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Jerome Persh 

ABSTRACT:  A large amount of boundary-layer data in the region 
of transition from laminar to turbulent flow has been collected 
from a number of experimental investigations of boundary-layer 
flows on flat plates, circular cylinders, and airfoils.  These 
dfcta are for both incompressible anH compressible flows with- 
out heat transfer. 

The criterion for determining the axial position of the be- 
ginning and end of transition proposed by the author in refer- 
ence (a) is verified by examination of & large amount of experi- 
mental data. Comparisons are given between the experimental 
values of soveral boundary-layer parameters at the start of 
transition artJ the theoretical values pred^ ted by the modified 
(reference b) stability theory of Schlichting and Ulrich (refer- 
ence c).  It is shown that for incompressible flows, the start 
of transition may be roughly predicted by stability theory. 
This is demonstrated by comparisons between a number of zero 
pressure gradient and pressure gradient examples. 
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This report contains the results of a preliminary investiga- 
tion of the mechanics of the boundary-layer transition process. 
From an examination of a large amount of experimental boundary- 
layer velocity profile data on flat plates, circular cylinders, 
and airfoils in both subsonic and supersonic airstreams.  Several 
significant conclusions are drawn.  This study is important at 
the present time because probably the weakest link in the calcu- 
lation of wail temperatures and heat transfer to missiles is the 
determination of the transition region. 

This work was sponsored by the U. S. Navy Bureau of Ordnance 
and was performed under Task Number NOL M9a-133-l-56.  The 
author is indebted to Dr. R. £. Wilson and Or. R. K. Lobb for 
their encouragement and continued interest during the course 
of the investigation. 
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Captain, USN 
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SYMBOLS 

H - boundary-layer shape parameter ( 5*/©) 

M ■ Mach number 

P0 ■ stagnation pressure 

q - dynamic pressure outside the boundary layer (l/2/o,Uco2) 

Rg - boundary-layer Reynolds number based on momentum 
thickness (Uoo ®/^ co ) 

u     - velocity parallel to surface at a perpendicular 
distance y from wall 

UQO   - velocity parallel to surface at a distance 5 Isom 
wall 

x     - longitudinal distance from leading edge of flat 
plate or circular cylinder 

s     - longitudinal distance from leading edge of airfoil 
measured along surface 

y     ■ perpendicular distance from wall to point at which 
velocity u is measured 

5     - boundary-layer thickness, defined as perpendicular 
distance from wall to point at which contribution 
to the integrals for 6* and 9 is negligible 

g *   - boundary-layer displacement thickness for incompres- 
sible flow 

S 

(1-^) dy 

6*comp" houndary-layer displacement thickness for compressible 
flow      6 

(1 - fr~> dy 
Too co 

~! 
• 
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6     - boundary-layer momentum thickness for incompressible 
flow 

6 

«CO      uco 

9roJnp - boundary-layer momentum thickness for compressible 
flow 

6 

p u    ,   u 
^S— <1 - ET > dy 
/ 00 CO CD 

M- - viscosity 

^ - density 

p - kinematic viscosity, 

Cf - wall shear stress coefficient ( 2*w/q) 

Subscripts: 

inc   - incompressible flow 

comp  - compressible flow 

exp   - experimental 

Tr    - experimental transition value 

When values of 6*,  8, H, and R© are not subscripted, the in- 
compressible and experimental values of these parameters are 
inferred. 

vi 
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A STUDY OF BOUNDARY-LAYER TRANSITION 
FROM LAMINAR TO TURBULENT FLOW 

INTRODUCTION 

1. The study of boundary-layer transition from laminar to 
turbulent flow involves not only the determination of the 
factors which control the occurrence of transition, but also 
the changes that the boundary-layer velocity profile under- 
goes while reverting from wholly laminar flow to fully turbu- 
lent flow.  Although a great deal of theoretical and experi- 
mental work has been done on transition, very little is known 
of the behavior of the boundary layer in the transition region, 

2. To the author's knowledge, no theoretical work on the 
behavior of the boundary layer in the transition region has 
been done.  The present work deals with both aspects of the 
problem.  From an examination of a large amount of velocity 
profile and pressure distribution data taken from a number 
of experimental investigations of flat plates, hollow cylinder 
models, and airfoils in both incompressible and compressible 
flows, it is shown that the criterion for determining the 
axial location of the start of transition proposed by the 
author in reference (a) is substantiated.  It is also shown 
that for incompressible flows with moderate values of stream 
turbulence,roughness, or pressure gradient,the start of 
transition may be roughly predicted by stability theory. 

