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AW APPLICATION OF NONLINEAR THEORY TO THE YAWING 
MOTION OF MORTAR SHELL 

ABSTRACT 

The results of C. H. Murphy's analysis of the nonlinear yaw 

equation are applied to the specific case of the 51-mm M56' shell. 

By means of this example a general method of analysing and predicting 

the motion of fin stabilized projectiles is developed; the method 

permits spin variation to be included in the analysis.  It is believed 

that this study can be a guide to new experimental work on the phenomenon 

of short ranges of mortar fire and that it can be an aid in the interpre- 

tation of experimental data. 
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A       axial moment of inertia 

B       transverse moment of inertia 

d       diameter 

g       acceleration of gravity 
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J g sin 5 d 
"2  
u 

Kp. drag coefficient 

KL, moment coefficient due to cross angular velocity 

K_ lift force coefficient due to yaw 

IC. moment coefficient due to yaw 

K_ Magnus moment coefficient 

K. i-1,2 amplitude of the i-th frequency 

k1 axial radius of gyration 

kp transverse radius of gyration 

SL cosine of the angle of yaw 

m mass 

M   * V2    JM 
S surface generated by separatrices 

T   - JL - kl2  JT 

u magnitude of velocity 

a logarithmic rate of growth of yaw (pure mode motion) 

fa. logarithmic rate of growth of nutation 

au logarithmic rate of growth of precession 

k 



a. .      i=l*2j j=0,2,lf coefficients in equations (6) and (7) 

5       angle of yaw, also sine of angle of yaw 

2 
9       angle between separatrix and K.  - axis at the saddle point 

X complex yaw 

v       spin in radians per caliber 

v,       lower limit of spin for instability 

A 
v       s v 

p       density 

0.i=l,2  phase angle of the i-th frequency in the solution of the 

linearized equation. 

ijr, i=l,2 parametric functions for frequency correction 

( )      initial conditions, 'o 
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I.  INTRODUCTION 

The work discussed in this report was undertaken in an effort 

to clarify the problem of short ranges of mortar fire. It turns out 

that about two out of one hundred rounds reach considerably less than 

the expected range. This short round behavior has been of general 

concern for some time since it endangers friendly troops. 

The immediate cause for short rounds is the development of large 

angles of yaw. This occasional growth of yaw cannot be explained by 

linear theory. It has, therefore, been suggested that these fin- 

stabilized projectiles are spinning, even when the fins are not canted, 

(Ref, l) and subsequent measurements showed that the resulting Magnus torque 

is nonlinear with respect to spin and yaw (Ref. 2). 

There are then two aspects of the problem which have to be investigated: 

l) the generation of spin and 2) the effect of spin on yaw. The latter 

aspect of the problem is treated in this report for the particular case 

of the 8l-mm M56 shell. The method used here can, however, be applied 

to any shell. 

As a result of the present analysis it will be possible to determine 

the combinations of values of yaw and spin which will result in large yaw- 

ing motion. In addition, the results enable one to obtain an estimate of 

the spin generation which can produce these unstable conditions. 

II.  SPIRAL YAWING MOTION 

The hypothesis that spin may be one of the phenomena explaining 

short ranges was stated by Zaroodny as early as 19h6.   (Ref. 3) The 

most convincing evidence in support of this theory was the wind tunnel 

measurements of the Magnus torque of the 8l-mm-M56 shell reported in '"' 

BRL Report No. 882 by Zaroodny and Mott. These measurements show that. 
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the Magnus torque is highly nonlinear with respect to both spin and yaw, 

and that the linearized theory of the yawing motion is applicable only 

up to about 2 of yaw, and not up to some 10 as had been believed (Ref. 2), 

The Magnus torque coefficient, K~, was found to be approximated by the 

expression (Ref. k), 

Krp   =      \        + K>        V2 + K-   vV 
00    02      x0k 

+ (K-, + ic     v2 + K^ vk)     s2   . (1) 
x20    22      L2k 

+ (K + K    V2 + L   Vk)     bk 

where 
v = spin in radians per calibers 

5 = angle of yaw in radians 

It follows from these findings that the effect of spin on yaw cannot be 

neglected, and that, furthermore,- the nonlinear form of the Magnus torque 

coefficient, equation (l), should be introduced into the equation of yaw. 

