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PREFACE

Accumulating evidence indicates that the scattering
and absorption of sound by small gas bubbles in water can con-
stitute a serious difficulty in echo ranging or in listening.
Work in connection with both the Wake and Reverberation Pro-
grams indicates that a study of the acoustic properties of
small bubbles 1s necessary for a comnlete understanding of
the transmission of sound in sea water., In addition, air
bubbles are apparently the most afficient absorbers of under-
water sound and ave, therefore, of Interest in all cases where

3 an a'sorbing sound screen would be useful.

N A considerable amount of ressarch has been dcne on
this subject, but the results have not hitherto been available
in a simple comprechensive form., The present report, which is

. intended primarily for the use of research workers in under-
water acoustics, attempts to summarize and bring together in
one place all relevant information on the acoustic properties
of gas bubbles.

The final results, which make possible in certain
cases a prediction of the reflection, scattering, and absorp-
tion to be expected from a given distribution of bubbles, are
summarized in the first few pages of the report. For many
practical purposes a reading of this Summary will be sufficient.
The remainder of the report, which may be regarded as an appendix,
( will be of interest to those concerned with the derivation and

observational verification of the formulae given in the Summary.
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Small gas bubdbles in a liquid can be very effective
. scatterers and absorbers of sound, owing to the possibility of
resonance between the sound field and the natural oscillations
of the bubble, The radlus Rr at which a bubble resonates to

sound of frequency z/ is given by the equation

- 1 3‘./Pog
Rr“’z'ﬁ?[eoa

P0 1s the hydrostatic pressure, ¢ is the density of the liquid,

o

and y is the ratio of specific heats of the gas in the bubbles;
o is a quantity which increases from 1 to y as R decreases,
corresponding to the transitlion from adiabatlic to isothermal
conditions within the bubble, The value of & is given from
theory in terms of the denslty, specific heat, and heat con-
ductivity of the gas, -~ see Section II. The quantity g is a
correction factor which takes surface tension into account, and

is given by the equation

= 2T %
g=1+ { "'"}v
i 3y

where T is the surface tension of the liquid~-gas interface,.
For an alr bubble in water, y is 1.4, 1s 1,0, and

the equation for Rr may be put in the more convenient form




i1

[P _(atm)
Rr(cm) = %?%%T ‘V °°L ’

where now the pressure 1s in atmospheres., This equation has

been verified observationally within a few percent from 2 ke
up to 30 kc, in which range both g and « are essentially unity.

Values of Rr for different + and Po are given 1n the accompany-
ing Table,

TABLE I.
Resonant Radius for Air Bubble in Water
Frequency: 1 kc 5 ke 20 ke 50 ke 500 ke
— Pressure 1 surface [ .33 em| .065 cm| ,016 =m | .0063 cm|.00062 cm
in
Atmospheres 2 35 ft, 47 .093 .023 .0091 .00093
and
Correspond- 5 140 ft. 73 .15 037 ,015 0015
ing Depth _
of Water: 10 300 ft. | 1.04 21 .0952 021 ,0022

The scattering and absorption produced by a single
bubble may conveniently be expressed in terms of scattering and
absorptlion "eross-sections". The scattering cross-section °§ is
defined so that the total energy of the scattered radiation is

'Just equal to the amount of incident energy passing through an
area <y placed perpendicular to the beam, Similarly the total
erergy absorbed may be represented by an absorption cross-section
o such that the total incident sound energy passing through an
area @, per second is just equal to the energy absorbed per sec-
ond by the bubble. The sum of ¥ and 0 1s called the extinction

a
cross-section and is denoted by cg; it represents the total enecrgy




111

removed from the beam through scattering plus absorption,

The theory shows that for sound of frequency 2/
incident upon a bubble of radius R

2
% = e
S(V‘,e/z/-.l\) -

+

T 9

+ 5

o - 4’;)'325 a
e (1"' 5 /‘,/2 - l)é

where g; is the resonant frequency for the bubble. The guantity
d 1s called a "damping constant", and is the sum of three terms,
representing the damping effects of radiation, viscosity and heat

conGuction; a is the contribution of radiation damping to 3, and

at resonance 1s equal to

. =j3;£!1=zs’ =1.36x 102 [g

y o
1f-f,€ y and the sound velocity ¢ are taken for air bubbles in
water at a pressure of one atmosphere.
The theory indicates that the effect of viscosity

may be neglected for bubbles greater than 3 x 104 em in radius,
corresponding to frequencies of resonance less than a megacycle.
The theoretical determination of § is not to be trusted, however,
since the available observations show values of & of about 0.27

for resonant bubbles at 24 kc, as compared with a theoretical
value of 0,08,
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When many bubbles are present, thz absorption and
scattering remove energy from the incident beam, giving rise
to an attenuation which may be expressed e.3 Ke db per yard.
The attsnuation of the sound beam which resulis from scatter-
ing alone may ve eXpressed as KS b per yard. The difference
between X and K, is X,, that pars of the total attenuatlon
.whiéh arises fron absorptioh alone. If an integration is

carried out only over bubbles ver near resonance,

Ke = 1.4 }}{rlos U'].‘ db/‘yard,
K, = 5.2 x 105 u, db/yard,

S

where the resonant radius R, is in centimeters. The quantity
u,, is the veolume of alr occupled Ly resonant bubbles per cubiec
centimeter per unit interval of leg R. If the relative volume
occupied by bubb;es of different :izes dces not change rapidly
with R, then u, is rovghly the volume of all bubb.es in a cubic
centineter with radii betiween Rr/R and 3Rr/2‘ Since Rr is mch
less than a millimeter in the cases of practieal interest, Ke

is much greater than Ky. This corresponds to the fact that res-

onant bubbles at supersonic freguencies absorb considerably more

energy than they scatter.

The quantity Ke, which epresents the total attenua-

tion of the initial beam in db per yard, may be observed directly.
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The value of Ke given in the above formula is independent

of the damping constant ¥ and shouvld give a reliable deter-
mination of the contribution which resonant bubbles make to

the total attenmuation. The numerical value of Ks given, however,
depends on the observed values of & at resonance and is valid
only for values of Rr less fhan 0.1 em, The value obtalned is
independent of frequency but may e expected to be different at
pressures other than one atmosphers.

Since K  represents the energy removed from the main
beam by scattering, its valve may be used to determine the
amount 6f radiation scattered., If I is the intensity of the
incident radiation, each bubble will scatter an amount of energy
gl per second, and the total en=rgy scattered from a unit vol-
ume will be anI, where n is the number of bubbles per unit vol-
ume. The San Dlego group has denoted noy; by the symbol m. In

the present notation

logelo - 5 -1
3—-]-5—-1.2.x10ur yard™—,

m =
The total energy scattered from a cubic yard will be mI, provided
that Ké is less than 1 db so that I is uniform throughout the vol-
ume in question. This scattered sound will be of equal intensity
in all directions. '

When the scattering is being computed from a large vol-

ume, or when Kg is very great, the incident intensity I is differ-
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ent in differenrt regions, multiple scattering becomes important,
and the computation of the gcattered radiation is more compli-
cated. - If the attenuation K, is much greater than K , however,
the scattered radiatlion may be computed. For a layer of thick-~
ness X in which K, and K, are constant, and in which the total
attenuation K X is large, almost all of the incident energy I
will be either scatiered or absorbed. A fraction K /Ky will be
scattered, but only half of this will be scattered backwards,
and even this haif will be partly absorbed on its way baek out
of the layer. The result is that the radiation scattered dir-
ectly backwards out of the layer may be computed as though a
fraction'Ks/AfKe or the energy I were scattered in all backward
directions, i.e., over a hemisphere.

| Bubbles other than those near resonance have a smaller
acoustic effect than those near resonance, unless the number of

resonant bubbles is relatively very small., Under some circum-

stances, bubbles above resonance may contribute to the scattering,

while those below resonance may be important in absorbing sound.
For bubbles whose radil are below resonance,.but greater than

0.1R , the fotal absorption will be 1/20 to 1/40 as great as that
from the resonance peak if the total geometrical cross-section of
all bubbles per radius interval per cm3 is roughly constant for
the entire range of bubble sizes, On the other hand, for miero-
scopic bubbles, with a radius below 3 x 10—4 cm, viscosity is
important and K,,the attenuation at 24 kc, in db per yard, is
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K, = 1,8 x 10* U db/yard ;
g :

u 1s the total volume of such bubbles per cm3, and ? is the
harmonic mean square of g, the surface tension correcting factor,
averaged over the volume of bubbles per radius interval. For
other frequencies Ka varies as z/2 Since g 1s greater than unity
in this range, the attenuation produced by microscopic bubbles is
very much less than that produced by the same volume of air in the
form of resonant bubbles,

When many bubbles are present, specular reflection of
sound may occur from a region in which the density of bubbles
changes rapidly over distances small compared to the wave length,
provided that on each side of the region the bubble density 1is
uniform, The presence of bubbles changes.the velocity of sound;
the real and imaginary parts both combine to give a reflection
coefficient r. When the bubble sizes are distributed about res-
onance, the change in the real part of the velocity is very small,
but the imaginary part is appreciable. | For a ray of sound in
bubble-free water, incident normally on a plane surface, beyond

which extends a region of uniform bubble density, the reflection
coefficient is

Ji+ [+ @.smwotu? - /2
r = y
:./-1 + :7 1+ (2.5:10'\11‘) + 32
where u,, defined in the same way as before, gives the density of
bubbles in the region from which the sound 1s reflected., It is
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evident that when u, changes from less than 10~7 to more than
20~# at a sharp discontimuity, most of the incident sound will
be reflected even though for each bubble the scattering cross-
section Oy is much less than the absofption cross-section 0;.