REVIEW OF EXPERIMENTAL INVESTIGATIONS 

3. While it is realized that the published results of a 
number of experimental investigations, in addition to the 
results presented herein, are available, the data presented 
were drawn from those investigations that were most suited 
to the present work and it is felt that the results shown 
are representative of the entire fund of information.  It 
should be noted that only the general features of each in- 
vestigation can be discussed in the present report and it is 
suggested that the reader consult the original papers for 
more detailed information. 

4. For convenience, the results of the experimental investi- 
gations have been separated into two categories, namely, the 
zero pressure gradient cases (flat plate and h How cylinder 
models) and the cases for which pressure gradients existed 
(airfoils). In order that the data presented be as complete 
as possible, the values of stream turbulence when available, 
are given in the tables presented. 

1 



NAVORD Report 4339 

Zero Pressure Gradient Data 

5. The pioneer measurements of the boundary-layer flow on 
a flat plate were made by van der Hegge Zijnen (reference d) 
with the aid of a hot-wire anemometer.  The results are pre- 
sented in the form of numerous tables and curves giving the 
observed speeds at several hundred points, whose x and y co- 
ordinates with respect to the leading edge of the plate are 
tabulated for five subsonic speeds of the approaching air- 
stream.  All the results of this investigation are included 
in the present report in both graphical and tabular form 
(Table I). 

6. Also included in this table are results obtained during 
the course of an experimental investigation of the boundary- 
layer flow on a flat plate made at the National Bureau of 
Standards by Schubauer and Klebanoff (reference e).  These 
data were obtained at a free-stream velocity of about 80 
feet/second. 

7. The results of experimental investigations of the boundary- 
layer development on hollow cylinder models conducted by O'Donnell 
and Brinich and Dioconis (references f and g) with their axes 
aligned parallel to the airstream at Mach numbers of 2.41 and 
3.05 are presented graphically and are tabulated in Table II. 
Results are given for four model diameters (1.87, 3, 4, and 5 
inches).  Only the natural transition results for these models 
are presented. 

Pressure Gradient Data 

8. The results of an experimental investigation of boundary- 
layer transition on three symmetrical airfoil sections, each 
at three angles of attack, presented by Silverstein and Becker 
(reference h) are given graphically and in Table III.  In these 
tests, boundary-layer velocity profiles were measured on the 
upper surfaces of airfoils of the NACA 0009, 0012, and 0018 
sections over a lift coefficient range from -0.57 to 0.65. 
Although tests were made at tunnel velocities from 30 to 90 
miles per hour, only those data at 60 miles per hour are in- 
cluded in the present work because these are typical of all 
the data included in this reference. 

9. The results of an experimental investigation of the 
boundary-layer flow on a symmetrical Joukowski airfoil sec- 
tion presented by Fage and Falkner (reference i) are illus- 
trated and are also tabulated in Table IV.  For this experi- 
ment a series of boundary-layer velocity profile measurements 
were made on the airfoil surface at tunnel airspeeds of 60 
and 80 feet per second. 

"l 
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EVALUATION AND PRESENTATION OF DATA 

10. For all of the boundary-layer velocity profile data ac- 
cumulated, values of the displacement thickness (6*), mo- 
mentum thickness (6), and boundary-layer shape parameter (H) 
were evaluated by graphical integration.  It has been pointed 
out (reference j) that compressible boundary-layer velocity 
profiles are similar in shape to incompressible velocity pro- 
files.  The values of parameters derived from the compressible 
boundary-layer velocity profiles, ignoring the temperature 
distribution across the boundary layer, are therefore close 
to those for incompressible flow.  These values of the boundary- 
layer parameters are ficticious in a sense, but their use 
provides a common basis for comparisons between the results 
for incompressible and compressible flows.  For the compres- 
sible flow data the boundary-layer parameters were therefore 
evaluated using both the incompressible and compressible flow 
definitions.  Each of the tabulated sets of data are identified 
by the conditions of the experiment and the reference letter. 

