FREEDOM IN EACH

SAMPLE REQUIRED To EGTIMATE "1/o2 WITHIN p% OF

ITS TRUE VALUE, WITH PRESCRIBED CONFIDENCE 

1000
801)

600 ---

500 -- - -

400--- ~ - -

300 -

2 CONFIDENCE o
COEFFICIENT 0.90 .95, 0.99".

WIAJ

100- -\-

60 - - -

50 - - - - - - ___

40 - - - - - -_ _ _

301111

20 - - -_____ --

10-- -. _

5 6 8 10 20 30 40 50,

*Use explained in See. 3.3.3a; calculate confidence intervals as in Sec. 3.3.3. This chart
was consf-uted by E. L. Crow arnd M. W. Maxfield, NOTS.



162. MULTIPLE LINEAR REGRESSION 181

V.

one in general, in order that the resulting reduced equation be a least-squares
estimate of the (reduced) population regression plane. If the experiment is
designed with such symmetry that the off-diagonal coefficients ahj (h # j)
of the normal equations are zero,, following course 3 is equivalent to
following course 2 without drawing a new sample. Also, course 3 is some-
times justified as an approximation to course 1 when, as in the example,
the differences between the y's as predicted by the resulting reduced
equation and by the equation using all the variables are negligible.

In any case the choice of equation is aided by comp:.'ison of the sizes
of the standard errors of estimate s,,,2 ... k of the various equations con-
sidered. In an extreme case the regression as a whole may be significant
according v Sec. 6.2.5a, although no b1 is significant individually. It may
happen in swh a case that some subset of the original set of independent U
variables yields practically as useful a regression as the original. This is
exemplified in Ref. 6.7, p. 646, together with a method of finding the
appropriate subset of independent variables.

Example. In the previous example, we found that two regression
coefficients, b1 and b,, were significant, but the third, bs, was not signifi-
cant. What would the practical effect in estinating y be if we were to
discard the term in x, ?

Over the range of applicability of the regression, the maxi-
mum error introduced by discarding the term b8 (x8 - 38) would be
(0.0486) (10.05) (10-8) = 0.00049 inch. Therefore, we should follow
course 3 of the explanation above, discarding the term becarse its
contribution is not only not significant statistically but is also negligible
numerically.

f. Confidence Interval for Ordinate to the True Regression Plane.
Confidence limits for the true mean y value (not for an individual predicted
y) at the x point (X1, X, , X,) are

/¢ ±" ta/2,n-k-lyf12 ... k C7 + niiekJ (XA - Yh) (X - )

where y' is calculated from the regression equation. The x point need not
be one of those used in finding the regression plane. Note that there are k2

terms in the summation, k squares plus two equal cross-products for each
pair' (hi,j)i -

_i
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CHART XI. 95% CONFIDENCE BELTS FOR CORRELATION

COEFFICIENT *

1.0

0.8

0.6

,0.4 z .... .

U:8 . 1/1AZ/ 7

,. I,,/
0I

1/1 l.YA '0 1

t -0,6

W I / 1 ... .
-0.6 o" o" y

-0.6

~-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 OS 0.8 1.0
SAMPLE CORRELATION COEFFICIENT, r

* Use explained n Sec. 6.1.4b. The numbers on the curves indicate sample size for the
case of a two-variable linear regression. Use the curve labeled n - k +J 1 to find confidence

Sintervals for the partial correlation coefficients in amultiple linear rersinwith atotal
of k 4- 1 variables and a observations. Rleproduced, with the permission of E. S. Pearson,
from F. N. David, Tables of tihe Conrelation Coe~icent, London, Biometrika Office, 1938,
Chart II. Charts for 90, 98, and 99% confidence belts are given mn the book.

1A I f
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INDEX

A Background conditions in an
experiment, 109

a, y intercept of regression line, 152 Baines, A. H. J., 250
ah, coefficients in normal equations for Bancroft, T. A., 144

multiple regression, 170 Bartlett, M. S., 106, 144
Absolute value, 39 Best fitting curve, 151, 153, 183
Ac, acceptance number, 212 /3, risk of a Type II error, 16, 40
Acceptable quality level, AQL, 211 Bias, 12
Acceptance number, Ac, 212 B;nomial coefficients, 30
Acceptance sampling, 209-26, table, 255 Binomial distribution, 30

uses, 218, 220 approximation by Poisson
Accuracy, 67 distribution, 32
Additivity of means and variances, 59, example of use, 31

110, 119 references to tables, 35
Additivity of variances, 69, 110 test for proportion, 48-50
a, level of significance, 16, 41 Bliss, C. ., 106
American Society for Quality Control, Bowker, Albert 14., 225, 253

208 British Standards Institution, 208
American Society for Testing Materials, Brownlee, K. A., 35

205, 254 Bruceton method, 93
American Statistical Association, 225 Bureau of Ordnance, 106, 205, 225
Analysis of covariance, 111, 148 Burington, R. S., 29, 35, 267
Analysis of variance, 109-46

assumptions, 119
one-factor analysis, 120
multiple-factor analysis, 139 Cm, C(n, x), z,, binomial
two-factor analysis, 127 coefficients, 30
Type I problems, 118 Cell, 133
Type II problems, 118 Center of gravity, 11

Anderson, R. L., 144, 251 Central line, 196
Anderson, T. W., 106 Central location, measures of, 10
AQL, acceptable quality level, 211 X1 distribution, table, 232
Arkin, H., 193 X: test
Asterisk (*) to denote significance, 16 for consistency of several samples, 100
Attributes, 196, 209 for goodness of fit, 85

or variables, which to use in for independence in a contingency
acceptance sampling, 210 table, 97

Average (mean), 10 for a normal distribution, 87
Average sample number, 213 for standard deviation, 70-72, chart,

275

B Churchman, C. W., 35, 64, 81, 145, 194
Circular probable error, 29

b, regression coefficient in simple Clopper, C. J., 271, 272
regression, 152 Cochran, W. G., 145

confidence intervals, 160 Coding, 14, 68
tests of significance, 160 Colton, R. R., 193

b, partial regression coefficients, 169 Comparison of means, see Difference in
confidence intervals, 179 means, Trend in means, Analysis
tests of significance, 179 of variance
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Comparison of several samples, x2 test Defectives
for consistency, 100 binomial distribution for proportion,

Comparison of two samples by the run 30, 48
test, 101 Poisson distribution for random