Bubbles of gizes far from resonance may also contri-
bute to the reflection of sound in some situations., The relevant
formulae are discussed in Sections IV and V.

It should be noted that all mumerical statements and
formulae in this Summary refer to air bubbles in water; also,
except in Table I, a hydrostatic pressure of one atmosphere has
been assumed in all cases. In other situations the more general

eéquations derived in the following paper must be used.
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INTRODUCTION

Air bubbles in water scatter and absorb underwater
sound to a much greater extent than their geonmetrical radii
might indicate, This effect arises from the fact that a small
bubble resonates to sound whose wave length is several hundred
times the dlameter of the bubble. The scattering cross-section
at resonance is several hundred times as great as the actual
geometrical cross-section of the bubble. Since, in addition, a
resonant bubble has a large amplitude of oscillation and dissi-
pates a considerable amount of energy, the absorption cross-
section of a bubble will be in many cases comparable to or
greater than the scattering cross-~section.

It 1s for this reason that bubbles have a considerable
Importance in the transmission of underwater sound. Even a very
few bubbles, so widely écattered as to be almost invisible, may
have an appreciable acoustic effect, and if the number of small
bubbles is high, 30 that their presence is readily visible, the
water will in many cases be very nearly opaque acoustically.

It may be useful to have assembled in one report all
the present available detailed information on the acoustic prop-
erties of such bubbles, Calculations of the scattering and ab-
sorption to be expected have been carried out by several authors,
including Germen, Japanese, English, and American scientists, 1In
addition, observational data on this subject make possible an

evaluation of the theoretical predictions. While there is still




some uncertainty concerning the exact values of the scattering
and absorption to be expected in certaln cases, and while addi-
tional observational evidencz would be highly desirable, on the
whole the.theory summarlized in thls report should provide a
reasonably accurate gulde for the effects to be expected in the
most impprtant cases. |

In the first saction of the report, a detailed analysis
is given of the scattering to be expegted from a small bubdble of
gas in which there is no conductlon of heat, surrounded by a
fluild in which the viscosity 1s zero, and at the surface of which
there is no surface tension. This analysis, which 1is fairly
simple, is given in detail to illustrate the principles involvéd.
In the second section this analysis 1s extended to include the
effects of viscosity in the water as well as the effects of heat
conduction and surface tension., The experimental data on the
oscillations of a bubble in the sound fleld are presented in
Section III. |

The scattering, absorption, and reflection to be ex-
pected from many bubbles of the same size are analyzed in the
fourth sectibn of this report. In the following section, the
effects produced by many bubbles of different sizes are also
considered, and the absorption, scattering, and reflection shown
to arise primarily from bﬁbbles near resonance., The results of
this last section will pbe the ones applicable in most practical

situations.




I. SCATTERING OF SOUND BY A SINGLE IDFALIZED BUBBLE.
The scattering of sound from a small bubble in a

liquid can be treated in one of several ways. The most general
and the most elegant treatment 1s that which'has been used in
atomic and nuclear coliision theory, and which Epsteinl has em-
rloyed in his discussion of the effect of Viscosity on the
scattering and absorption by small spheres, In thils method,
the velocity potential for the incident wave 1s expanded in a
saries of terms, each of which represents a standing wave in
spherical coordinates,; whose origin is at the center of the
bubble. If the equation for the oscillation of the bubble is
solved in ‘spherical coordinates; the solution turns out to be
another series of such térmsc From a comparison of these two
series and a consideration of the appropriate boundary conditions,
both the scattered and the absorbed radiation may be determined.
While this method has the advantage of generality, its meaning 1is
not always physically clear, and the necessary analysis is more
complicated than is required for the present purpose.

Siﬁce the radius of the bubble in all relevant cases
is considerably less than the wave length of the incident sound,
another method of analysis, which has been used by Willis?, is
possible., In this method of analysis, the bubble 1s assumed to

1. P. S, Epstein, Th. Von Karman Anniversary Volume, 1941, p. 162.

2, Willis, British Report, reprinted as Confidential Report Section
C4-BrTs-503, _Digsipati Ener ce bbles

in the Sea,
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be in a uniform, but alternating preésure field,and the velocity
associated with the incident wave is neglected. This approxima-~
tion is equlvalent to replacing the incident wave by the first
term in the expangion discussed a2bove. This treatment 1s valid
provided that the radius of the bubble is very small compared to
the wave length A,

The physical picture assoclated with this analysis is
that the bubble cannot be in equilibrium with an oscillating
pressure unless the bubble itself is pulsating. The magnitude
of thls oseillation, and the amount of radiation scattered, is
determined by the boundary condition that the pressure and vel-
ocity Just outside the bubble must be the same as those Just
inside. To express these condltions in a more quantitative form.
expressions mus:t be introduced for the pressure and velocity both
inside and outside the bubble. Let P, represent the pressure in
the incident sound wave, which in this approximation is taken to
be a functlion of the time only, not of position. The dependence
of P, on time is given by the equation

Py = Bo'e’ " (1-1)

where 6 1s the angular frequency of the sound wave. In general,
primed quantities will be used throughout to denote the value of
a particular quantity when t is equal to zero.

The pressure inside the bubble may be denoted dby




P, * py, where P, 1s the hydrosta:ic pressure. 1In general,
constant pressures will he denoted by capital letters, while
small letters will be used for oscillating pressures, To the
same degree of approximation as before py may be assumed to be
the same at all points inside the bubble at any one time;pron
vided that the wave length of the sound in aif is much greater
- than the radius of the bubble. The oscillation of the bubble
will produce an external velocity Vo1 and an external pressure
Pe Which must be added to Po + Yo to give the total pressure in
the liquid. Both v, ané Pe will -rary with r, the distance from
the center of the bubble.

In this notation the two boundary conditions, express-
ing the equality of nressure and veloclty cn the two sides of the

bubble surface, becoune

) P PG(R) = P4 ’ (1-2)
Vo (R) = %n;t_, , (1-3)

where R 1s the radius of the bubble. In addition, Vo and p, are
determined from a velocity potential ¢ by the usual equations

Vg = %% 5 (1-4)
P, = -e2¢ , (1-5)

For spherically symmetrical oscillations we have

RISEON

>

¢ (1-6)

-
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yielding for v, and p, the expressions

R i(wt-kr) -
Ve ;—5(1"'11{1')9 3 (1-7)
o = zleangt @) (1-8)
e T

where k 1s 2%/A and A is a constant; r is of course the distance
from the center of the bubble. ,

Since dR/dt may be expressed in terms of Py if the
nature of the gas in the bubble is known, the boundary condi-
tions (1-2) and (1-3) may be used to eliminate Py and to deter-
mine the constant A in equation (1-6). It is clear that this
constant gives the Intensity of the scattered radiation. Since
the flow of energy H per square centimeter corresponding to a

sound pressure p 1is

7
H=2_ ,
Pc
where ¢ 1s the velocity of sound and where the bar denotes an

average over time, 1t follows {rom equation {1-~8) that the total

flow of energy in the outgolng or scattered wave at a distance r

is 2
s, = 8 2 ROPIZ (1-9)

where |Al denotes the absolute value of the complex quantity A,
and H8 1s the flow of energy per unit area in the scattered wave.

We shall let o; denote the "cross-section" of the bubble for

‘scattered radiation, In physical terms, the energy appearing in
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the scattered radiation is equal to the amount of energy in the
incident beam which passes through an arsa c; perpendicular to
the beam, In the present case, the energy in the incident beam
passing through unit area is po“2/2gc, and therefore

EE el LY ¢

and with the use of equation (1-9), this gives

22
G = EEB . (1-11)

Po

We may also introduce a coefficient of extinction o,
defined as the cross-section for extinctlon of the inclident radia-
tion. The extinction includes both scattering and absorption and
may be determined from the total work done on the bubble by the
incident sound wave. The work done by P, On the bubble per unit
time, per unit area may be expressed as the product of the real
parts of Py and of the velocity dR/dt of the bubble surface.

Since p," 1s real by definitlon, the average rate of work done

on the bubble is
W = -4xR°p_’ GoSutRNAR/AL) (1-12)

where ® denotes the real part of the following quantity. From
equation (1-3) dR/dt equals vb(R); to the same approximation as

before. we may write in equation (1-7)

(rruR)e~ MR = 1 4 k2R2 (1-13)

.
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Since k°R® 1s of the same order as terms already neglected,
dR/dt becomes |

E=-v@® = ;%em; - (1-14)

and the real part of v (R) then becomes -R(A)coset/R2, plus a
term in sinwt. If this value is substituted in equation (1-12)

we have

W= mo'Q(A) cosz(at) s (1-15)

where the term in sinwt has been neglected, since its average
value 1s zero. The intensity of the incident sound multiplied by
the "extinetion" cross-~section ¢, is equal to the total work done

. on the bubble. Hence as in equation (1-10)

ARG
V= 2pc (1-16)

Since the average value of cos%»t is 1/2, we have finally for 5

_ 4xpc :
g = oA . (1-17)

Equations (1-11) and (1-17) are quite general, and may be applied
in any case such that 2mR/A is much less than unity.

It remainyg only to find the value of A, This may be
done by the use of the two boundary conditions (1-2) and (1-3).
First, however, we must express g%,in terns of Pye This relation-
ship follows from the assumed equation of state of the gas in the

bubble, As before we may write
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p, = pyrelot | (1-18)

If the conditions are assvmed to bhe wholly adiabatic, that is if
the conduction of heat from the bubble into the water is neglected,
and if the amplitude of oscillation of the bubble is small, we
have the equation

dpy /P, = -YdV/V", (1-19)

where V is the volume of the gas in the bubble. If isothermal
conditions are assumed, y must be omitted from equation (1-19).