11. For the pressure gradient data investigated, the values 
of the stability parameter (reference b) 

e_ duoo   Q2    duy d) 
Ke UQQ 3x~ "^ dx 

are also tabulated.  These values were calculated from the 
pressure distribution graphs given in the pertinent references. 

DISCUSSION OF RESULTS 

12. The large mass of experimental data presented herein are 
used first to give additional support to the transition cri- 
terion proposed in reference (a).  In this reference it is 
shown that at the transition point an abrupt drop occurs in 
the curve showing the variation of the incompressible (or 
compressible) value of H with distance along the surface. 
This occurs because at the start of transition, the velocity 
gradient near the surface, or the skin friction, rises rapid- 
ly.  The value of H is quite sensitive to the velocity ratios 
near the surface, and small increases in the velocity gradient 
near the wall cause a dimunition of the values of H.  Since 
near the leading edge, the laminar flow region is characterized 
by values of H which are about 2.6 and in the turbulent region 
the values of H are about 1.4 to 1.5, the mean position for 
the start of transition should be readily recognizable. 

13. Figures 1 to 8 show the variation of H with distance 
along the surface for each of the sets of data tabulated. 
In each cf the cases shown, a more or less abrupt drop occurs 

t 
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in the H curve.  In some cases (Figures lb and lc, for example) 
the curves appear rounded at the transition point.  These are 
probably more physically realistic than the curves shoving the 
abrupt change in slope.  It is reasonable to assume that the 
rounding is probably present for all of the data and would 
have been evident if more data in this region were available. 
In general, however, all of the curves exhibit the same charac- 
teristic behavior.  These data validate the criterion proposed 
in reference (a) for determining the start of transition. 

14.  The determination of the end of transition region is more 
difficult because of the asymtotic nature of the curves shown 
in the preceding figures. Consequently, the end of transition 
is arbitrarily defined as the axial position where the value 
of H first reaches its characteristic turbulent value of 1.4 
or 1.5, or where no further decrease in H is noted.  This is 
indicated on each of the figures showing H as a function of 
x. 

CORRELATION OF THE BOUNDARY-LATER PARAMETERS 
AT THE START OF TRANSITION 

Incompressible Flows 

15. On each of the preceding figures, the point at which the 
minimum critical Reynolds number for laminar boundary-layer 
stability (R8cr.min^ is Indicated as a shaded data point«, 
The position of'these points was determined by first plotting 
the experimental values of R© as a function of distance along 
the surface, and noting the axial position at which Rocr.min 
occurred.  For the incompressible flow data the values of 
Recr.min which were used for this procedure were obtained from 
the modified Schlichting analysis of reference (b).  The Ordi- 
nate value for the shaded data points was determined as the 
value of Her. associated with the value of Recr.min.  An ex- 
amination of Figure 1 indicated that, in general, the start 
of transition occurs close to Recr.min; this is more clearly 
illustrated in Figure 3.  In this figure the experimental 
values of Retr. are compared to the theoretical curve of refer- 
ence (b).  While there is considerable scatter in the data, 
which is probably due in part to insufficient data at the 
start of transition, it is evident that transition starts 
at values of RQ which are of the same order of magnitude as 
those given by theory. 

16. It is difficult to Justify those data points which are 
less than Recr.min-  This is because it was found in the 
experimental investigation of reference (e), that efforts 
to disturb the laminar boundary layer in the region where 
the Reynolds number was less than Recr.min wore unsuccessful. 
While the artificial distnnbance created in this region was 
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not damped, it amplified only beyond the axial position of 
RGcr.min-  For this reason, those transition data points 
which fall below the theoretical value appear inconsistent, 
unless the turbulence level of the airstream outside the 
boundary layer exerts a disturbance which has characteristics 
different than that created artificially in the experiments 
of reference (e). 