Components of variance, 119, 123, 126, occurrence, 34
127, 132, 140, 144 Definitions, 3

Confidence band for cumulative Degrees of freedom, 19
distribution, 90, table, 248 for error estimate in a design, 111

Confidence coefficient, 18, 43 82, mean square successive
Confidence intervals, 18, 43 difference, 63, table, 250

approximate method for constructing, Density function, probability, 8
18 Department of Defense, 226

for mean, see Mean, confidence Designs for experiments, vi, 111
intervals for; for standard Destructive sampling, 210
deviation, see Standard deviation, Deviation, 12, 13
confidence intervals for; etc. Differences among several means, 109-46

Confidence limits, 18
Consistency test for s-veral samples, 100 Differences among several standard
Construction of control charts, 199, 202 deviations, 78
Consumer's risk, 16, 218 Differences between two means
Contingency tables, test for independence, confidence intervals, 55, 58

-P test of significance, 52, 55, 57, 59
-rmula for 2-by.2 table, 100 Differences between two proportions, 100

Yates's correction, 99 Differences (ratio) between two
Continuous distribution, 10 standard deviations, 74-78, chart,
Control charts, 195-208, table, 254 278
Control limits, 196, 199, 202 Discrete distribution, IC
Correlation, 147-94 Dispersion, measures of, 12, 29
Correlation coefficient, 157 Distribution, 4, 7

confidence intervals, 159, chart, 279 binomial, 30
meaning in Type I and 11 problems,158 X%, 232
multiple, 175, 178 circular normal, 28
partial, 176, 178 confidence band for cumulative, 90

test of significance, 159, table, 241 continuous, 10I Costscumulative, 8
Costs dsrt,1considered in acceptance sampling, 213 discrete, 10

considered in selecting sample size, 17 P, 234
Covariance, analysis of, 111, 148 frequency, 5
Cowden, D. . ., 193 normal, 19, 229, 230
Cox, G. M., 145 Poisson, 32
Cramer, Harald, 106, 193 population, 7
Crow, Edwin L., 29, 226, 257, 278 sampling, 14
Crow, Eleanor G., 242, 257 1,231
Croxton, F. E., 193 test for goodness of fit, 85Culin, H. P., 107 two-dimensional, 27, 150~Cutting, H. P., 107

Cumulative distribution function, 8 Dixon, W. J., 35, 64, 81, 106, 145, 194,
confidence band, 90, table, 248 243, 248, 252
normal, 20, tables, 229-30 Dodge, Harold F., 226
test by confidence band, 91 Double sampling, 212

Curve fitting, 147-94

E
D Effect, main, 133

Data, grouping of, 5 Eisenhart C., 81, 107, 145, 205, 244, 253

David, F. N., 241, 279 Equal-tails test, 16

- K
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e Error Frequency distribution
circular probable, 29 population, 6
probable, 13 relative, 5
standard, 14 sample, 5
types of, 16 Frequency table, 5

Estimate Friedman, M., 226
of population mean, 11of population proportion, 49 G
of population standard deviation, 12
unbiased, 12 Gardner, R. S., 252

Estimation, vi, see Confidence intervals Goode, Henry P., 225
by percentiles, 13 Goodness of fit, 85, 88

Experiment, steps in designing and of a distribution, 110
running, 113 of a regression curve, 165, 186, 188

Experimental design, 111 Grant, E. L., 205
Ezekiel, M., 194 Greenwood, 1. A., 277

Gross errors, 102, table, 252
F Grubbs, F. E., 273, 274, 275, 276

F distribution, table, 234 H
F test

equal-tails test, 74 Hald, A., 35, 146, 194
in analysis of variance, 118, 123, 130, Hartley, H. 0., 107

134, 140 Hastay, M. W., 107, 205, 253
in regression analysis, 177 Histogram, 5
OC curves, chart, 276 for discrete distribution, 10
one-sided test, 75 Hit probabilities, 25

Factorial design, 114 Hoel, P. G., 81
Factors in an experiment, 109 Homogeneity of variances, 78
Fay, Edward A., 226 Hotelling, H., 205
Ferris, C. D., 273, 274, 275, 276 Houseman, E. E., 251
Fiftieth percentile, 11 Hypothesis
Finite lot or population, 3f. .. 52 test of, 15
Finney, D. J., 106 null, 15
Fisher, R. A., 107, 145, 230, 231, 251
Fit, test for goodness of

a distribution, 110
a regression curve, 165, 186, 188 Independence, test for, in a contingency

Fitting a Poisson distribution, 34, 87 table, 97
a curve, 183, 184, 185, 186 Yates's correction, 99
a line, 152 Independent events, probability that both
a normal distribution, 88 happen, 4, 6, 7
a plane or hyperplane, 168 Independent samples, 3
a surface, 183 Independent variables, 4

Fitting data, 85 Inspection
Fojt, Albin A., 187 100%, 198, 209
Fraction, r2, of y variation by attributes, 209

accounted for by regression, 157 by variables, 209
Fraction, 212.... t, of y variation level, 213

accounted for by multiple lot, 211
regression, 175 Interaction, 109, 114, 133

Fractional replication, 117 tes' against, 136
Frankford Arsenal, 35, 64, 81, 145, 194 Interpolation, harmonic, 51, 231, 235
Freedom, degrees of, 19, 111 Intervals, see Confidence intervals,
Freeman, H. A., 65, 226 Prediction intervals, Tolerance
Frequency diagram or histogram, 4 intervals
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J May, D. C., 35
McCarthy, P. J., 106

Joint two-dimensional distribution, 150 Mean, 10
Juran. J. M., 205 confidence intervals, 43, 47

importance of, 37
K of binomial distribution, 31

of Poisson distribution, 34
K, coefficient for two-sided tolerance population, 10

intervals, 104 sample, 10
k, coefficient for one-sided tolerance standard error of, 14, 69

intervals, 105 test of significance, 38, 44, 221, charts,
k., k,, kt, constants for variables 273-74

acceptance plan, 212 Mean deviation, 13
Kempthorne, 0., 146 Mean square successive difference, 8 ,
Kendall, M. G., 35 63, table, 250
Kenney, J. F., 194 Means, comparison of, see Differences in

means, Trend in means, Analysis of
L vaiance

Measurement error, 37, 226
L, lower limit in variables inspection, Measures of central location, 10
,a 209 Measures of dispersion, 12, 29