The rate of change of V is obviously
dv/dt = 4nR2dR/dt (1-20)

where R 1s again the radius of thz bubble. Equation (1-18) may
be differentiated to yileld

dpi iwt |
—_—— i . =
3t iupi e ° (1-21)

Equation (1-19) may be written

dp
291 _ gy . (1-22)
P, @ -V ab |

If equations (1-20) and (1-21) are substituted in equation (1-22),

wWe have
~iwV '
i L (1-23)
4wTR Po

Since the volume V 1s given by
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¢ = A3, (1-24)
3

equation (1.23) may be written in the form

i M

3\/ Po ° ( 1“'2 5)

i

We may now write down the boundary conditions (1-2) and
(1-3) in terus of rq4" and A. Using equatlen (1-1) for P,y SQua-
tien (1-8) for p,, equation (1~18} for Py equation (1-14) for v,

and equation {(1..25, for di/ct, we have

pt = p l - A R (1-26)
A JRORey T (1-27)
2 ?’Ypo

These twe equaticons may be used te eliminate pi“ and to solve

yor A, which beccmes

~JRp " ow
A = 2 l
o -1kR 3an ( (1-28)
3 w2R§
If we define the following quantities:
w? 32 , (1-29)
a- e R2
and
a = kR = ,Zli,l! 9 (1430)

and if we expand the exponential in equation (1-28), reteining




- 11 -

only the first term, A becomes

iRpo’_/Pg)

A = e
E% « 1 + ia

. (1-31)

If equation (1-31) is used in expression (1-11) for a;, we find
wipd 2 p 2

1
g - 72 X 8 ~Z ] (1-32)
SRS ey
which yields )
2
= 4n R ) (1-33)

T

The value of c; found from equation (1-17) is identical with

S .

that found for o, since in this ideal case there is no absorp-
tion.

Since k equals @/c, equations (1-29) and (1-30) may be
combined to give'the result

- &)
R (1-34)
where '
a, ={3_Y.:JZ],1/2 o« (1-35)
e )

The quantity a is the value of a, or 2«R/\, at resonance- for air

bubbles 1n7;ater at atmospheric pressure at 60°F, equation (1-35)
yields

=1.36 x 202 (1-36)

calculated for a scund velocity of 1.49:105cm/aec.
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Equation (1-33) is represented graphically in Figure
1, where 1og¢§/m32 is plotted against a. The solid line re-
presents the adiabatic case, with y = l.4; the dashed line re-
presents the isothermel case, in which Y 1s Teplaced by unity,
From equation (1-29) it is evident that the resonant frequency
is decreased by a factor of 7;/2 when lsothermal conditions re-
place thz adiabatic ones. Since, moreover, a; is equal to
4RR209/k6)4 in the long-wave-length, or Rayleigh, region - see
equation (1-33) - the scattering cross-sectlion is greater in the
isothermal case by a factor of y°, The detalls of the transition
between adiabatic and iscthermal conditiogs are coptained in the
results of the next section. Figure 1 1s essentially the same
as one given by Duvall.3

It is evidenf from Figure 1 that Ty is enormously
greater at resonancé than it is elsewhere. From equations (1-30)
and (1-33) it may be seen that the value of o, at the resonant
peak 1is )?/ﬂ', corresponding to scattering of the energy incident
on a sphere of radius A/u', Since a 1s 2xR/A, it is evident from
equation (1-36) that A is roughly 400 times the value of R at res-
onance; the scattering of sound from an ideal bubble is in some
circumstances enormously greater than would be expected from the
geometrical oross-section of the bubble, It should be noted that

3. Memorandum For File - M40 - University of California, Division
of War Research, S by Solid Particles
and Alr Bubbles, by George B, Duvall, February ll, 3.
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the radius at which a bubble resonates may also be deduced3

from relatively simple considerations, involving only the effect-
ive mass of the water immediately surrounding the bubble and the
stiffness of the air in the bubble.
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II. SCATTERING AND ARSORPTION OF SOUND BY AN ACTUAL RUBPLE.

The results of the previous section are valid only in
the 1deal case, in which there 1s no dissipation of energy. In
an actual bubble oscillations will be accompanied by a loss of
energy, partly through viscosity, and partly through the loss
of heat from the bubble into the fluid. In addition, the presence
of surface tension will modify the results. The boundary condi-
tions in the preceding sections may readily be modified to take
these effects into account.

The presence of heat éonduction modiflies the equation
of state so that dp;/P_ is no longer equal to -ydV/V. As pointed
out i1n the last saction, when the conductlion of heat 1s so com-
plete that isothermal conditions prevall, dp3i/P, is equal to
-dv/V. 1In the intermediate case, however, dpi/P° is no longer
in phase with ?dV/V; it is this difference in phase that givaes .
rise to the dissipation of energy.

This effect may be simply described in physical terms,
As the bubble 1s compressed the temperature rises; when the rise
of temperature is appreciable, heat conduction is important and
the bubble tends to cool off even beforo expansion has started.
When maximum compression is reached, the temperature will be de-
creasing as heat flows from the bubble into the water, It is
clear that the maximum temperature will be reached somewhat be-

fore maximum compression, and that the temperature of the bubble
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if ) and R are constant. If W is constant, while R satisfies
equation (1-29) for a resonant bubble, K2 varies as POZ. Results
similar to those of W111152 were found independently by Pfriem4
and Saneyosis. Certain of the assumptions made by Willis and
others have been examined critically by Herring6, who finds that
they are valid in the cases of practical importance.

When K 1s equal to or less than 2, e and @ are given

to within one percent by the expansions

4
. =Y - SX;I.L)‘;_ 2=
3 ’ (2-5)
2 4
U D) D SR )
B % 1-m51 (2-6)
while for K equal to or greater than 5 we have, to the same
accuracy,
o = 1 + ﬁ%ﬁ y (2-7.
= lL).-l -..2.. -
Values of o and B for a wide range of K are shown in Figure 2,

6

taken from Herring's paper-. As expected, o increases from 1

to Y as R decreases, while [, which gives the dissipation arising
from heat conduction, has its maximum value in the transition re-
gion and vanishes for both very large (adiabatic) and very small

(isothermal) bubbles.

4, H. Pfriem, Akustische Zeitschrift, 5, 202, 1940.
5. Z. Saneyosi, Electrotechnical Journali 5{ v. 49, 1941.
ss

6, C. Herring, Comments on the Report "D pation of Energy
due to Presence of Air Bubtles in the Sea," by Willis.
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The presence of viscosity in tﬁe surrounding fluid
also produces a difference of phase between the pressure and the
velocity at the surface of the bubble, with the result that more
energy 1s required to compress the bubble than 1s regained in
the subsequent expansion.7 In the presence of viscosity, momen-
tum is transmitted from one reglon of a fluld to another moving
at a different velocity; aﬁ element of fluld moving rapidly in
a particular direction tends to transmit 1ts momentum to other
elements of the fluid. In the present case, the efféct of vis-
cosity 1s perhaps difficult to visualize, sinqe the viscous
forces are approximately zero both inside and outside the bubble.
The viscous stresses, which give the flow of momentum in different
directions, do not vanish in the liquid outslde the bubble, how-
ever. The point is that although momentum is flowing through
the liquid, each small element receives as much as it loses, so
that there is no net force on any small element of the liquid.

At the surface of the bubble, however, the presence of
viscosity in the 1liquid will produce a flow of momentum across
the surface 1ntq the gas, and this flow will not in general bs
equal to the corresponding flow in the reverse direction. This
flow must be counterbalanced by an equal but opposite difference
between Pi and P, + Pgs from which the dissipation of energy may

7. An evaluation of the viscous damping of air bubbles in water
was given by A, Mallock, Proe, Bg¥. ggg, A! 84, p. 391, 19l10.
His formula for the dissipation of energy 1s apparently in error

and should be multiplied by a factor of 4w/3.
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be calculated.
More quantitatively, in cartesian coordinates the

stress tensor pgy, which is the flow in the s direction of

momentum in the t direction may be written8
v, 9V, (2-9)
(f’ }u’ 37 )J +/*(‘5';" + —)";:) :

where p 1s the total pressure and where s and t may each assume
the values 1, 2, and 3, corresponding to the x, y, and z axes,

respectlvely; also

1 1f s
5‘ -

2-10
st (0 if s ( )

4+ U
ct ot

In the present case the velocity 1s wholly radial and it 1s only
the flow of radial momentum across the surface that is important;
this quantity may be denoted by the symbol Q. Equation (2-9)
then becomes

Q= -p - %% (rPv) + 28 | (2.11)

A}

Inside the bubble, the coefficient of viscosity u may
be written”pa. If the temperature is assumed to be uniform, the

bubble expands uwniformly, and

=§'§% ) | (2-12)

8. Lamb, Hydrodynamics (Cambridge U. Press, 1932), p. 574.
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With this substitution we find thét Q 1s equal to ~p inside the
bubble, corresponding to the usual assumption that viscous effects
vanish for uniform expansion or contraction of a fluid. If Pi

denotes the average pressure inside the bubble, then

Outside “he bubble, we may take equation (1-14) for e and since
the total nressure » outside the bubble is the sum of the hydro-

static pressure P the inecident sound pressure po,'and the

0°?
scattered cound pressure p,, Q. becomes

ei’:lt

= o gt = = R e -
Qq LIS P 3 e (2-14)

At the surface of the bubble Qi and Qe would be equal

except for th: pra

J2

ence of surface tenslion, whieh contributes a
term -2T7/R to be added to Qe, where T is the surface tension per

¢m at the liquid-gas interface, The boundary conditicn (1-2) now

tecomes
i
- 2T Ae
Pi+Pi—Po+Po+pe(R)+-§"ﬂL‘;3‘_'s (2"15)

where the subscript e has been dropped from the coefficient of vis-
cosity for the liquid. '
‘hen equation (2-15) is averaged over time, there results
the familiar equation
Pi = Po + 2T/R , - (2-16)
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expressing the fact that th2 surface tension increases the
average pressure within the bubble. The time-dependent quan-

tities in equation (2-15) yield the relationship

) 4 2TP1Y (a-i@)  4uh
i = p 9+ p '(R) + onbl. (e=i) | Awd 2-1
Py’ = Py" F ope’ () RP, ¥ w3 (2=17)

where equation (2-1) has been used to determine dR/dt in terms
of D4 58S in equations (1-19) through (1-25),, and thus to determine
the time-dependent part of 1/R.