17. As pointed out previously, both Recr.min and Hcr. are 
uniquely defined when the value of the non-dimensional pres- 
sure gradient parameter Rg 0/uoo du<x>/dx, is specified.  A 
comparison is shown in Figure 10 between the theoretical 
curve of Hcr# and experimental values of H+r# as a function 
of RQ 8/UQOdu«,/dx.  No conclusion can be drawn from this 
comparison because of the large data scatter.  It is indica- 
tive, however, of the sensitive nature of H. 

Compressible Flows 

18. Figure 11 shows the values of Rgtr. determined in the 
manner previously described for all of the compressible flow 
data examined.  In view of the large scatter of the data, it 
is not possible to describe any trend with Mach number.  To 
determine whether the transition point is a function of stag- 
nation pressure as was suggested in reference (k), the experi- 
mental data shown in Figure 11, are plotted versus P0 in Fig- 
ure 12.  In this coordinate system, there seems to be some 
trend of increasing R©tr. with increasing stagnation pressure, 
but the scatter of the data is too large to draw any definite 
conclusions. 

Correlation of Boundary-Layer Velocity Profile Data 

19. From previous discussion and inspection of the related 
figures, it is apparent that only a small portion of the large 
mass of velocity profile data presented falls into the transi- 
tion region.  However, the data that are applicable have been 
isolated and are considered of sufficient quantity for the 
present correlation. 

20. It has been shown by von Doenhoff and Tetervin (reference 
1) that turbulent boundary-layer velocity profiles form a 
single parameter family of curves.  To determine whether the 
transition region velocity profiles are of a single parameter 
family of curves, and, if so, whether the transition region 
velocity profiles are of the same family as those for turbu- 
lent boundary-layer velocity profiles, values of U/UQD were 
plotted against H for various values of y/9 for all the data 
entering into the analysis.  The variation of u/ucowith H for 
several values of y/9 is shown in Figure 13.  Because of the 
large amount of data points, and the fact that no significant 



NAVORD Report 4339 

trends were detected between sets of data, no effort was made 
to identify the points of any one investigation.  Also plotted 
in Figure 13 are curves of u/uco versus H for corresponding 
values of y/9 for turbulent boundary-layer velocity profiles. 
Figure 13 shows that u/uoo is a function of H alone for a 
given value of y/9.  This conclusion is important because it 
means that transition region boundary-layer velocity profiles 
form single parameter family of curves.  It is also apparent 
that the transition region velocity profiles are of a dif- 
ferent shape than those for turbulent boundary-layer velocity 
profiles. 

CONCLUDING REMARKS 

21. A large amount of boundary-layer data in the region of 
transition from laminar to turbulent flow has been collected 
from a number of experimental investigations of boundary-layer 
flows on flat plates, circular cylinders, and airfoils.  These 
data are presented in both graphical and tabular form. 

22. A criterion for determining the axial position of the 
beginning and end of transition previously proposed in refer- 
ence (a) is substantiated.  Comparisons are given between the 
experimental values of two local boundary-layer parameters 

!        (Rg and 92/VQO duoo/dx) at the start of transition and the 
theoretical values of these parameters as predicted by sta- 
bility theory.  It is shown that for incompressible flows the 
start of transition may be roughly predicted by stability 
theory.  No correlation between the measured values of R9tr. 
at the start of transition and the minimum critical values 
of Re was found for the compressible flow data. 

23. It is shown that the shape of all transition region 
boundary-layer velocity profiles may be expressed as a func- 
tion of a single parameter.  It is also shown that transi- 
tion region velocity profiles differ in shape from turbulent 
boundary-layer velocity profiles, particularly in the region 
near the wall. 