An approximate solution to the nonlinear yaw equation was obtained 

by Zaroodny and Bomberger for the special case of constant spin and spiral 

yawing,(Ref. k). The present report is essentially an extension of their 

work for the more general case of epicyclic yawing motion. 

Considering the two types of spiral yawing, pure precession and pure 

nutation, at various values of spin, Zaroodny and Bomberger found the 

two essentially different solutions which are shown in Figures 1 and 

2 . The curves drawn in the two figures are the loci of the angles of 

yaw which remain constant. They are the curves of zero damping. For 

pure precession (Fig. l) no development of large angles of yaw occurs. 

The curve a = 0 is the locus of a stable equilibrium of circular precession. 

Points to the right of this curve represent combinations of yaw and spin 

which result in a decrease in yaw. Points to the left correspond to conditions 

of growing yaw. Zero yaw appears to be an unstable condition for values 



of spin at)ove a certain minimum, about v = .0^5, given by the intersection 

of the a = 0 curve and the spin axis. For pure nutation (Fig. 2) large 

angles of yaw will develop of the initial values if spin and yaw are large 

enough. The curve a = 0 is here the locus of an unstable equilibrium 

of circular nutation. Small initial yaws, represented by points to the 

left of the curve, will shrink to zero, and zero yaw is a stable condition. 

At points to the right of the curve the yaw will grow. The horizontal 

arrows represent the directions of the trajectories of the yawing motion 

for constant spin. 

Looking at these results in a plot of precession against nutation 

for a constant value of spin (Fig. 3)> one observes that the yawing motion 

is determined by three singularities. For the particular spin of v = .1 

rad/caliber there are:  an unstable equilibrium of circular nutation at 

about 13 , the origin, and a stable equilibrium of circular precession at 

about 7-5 • The arrows again indicate the direction of the possible 

trajectories. The nutational yawing motion will grow for angles larger 

than 13 )  it will shrink to zero for smaller angles. At zero yaw the 

precession appears to be building up resulting in a limit motion of 

circular precession at 7-5 ■ For angles larger than 7«5 the precession 

decreases and the same limit motion results. How the precession can build 

up starting from zero yaw is a puzzling question which cannot be answered 

by this analysis. What is happening will, however, become clear when the 

general epicyclic motion is discussed. 

III.  EPICYCXIC YAWING MOTION 

The yawing motion along the two axes in Figure 3 is well determined by 

the analysis of Reference k,  but the actual yawing motion of shell will 

not necessarily begin at a point where one of the two amplitudes is zero. 

The trajectory describing the yawing motion will in general be a curve 

that can start anywhere in the plane of Figure 3. Extrapolating from 

the yawing motion on the axes, it seems reasonable to expect that there 

TECHNICAL LIBBAM 
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will exist a curve separating initial conditions leading to zero or 

small yaw limit motions from those resulting in large yaws. This curve 

should go into the point of unstable equilibrium on the nutational axis. 

In order to obtain qualitative results for the general yawing motion in 

this plane, and similar planes for different-values of spin, the results 

of C. H. Murphy*s treatment of the nonlinear yaw equation were applied 

(Ref. 5). ■ 

Three basic assumptions have been made in the following analysis, 

(l) The effects of any asymmetry and of the yaw of repose have been 

neglected.  (2) The instantaneous yawing motion is considered to be a 

function of spin but not of the rate of change of spin.  (3) The spin 

and the amplitude of yaw are assumed to change little over a period of 

yaw.  (A factor of 2 in the maximum amplitude is believed to be tolerable) 

With these assumptions the results of BRL Report 995 can be applied 

directly to the yawing motion of the 8l-mm M56 shell for various values 

of spin. 

Neglecting the effect of gravity (J =0), letting Z  = 1, 5 = sin 5 

and otherwise using the aerodynamic coefficients given in the appendix 

of Reference k,  one can write equation (hi)  of Reference 5 in the 

simplified form, 

X." + (H - iv) A,* - (M + i v T) X. = 0 (2) 

-2 
where    H = JT - «L. + k0  J 

1J    D    C. n. 

-  A 
v = B V 

M = V2  JM 

T=JL~kl"2 

and 
J. = £*-  K 
1    m    ; 

(For definitions consul" 

Jq. 