\,, as abscissa for OC curve, 42, 46, 54, Median, 11
58, 72, 77, charts, 273-76 Merrington, M., 81, 235, 240

Xj, constant multipliers in orthogonal Method of least squares, 183
polynomials, 186 Midrange, 12

Latin-square design. 116 Milne, W. E., 194
Latscha, R., 107 Mixed models in analysis of variance,
Least squares, 151, 1W3 118
Level ot significance, 16 Mode, 12
Levels of factors in an experiment, 109 Molina, E. C., 35
Linear combination, variance of, 69 Mood, A., 146
Linear hypotheses, testing, 111, 118 Mosteller, F., 226
Linear regression, 147, 152 p, population niean, 10

multiple, 168 -p,, see Difference between
simple (two variables), 152 two means
formulas for simple regression, 164 Multiple correlation coefficient

Linearity rVl1,... k, 175
by transformations, 169, 183, 184 test of significance, 178
test for, 165, 169, 186, 189 Multiple-factor analysis of variance, 139

Lord, E., 249 Multiple linear regression, 168
Lot tolerance percent defective, LTPD, Multiple sampling, 212

218 Mutually exclusive events, 7
LTPD, lot tolerance percent defective,

218
N

M n., sample size for very large lot size,

M distribution, table, 240 215
M test for homogeneity of variance, 78 / ) binomial cofficient, 31
t, median, 11 X
m, number of replications, 110, 111, National Bureau of Standards, 35, 65,

120, 133 226, 229
Main effect, 133 National Defense Research Committee,
Mann, H. B., 146 65
Massey, F. J., Jr., 35, 64, 81, 106, 145, Naval Ordnance Laboratory, U.S., 107

194, 243, 248 Naval Ordnance Test Station, U.S., 226,
Maxfield, M. W., 278 242, 252, 257, 278
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Negative correlation, 157 Paired observations
Non-linear regression, 183 designing experiment with, 52, 55
Normal distribution, 19 normal test for difference in means, 53

as an assumption for a test. 38 sign test, 56
cumulative, 20, table, 229 t test, 57
density, 19 Parameter, vi, 12
examples of use of normal tables, 21 Partial correlation coefficients, 176
for hits on a target, 25 confidence intervals, 179
percentiles of, 230 tests of significance, 178
test for goodness of fit, 88 Partial regression coefficients, 169
uses, 24 confidence intervals, 179

Normal equations (in multiple tests of significavce, 179
regression), 170 PE, probable error, 13

check for computation of, 172 Peach, P., 208, 218, 226, 255
check for solution of, 171 Peak value, mode, 12

Normal inspection, 214 Pearson, E. S., 107, 208, 271, 272
Normal probability chart, 29, chart, 269 Percentage, see Proportion
Normal test Percentage frequency, 5

for differences in means, 53 Percentile, 1.1, 13
for mean, tu, 38 Planning of experiments, 17, 52, 55, 109,
OC curves, chart, 273 191

Normality Poisson distribution, 32, 34
checked by graphical methods, 87 Polynomial regression, 18
test for, 87, 88 orthogonal polynomials, .186
transformations to obtain, 88, 89 significance of ith.degree term, 186

Notation for control charts, 198 Pooled estimate of variance, st, 68
Null hypotheois, 15 Population, 3

coverage (of tolerance intervals), 18,
104

0mean, 10
OC, operating characteristic curve, 3 7, median, 11

charts, 273-76 proportion, 49
example, 41 standard deviation, 12

iin c:ceptance sampling, 217 variance, 12

Occurrences of defects, Poisson Precision, 67
distribution for, 34 Prediction, by regression, 147-94

One-factor analysis of variance, 120 interval, 163, 182
One-hundred percent inspection, 198, 209 Probability, 5
One-sided test, 16 chart, 269
One-variable classification in analysis of density function, 8, 19

variance, 120 distribution, 7
Operating characteristic curve, 17, graph paper, 87

charts, 273-76 laws, 6
example, 41 of Type I error, 16examp e, 41of T ype 11 error, 16
in acceptance sampling, 217 ofaTye error, 16

Operating ratio, Ro, 218 Probable error, 13
Ordinate to regression line, 162 circular, 29
Ordinate to regression plane (in multiple factor for converting to standard

regression), 181 deviation for normal distribution,
Orthogonal polynomials, 186, table, 251 13

significance of jth-degree term, 188 Probit analysis, 93Producer's risk, 16
Production line, 195, 226

p Proportion, p (binomial distribu-
tion), 30, 48

P%, population coverage of tolerance confidence intervals, 51, 52, table, 257,
intervals, 18, 104 charts, 270-72
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Proportion, p (Contd.) difference between two regression
test for sample size n < 150, 49, 221 coefficients, 161
test for sample size n > 5/po, 50, 221 partial, 169, 17!

Proportions, comparison of, 100 test of significance, 160
Regression cv.xve of y on x, 148

Regression line, 48, 152O. of x on y, 15:3

Quality control variation about, 156
acceptance sampling, 209--26 Regression ordinate, confidence
analysis of variance, 109-46 interval for, 162, 181
charts, 195-208 Regression plane, 148, 168
consistency of proportions in several variation about, 174

samples, 100 Rejection
construction of charts, 200, 203 number, Re, 212
notation, 198 of null hypothesis, 39
run test for randomness, 83 of outlying observation, L02
tolerance intervals, 18 region in a test, 39

Quenouille, M, H., 194 Relative frequency, 5
Reliability of regression measures, 158

in multiple regression, 177
R Replication, 110, 111, 120, 133

Ro, operating ratio, 218 Rider, P. R., 194
r, correlation coefficient, 157, 158, table, Risk

241, chart, 279 a, of Type I error, 16
r2, fraction of y variation accounted for B, of Type II error, 16

by regression, 175, table, 241 Romig, Harry G., 226
ryslm ... h, partial correlation Run test

coefficient, 176 critical values, table, 244
cficientk, 176l cfor comparing two samples, 101

r~*.. , multiple correlation for randomness, 83
coefficient, 175 I

Radial error, root-mean-square, 29
Radius of 50% circle, 29 Sf Random numbers, 3
Random sample, 3 s, sample standard deviation, 12
Randomization of background condi- comnputation, 12, 68

tions in an experiment, 115 computed from coded values, 68
Randomized block design, 116 s2 sample variance, 12
Randomness, run test for 83, table, 244 so, pooled estimate of variance, 68
Range, 13 sui, standard error of estimate (in

correction facto tn estimate standard regression), 156
deviations, iae, 248 SY112 ... 1, standard error of estimate

