UNCLASSIFIED

AD NUMBER

AD136830

CLASSIFICATION CHANGES

TO: unclassified

FROM: restricted

LIMITATION CHANGES

TO:
Approved for public release, distribution unlimited

FROM:
Distribution authorized to DoD only; Protection of Foreign Information; 1941. Other requests shall be referred to: Director, Exploiting Centere, United Kingdom.

AUTHORITY

DoD Freedom of Info & Scty Review Ofc ltr, Ref: 98-M-0165/A1, 2 Jan 2000; Same

THIS PAGE IS UNCLASSIFIED
This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

☐ If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.
This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSED THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.
NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
HALSTEAD EXPLOITING CENTRE

REPORT ON WORK IN CONNECTION WITH IMPULSE PROPULSION.

TRANSLATOR: Sgt. D. Redlich, W.A.A.F.
Westfälisch Anhaltische Sprengstoff-Aktion-Gesellschaft

CHEF: FABRIKEN

Förka Reinsdorf

Report on work in connection with Impulse propulsion

Impulse Propulsion

On 3rd October 1940 the Research establishment of the Deutsche Waffen and Munitionsfabriken AG, Luebeck-Schlup submitted a report made by Dr. Langweiler, referring to a proposal to increase the ballistic effect by using directional combustion of the charge (Impulse propulsion). Following this, experimental manufacture of propellant charges was started by WASAG.

In order to make it possible to start on the first practical experiment proving the theory in Dr. Langweiler report, our aim was to try and make the charges without taking into account whether they would be suitable for manufacture and to use at first nitrocellulose powder. The material of 0-600 m/sec burning velocity at a pressure of 3000 atm required to make the Langweiler theory possible, is not available in the present position of science. In order to achieve an effect to take the place of such a high burning velocity, it was planned to construct charges of nitrocellulose with a surface enlarged accordingly.

Propellant grains with a very large number of channels were chosen and it was agreed that the grains should have a diameter of 20 mm and 331 perforations of 0.2 mm. This would make the wall between the channels about 0.75 mm thick. Besides the fact it is almost impossible to make a matrix with 331 channels on a circular surface with a diameter of 20 mm, the arrangement of the channels in the matrix is very difficult.
body could not be achieved. This point will be mentioned again later on. Therefore unfortunately the available installations, apparatus etc. proved unsuitable for manufacturing such propellants.

From several completed experiments for the manufacture of the propellant of question, so far only a purely hand-working method proved suitable. On principal the experiments were made only with completely dry tubular propellant with a diameter of about 0.95 mm and a channel diameter of 0.1 to 0.2 mm which were stuck together and made to propellant grain with the required dimensions.

The use of freshly pressed propellant tubes seems desirable, but proved not possible after the experiments were made. On compression of such propellant tubes, often perforations were squashed together, whilst hollows were formed when small pressure was used. It was also impossible to stick such tubes together and make one whole out of it, because the subsequent shrinking of such lar or bodies causes a tension, which makes the joins tear apart.

Making of multi-tubular grains

The dried tubular propellant sticks of 0.9 mm diameter are put in layers into the half of the cylindrically drilled shape which has a diameter of 22 mm after their surface has been covered with solvent so that the gaps are equalised using sufficient pressure (Illustration 1).

To check the regular geometrical make up of the grain tubes of different colours are used. Both halves of the shape filled with tubular sticks are then put together (Illustration 2) and united under pressure (Illustration 3) and one freed with the help of a vacuum at medium temperature from the adhering solvents within 8-10 days.

In order to control the uniform shrinking which occurs during the drying process and in order to guarantee optimally the function during a later storage the individual grains are stored in the shape and stored under the same conditions for a couple of weeks.
Further stretching appropriately dimensioned shapes are used. From the sticks produced in this way (Illustration 4) grains of 49.3 mm are cut out and lightly rubbed down to the required external diameter. Illustration 5 shows some of these grains.

The section of such a body (Illustration 6) shows the arrangement of the many channels. The longitudinal section of a propellant grain can be seen in illustration 7.

The grains made in this way were fired by the Research establishment of the DWM at Luebeck Schlutup, as there was at Reinsdorf neither a bomb nor a suitable barrel available at the time. A statement on the results achieved can be seen from a report by the DWM of the 1st March 1941 page 16.

According to this it was found possible to keep the gas pressure of 0.4 - 0.5 mm approximately constant for at least a short time by using the multi tubular grain.