In equation (2-17) we may now use equation (1-8) to
eliminate p '(R), and equations (1-3), (1-14), (1-18), (1-20),

and (2-1) to eliminate v _‘, and solve for A. Since .32 is always

i
less than 2 percent of ot2, we may neglect (@/&)2 as compared to

unity,9 in whieh case A may be written in the Torm

iRp _*/Qec.

A= ‘
;2 - ok
L™ .1+ 43 Seich
092

3P,
w2 @l 4 2L 1_%),' , (2-19)
& RQ(’u.l ol v/
or
szwzg
T o o (2-20)

- et St G G D W G o O W s

9. I£ (9/«.)2 I1s not neglected, the resonant peak occurs when
(©/4)° equals «/(e2+ @) if surface tension effects are neglected.
The contribution of heat conduction tc the damping term & at reson-
ance is accurately @/« , however, as in equation (2-22). In the
paper by Pfriem (ref. 4;, Filpgures 2 and 3 give values of p/x and
o/ (¥ +p2) as functions of K.
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where w, and « are defined in equations (1-29) and (2-2), res-
pectively, and where

g=1+§;(1_3‘¥;)' (2-21)

When the surface tension T is negligible, g is equal to unity.
The "damping constant" & is given by

2
:_)'= Bpa B ( B
It it~ AR

where a equals kR, or 2% , as before, Since § is of primary
importance near resonance, we shall be interested primarily in
Jr’. its value at resonance; from equations (2-20), (1-29), and
(2-21), we find

1/2
5. o M & L ) = g 9 (2"23)
T 3~(P°8 ah &1/2

where
== - of ) ( 2- 24 )
h=1- g% %p'o'h'r"" |

The quantity J, 1s the relative half-width of the resonance peak
obtained when elther ¢ g OF Ty is plotted against the frequency v
+
i.e.y ~ 5;_/2 is the value of (/- z/r)/;é, at which ¢ and o are
each equal to one-half their peak values.
The scattering and extinction cross-sections may be

found from equation (2-18) for A and from equations (1-11) and
(1-17); we find

_c_-% = - L. . (2-25)

wR (tié_ 1‘)2 +52




O . 49 /o (2-26)

R 1 o 2
W

It 1s also convenient to define an absorption cross-section, o,
which is the difference between the extinction cross-section L
and the scattering cross-section, Oy - From equations (2-25),
(2-26), and (2-22), it follows that
o, . 4 iSph + Ml
e R¢ (g‘ _ 1)2"_ CS.&
vW

' (2-27)

It may be snowr that the Tirst term in the numerater gives the

same result as was found by Willis,2

10

while the second gives that
deduced by Epstein, arcvided that surface tension is negligible
3¢ that both g ard h may be set equal to unity.

Theses results mey be illustrated by the snecific case
of an 2ir bubble in vater at a pressure of one atmosphere, for

which the follouing constants may be useds

p = 10%ynes Y T 140 P=1gm_
0 2 ? 3 4
g oA 11}
K= 56x107°cal | 2, =0.24 cal  p = 1.29x1073 gy
cm sec gm * ‘1 om3 2
M= 1.0x10"° polse T = 75 dynes

LR P e k]

10. P. S Epstein The Stabllity of Air Bubbles in the Sea, and
the Effect of Bubbfes and Particles on the Extineticon of Sound and

Light in Cea Water, NDRC Report No. C4-sr30-027, Sentember 1, 1941,
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uﬂ v(ke }

where
B = 4.6 x 107%/ke)

and #(kc) is the frequency in killocycles. The contribution of

viscosity to 5; - eguation (2-23) - becomes

4, e
A% = 6.0 x 1077 g 77 (ke)
3rP.8 g

The ccaputations based on these values have been used
to plot Flgures 3-5. In Figure 3 are shown valueSQ; for differ-
ent resonant frequencies, for an air bubble in water at atmos-
pheric pressure. Since the extinction is proportional at resonance
to Sr’ 1t is useful to split Jf up into three parts, corresponding
to the three terms in equation (2-23), each giving the extinction
arising from a particular source. The three dashed curves represent
the different terms in equation (2-23), while their sum, shown by
the solid curve, represents the total value of 5;. When the hydro-
statie pressure PO is increased, the radiation damping increases

1/2
as ?O

, the viscous damning is inversely proportional to PO, for
a fixed resonant frequency, while the heat-.conduction damping at

resonance reaches the same maximum value bul at a frequency which
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varies as Poz. For a bubble at 300 feet, corresponding to a
pressure of 10 atmospheres, the damping constant Ji will be
practically equal to .043, the value arising from radiation
damping, for frequencies less than 100 ke.

It is evident that the effect of viscosity is quite
negligible for resonant bubbles at frequencies much less than
1000 ke, At higher pressures the effect of viscosity is even
smaller.

Figure 4 shows values of log 5;/wR2 as a function of
“Ww  for sound frequencies of 6000, 24,000, 200,000 and 5,000,000
cycles per second, and for a hydrostatic pressure PO of one atmos-
phere. The increasing width and decreasing height of the reson-
ance peaks as the frequency is increased is a fesult of the in-
erease of 5} with frequencyg the shift of the resonance peak to
lower values of wAJ% and the increase of g for low values of
w%»o as the frequency 1s increased results from the change in £
depicted in Figure 2, and is a result of the transition from
adiabatie to isothermal conditions. For the highest frequency,
the effect of surface tension becomes important in increasing the
stiffness of the bubble, and the resonant angular frequency w,
becomes considerably greater thancao.

In Figure 9 are plotted values of the logarithm of the
absorption cross-section ¢, divided by the geometrical cross-

section wst, again as a function of u%ab and for a pressure of

one atmosphere. Near resonance, the curves are again determined
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by the values of Jr, shown in Figure 3:; as Jr increases, the
absorptlon cross-section at resonance actually decreasses, but the
resonance peak becomes correspondingly wider. '

Far from resonance the value of J for other values of
the frequency becomes important. The absorption 1s of course
the sum of two effects, arising from heat conduction and vis-
cosity, respectively, corresponding to the two terms iin equation
(2-27). For bubbles very much smaller than the resonant size, or
for frequencies of several hundred kc or more, W will be less
than 2, equation (2-6) may be used for @ and the ratio of these
two terms becomes a function of the bubble radius R only, inde-
pendent of the frequency. For an air bubble in water at a pressure
of one atmosphere, the two terms are equal, and the absorption due
to viscosity equals that due to heat conduction when R equals
3xlo"4cm, cofreSponding to a resonant frequency of 103 ke, or one
megacycle. For bubbles greater than 3x10"4cm in radius viscosity
will be negligible compared to heat conduction, unless the bubble
i1s so much larger than the resonant size that § agaln becomes very
small, The absorption produced by such large bubbles 1is usually
much less than the scattering (see Figures 4 and 5) and is not
generally important.

The results derived in this Section are based on two
fundamental assumptions, - firstly, that 2w R/\, the ratio of the
bubble circumference to the wave length of sound is less than

unity; secondly, that aV/V, the relative change of volume of the
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bubble, is small. The firs% condition restricts the analysis

to relatively small bubbdles, The chief interest 1lies in bubbles
of resonant size or less, and since the radius of a bubble which
resonates to sound of a particular frequency is much less than
the wave length of the sound, this restriction is not serious.
The second condition places a restriction on the intensity of the
incident sound.

To examine this restriction quantitatively it is
necessary to derive a value for AVﬁax/V where Avma denotes the
maximum value of AV in the course of the pulsation. If pi’ is
found from equation (2-17), substituting equations (2-18) for A
and (1-8) for pe’(R), then equation (2-1) yields, after some

simplification, and with the neglect of surface tension,

~omax _ Pt oo 1 | ; (2-28)
Y

in deriving this equation (pﬁx)2 has been neglected compared to
4

unity, and 52“5,1;' has been set equal to 5;2 in the denominator,
since this term is Important only near resonance,

From equation {2-28) it follows that when w is much less
than.u} - that is, in the long-wave-length, or Rayleigh region, -
‘AVﬁax/V is small if the sound pressure po“ is much less than the
hydrostatic pressure Po. This is approximately the same condition
that the sound-wave pressure be less than the cavitation limit,

Wren w is much greater than W'y the sound pressure p ' can be as
o
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great as Po without making ‘Avﬁava as great as unity.

At resonance, however, Avﬁax/v 1s equal to or greater
than one, according to equation (2-28), when po“/Po is roughly
equal to or less than the damping constant érro From Figure 3
the value of §_ at 20 ke is about .08. As will be shown in the
next Section, the observed value of ¢§r at this frequency i1s
about .20, In elther case, the relative change of volume is no
longer small when the maximum incident sound pressure pO“ is
one-tenth of the hydrostatic pressure Po‘ When po' equals
Po the sound intensity is approximately 190 db above the refer-
ence level of ,0002 dynes/cmzn Hence the theory developed'here
cannot be applied for resonant bubbles in a sound fleld above
170 db. At lower frecuencles this limliting intensity becomes
even less, owing to the decrease of éfr with decreasing frequency.
Such intense sound fields are found cnly in the close neighborhood
of sound projectors.