Rao, C. A., 146 in multiple regression, 174
Ratio of two standard deviations Sample, 3

chart, 278 mean, 10
confidence intervals, 77 median, 11
test of significance, 74, 75 midrange, 12

Rational subgroups, 196 mode, 12
Re, rejection number, 212 random, 3
Reduced inspection, 214 standard deviation, 12
Regression analysis, 147-94 variance, 12

linear with tvo variables, 152 Sample-size code letter, 214
multiple linear, 168 Sample size for fixed length of confidence
non-linear, 183 interval
polynomial, 185 for difference in means, 55

Regression coefficient, 152 fc;r mean, 43, 48
confidence intervals, 160 for pioportion, 51
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Sample size for fixed relative length of Standard deviation, 12
confidence interval for standard comparison of two, 74, chart, 276
deviation, 73, chart, 277 computation of, 12, 68

in analysis of variance, 111 computed from coded values, 68
Sample size for fixed risks of error confidence intervals, 73, table, 242,

for difference in means, 54, 57 chari, 277
for mean, 40, 46 importance of, 67
for proportion, 217, table, 255 of binomial distribution, 31
for ratio of two standard deviations, 77 of Poisson distribution, 34for standard deviation, 72 popul-ation, 12

Sampling, sequential, 220 sample, 12
Sampling, single, double, or multiple, 212 test of significance, 70, 72, 224,
Sampling distribution, 14 chart, 275

Standard error of a statistic, 14Sandomire, M. M., 277 Standard error of estimate
Scale, change of, 68 in multiple regression, 174
Scarborcugh, J. B., 194 in simple regression, 156
Scatter diagram, use in regression, 147 Standard error of mean, 14
Schefft, Henry, 65, 208 Standard for production, kept
Screening, 198, 209 by control charts, 195
Sensitivity testing, 91 Standardized variable, 20, 39

Star, *, to denote significance, 16
Sequential analysis, vi, 38, 220 Statistic, vi

nfor proportion defective, 221 Statistical h pothesis, test of, seeplanA for standard deviation, 224 Test o7 significancetruncation, 222 Statistical Research Group,
uses, 221 Columbia University, 107, 226

Sheppard's correction, 68 Statistical test, see Test ofShewhart, W. A., 208
A, used to denote a sum, 10 sgiiacstnard de viationsum , 1Steps in controlling quality with
(r, population standard deviation, 12 use of control charts, 197
i [, population variance, 12 Steps in designing and running anao, experimental error, 111 experiment, 113Sign test, 56, table, 243 Sum of independent variables,
Significance level, 16, 41 variance of, 69Significance test, see Test of Swed, F., 244

significance
Simon, Leslie E., 64 T
Simple (two-variable) linear t distribution, table, 231

regression, 152 t test
summary of formulas for, 164 compared with factorial design, 115

Simultaneous linear equations, 171 for difference in means, 51, 59
Single, double, or multiple for mean, 45, chart, 274

sampling, 212 in regression, 147-94
Size of sample, see Sample size Target, probability of a hit, 25
Small lot, sampling from a, 214 ri, test for mean, 44
Small samples Td, test for difference in means, 57,

charts, 270-79 table, 249
disadvantage of, 17, 40 Test of hypothesis, vii, 15
quick test for mean, 44 Test of significance, vii, 15

Smith, Babington, 35 equal-tails, 16
Snedecor, G. W., 146, 194, 241 example, 38
Sprague, A. D., 29, 269 for mean, see Mean, test of
Spread (dispersion), measures of, 12 significance; for standard
Stability in production, control deviation, see Standard deviation,

charts, 195 test of significance; etc.
Staircase tests, 93 one-sided, 16
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Thompson, C. M., 81, 233, 235, 240 Variance, see Standard deviation
Three-factor analysis of variance, 139 additivity, 69, 110
Throwing out readings, 102, table, 252 analysis of, 109-46
Tightened inspection, 214 estimated from sample, 12
Tippett, L. H. C., 208, 248 homogeniety of several variances, 78
Tolerance intervals, 18, 104, table, 253 of a function of independent
Transformation, standardizing, 20, 39 variables, 69Transformations to obtain linearity, population, 12

169, 183, 184 sample, 12
Transformations to obtain normality, 88 test of significance, 70
Treatments, 111 Variation
Trend, described by regression, 147-94 about the regression line, 156
Trend in means, 62, table, 250 about the regression plane, 174
"True" mean, standard deviation, etc., Villars, D. S., 146

see Population
Truncated sequential pln, 222 W
Tukey, J., W., 106
Two-factor analysis of variance, 127 w, range, 13
Two-variable classification in Wald, Abraham, 226

analysis of variance, 127 Wallis, W. A., 107, 194, 205, 226, 253
Two-variable linear regression, 152 Weaver, C. L., 273, 274, 275, 276

summary of formulas, 164 Wild readings, test for throwing
Types of error, 16, 41 out gross errors, 102, table, 252STypes of problems in analysis of Wilks, S. S., 35, 65

variance, 118
Types of problems in regression, 148 X

U x, mean, 10
JI(x), (xi), orthogonal poly-

U, upper limit in variables inspection, nomials, 186
209, 212

Unbiased estimate, 12 y

Unit of nspection, 211
Up-and-down method, 93 Yates, F., 145, 230, 231, 251Upper limit, U, 209, 212 Yates's continuity correction, 99

Youden, W. J., 146, 194

Vz
Variable, standardized, 20

Variables testing by control charts or z = (x - p)/q, standardizing
acceptance sampling, 195, 209 transformation, 20, 39
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IN ALL FIELDS OF INTEREST

AMERICA'S OLD MASTERS, James T. Flexner. Four men emerged unexpectedly
from provincial 18th century America to leadership in European art: Benjamin
West, J. S. Copley, C. R. Peale, Gilbert Stuart. Brilliant coverage of lives and con-
tributions. Revised, 1967 edition. 69 plates. 365pp. of text.