■X- 
From here on 5 will be used to denote the sine of the angle of yaw. 
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The aerodynamic coefficients J are constant with the exception 

of the Magnus torque coefficient, Jl.  J^ is given by the expression 

of equation(l),and for any particular value of spin the Magnus torque 

coefficient is of the form, 

J   + J  S2 + J  5^ 
0      2    .4 

The solution of equation 2 is then assumed to be, 

(Equation(26)of Reference 5) where 0, and ßl arß  the phase angles 

occurring In the solution to the linearized equation but K and \|r 

are unknown functions of p. By the method of Kryloff and Bogoluiboff 

approximate solutions of K. and i|r can be found. For this particular 

case the solutions for the amplitudes are given by equations (49) and 

(50) of Reference 5, 

—V     =      -   2  GL (4) 
Kl 

(K2
2)» 

—g— =   -2a2 (5) 
K2 

where                                                                     ^                            p                    ■ 
n        a      +„"   t&       +n       (^           H 0»   - V[TQ + Tg(5   )       + T^) 
ai = °10 + ai2 & -)e! + alk <8  )ei =  ~^ * iJ 

K   '   ^ (6) 

a. ^ ,Jh H^2- 7  [T0 + T2(52)e2 
+ Vö\j 

°2 = a20 + a22  (&   )e2 + a24  (&   }e2 
=  ^—^-^ ■  

0| - 0{ 
(7) 

and 

(52)el = KX
2
+2K2

2  ,  (62)e2= K2
2
+2Kl

2 

(54)el = K^ + 6KX
2 Kg2 +" JK^,  (5if)e2 = K2

k  t 6^ K^ + 3^, 

11 



2     k 
The effective values of 8 and 8 are obtained by the averaging process 

of the K-B method, and they represent the essential difference between 

the nonlinear and the linear solution. 

Murphy then found it convenient to study the yawing motion in 
2     2 

terms of K  and K_ , the squares of the sines of the nutational and 

precessional angles of yaw, rather than the angles of yaw directly. 

If the scales along the two axes in Figure 3 are changed accordingly, the 

resulting plane is what Murphy calls the "amplitude plane". Only the first 

quadrant of this plane is of interest since the squared amplitudes are 

always positive. The equation determining the trajectories of the yawing 

motion in this plane follows directly from equations (k)  and (5). 

(Equation 57 of Ref. 5) 

d(K 2)     K2ap 

H\  )    K^ a± 

A certain amount of information is known about the trajectories 

before equation (8) is actually solved.  It is known, for instance, 

that the trajectories have to cross the a-, = 0 curve with a vertical, 

the au = 0 curve with a horizontal slope. The zero damping curves are 

hyperbolas for the present case. The coefficients a. .(i-=l>2j j=0,2,l<-) 

in equations (6) and (7) are functions of the spin v. As the spin 

is changed the centers of the hyperbolas shift slightly along straight 
2     2 

lines. The centers of a, =0 are located along the line K,  = 3K0 , 1 2     2 12, 
the centers of a? = 0 on Kp = 3K, .  The slopes of the asymptotes of both 

families of hyperbolas remain constant as the spin is changed, but the 

length of the transverse axes is changing, and for the a, = 0 family it 

even goes through zero resulting in an interchange of the transverse and 

conjugate axes.  (See in particular Figures 6 and 7)« 

More important than the zero damping curves are the singularities of 

equation (8) in determining the motion of the shell. The singularities 

of equation (8) are given by the following four pairs of equations: 

12 



(a) Kx
2 =  0 

(D) Kx
2 =  0 

(c) K2
2 =• 0 

M) a     = 0 

K2
2 = 0 

a2 = 0 

a, = 0 

a2 = 0 

Singularities given by the first three pairs of equations can he found by 

the method of Zaroodny and Bomherger. They are (a) the origin, (h) 

singularities on the precessional axis, (c) singularities on the nutational 

axis. The fourth pair of equations determines singularities which cannot 

he found hy the earlier method, limit epicycles. When the zero damping 

curves are hyperbolas there can be as few as one and as many as seven 

singularities in the first quadrant.  In this particular case, the number 

of singularities increases from two to seven with an increase in spin. 