For resonant bubbles close to a powerful sound pro-
Jjector A‘vmax/v conputed from equation (2-28) becomes large
compared to unity and the phenomenon becomes quite different.

In particular the oscillations are no longer purely harmonic,
and begin to resemble those of a gas bubble produced by an ex-

11

plosion, The scattered radiation will tend to be generated

11, Theory of Pulsations of the Gas Bubble Produced by an Under-
water Explosion, by C. Herring, NDRC Report No. C4-sr20-010,

dated October 4],
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when the bubble 1is at its minimum diameter and will be
composed of much higher frequencies than the incident sound
wave, resembling a series of shock waves rather than a sinus-
oidal pressure wave., The theory of this phenomenon would
presumably be quite different from that which has been devel-
oped in this paper.
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III. E NTAL DATA ON THE OSCILLATION OF A SING UBB

Some observations have been made on the oscillations
of single bubbles in a sound field. The theory in Section II
may be used to predict.‘wg,the frequency at which a bubble res-
onates, and also J,, the relative half-width of the resonance
peak found when the square of the amplitude of oscillation is
plotted against frequency., Experimental values of these two
quantities may, therofore, be usecd to check the validity of the
theory.

The first examination of resonant bubbles was that of

Minnaert,12

who derived equation (1.29) and confirmed its accur-
acy for bubbles with diameters between 3 and 6 mm. The bubbles,
when formed individually in a pail of water, produced musical
tones with frequencles of 1000 to 2000 cycles per second., The
pltch was determined by ear to within a fraction of half a tone,
using as a comparison standard a tuning fork with a frequency of
264 cycles per second. The mean error of this comparison was
estimated to be a fifth of a tone, The volume of each bubble
was determined with a gas plpette.

Measurements with bubbles of different sizes in liquids
of different densities confirmed accurately the theoretical rela-
tionship. As predicted, changes of temperature had no effect,
while changes of the type of gas in the bubble affected the pitch
only 1f y, the ratlo of the-specific heats was changed. If the

factor g/x 1s set equal to unity in equation (2-20), and the

12, M, Minnaert, Phil. Mag, 16, 235, 1933.
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value of ) 1is found from equation (:-29), with v equal to
o
1.40, the resonant frequency z/r in cycles per second may be

expressed by the simple relationship

1/2
V:BE.Q/M)/ , o
T R \ e

where R 1s the radius of the bubble in ecm and the pressure P0
is expressed in atmospheres. For various gases with Y equal to
1,40, the weighted mean of all 64 observations gave a value of
330 for the constant in this equation, The agreement betweeﬁ
theory and obser&ation is excellent.

A later theoretical paper by Swith!? discusses the
effects of surface tension. ©Swmith also points out that the
amplitude of osclllation at resonance is so great that other
sources of damping are probably important. The probabls des-
tructive effect of small resonant bubbles on any solid matter
nearby 1is also briefly discussed. |

Meyer and Tamm‘s14 quantitative work at supersonic
frequencies not only provides further confirmation of equation
(3-1) for the resonant frequency, but also evaluates the damp-

13. F. D. Smith, Phil. Mag. 19, 1148, 1935. Smith's equation
takes account of the difference between Py and P_, the mean pres-
sures inside and outside the bubble, but neglectg the change in
surface tenslon as the bubble osciliates, - see equation (2-17) -
and is therefore not quite correct,

14, E, Meyer and K, Tamm, Akustische Zeltschrift, 4, 145, 1939.
Avallable in English as Translation 109, David W. Taylor Model
Basin, April 1943.
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ing constant 61” Two frequency ranges were investigated, from
1.5 to 6,5 ke, and from 21 to 30 ke.

In the lower frequency range, a photoelectric method
was used for determining the amplitude of oscillation of the
bubble., A single air bubble was illuminated optically and the
scattered 1light measured hy a photoelectric cell. ¥hen sound
was produced by an electromagnetic telephone the oscillation of
the bubble varied as the frequency varied and the alternating
EMF produced by the photocell varied correspondingly. Variation
of the sound pressure with frequency in the absence of the bubble
was determined and allowed for by separate measurements with a
hydrophone. The bubble radius was determined visually with the
ald of a microscope. The results gave for each bubble the fre-
quency of maximum amplitude as well as the half-width of the
resonance peak.

For the higher frequency range, two methods were used,
both employing an electrolytic method for producing the gas bubbles,
and a microscope for measuring the radii, A visual optical method
was employed to determine the frequency of maximum oscillation of
a single bubble adhering to a small platinum electrode in water.
This method could not be used to give a value for the relative
half-width, Err, For more accurate work, a single bubble was
caught on a small wax sphere fastened to a platinum thread 1 cm

2

long and 1.5x10°° mm thick hetween the poles of melectromagnet.

VVhen the bubble oscillated in a sound fleld, the ribbon moved
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back and forth and in the magnetic field; the alternating EMF
generated was then amplified to glve a measure of the amplitude
of oscillation of the bubble. The presence of numerous reson-
ance peaks at different frequencies, even in the absence of the
bubble, made it difficult to attach much importance to the change
of ENMF with frequency. However, from the variation of amplitude
with-bubble radius at a given frequency, it was found possible

to determine both the'radius of the bubble at resonance and the
width of the resonant peak.

The values of the resonant frequency for bubbles of air,
hydrogen and oxygen in water were found to agree in all cases
with equation (3-1) within the experimental error, which on the
average vas somewhat less than 5 percent. Tor a resonant bubble
of oxygen at 30 k¢ & equals 1.06, while g is 1,01; the resonant
frequency, in accordance with equation (2-19), should be some 3
percent less than the value given by equation (3-1). This differ-
ence is too small to be shown in Meyer and Tamm's work. For a ‘
resonant hydrogen bubble at 24 ke, however, « is 1.18, while g
is still 1.01, and the resonant freguency should be 9 percent
less than the value computed for a wholly adiabafic oscillation.
The observed frequencies for hydrogen bubbles at frequencies of
27, 32, and 35 kc are only 3 to 4 percent less than the values
given by equation (3-1). In view of the inaccuracy of the data,

this discrepancy is not serious. One may conclude that observa-
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tions definitely confirm the approximate validity of equation
(3-1) for frequencies from several thousand cycles up to some
20 kc or more, but that no adequate data are avallable to prove
or disprove the more general equation (2-19).

The determinatioms of O, py» on the other hand; are in
definite disagreement with the theory. As shown in Section II,
the effect of viscosity should be wholly negligible for resonant
gas bubbles in water at frequencles of 30 ke or less. Hence,
when g is unity, Jr should be equal to the sum of ao/oL]‘/ 2 and
f/x, Meyer and Tamm express their results in terms of 90, the
logarithmic decrement per cycle of a freely resonating bubble.
Since Oo equals n'c);, the values of Jr are readily determined.

The observed values of 3 2 and the theoretical curves for oxygen
and hydrogen bubbles in water are shown in Figure 6. In the re-
gion 1.5 to 7 kc the values were found from air bubbles in water,
which should in theory agree closely with the curve for O2 bubbles.
At the higher frequencies, bubbles were produced electrolytically,
and it is not stated by Meyer or Tamm whether the values of Sr
refer to oxygen or hydrogen bubbles. The two theoretical curves
differ because of the much greater heat conductivity for hydrogen
than for oxygen.

The discrepancy between theory and observation is evi-
dent at once from this figurs. The observed values of J , 8Te
apparently much greater than can possibly be explained by heat
conduction losses. The maximum value of P/ is 0,115, which is
the greatest contribution to Jr which heat-conduction losses can
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in theory provide, when surface tension effects are unimportant.
Some other source of dissipation must probably be invoked to
explain values of <§r as great as 0,25,

It is not certain ﬁhether this additional dissipation
actually took place in and around the oscillating bubdble, or
whether it arose from the particular conditions of the experiments.
The oscillation of the élatinum thread in a magnetic field, for
instance, may have produced considerable damning if the external
resistance was not sufficiently large. On the other hand, it
has been suggested by Pekerisl® that a thin layer of high viscos-
ity may exist at the surface of an air bubble in water. A high-
superficial viscosity 1s suggested by the fact that air bubbles
rise through water at the same rate as solid particles of the
same buoyancy. If such a layer exists, 1t might concelvably give
rise to the observed high values of the damping constant <5r.

Figure 6 is very similar to Figure 3 in the paper by
Saneyosis, except that here the accurate values for P/« have
been used instead of the approximate formulae, A similar plot
was published as Figure 4 by Pfriemé, but his theoretical curve
is drawn too high, owing to an oversight in the derivation of his
equation (21). Pfriem discusses other possible sources of dis-
sipation and concludes that they are all negligible, except

possibly for the periodic condensation and evaporation of water

15. C. L. Pekeris, The Rate of Rise and Diffusion of Air Bubbles
In Water. NDRC Report No, C4-sr20-326, October 22, 1942,
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on "condensation centers" throughout the volume of the bubble.
The results of Meyer and Tamm on the value of 5} for
air bubbles in glycerine could be used to check the theory if
the viscoslity of glycerine were accurately known. Unfortunately,
this quantity varies markedly with the temperature, the value of
which is not given., The observed values of JI,in this case vary
from 0.083 at 2 kc to 0.118 at 4,6 kc. When the effects of heat
conduction and radiation damping are allowed for, these values
are consistent with a value of 4 for s+, the coefficient of Vis-
cosity; for glycerine this corresponds to a temperature of aho.r:
80°F, The range in frequency is not sufficient to demonstrate
whether or not the variation of JIJ when heat-conduction and
radiation damping have been allowed for, 1s strictly proportional
to the frequency as predicted by equation (2-23).
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IV. MANY BUBBLES OF THE SAME SIZE.