21806-6 Paperbound $3.00

FIRST FLOWERS OF OUR WILDERNESS: AMERICAN PAINTING, THE COLONIAL
PERIOD, James T. Flexner. Painters, and regional painting traditions from earliest
Colonial times up to the emergence of Copley, West and Peale Sr., Foster, Gustavus
Hes--ius, Feke, John Smibert and many anonymous painters in the primitive manner.
Engagi,: , presentation, with 162 illustrations. xxii + 368pp.22180-6 Parerbound $3.50

THE LIGHT OF DISTANT SKIES: AMERICAN PAINTING,.1760-1835, James T. Flex-
ner. The great generation of early Americau painters goes to Europe to learn and
to teach: West, Copley, Gilbert Stuart and others. Allston, Trumbull, Morse; also
contemporary American painters-primitives, derivatives, academics-who remained
in America. 102 illustrations. xiii + 306pp. 22179-2 Paperbound $3.00tI
A HISTORY OF THE RISE AND PROGRESS OF THE ARTS OF DESIGN IN THE UNITED
STATES, William Dunlap. Much the richest mine of information on early American
painters, sculptors, architects, engravers, miniaturists, etc. The only source of in-
formation for scores of artists, the major primary source for many others. Unabridged
reprint of rare original 1834 edition, with new introduction by James T. Flexner,
and 394 new illustrations. Edited by Rita Weiss. 68 x 95/8.

21695.0, 21696-9, 21697-7 Three volumes, Paperbound $13.50 -

EPOCHS OF CHINESE AND JAPANESE ART, Ernest F. Fenollosa. From primitive
Chinese art to the 20th century, thorough history, explanation of every important art
period and form, including Japanese woodcuts; main stress on China and Japan, but
Tibet, Korea also included. Still unexcelled for its detailed, rich coverage of cul-

tural background, aesthetic elements, diffusion studies, particularly of the historical
period. 2nd, 1913 edition. 242 illustrations. lii + 439pp. of text.

20364-6, 20365-4 Two volumes, Paperbou"d $6.00

THE GENTLE ART OF MAKING ENEMIES, James A. M. Whistler. Greatest wit of his
day deflates Oscar Wilde, Ruskin, Swinburne; strikes back at inane critics, exhibi-
tions, art journalism; aesthetics of impressionist revolution in most striking form.
Highly readable classic by great painter. Reproduction of edition designed by
Whistler. Introduction by Alfred Werner. xxxvi + 334pp.

21875-9 Paperbound $2.50
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PLANETS, STARS AND GALAXIES: DESCRIPTIVE ASTRONOMY FOR BEGINNERS, A. E.

Fanning. Comprehensive introductory survey of astronomy: the sun, solar system,
stars, galaxies, universe, cosmology; up-to-date, including quasars, ru!io stars, etc.
Preface by Prof. Donald Menzel. 24pp. of photographs. 189pp. 51/4 x 8 .

21680-2 Paperbound $1.50

TEACH YOURSELF CALCULUS, P. Abbott. With a good background in algebra and
trig, you can teach yourself calculus with this book. Simple, straightforward intro-
duction to functions of all kinds, integration, differentiation, series, etc. "Students
whe are beginning to study calculus method will derive great help from this book."
Faraday House Journal. 308pp. 20683-1 Clothbound $2.00

TEACH YOURSELF TRIGONOMETRY, P. Abbott. Geometrical foundations, indices and
logarithms, ratios, angles, circular measure, etc. are presented in this sound, easy-to-
use text. Excellent for the beginner or as a brush up, this text carries the student
through the solution of triangles. 204pp. 20682-3 Clothbound $2.00

TEACH YOURSELF ANATOMY, David LeVay. Accurate, inclusive, profusely illus-
trated account of structure, skeleton, abdomen, muscles, nervous system, glands,
brain, reproductive organs, evolution. "Quite the best and most readable account,'
Medical Officer. 12 color plates. 164 figures. 311pp. 43/4 x 7.

21651-9 Clothbound $2.50

TEACH YOURSELF PHYSIOLOGY, David LeVay. Anatomical, biochemical bases; di-
gestive, nervous, endocrine systems; metabolism; respiration; muscle; excretion;
temperature control; reprodtction. "Good elementary exposition," The Lancet. 6
color plates. 44 illustrations. 208pp. 4 x 7. 21658-6 Clothbound $2.50

THE FRIENDLY STARS, Martha Evans Martin. Classic has taught naked-eye observa-
tion of stars, planets to hundreds of thousands, still not surpassed for charm, lucidity,
adequacy. Completely updated by Professor Donald H. Menzel, Harvard Observa.
tory. 25 illustrations. 16 x 30 chart. x + 147pp. 21099-5 Paperbound P..25

MUSIC OF THE SPHERES: THE MATERIAL UNIVERSE FROM ATOM TO QUASAR,
SIMPLY EXPLAINED, Guy Murchie. Extremely broad, brilliantly written popular
account begins with the solar system and reaches to dividing line between matter and
nonmatter; latest understandings presented with exceptional clarity. Volume One:
Planets, stars, galaxies, cosmology, geology, celestial mechanics, latest astronomical
discoveries; Volume Two: Matter, atoms, waves, radiation, relativity, chemical
action, heat, nuclear energy, quantum theory, music, light, color, probability, anti-
matter, antigravity, and similar topics. 319 figures. 1967 (second) edition. Total
of xx + 644pp. 21809-0, 21810-4 Two volumes, Paperbound $5.00

OLD-TIME SCHOOLS AND SCHOOL BOOKS, Clifton Johnson. Illustrations and rhymes
from early primers, abundant quotations from early textbooks, mac y anecdotes of
school life enliven this study of elementary schools from Puritans to middle 19th
century. Introduction by Carl Withers. 234 illustrations. xxxiii + 381pp.

21031-6 Paperbound $2.50
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THE PRINCIPLES OF PSYCHOLOGY, William James. The famous long course, com-
plete and unabridged. Stream of thought, time perception, memory, experimental
methods-these are only some of the concerns of a work that was years ahead of its
time and still valid, interesting, useful. 94 figures. Total of xviii + 1391pp.