They are of only three different types:  stable nodes, saddle points, and 

stable spirals; the first two types occur on the axes, the latter correspond 

to the limit epicycles. 

Besides zero damping curves and singularities there is a third 

factor determining the shapes of the trajectories. As mentioned above, 

there should be a curve going into a saddle point, the unstable equilibrium) 

which separates trajectories turning to one or the other side of the saddle. 

Such a curve is called a separatrix, and it is the only trajectory going 

into or coming out of a saddle. The separatrices are not defined by simple 

algebraic equations and hence cannot be determined in advance of an actual 

solution of equation (8). 

Equation (8), the differential equation determining the trajectories 

in the amplitude plane, was solved by a GEM (Goodyear Electronic Differential 

Analyser) model GN 215-23. The machine's output can be automatically 

recorded on a large plotting board giving one variable as a function of 

the other.  In this way the amplitude planes shown in Figures k    through 

10 were actually drawn by the GEDA.  In the neighborhood of the axes 

and the zero damping curves the accuracy of these figures is relatively poor. 
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The multipliers of the machine have a constant error of .2 volts, so 

that the products of very small numbers have high percentage errors. 

In order to show the complete region of interest, including the large 

yaw limit motions, accuracy had to "be sacrificed. By rescaling the 

problem and solving for a small portion of the amplitude planes at a 

time one can, however, obtain the solutions to the desired degree of 

accuracy. 

A short description of GEDA is found in Ref. (6). For a more 

detailed report on the machine see Ref. (7). 

By means of the GEDA the determination of the separatrices is very 

simple. Initial conditions have to be chosen in such a way that the 

separatrix is approached from both sides. This process will quickly 

give two trajectories which lie close together and run parallel up to 

the saddle point but separate there. The separatrix can then be drawn 

between them. 

The data upon which the expression for K^ is based go only up to 

a maximum of yaw of about 20 . The curve of 20 of maximum of yaw is 

shown in Figure 12.  The parts of the trajectories beyond this curve 

are based on an extrapolation of the expression for K_ to larger angles. 

While one cannot assume these parts of the trajectories to be exact, one 

can assume that they give a qualitative picture of the yawing motion at 

these large angles.  The complete plots of the amplitude planes can then 

serve as an aid for planning new experiments as well as for interpreting 

experimental, results. Recent experiments reported inReference (9) 

can quite possible be explained by means of these plots, and can be 

considered to justify the above statements about the extrapolation to 

large angles of yaw. 

ik 



IV.  AMPLITUDE PLANE ANALYSIS FOR CONSTANT SPIN 

The lowest spin considered in the analysis is v = .025 (Figure k). 

At this spin only one branch of each zero-damping hyperbola is present 
2 

in the first quadrant. The ap = 0 branch intersects the Kp - axis at 

K„ = .2856, and there is a saddle point of about 32 precession. The 

region "beyond the separatrix is definitely outside the region of interest, 

and this separatrix (which does not change much as the spin increased) 

is not shown in the following figures. The a, = 0 branch does not inter- 
2 

sect the K_  - axis, so that there are no singularities on the nutational 

axis. The origin is a stable node. 

For the next spin, v = .035 (Figure 5)> both branches of a, =0 are in 

the first quadrant, resulting in two singularities on the nutational axis. 

The one closest to the origin is a saddle, the other one a node. Trajectories 

starting to the right and below the separatrix end in a limit motion of 

circular nutation. Only a very small region of the amplitude plane 

constitutes this unstable region. Otherwise there is little change from 

the amplitude plane for v = .025. 

At a spin of v = .0^5 (Figure 6) the second branch of the a_ = 0 

hyperbola has moved into the first quadrant, but it is still so close' to 

the origin that it cannot be seen. Similarly, the two right branches of 

the two hyperbolas do now have an intersection in the first quadrant, which 

is so close to the nutational axis that the singularity still appears to< 

lie on the axis. 