Vhen many bubbles are present in a sound fileld, two
complexities arise. TFirstly, interactions between bubbles may
alter the amplitude of oscillation of each bubble. Secondly,
the resultant sound field will be the sum of the sound waves
emitted by ail the bubbles, taking into account the phase of
each wave. 1In certain simplified situations, however, an anal-
ytical solution is possible.

The simplest case arises when the distance between‘
bubbles 1s always greater than the wave length of sound. In
this situatlon a bubble will affect adjacent hubbles only in
so far as 1t alters the value of the incident sound pressure
Py in their neighborhood, and thereby changes their amplitude
of oscillation. 1In addition, there will be a large difference
of phgse between the waves from different bubbles, and on the
average, the energy in the sound fileld may be found from the

sum of the squares of amplitudes of the different waves. As a

result, all questions of phase may be disregarded when the effects

of different bubbles are combined, and all intensities may be
added directly.

If there are n "widely spaced" bubbles per en3 and if
the scattering coefficlent per bubble 1s Ty then the energy
scattered by each bubble will be céI, where I 1s the flux of

energy ta the incident sound beam, in ergs per cm@ per second,




- 37 -

The total radiation scattered from a cubic centimeter will
then be ncéI, provided noy 1is small compared to unity; the
quantity nog may be regarded as the scattering cross-section
per unit volume. If the effect of absorption is also tgken
into account, the intensity of energy in the main beam will

then decline according to the law
I(x) = I(o)e n@s* @)X | (4-1)

provided that n(dé+0;) is constant., It is assumed in this equa-
tion that the beam is directed along the x axis.

Diffuse or multiply scattered radiation may, of course,
replace the sound energy in the direct beam. In faet if no sound
energy is absorbed the total flux of energy H must remain constant,
For the flow of radiation through a scattering layer of thickness
X a simple approximate solutibn16 is avallable for I(x), the

average at the point x of the radiation intensity in all directicas:

1(x) = 2H(1 + %’r) 5 (4-2)
where X
T = Sncrsdx o (4-3)

LS

The radiation flows in the direction of increasing x, or decreasing

I(x). 1If no, is constant, and a3 is zero, the sound energy H

e D TE M e A M NS T M am

16, A. S. Eddington, The Internal Constitution of Stars (Cam-
bridge U. Press, 192&), p. 322. For a more accurate plecture, the
"equation of transfer" may be solved by successive approximations,
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which leaves the far side of the layer is approximately

= I§§E . (4-4)
. 3no

If naéx is appreciable, the amount of radiation penetrating
thréugh the bubble layer by rltiple scattering will be very
much greater than that computed from the exponential relationship
in equation (4-1). Hence, absorption provides a much more effect-
ive sound screen than does scattering.

The effect of bubbles on a sound field may also be
computed in certain cases when the average distance between
bubbles is much less than a wave length. In this situation the
sound waves emitted by adjacent bubbles will be in phase, &and
will interfere constructively. A small isolated group of bubbles
crowded together in a sphere less than a wave length in radius
will, for instance, scatter very much more sound than would be
expected from a simple addition of intensities.

Before the effects of closely spaced bubbles can be
combined, it is necessary to examine whether the interaction be-
tween such bubbles affects the validity of equations (2-25) and
(2-27) for the scattering and abscrption cross-sections. These
cross-sections depend entirely on the amplitude of oscillation,
which 1s proportional to the quantity A. The dependence of the
amplitude of osclillation on the spacing between bubbles must be
considered separately for non-resonant and for resonant bubbles.

For frequencies far from resonance, the formulae for
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A developed in Section II should be valid even when the bubbles
are fairly close together. At a distance of 5R from such a
bubble, the time-dependent part of the external pressure will

be closely equal to po', the pressure in the incldent sound wave.
The kinetic and potential energies of another oscillating bubdble
placed at this point should bs very nearly equal to the corres-
ponding energlies for an isolated bubble with the same amplitude
of osclllation, Hence, the cscillation of such a bubble should
be largely unaffected by the presence of the other bubble SR
awvay. In fact for wave lengths greater than resonance, the
amplitude of oscillation is constant no matter how closely spaced
the bubbles may be, Fér wave lengths shorter than resonance,
however, the kinetic energy of oscillation and the external pres-
sure producing the oscillation will both be affected if the
bubbles are too clese. The ’ormulae in Sections I and II should
be accurate to within 10 to 20 percemt, however, when the average
distance between adjacent bubbles is equal to 5R. A mean separa-
tion of 5R between closest neighbors corresponds to a bubble den-
sity of roughly 3 parts air in 100 parts water.

In the case of resonant bubbles, another effect must be
considered. The fluctuating external pressure ih the nelghborhood
of a resonating bubble 1s so different from po', the pressure in
the incident sound wave, that two neighboring bubbles may be ex-
pected to have a large mutual interaction, In fact when N bubbles
are gathered together in a cluster small compared to the wave

length, and no other bubhles are present, the radiative damping
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constant for each is N times its value for an isolated bubble,
corresponding to the fact that for a source much smaller than
the wave length the emitted energy is proportional to the square
of the radiating surface,

When a uniform distribution of bubbles is assumed,
however, the contribution made by radiation damping to the value
of 5;_15 unaffected by the close distance between two bubbles.
The effects produced by the different bubbles give rise to a
refracted wave whose velocity may differ from the sound wave in
an undisturbed medium. If Po is taken to be the pressure in
the wave, resulting not only from the initial sound, but also i
from the superimposed wavelets emitted by the individual bubbles,
then the difference in phase between po’ and A will be correctly
given by the analysis in Section II and the radiation damping will
be the same as for an isolated bubble, This corresponds to the
fact, discussed below, that the total scattered energy is un-
changed by the spacing between the bubbles. Thus, even for reson-
ant bubbles the amplitude of oscillation for a given sound pressure
P, will be unaffscted by the presence of the other bubbles within
distances greater than some 5R, provided we include in p_ the
wavelets emitted by all the other bubbles, and provided the
bubbles are distributed with random uniformity.

Subject to all the limitations derived above, it is
possible to compute the scattering by adding together the scattered
waves produced by different bubbles. The resultant effect depends
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on the density of bubbles as a functlion of position. The
essential features of the problem will be treated if only two
types of distribution are considered: first a random, uniform
distribution; second a discontinuous change in the bubble den-
sity,

If the number of bubbles in each unit volume were
exactly constant, no scattering of sound would appear, since
there would be complete cancellatlion of the wavelets emitted
from different parts of the medium. In a random distribution,
however, statistical fluctuafions of density occur, and these
may scatter energy. The analysis is exactly analogous to the
scattering of 4ight by the atmosphere. Following.Fowler17, one
may calculate the density fluctuations to be expected in a given
volume, and determine the scattering from these. More simply
one may compute a time average of the radiation scattered from
a volume large compared to the wave length. As the different
bubbles move about, the relative phases of their scattered wave-
lets will vary, and as a result constructive and destructive
interference will be equally likely. The total scattered inten-
sity is, therefore, the sum of the Iintensitles of the indivijual
waves; the total energy scattered rier unit vélumewill dbe nd;I,
exactly as in the case where the bubbles were widely spaced. The

17. R. H, Fowler, Statistical Mechanics, (Cambridge U. Press,
1929), p. 154,
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absorption of sound also follows the same formulae in hoth
cases,

VWhen the density of bubbles changes discontinuously,
sound is reflected from the interface. This is simply the fam-
iliar case of reflection and refraction at the boundary of two
homogeneous media, and may be treated by similar methods. The
veloclity of sound in bubbly water may dbe found either by the
superposition of the direct and scattered sound waves, or by a
consideration of the compressibility of the air-water mixture.
The second method will be followed here because of its greater
simplicity.

In general, we have for c, the velocity of sound in a e

medium

P=d (4-5)

which may be written
o2 = dpédt g (4-6)
p/dat

The quantity p is given in equation (1-1). If the ex-

pansion and contraction of a unit volume is considered.

de - _pdl , ' (4-7)
i

where V is the sum of Ve, the volume of water, or any liquid
external to the bubbles, and Vi, the volume of the bubbles. The
average value of Vi 1s the relative amount of alr present, ty

volume, in the air-water mixture; this quantity, which will be
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denoted by u, is given by the relationship

W = nedeR3 . (4-8)

where n 1s the number of bubbles per om3, The quantity f will

be set equal to the density of the water, and u will be neglected

compared to unity. The results should be valid for u <.03, cor-

responding to a distance between bubbles of roughly 5R.
If equations (1-14) and (1-20) are used, equation (4~6)

glves

5 N .-mpgg eiwt

av
e{ E;E-g- = &rIIAeiwt}

. (4"9)

The constant A 1s given by equation (2-18); since also c¢ must
equal ¢, when n vanishes, we have

2 c 2

c = 0.
1+ —AEReZpT
S et 1) oS

. (4-10)

Equation (4-10)may also be written in the form

[ - Q 5 | ° (4-11)

Then quantity a i1s equal to kR, or 2xR/A j; the value of a at
adiabatic resonesnce, denoted by a,, is given in equation (1-36),
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Yor frequencies far from resonance, the imaginary
term in equation (4-11) may be neglected. For long wave-length
radiation, a  1s much greater than a, and

e = co o (4-"12)