20381-6, 20382-4 Two volumes, Paperbound $8.00

THE STRANGE STORY OF THE QUANTUM, Banesh Hoffmann. Non-mathematical
but thorough explanation of work of Planck, Einstein, Bohr, Pauli, de Broglie,
Schr6dinger, Heisenberg, Dirac, Feynman, etc. No technical background needed.
"Of books attempting such an account, this is the best," Henry Margenau, Yale. 40-
page "Postscript 1959." xii +2 8 5pp. 20518-5 Paperbound $2.00

THE RISE OF THE NEW PHYSICS, A. d'Abro. Most thorough explanation in print
of central core of mathematical physics, both classical and modern; from Newton to
Dirac and Heisenberg. Both history and exposition; philosophy of science, causality,
explanations of higher mathematics, analytical mechanics, electromagnetism, thermo-
dynamics, phase rule, special and general relativity, matrices. No higher mathematics
needed to follow exposition, though treatment is elementary to intermediate in level.
Recommended to serious student who wishes verbal understanding. 97 illustrations.
xvii + 982pp. 20003-5, 20004-3 Two volumes, Paperbound $6.00

GREAT IDEAS OF OPERATIONS RESEARCH, Jagjit Singh. Easily followed non-techni-
cal explanation of mathematical tools, aims, results: statistics, linear programming,
game theory, queueing theory, Monte Carlo simulation, etc. Uses only elementary
mathematics. Many case studies, several analyzed in detail. Clarity, breadth make
this excellent for specialist in another field who wishes backgrounu. 41 figures.
x + 228pp. 21886-4 Paperbound $2.50

GREAT IDEAS OF MODERN MATHEMATICS: THEIR NATURE AND L SF, Jagjit Singh.
Internationally famous expositor, winner of Unesco's Kalinga Award for science
popularization explains verbally such topics as differential equations, matrices,
groups, sets, transformations, mathematical logic and other important modern
mathematics, as well as use in physics, astrophysics, and similar fields. Superb
exposition for layman, scientist in other areas. viii + 312pp.

20587-8 Paperbound $2.50

GREAT IDEAS IN INFORMATION THEORY, LANGUAGE AND CYBERNETICS, Jagjit
Singh. The analog and digital computers, how they work, how they are like and
unlike the human brain, the men who developed them, their future applications, com-
puter terminology. An essential book for today, even for readers with little math.
Some mathematical demonstrations included for more advanced readers. 118 figures.
Tables. ix + 338pp. 21694-2 PaperDound $2.50

CHANCE, LUCK AND STATISTICS, Horace C. Levinson. Non-mathematical presenta-
tion of fundamentals of probability theory and science of statistics and their applica-
tions. Games of chance, betting odds, misuse of statistics, normal am, skew distribu.
tions, birth rates, stock speculation, insurance. Enlarged edition. Formerly "The
Science of Chance." xiii + 357pp. 21007-3 Paperbound $2.50
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MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khinchin.

Introduction to modem statistical mechanics: phase space, ergodic problems, theory
of probability, central limit theorem, ideal monatomic gas, foundation of thermo-
dynamics, dispersion and distribution of sum functions. Provides mathematically
rigorous treatment and excellent analytical tools. Translated by George Gamow.
viii + 179pp. 60147-1 Paperbound $2.50

INTRODUCTION TO PHYSICAL STATISTICS, Robert B. Lindsay. Elementary prob-
ability theory, laws of thermodynamics, classical Maxwell-Boltzmann statistics,
classical statistical mechanics, quantum mechanics, other areas of physics that can
be studied statistically. Full coverage of methods; basic background theory. ix
+ 306pp. 61882-X Paperbound $2.75

DIALOGUES CONCERNING Two NEW SCIENCES, Galileo Galilei. Written near the
end of Galileo's life and encompassing 30 years of experiment and thought, these
dialogues deal with geometric demonstrations of fracture of solid bodies, :ohesion,
leverage, speed of light and sound, pendulums, falling bodies, accelerated motion,
etc. Translated by Henry Crew and Alfonso de Salvio. Introduction by Antonio
Favaro. xxiii + 300pp. 60099-8 Paperbound $2.25

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT,
Norman R. Campbell. Fundamental concepts of science examined on middle level:
acceptance of propositions and axioms, presuppositions of scientific thought, scien-
tific law, multiplication of probabilities, nature of experiment, application of math-
ematics, measurement, numerical laws and theories, error, etc. Stress on physics,
but holds for other sciences. "Unreservedly recommended," Nature (England).
Formerly Physics: The Elements. ix + 565pp. 60372-5 Paperbound $4.00

THE PHASE RULE AND ITS APPLICATIONS, Alexander Findlay, A. N. Campbell
and N. 0. Smith. Findlay's well-known classic, updated (1951). Full standard
text and thorough reference, particularly useful for graduate students. Covers
chemical phenomena of one, two, three, four and multiple component systems.
"Should rank as the standard work in English on the subject," Nature. 236 figures.
xii + 494pp. 60091-2 Paperbound $3.50

THERMODYNAMICS, Enrico Fermi. A classic of modern science. Clear, organized
treatment of systems, first and second laws, entropy, thermodynamic potentials,
gaseous reactions, dilute solutions, entropy constant. No math beyond calculus is
needed, but readers are assumed to be familiar with fundamentals of thermometry,
calorimetry. 22 illustrations. 25 problems. x + 160pp.

60361-X Paperbound $2.00

TREATISE ON THERMODYNAMICS, Max Planck. Classic, still recognized as one of
the best introductions to thermodynamics. Based on Planck's original papers, it
presents a concise and logical view of the entire field, building physical and
chemical laws from basic empirical facts.. Planck considers fundamental definitions,
first and second principles of thermodynamics, and applications to special states
of equilibrium. Numerous worked examples. Translated by Alexander Ogg. 5 U
figures. xiv + 297pp. 60219-2 Paperbound $2.50
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EINSTEIN'S THEORY OF RELATIVITY, Max Born. Relativity theory analyzed, ex-
plained for intelligent layman or student with some physical, mathematical back.
ground. Includes Lorentz, Minkowski, and others. Excellent verbal account for
teachers. Generally considered the finest non-technical account. vii + 376pp.