As the spin varies from v = . 0^5 to v = .05 the transverse axis of the 

a. = 0 hyperbola goes through zero and at v = .05 (Figure 7) the hyperbola 

has moved to the other side of the asymptotes. The intersection of the 

right branches of the two hyperbolas is here far enough removed from the 

axis to reveal that it is a limit epicycle and a spiral point, and that 

both singularities on the nutational axis are now saddles. The left 

branch of the a^ = 0 curve is now also far enough away from the origin 
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to be discerned, and It is clear that the origin is now a saddle 
2 

while the intersection of the left branch of a?= 0 with the K~ 

-axis defines a stable node of circular precession in agreement with 

Figure 1. This one and the following figures explain the build up 

of precessionj so puzzling when only spiral yawing motion is considered. 

What happens is this:  the nutation does not become zero until the 

node on the precessional axis is reached, and the precession begins to 

build up starting from a small but non-zero value of precession. 

The next two figures (Figures 8 and 9) for values of spin v = .1 

and v = .15 show on the whole only quantitative changes. The saddle 

defined by the left branch of a, =0 and the nutational axis is coming 

closer to the origin, the angle of the node of circular precession is 

increasing, and the limit epicycle is moving farther away from the 

nutational axis and coming closer to the precessional axis. 

The last of this series of plots for a spin of v = .25 (Figure IO) 

shows one additional qualitative change since here the left branches 

of the two hyperbolas intersect in the first quadrant. The stable node 

on the precessional axis has become a saddle point and the limit motion 

for the stable case is now also a limit epicycle. 

With these amplitude planes it is possible to predict the yawing 

motion of a shell for constant spin if the initial components of precession 

and nutation are given.  The initial phase does not have to be known. 

V.  EFFECT OF SPIN VARIATION OK THE YAWING MOTION 

The results of the preceding chapter indicate which angles of yaw 

can produce short rounds at given values of spin. However, since shell are 

extremely unlikely to have initial values of spin and yaw of the amount 

necessary to produce large yawing motion directly, an attempt was made to 

include the effects of spin generation by analysing the complete set of 

16 



amplitude planes simultaneously. This can be done provided the spin 

varies slowly enough so that the amplitude planes for constant spin 

do represent the instantaneous situation. 

The type of analysis intended can he simply illustrated for the 

spiral yawing motion. Let initial conditions ( 5„, v„) he given on 

the stable side of the zero damping curve (Figure ll). On this side 

the yaw is decreasing, and, for constant spin, the trajectory is 

represented by a horizontal line directed to the left.  If the spin 

is increasing the trajectory will be bent upward. In the extreme 

case, where the spin increases much faster than the yaw, the trajectory 

will approach a vertical line directed upward, but as long as it is on 

the left side of the a = 0 curve it cannot go to the right. Hence, 

the intersection of the vertical line through the initial point, 5=5, 

and the curve of zero damping, a ~  0, will define a lower limit of spin, 

V- , which can possibly produce large yawing motion,' i.e., if the spin 
X 

varies only between zero and v1, and does not exceed v , the yawing 

motion will certainly be stable. 

For the three-dimensional trajectories - precession, nutation, and 

spin varying - the analysis is complicated by the fact that the slope of 

the trajectory at a point in the amplitude plane is a function of all 

three variables. For spiral yawing it was sufficient to give the initial 

angle of nutation for the determination of the lower limit of spin needed 

for the development of large yaws. One would hope then, that it might be 

possible to determine such a limit of spin for the epicyclic yawing motion 

if the initial precession and nutation are given.  Since points along the 

curve of Figure 11 correspond to the separatrices of Figures k  through 10, 
2   2 

the curve a(S, v) = 0 itself will correspond to a surface S(lC , Kp , v) = 0 

generated by the separatrices;  as the equation Cü(S , v) = 0 gave the lower 

limit of spin, v.. ,' for the case of spiral yawing, it is hoped that the 

Zaroodny showed in Reference 8 that the spin variation is usually 
so slow that the a = 0  curve, is a close approximation to the curve 
separating stable from unstable initial conditions when the spin 
is allowed to vary. 
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2    2 
relation S(K  , K„ , v) = 0, defining a point on the surface, will 10 v20 
determine the lower limit v.. for the epicyclic motion. 

Figure 12 shows the separatrices for various values of spin. In 

relation to the surface S these curves represent contour lines whose 

heights are given by the values v. The value v, given "by the equation 
2    1 

S(K  , K2Q }  v) = 0 is the spin whose separatrix goes through the 

initial point in Figure 12. However, for this spin to "be the desired 

lower limit, all trajectories with values of spin less than v1 have 

to move to the left of the separatrix for v1   at that point, i.e., the 

slope of the trajectory given by equation (8) if it is evaluated at 
?    2 

(K . , K_  , v) with v < v,, has to be smaller than the slope of the 

separatrix for v1 at the point (K  , Kp ). 