This result is independent of the bubble radius. Even for 10"4

parts of air at atmospheric pressure per 1 part of water, c¢ will
be reduced to 62 pércent of its value with no air when « and g
are unity. For air bubbles in water whose radii are less than
1074cm, however, g, defined in equation (2-21), becomes rmportant.
Equation (4-12) is valid only for values of u small compared to
unity. A curve which shows ¢ for all values of u for bubbles

18

below resonance has been given by Wood; his curve neglects the

effect of surface tension, however.
For sound of short wave-length, ao/a is negligible and
c

c = Q

(4-13)

Equation (4-13) gives the perhaps unexpected result that when u
is equal to a2/3, ¢ is infinite, and for a greater amount of air,

no sound waves can he present in the medium, This effect may be

traced back to the fact that a bubble bigger than resonant size

has its greatest radius when the pressure 1s greatest; when there

18, A. B, Wood, A_Textbook of Sound (Macmillan, 1941), p. 362.
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are enough of such bubbles thelr expanslon more than offsets
the compression of the water, and dp/dp is negative. For
bubbles of twice the resonant size, with « and g equal to
unity, the critical value of u for which ¢ is infinite is
roughly 2x10'4, corresponding to a distance between the bubbles
some 30 times the bubble radius. When u becomes comparable with
unity, equation (4-13) is no longer valid, since changes in den-
sity become important, and in addition the amplitude of oscilla-
tion is no longer given by the analysis In Section II.

For normal incidence, the reflection coefficlent r at
an interface between two media of equal.e but different c is

equal to

¢y + c2}

Near resonance, however, equation (4-14) cannot be used. 1If we

2

write equation (4-10) in the form

w

a + 1ib , (4-15)

and solve for ¢ and §, the real and imaginary parts of c /c,

then =
€2 =2t /32 + 12 (4-16)
2 _carVa? 412 | (4-17)

2
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The imaginary part of co/c may be used to derive
equation (4-1l). The reflection coefficient r for normal inci-

dence*is given by

_ Ll_-_frﬁ_t%?. . (4-18)

T (2 + 3

Equations (4-11l) and (4-15) through (4~18) have been used
to compute values of r as a function of'o/hh for different values
of u, the volume of air per unit volume of air-water mixture, The
results are plotted in Figure 7. The values of « have been com-
puted for a frequency of 24 kc; for other frequencies of practiqal ,
interest the curves will not be very different. The theoretical b
values of & used in plotting Figures 3-5 have been used to com-
pute the values of r in Figure 7.

The values of r for very small u are of doubtful sig-
nificance, especially for the larger bubbles, since the average
spacing between bubbles becomes comparable with the wave length.

In such cases, however, the reflected energy is small compared
to the scattered energy. In fact the energy scattered from a
layer of thickness x will be equal to the reflected energy when

nogx equals r, or when

x =’-,\n(1”_l_)3 . (4-19)

for frequencles far from resonance, Thus if there is only one

*r is the fraction of the incident energy which is reflected.
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bubble, on the average, in a cube of length A4W , the scatter-
ing from a layer of thickness A will just equal the reflection
~found from equation (4-14). It is only for very small bubbles,
or great bubble densitles, that the reflected energy:determined
from equation (4-18) is important. The values of r for large

u are perhaps not precise, oﬁing to the effects described above,
but it is clear that the reflection coefficient is close to
unity when u is as great as 1072,

It should be noted that if bubbles of all sizes are
present, with radiil both less and greater than the radius of
resonance, the change of the sound veloclty will be less than
computed from equation (4-11)., In addition, if the changes in
bubble density are gradual, and extend over several wave lengths,
the reflection will be substantlally less than that computed
from equation (4-18).
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V. MANY BUBBLES OF DIFFERENT SIZES.

When bubbles are present in abundaunce in water, there
will usually be & wilde dispersion of bubble sizes., It 1s, there-
fore, of interest to determine the acoustical effects produced
by such a distribvution,

The effect produeced by resonant bubbles is enormously
greater than that arising fromw bubbles of cther sizes., TFor most
purposes the total reflection, scattering, and absorption of
sound will be obtained by integrating only over the resonance
peak in each case. This procedure will be followed first for
the absorption and scattering and then for the reflection pro-
duced by clasely spaced bubbles,

Let the number of bubbles per em3 with a radius betwsen
R and R + dR be denoted by n(R)°dR. 1If 8¢ and S, denote the
total scattering and extinctilon cross-sectlons per cubic centi-

neter, then from equation (2-17) and (2-18) we have

8. = Rz 4n ; ( 5_1)

] .
(B -5
o
- {n(R) 4RI dr/a . (5-2)
e w 2 5
(.15 - 1) + 3

w

[7,]
{

Unless n(R) is very much less for resonant bubbles than for those

—
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of other sizes, the integrals will depend primarily on a
narrow range of integration over the resonance peak, We may,
therefore, take outside of the integral all the quantitiles
which vary slowly in this region, giving them thelr value at
resonance., Also, the quantity S in the denominator may be
given 1ts value at resonance. A subscript r will agailn be
used to denote the value of any quantity at resonance,

If we also make the substitution

equations (5-1) and (5-2) yield

+

- 3

Ss = &R 1,n(l’{r) S = ’ (5-3)
=P 4l 5
+ o

i S A
8 = (5-4)
e H
%r 4= + Jr

these integrals have bgen extended to infinity for simplicity;
half of their value arises from the range from -J, to +dJ,,

the rest comes from values of u which are not much greater. The
integrals are equal to ®/2J, and with this substitution S, and
S _ become
¢ R _3n(R )

s, = 2__5___.:.. ; (5-5)
¢
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S = 21'2%311( ) . (5-6)

e a,
It 1s interesting to note that the total extinction cross-
section is iIndependent of 5;. The absorption cross-section
is simply

Sa = SG -SS ° e (5-7)

In a cubic centimeter of the water-air mixture, let u(R)dR be
the total volume of air contributed by bubbles with radii be-
tween R and R +dR, Then equations (5-5) and (5-6) yield

_ 3wu(R,,)

)
s 25}

’ (5-8)

= M ° (5'9)

e~ 72
ar

Let us define ur as equal to Rru(Rr)f If u(R) were constant
from R = 0.5R,, to R = 1,5R,, and zero outside this range, u,
would be the total volume of air per unit volume of the air-
water mixture, The quantity u, is the volume of resonant
bubbles per cn3 per unit interval of log R. Equations (5-8)
and (5-9) yleld, finally

= 3" -10
SS = E% 9 (5 )

T

S = E:W_‘IL » (5-11)
e 28 Rr
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If the results of Meyer and Tamml4

are used, S}Rr is roughly
constant for frequencies from 5 to 25 ke, and equal to 3°6x10'3;
a,, on the other hand, equals 1936x10'2(g/u)1/20

' When sound 1s penetrating a medium with a particular
value of S,, the intensity will decay exponentially at the rate
exp(-Sex)a For most purposes it ie convenient to express this
attenuation in terms of decibels per yard, a quantiﬁy which will
be denoted by Ke; Ks will be used to denote that part of the
attenuation which arises from scattering. Numerically equations

(5<10) and (5-11) yield

- )
K, =52%x100u, (5-12)
x = LAxiol (9‘)1/ 2w, . (5-13)
e Rr g

' At 24 ke, Rr equals 1o4x10“2cm, o and g equal unity, and K.e is

1.0x107 .+ If the theoretical formula for J, is taken, K/ 1s
reduced by a factor varying from about 2/3 at 5 ke to 1/3 at
30 ke. Equation (5-13) fpr Kg is independent of any assumption
about damping constants, however, and should be accurate.

While for the calculation of attenuation, it i1s use-
ful to express Kg directly in terms of db per yard, the scattered
sound 1s most convenlently found from Ss’ the scattering coeffi-

ciént per unit volume. This same quantity has also been denoted19

19. San Diego Reverberation Group, Reyerberation at 24 k¢, NDRC
Report No. C4-sr30-401, November 23, 1942, The values of m given
by the San Diego group are in terms of feet rather than yards. In
equation (5-14? the right hand side must be divided by 3 if a com-
parison is to be made with the numerical values given in the San
Diego report.
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by m, and called the "volume scattering coefficient®. Since
e'Ss is equal to lo'KS/lo, Sg 1s equal to K3(logy10)/10, and from
equation (5-12) we have

m=Sg =1l2x 105 w, yard~l (5-14)

For some purposes it may be useful to know the average
value of céArRz and cz/szc This information makes it possible
to pass from the total geometrical (or optical) cross-section in
the 1line of sight to the total absorption and scattering of sound.

The total geometrical cross-section S, per unit volume depends

g
very much on the assumed distribution of bubble sizes., If u(R)

is assumed constant over the range from Rr/2 to 3Rr/2’ then

Sg -1‘-;?: loggd . (5-15)
If n(R) is assumed constant over the same range, 13/16, or 0.81,
replaces the numerical constant % logg3, or 0.82. If a much
greater number of very small bubbles is assumed, Sg will be much
increased for a given u . If equations (5-10), (5-11), and (5-15)

are taken for Sg, Sg, and Sg, the desired ratios become
S
gﬂ. }‘__ = 5_33 ' , (5-16)

S 1

provided that g and o« are equal to unity. Thus if the bubbles
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present in a reglon have a total cross-section of one per unit
area, corresponding to a diminution of a light beam by a factor
1/e in passing through the region, the acoustical absorption
will be 4,2 x 10° times as great, giving a total attenuation of
30 db through the region. This result is valid, of course, only
if the distribution of bubble sizes resembles at least spproxi-
mately the distribution used in deriving equation (5-15).