60769-0 Paperbound $2.75

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. Nobel
Laureate discusses quantum theory, uncertainty principle, wave mechanics, work
of Dirac, Schroedinger, Compton, Wilson, Einstein, etc. Middle, non-mathe-
matical level for physicist, chemist not specializing in quantum; mathematical
appendix for speciulists. Translated by C. Eckart and F. Hoyt. 19 figures. viii
+ 184pp. 60113-7 Paperbound $2.00

PRINCIPLES OF QUANTUM MECHANICS, William V. Houston. Fo student with
working knowledge of elementary mathematical physics; uses Schroedinger's wave
mechanics. Evidence for quantum theory, postulates of quantum mechanics, appli-
cations in spectroscopy, collision problems, electrons, similar topics. 21 figures.
288pp. 60524-8 Paperbound $3.00

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of the best
introductions to atomic spectra and their relationship to structure; especially suited
to specialists in other fields who require a comprehensive basic knowledge. Treat-
ment is physical rather than mathematical. 2nd edition. Translated by J. W. T.
Spinks. 80 illustrations. xiv + 257pp. 60115-3 Paperbound $2.00

I
ATOMIC PHYSICS: AN ATOMIC DESCRIPTION OF PHYSICAL PHENOMENA, Gaylord
P. Harnwell and William E. Stephens. One of the best introductions to modern
quantum ideas. Emphasis on the extension of classical physics into the realms of
atomic phenomena and the evolution of quantum concepts. 156 problems. 173
figures and tables. xi + 401pp. 61584-7 Paperbound $3.00

ATOMS, MOLECULES AND QUANTA, Arthur E. Ruark and Harold C. Urey. 1964
edition of work that has been a favorite of students and teachers for 30 years.
Origins and major experimental data of quantum theory, development of concepts
of atomic and molecular structure prior to new mechanics, laws and basic ideas
of quantum mechanics, wave mechanics, matrix mechanics, general theory of
quantum dynamics. Very thorough, lucid presentation for advanced students. 230
figures. Total of xxiii + 810pp.

61106.X, 0 107-8 Two volumes, Paperbound $6.00

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Ein-
stein. Five papers (1905-1908) investigating the dynamics of Brownian motion
and evolving an elementary theory of interest to mathematicians, chemists and
physical scientists. Notes by R. Fuirth, the editor, discuss the history of study of

rBrownian movement, elucidate the text and analyze the significance of the papers.
Translated by A. D. Cowper. 3 figures. iv + 122pp.

60304-0 Paperbound $1.50
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MICROSCOPY FOR CHEMISTS, Harold F. Schaeffer. Thorough text; operation of
microscope, optics, photomicrographs, hot stage, polarized light, chemical pro.
cedures for organic and inorganic reactions. 32 specific experiments cover specific
analyses: industrial, metals, other important subjects. 136 figures. 264pp.

61682-7 Paperbound $2.50

OPTICKS, Sir Isaac Newton. A survey of 18th-century knowledge on all aspects
of light as well as a description of Newton's experiments with spectroscopy, colors,
lenses, reflection, refraction, theory of waves, etc. in language the layman can
follow. Foreword by Albert Einstein. Introduction by Sir Edmund Whittaker.
Preface by I. Bernard Cohen. cxxvi + 406pp. 60205-2 Paperbound $4.00

LIGHT: PRINCIPLES AND EXPERIMENT0, George S. Monk. Thorough coverage, for
student with background in physics and math, of physical and geometric optics.
Also includes 23 experiments on optical systems, instruments, etc. "Probably the
best intermediate text on optiLs in the Enghish language," Physics Formm. 275
figures. xi + 489pp. 60341-5 Paperbound $3.50

PHYSICAL OPTICS, Robert W. Wood. A classic in the field, this is a valuablesource for students of physical optics and excellent background material for a

study of electromagnetic theory. Partial contents: nature and rectilinear propaga-
tion of light, reflection from plan. and curved surfaces, refraction, absorption and
dispersion, origin of spectra, interference, diffraction, polarization, Raman effect,
optical properties of metals, resonance radiation and fluorescence of atoms, magneto.
optics, electro-optics, thermal radiation. 462 diagrams, 17 plates. xvi + 846pp.

61808.0 Paperbound $4.50

MIRRORS, PRISMS AND LENSES: A TEXTBOOK OF GEOMErRICAL OPTICS, James
P. C. Southall. Introductory-level account of modern optical instrument theory,
covering unusually wide range: lights and shadows, reflection of light and plane
mirrors, refraction, astigmatic lenses, compound systems, aperture and field of
optical system, the eye, dispersion and achromatism, rays of finite slope, the micro-
scope, much more. Strong emphasis on earlier, elementary portions of field, utiliz-
ing simplest mathematics wherever possible. Problems. 329 figures. xxiv +
806pp. 61234-1 Paperbound $5.00

THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, Jacques Hada-
mard. Important French mathematician examines psychological origin of ideas,
role of the unconscious, importance of visualization, etc. Based on own experi-
ences and reports by Dalton, Pascal, Descartes, Einstein, Poincar6, Helmholtz, etc.
xiii + 145pp. 20107-4 Paperbound $1.50

INTRODUCTION TO CHEMICAL PHYSICS, John C. Siatei. A work intended to bridge
the gap between chemistry and physics. Text divided into three parts: Therm'o-
dynamics, Statistical Mechanics, and Kinetic Theory; Gases, Liqnids and Solids;
and Atoms, Molecules and the Structure of Matter, which form the basis of the
approach. Level is advanced undergraduate to graduate, but theoretical physics
held to minimum. 40 tables, 118 figures. xiv + 522pp.

62562-1 Paperbound $4.00
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MATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, Geoffrey Mott-Smith.
189 puzzles from easy to difficult-involving arithmetic, logic, algebra, properties -'
of digits, probability, etc.-for enjoyment and mental stimulus. Explanation of
mathematical principles behind the puzzles. 135 illustrations. viii + 248pp.

20198-8 Paperbound $1.75

PAPER FOLDING FOR BEGINNERS, William D. Murray and Francis J. Rigney. Easiest
book on the market, clearest instructions on making interesting, beautiful origami.
Sail boats, cups, roosters, frogs that move legs, bonbon boxes, standing birds, etc.
40 projects; more than 275 diagrams and photographs. 94pp.