It will now be necessary to investigate whether the relation 

between the slopes of the low spin trajectories and the higher spin 

separatrix through the same point does hold everywhere to the left of 

the corresponding low spin separatrices in the plane of Figure 12, or, 

if not, whether it holds in the region of interest. 

An inspection of Figure 12 reveals that an increase in spin shifts 

the descending parts of the separatrices to the left and raises the value 

of the maximum. Furthermore, the angle, 6, between the separatrices and 

the nutational axis at the saddle points increases for increasing spin. 

As mentioned before, the plots are not very accurate in the neighborhood 

of the zero-damping curves. Therefore, a list of the theoretical values 

of these angles follows.  The angles were determined with the equation, 

K, 

lim 
2 

a, 
o 

0 

d(K2
2) 

dCKj2) 

Q:
20

+2Q:
22 

Kl2 + **2k hk 
g       _ _. 

2a12 Kj^    + bOj.^ Kx 

(10) 

'     V .035 .045 .05 l .15 • 25 

tan 0 1.313 -9.582 -4.128 -1.389- -1.133 -,9837 

9 52° 42s 950 58* 103°37*I I25°lf5» 13l°26« 134°32* 
 Z—1 

18 



Since the angle between the separatrix and the horizontal increases with 
2 2 

increasing spin for Kp =0, the same will be true for Kp ) 0 up to a 
2 

certain value of K? . The graph indicates this fact in that the horizontal 

distances between the descending branches of the various separatrices 
2 

do not decrease as Kp is increased, and, in fact, these distances do not 

seem to decrease until the separatrices reach their maxima. A theoretical 

justification for this observation, although no proof, is the fact that a 

low spin separatrix has both its vertical and its horizontal slopes at a 
2 

smaller value of K? than a higher spin separatrix. 

Besides the relation between the various separatrices, the relation 

between each separatrix and its trajectories is needed. Studying the 

Figures k  through 10 in the order of increasing spin and observing in 

particular the trajectories leading to zero or small yaw limit motions 

(the only ones for which the concept of a lower limit of spin is meaning- 

ful) one can find a relation between the slopes of the trajectories and 

the slopes of the separatrix. 

The lowest spin for which a separatrix comes into the nutational 

axis is V = .035» This separatrix has a positive slope at the saddle 

and the trajectories to its left have positive slopes everywhere with 

the exception of the small region enclosed by the left branch of QL =0. 

The trajectories have to enter and leave this region with a vertical 

slope, and their directions inside differ only little from the vertical. 

At a spin of V = .0^5 the separatrix has a negative slope at the 

saddle, and'there exists a very small region to the left of- the 

separatrix, inside the right branch of a = 0, where the slopes of the 

trajectories become negative, but again the angles with the horizontal 

increase only little above 90 • Outside this branch of a. =0 the 

situation is very much like that at ;a spin of v = .035, except that 

the region inside the left branch of a, = 0 has become larger. 

At a spin of 't  = .05 the hyperbola a, = 0 has changed its position 

relative to the asymptotes and all the trajectories to the left of the 
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separatrix have to cross both its branches. The slope of the separatrix 

for this and the higher values of spin is negative everywhere between the 

nutational axis and the right branch of a =0, while the trajectories 

have negative slopes between the two branches. This region between the 

two branches of a1 =0 becomes larger as the spin is increased.  In order 

to find out whether a trajectory will go to the left or the right of a 

separatrix which has negative slopes everywhere, one has to consider only 

those parts of the trajectories which have negative slopes since with a 

positive slope the trajectory will obviously not move to the right of its 

initial point, as long as only the descending parts of the trajectories 

are under consideration. 