While the attenuation Ke may be interpreted directly in
terms of observed quantitiles, KS and SS are not always Qirectly
applicable to observational data, owing to the comple:iities aris-
ing from multiple scattering., In the general case, an exact solu-
tlon depends on the equation of radlative transfer, which has
been extensively studled in the astronomical literature.

In two speclal cases, however, S, has a direct obser-
vational significance. On the one hand, 1f the total attenuation
throughout the bubble-filled region 1s small, that 1is if Kax is
small, where X 1s the thickness of the region, then ssx or mX
will be the fraction of the inecident radiation which 1s scattered.

Oon the other hand, if the scattering coefflclent S5 is
very much less than the corresponding attenuation or extinction
coefficient S, (and K, is correspondingly less than Ké) multiple
scattering becomes unimportant in most situations, and the total
scattered radiation may again be computed. In a layer such that
Ks and K.8 are constant, the incldent sound at a distance x into
the layer will equal I exp(—sex), where I is the intensity inci-
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dent on the layer, and the sound scattered from each thilckness
dx will be SI exp(-S.x)dx. The sound coming back out of the
layer will also be absorbed, and scattered, but if the absorp-
tion is very great compared to the scattering, the sound Is
scattered straight back will be, per unit solid angle

I = gssg_e_'___zse__’_‘_dx , (5-18)

J 4

integrated over the thilckness of the layer. The factor 2 1In the
exponent represents the fact that the sound is absorbed on the
way back out as well as on the way in, If the total attenmation

through the layer 1s large, then the integral may be taken from.
zero to infinity, and

S
Is = x—:— X %—l-r ; (5‘19)

hence the energy scattered directly backwards is equal to what
would be found if a fraction Ks/4Ke of the incident sound energy
were scattered uniformly in all backward directions; i.e., over

a solid angle of 27, The ratio KIS/4Ke is equal to ar/45r.

Thus at 24 kc between 1 and 2 percent of the incident energy will

be scattered backwards, if Meyer and Tamm'sl# results are used,
For comparison with equation (5-13) the zbsorption

arising from bubbles other than those near resonance should be

considered. In the general case the exact determination of Ss

and Sa is dependent on the values of Ty and % for all bubbdble
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sizes, and distributions can always be conceived for which
bubdbles other than resonance will be of primary importance.

For bubbles greater than resonance the effects are
fairly simple, The scattering cross-section is simply equal
to four times the geometrical or optical eross-section, and
the absorption cross-section, as is evident from Figure 5, is
quite small, Such bubbles may be the primary source of scatter-
ing if the relative number of resonant bubbles is very small,
but are less likely to be the chief source of absorption.

Bubbles smaller than the resonant size, on the other
hand, have an exceedingly small scattering cross-section but
may contribute to the absorption. . The scattering cross-section
A varies as the square of the volume when thz is small, so that
the larger bubbles have very much greater weight in determining
Ss than do the smaller ones. The absorptlon cross-section of
very small bubbles 1s very much greater than the séattering cross-
section, however, and under some situatlions the absorption from
such bubbles mey be important.

There are two situations in which more detailed evalua-
tion of the absorption 1s perhaps desirable, first for bubdbles
somewhat below the resonant size, secondly for wvery small miecro-
scopic bubbles. It is evident from Figure 5 that O’a/’uTRg‘ at 6
and 24 kc 1s relatively constant with frequency fcr a certain
range of w/ub below resonance. This arises from the increase of

g with decreasing frequency, which helps to offset the increase
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of the denominator in equation (2-27). This range of w/w_,
when chﬁrRz changes relatively slowly, has been called the
"knee" of the absorption-frequency curve by Willisz, who
attributes most of the absorption to thls region, on the
ground that the resonance peak, while high, is too narrow to
contribute apprecliably to the absorption,

Computation shows that thls knee is somewhat less
important than the resonance reglon, if the same opﬁical cross-
section per unit radius interval 1s assumed for the bubbles 1n
each region. In Figure 5 the curve for 6 kc shows that qaﬁTRz
has a "knee" at a value of roughly 10, for wAJo between 0.1 and
0.7. The resonance peak, on the other hand, shows a value of
4x103 for oa/ﬁBz, 400 times the value at the "knee", whille the
relative half-width of the peak 1s about 0.04, roughly one-
fifteenth as wide as the "knee"; the totai contribution of the
resonance peak 1s therefore 30 times that of the knee if the
optical cross-section of the bubbles in an interva1<ﬂgor Rzn(R),

is roughly the same in both regions. Roughly the same conclusion

holds at 24 kc, since the resonant peak contributes the same
amount as at 6 kcj; the "knee", with roughly twice as great a
value of Oa/WRz as at 6 kc, but extending over only one-half as
great & range of uVu%, also makes roughly the same contribution

to Se as before., One may conclude that for a given geometrical

cross-section per unit radlus interval, bubbles at the "knee" of

the absorption-frequency curve contribute about 1/20 to 140 as

much as the resonance peak,
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For sufficiently small bubbles, viscosity may be more
important than heat conduction. If surface tension were negli-
gible so that g could be set equal to unity in equation (2-20)
for uwy,, then o, would be proportional to R3 when viscosity is
dominant, and for a glven frequency the attenuation would be
provncrtional to the volume of alr present, and independent of the
distribution of bubble sizes., This was the result found by

Epstein.lo

For air bubbles 1In water at a pressure of one atmosphere,
g cannot be neglected when viscosity 1s important, however, since
in this case g equals 2 when R equals 10'4cm, one-third of the

radius below which viscosity becomes important. ¥For smaller

values of R, g is roughly proportional to 1/R. The absorption

cross-section o, 1s proportional to 1ﬂdr4, and sinceu)r2 varies
as g, the nresence of surface tensica introduces an extra factor
R2 into ¢y, and materially reduces the absorption produced by
microscopic bubbles., If equations (1-30), (2-20), and (1-29) are
substituted into equation (2-27), the total absorpfion cross-

section per unit volume produced by very small bubbles becomes
4 uc a?u? u(R)dR
Sa = #?{S;-z—- -'S';&'— ] (5*20)
o]

integrated over the region in which the absorption 1s primarily
the result of viscoslty. It may be useful to express tnis

result in terms of K, the absorption in db per yard. TFor air
bubbles in water at atmospheric pressure, and for a frequency

of 24 kc, e« equals Y and equation (5-20) may be written

S—
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x =L8zxw%u (5-21)
2
g
2

where the bar denotes a harmonic mean of g©y, and u is the total
relative volume of the bubbles in question,

It should be pointed out that these formulae for micro-
scopic bubbles must presumably be modified when bubbles are ad-
hering to solld particles, While the amplitude of oscillation
and the viscous dissipation are probably not much affected by
the presence of a rigid surface, the influence of surface tension
may be completely changed. For a bubble caught in a cup-like
depression in a dust particle for instance, surface tension wculd
have much less effeet in inereasing Pi’ the average yressure in-
side the bubble, than it would for an isolated bubbie; as a
result g might be substantially less than the value found from
equation (2-21). It is not impossible that 1f such small bubbles
are maintained in this way, their contribution to K, should be
computed from equation (5-21) With_gz set equal to unity.

The results developed sc¢ far in this Section are appli-
cable to the scattering and absorption produced by a uniform dis-
tribution of bubbles, either closely or widely spaced. For high
bubble densities, however, there are also reflection effeects to
be taken into account whenever the density of bubbles changes
appreciably in a region small compared to the wave length, If

the bubbles are predominantly smaller or larger than resonance,
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the analysis in Section IV may be applied. In the more import-
ant case, however, the chief effect arises from bubbles in the
neighborhood of resonance,

The change of veloclty may as before be computed from
the total chaﬁge in volume in a unit cube of air-water mixture,
In equation (4-10) the term in the denominator must be inte-
grated over a distribution of bubble sizes. The integration
over the resonant peak contributes nothing to the real part of
this integrel, since positive and negative values of the integral
are equally likely if Rn(R) is essentially constant over the
resonance peak, The imaginary part does not vanish, however,
and 1t is readily shown that

Cc

- S S (5-22)
e? 2a
where u, equals Ru(Rr) as before.

The imaginary part of the wave velocity gives the same
attenmuation in db per kiloyard as was found in equation (5-13).
If equations (4-15) to (4-18) are used to determine the reflec-

tion coefficient r, we have,

\/1 + (2. leoiu )E /- (5-23)

/1 + 1+ (2. sx10*uy )2 +/:

)1/2

where the value of a,, or a (g/x y at atmospheric pressure

has been determined from equation (1.36), with « and g both set
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equal to unity., Vhen u, 1is 10~5 or less, equation (5-23) becomes
r = (6.2 x 103n)2 (5-24)

When u, is less than 10”5, the reflection coefflclent given by
this equation is small, and less than the scattered radiation,
whose value then depends,on the ratio ar/48r. For greater values
of ur, a large fraction of the incident energy may be reflected
even when Ky is much less than Kqo

Bubbles whose radii are far from the resonant value
may also contribute to the reflection, of course. For bubbles
whose radii are below the resonant radius Rr but greater than
2T/P, (10“4cm for air bubbles in water at atmospheric pressure)
the reflectlion coefficient is independent of R, as may be seen
from Figure 7, and equations (4-12) anc (4-14) may be applied
directly to determine r in terms of u, the total volume of all
such bubbles per cm3, For bubbles of radii less than 2T/P,, or
much greater than the resonant radil R,, the denominator in
equations (4-12) or (4-13) must be integrated over the different
bubble sizes; and the resulting value of r, found by use of equa-

tion (4-15), will depend on the detailed distribution of bubbdble
sizes,
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