20713-7 Paperbound $1.00

TRICKS AND GAMES ON THE POOL TABLE, Fred Herrmann. 79 tricks and games--
some solitaires, some for two or more players, some competitive games-to entertain
you between formal games. Mystifying shots and throws, unusual caroms, tricks
involving such props as cork, coins, a hat, etc. Formerly Fun on the Pool Table,
77 figures. 95pp. 21814-7 Paperbound $1.00

HAND SHADOWS TO BE THROWN UPON THE WALL: A SERIES OF NOVEL AND
AMUSING FIGURES FORMED BY THE HAND, Henry Bursill. Delightful picturebook
from great-grandfather's day shows how to make 18 different hand shadows: a bird
that flies, duck that quacks, dog that wags his tail, camel, goose, deer, boy, turtle,
etc. Only book of its sort. vi + 33pp. 611 x 91 . 21779-5 Paperbound $1.00

WHITTLING AND WOODCARVING, E. J. Tangerman. 18th printing of best book on
market. "If you can cut a potato you can carve" toys and puzzles, chains, chessmen,
caricatures, masks, frames, woodcut blccks, surface patterns, much more. Information
on tools, woods, techniques. Also goes into serious wood sculpture from Middle
Ages to present, East and West. 464 photos, figures. x + 293pp.

20965-2 Paperbound $2.00

HISTORY OF PHILOSOPHY, Juli~in Marias. Possibly the clearest, most easily followed,
best planned, most useful one-volume history of philosophy on the market; neither
skimpy nor overfull. Full details on system of every major philosopher and dozens
of less important thinkers from pre-Socratics up to Existentialism and later. Strong
on many European figures usually omitted. Has gone through dozens of editions in

Europe. 1966 edition, translated by Stanley Appelbaum and Clarence Strowbridge.
xviii + 505pp. 21739-6 Paperbound $3.00

YOGA: A SCIENTIFIC EVALUATION, Kovoor T. Behanan. Scientific but non-technical
study of physiological results of yoga exercises; done under auspices of Yale U.
Relations to Indian thcught, to psychoanalysis, etc. 16 photos. xxiii + 270pp.

20505-3 Paperbound $2.50

Prices subject to change without notice.
Available at your boc.' dealer or write for free catalogue to Dept. GI, Dover
Publications, Inc., 180 Varick St., N. Y., N. Y. 10014. Dover publishes more than
150 books each year on science, elementary and advanced mathematics, biology,
music, art, literary history, social sciences and other areas.
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THE ADVANC19D GEOMETRY OF PLANE CURVES AND THEIR APPLIcA-

TIONS, C. Zwikker. (61078-0) $2.50
TRIGONOMETRICAL SERIES, Antoni Zygmund. (60290-7) $2.50
PRomBILITY THEORY, A. R. Arthurs. (61724-6) $1.25
SOLUTIONS OF LAPLACE'S EQUATIONS, D. R. Bland. (61452-2) $1.25
VInRATnGc STRINGS, D. R. Bland. (61451-4) $1.25
VIBRATING SYSTEMS, R. F. Chisnell. (61453-0) $1.25
LINEAR EQUATIONS, P. M. Cohn. (61455-7) $1.25
SOLID GEOMETRY, P. M. Cohn. (61454-9) $1.25
PINCwI OF DYNAMICS, M. B. Glauert. (61456-5) $1,25
SEQUENCES AND SERIES, J. A. Green. (61457-3) $1.25
SETS AND GROUPS, J. A. Green. (61458-1) $1.25
DIFFERENTIAL CALCULUS, P. J. Hilton. (61459-X) $1.25
PARTIAL DERIVATIVES, P. J. Hilton. (61460-3) $1.25
ELECTRICAL AND MECHANICAL OSCILLATIONS, D. S. Jones. (61461-1)

$1.25
ComPLEx NUMBERS, W. Ledermann. (61462-X) $1.25
INTEGRAL CALCULUS, W. Ledetmann. (61463-8) $1.25
MU'rn, INTEGRALS, W. Ledermann. (61723-8) $1.25
NUMERICAL APPROXIMATION, B. R. Morton. (61464-6) $1.25
ELEMENTARY DIFFERENTIAL EQUATIONS AND OPERATORS, G. E. H.

Reuter. (61465-4) $1.25
FOURIER AND LAPLACE TRANSFORMS, Peter D. Robinson. (62083-2)

$1.25
FOURIER SERIES, I. N. Sneddon. (61466-2) $1.25
DIFFERENTIAL GEOMETRY, K. L. Wardle. (61467-0) $1.25

Paperbound unless otherwise indicated. Prices subject to change
without notice. Available at your book dealer or write for free

bcatalogues to Dept. TF 2, Dover Publications, Inc., 180 Varick
Street, N. Y., N.Y. 10014. Please. indicate field of interest. Each year
Dover publishes more than 150 classical records and books on art,
science, engineering, humor, literature, philosophy, languages, chess,
puzzles, music and other areas. Mansiactured in the U.S.A.



7Statistics Manual
7' Edwfin L CrsW Frace A. Davs Margart.Mxi

This manual *as prepare; under he, auspices of the U.S. Naval Ordinance TestSation,
China Lake, California, to provide a comprehensive collection of classical and. modern
methods of making statistical inferencos. The many examples taken from ordnance
development will prove valuable to workers in all fields which use statistics, Including
the social sciences, a well a the physical sciences and engineering. Formulas,
explanations, and methods of application are given, with emphasis throughout on use.The reader is assumed to have a basic knowledge of statistics.

Information Is given on fiducial limits, power of a test, determination of sample sz,
-" sip tests, relations of means and variances, Chi-Square runs, transformations for

obtaining normality, sensitivity, analysis of variance tests for homogeneity of variance,
linear, multiple, and non-linear regression, cgrrelation, reliability, confidence intervals
for predicted values, quality control, measures of central tendency, measures of disper.
sion, various distributions, and many other areas and topics.

An appendix of 32 valuable tables and charts is included, several of which are difficult
to find elsewhere. They indicate critical values for the M Distribution for testing the
null hypothesis that k populations have the same variance; critical values for runs;
critical values for tests using the range; probabilities of shots failing in certain 2-
dimensional places, confidence belts for Proportions, OC curves, etc.

"Well written. .. excellent reference work," Operations Research.

Unabridged, corrected reprinting of NAVORD Report S369 NOTS 948, "Statistics Manual.'
'Introduction. Appendix of 21 tables, 11 charts, Index. Bibliography 95 illustrations,
charts, tables in text. xvil + 288pp. 5% x . 60599X Paperbounid,

A DOVER EDITION 0DINE FOR YEARS OF SI1

We have made every effort to make this the best book possible. Our paper is opaque, with
minimal show-through; It will not discolor or become brittle with age. Pages are sewn in
signatures, In the method traditionally used for the best books, and will not drop out as often
happens with paperbhs held together with glue. Books open flat for mry reference. The
birlng will not crack or split. This is a permanent book.
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