Crossing the left branch of a. = 0 a trajectory has a vertical slope. 
2 

At this value of Kp the angle between the horizontal and this trajectory 

is certainly smaller than the angles between the horizontal and the 

trajectories farther to the right, including the separatrix. This same 

relation will hold for a certain region abovethis branch of the a, = 0 

curve. An approximate determination of the size of this region can be 

made by means of the graphs.  It is known beforehand that the region will 

not go as far as the right branch of a, =0 since trajectories to the right 

of a given one will cross this branch (with a vertical slope) at smaller 
2 

values of Kp than trajectories to the left. Coming down from the right 

branch of a = 0 the trajectories on the left of the separatrix initially 

converge, then they diverge. The curve giving the points on the traject- 

ories of shortest horizontal distance from the separatrix will limit the 
2 

region in which the slope of the trajectories at a given value of Kp 

decreases with distance from the separatrix. Below this curve the slope 
2 

of the separatrix at a given value of KQ    can be considered as an upper 
2 

limit of the slopes of the trajectories at the same value of Kp . 

2 
It was first shown that at a given value of Kp the slopes of the 

Separatrices increase with increasing spin. Then it was seen that in 

a certain region the slope of the separatrix Is an upper limit of the 
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slopes of the trajectories for the same value of spin and at the same 
2 

value of Kp .  It follows that at a point in this same region the 

separatrix for a certain value of spin will have a larger slope than 

the trajectories for lower values of spin.  It only remains to "be 

determined if the region thus defined includes the region of likely 

initial conditions. The whole analysis is based on data going up 

to 20 of maximum of yaw, hence its validity for initial conditions 

outside this region is at least questionable.  In addition, the shell are 

most likely to start out with almost planar yaw, which is represented by 

the 45 line in the amplitude plane. The curve of maximum yaw of 20 

as shown in Figure 12 describes a region which appears to be well inside 

the region for which the above relations hold. 

It can then be concluded that for any initial conditions to the 

right of the separatrix for the highest spin considered, there is a 
2    2 

value of spin v, given by the equation S(K_n , K?0 , v) = 0 whose 

separatrix goes through the initial point. If the spin varies only 

between zero and this value, v,, the motion of the shell will certainly 

be stable. On the other hand, the spin has to increase at least beyond 

V-, for any large yawing motion to occur. 

An illustration of the meaning of this analysis is included in 

Figure 12. For initial conditions of 20 precession, 20 nutation, 

and a spin of v = .1 the actual trajectory is shown. It is obvious 

that this trajectory goes to the left of the separatrix for v, = .15 

which goes through the initial point. 

It is possible to determine even more than this minimum value of 

spin necessary to produce large yawing motion. For given initial 

conditions one can determine the generation of spin necessary to 

account for large yaws. By determining the distance travelled by the 

shell while the trajectory in the amplitude plane reaches a certain 

separatrix (spin = v?) which was initially to its left, one can give 

an approximate value of the rate of change of spin needed if the shell 

is to acquire the spin v, 

separatrix in Figure 12» 

is to acquire the spin vp before the trajectory intersects this 
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While the independent variable, distance in calibers of travel, 

has been eliminated in the equation for the trajectories, the speed 

of the pen of the GEDA is directly proportional to it. By introducing 

a mechanism which causes the pen to lift at equal time intervals, one 

can demonstrate the distance travelled by the shell, and the number 

of periods corresponding to a given piece of trajectory in the amplitude 

plane (Figure 13). 

With reference to Figure 13 it must be pointed out that close to the 

singularities the pen is moving too slowly for the interruptions to be 

discernible. For large initial angles the pen is moving quite fast 

indicating rapid changes of yaw. A comparison with exact six degree 

of freedom trajectories computed on an electronic digital computer is 

planned in order to ascertain the limits of the approximations made 

in this analysis. 

The trajectory shown in Figure 12 was transferred from Figure 13. 

One can see here that for an initial spin of V- = .1 and initial 
2     2 

K _ = Kp- = .03 the spin would have to reach the value v? = .25 

in less than 3/5 of a period if that spin is to cause instability. 

VI, CONCLUSION 

The amplitude plane analysis used in this investigation 

represents a method for predicting the yawing motion of shell.  In 

particular, this method, devised by G. H. Murphy and its adaptation 

for the case of variable spin allows one to determine the initial 

conditions of mortar fire which are likely to produce large angles 

of yaw and possibly short ranges. It also gives a means of estimating 

the rate of change of spin which would have to take place if spin 

generation is to explain the occurrence of short ranges. 
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