As is mentioned in the same report, the DWM made multi tubular grains also by hand methods using Reinsdorf "Polmasse" (Solventless Propellant) in tube and scroll form. The experiments were successful at least as regards burning even though the method of manufacturing the bodies might prove difficult.

The accuracy depends on the geometrical construction of the propellant which is the condition for their usefulness. Therefore it was the aim to eliminate the manual work and to use modern factory tools and methods.

The maximum number of perforations in a grain pressed with the usual factory methods can amount to a circle with a diameter of approximately 2 cm with about 36 channels of 0.1 and 0.2 mm. Larger grains could either on the one hand not be fired within a short time sufficiently free of the solvent or could not have the stresses eliminated. The making of the large multi tubular grains also falsified the idea of the economical use.
as the nucleus body ("Kernkorper"). These tubes are fixed after dapping with solvent onto the already dry nucleus body. Illustr. 8 and 9 shows the finished nucleus body matrix in which the arrangement of the 36 drifts can be seen. In order to distribute the channels equally over the whole body, the construction of the nucleus and ring matrices is completed in accordance with the following 2 principles:

(a) The distribution of the channels is made on concentric part curves, the radius of which is always a multiple of 1.8 mm. The number of channels arranged on the part curves can be calculated from the part circle circumference and the required thickness of the wall between 2 channels of 0.75 mm (Illustration 10).

(b) Honey comb pattern.

With the exception of those situated on the circumference, the centres of the channels are always at a distance of 0.95 mm from each other (ill. 11).

Ballistic Examination

To test such projectiles made experimentally, it would be desirable if a firing apparatus could be made available at Reinsdorf. It is planned that such propellants should be fired in a bomb.

Therefore suitable pressure bombs for pressures up to a maximum of 10,000 atm were ordered at Messrs. Peters, Berlin. With regard to the construction of these special bombs several conferences were held in conjunction with the DfM in Berlin at J. Peters. Originally it was suggested by the DfM that the automatic sealing device by Peters can not only be used for the bomb tightening ("Sprengschluessel") but also for the sealing of the "Stieg-Lokal" ("Stieglokal lorgen"). But since these experiments have...
cylinder. The automatic sealing of the bomb fusing head ("Barbouveschluesselkipfes") is to be constructed according to plans suggested by the D.M which makes a separate fuse electrode unnecessary as is also the case with the normal method of construction by Peters in which the Buna disc used acts as protection against hot explosive gases on account of the pressure piston adapted to a vacuum.

As the shooting range specially constructed for that purpose at Rausdorf is expected to be completed shortly and the delivery of the bomb by Messrs. Peters is expected in the middle of May, the first bomb trials will take place in the near future.

Further questions.

Assuming the experiments with various multi-tubular grains are successful the following questions would arise:

1. The technical manufacture of multi-tubular grains out of a nitrocellulose substance with or without explosive oil.

2. Ballistic examination of these multi-tubular grains in the pressure bomb.

From the results obtained from these experiments the way to be taken for the further development is to be decided.

2 photographs (Illustration 1 - 9)
2 keys (Illustration 10 - 11)
Zusammenhänge ausgegliedert werden (Abb. 1).
Abbildung 2.
Abbildung 3.
Abbildung 4.
Der Querschnitt eines solchen Körpers (Abb. 6) zeigt die Anordnung der Vielzylinder.
Der Längsschnitt eines Pulverkörpers ist auf Abb. 7 ersichtlich.
Abbildung 8.
Abbildung 9.
This refers to our letter to you dated October 7, 1999, regarding your appeal to the Information Security Oversight Office for 14 documents previously requested under Mandatory Declassification Review procedures. One document (AD346727) was provided to you by our letter dated November 19, 1999.

The review of 11 British documents you requested is complete and there are no objections to release. Titles of these documents are contained on the enclosed sheet and a copy of each is enclosed. We will advise you as soon as the reviews of the remaining two documents are completed.

Sincerely,

H. J. McIntyre
Director

Signed
AD-036 799
AD-044 992
AD-048 643
AD-057 151
AD-057 524
AD-057 525
AD-057 526
AD-057 527
AD-122 495
AD-136 830
AD-139 544

Per DoD letter, please mark these 11 documents "available to the public."

I verified the docs could be marked available for public release via telecon with Pat Skinner, DoD Security Review, 695-9556/6428, on 21 Jan 2000.

Kelly Cikens
DTRC-PS

Received 2-18-2000