I 
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TABLE I 

Values  of Boundary-Layer  Parameters  for  Data of Reference   d 
Estimated  stream  turbulence  1-2  percent 

U -  400 cm/sec 

X, cm S*>  cm 6, cm H Re 

15 .1166 .04 2.915 111.9 
20 .1279 .04592 2.785 125 
25 .14 .0506 2.767 136.8 
37.5 .1732 .0692 2.503 183.3 
50 .185 .0757 2.444 206 
62.5 .2166 .0976 2.22 264 
75 .2422 .1129 2.145 309.3 
87.5 .2464 .119 2.071 321.6 
100 .2596 .1182 2.196 313 
125 .2876 .133 2.162 352.3 
150 .29 .1508 1.923 418.7 

U ■ *  800 cm/sec 

X, cm 6*. cm 8, cm H Re 

5 .04624 .01992 2.321 105.6 
7.5 .05744 .02344 2.451 122.7 

10 .06592 .02744 2.402 145.5 
12.5 .0756 .0284 2.662 149.5 
15 .082 .03264 2.512 175.3 
17.5 .08488 .034 2.497 179 
20 .08624 .0343 2.516 184 
25 .0912 .03824 2.385 207 
30 .1036 .0449 2.307 243 
40 .118 .0514 2.296 280 
50 .1356 .0642 2.112 336 
62.5 ,1506 .0761 1.974 406 
75 .1544 .0884 1.747 456 
80 .1712 .108 1.585 576 
85 .1616 .105 1.539 545 
90 .180R .12 1.507 635.5 

100 .2 016 .1448 1.392 777 
125 .252 .182 1.385 971 
150 .2992 .1536 1.948 825 

9 
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TABLE I continued 

U - 1200 cm /sec 

X, cm &* ,   cm Ö, cm H «9 

2.5 .03368 .01684 2.0 136.5 
5 .04024 .01596 2.52 127.7 
7.5 .04944 .01828 2.705 144.3 

10 .0553 .02036 2.715 164 
15 .068 .02584 2.632 209.6 
20 .07112 .02644 2.69 220.5 
25 .07728 .0301 2.56 244 
37.5 .0926 .0411 2.253 326.7 
50 .1048 .0573 1.829 467.7 
62.5 .1234 .0747 1.652 614 
75 .1424 .0956 1.49 760 
87.5 .1668 .1126 1.481 908 
100 .2188 .1542 1.419 1210 
125 .2776 .1888 1.47 1471 
150 .2492 .1788 1.394 1512 

U = 1600 cm /sec 

X, cm 5*, cm 0. cm II *9 

10 .05104 .01868 2.732 196.7 
15 .05768 .0232 2.486 247.6 
20 .06568 .02568 2.558 274 
25 .0689 .0287 2.401 304 
37.5 .0758 .034 2.229 357.7 
50 .0982 .0625 1.571 680 
62.5 .12 .078 1.539 849 
75 .1512 .0994 1.521 1075 
87.5 .172 .1214 1.417 1278 
100 .1852 .1312 1.412 1419 
125 .2544 .1708 1.49 1872 
150 .2416 .170 1.421 1890 

10 
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TABLE I concluded 

U - 2400 cm/sec 

X, cm 6*. cm 9, cm H Re 

10 .04 .01612 2.481 254.5 
15 .04432 .01844 2.403 295 
20 .049 .02046 2.395 329.5 
25 .05168 .0218 2.371 346.6 
37.5 .05696 .03124 1.823 493.5 
50 .0928 .0628 1.478 1005 
62.5 .108 .0718 1.504 1142 
75 .1292 .092 1.404 1473 
87.5 .1496 .1064 1.406 1692 
100 .1832 .1284 1.427 2069 
125 .224 .1614 1.388 2619 
150 .2384 .169 1.411 2836 

Values of Boundary-Layer Parameters for Data of Reference e 
Stream turbulence 0.03 percent 

U = 79 ft/sec 

X, ft 6*' in 6, in H Re 

5.00 .067 .024 2.79 924 
5.25 .067 .024 2.79 928 
5.75 .073 .028 2.61 1091 
6.25 .060 .032 1.88 1281 
6.75 .061 .041 1.49 1632 
7.50 .077 .055 1.40 2180 
8.00 .090 .064 1.41 2486 

11 
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TABLE III 

Values of Boundary-Layer Parameters for Data of Reference h 
Stream turbulence 0.3 percent 

NACA 0009 airfoil 

Ci 0.57 

s 
&*' in 0, in H R9 Re - — c uco dx 

.05 .011125 .00465 2.392 211.2 .0294 

.10 .01409 .00655 2.151 297.5 .0262 

.20 .02057 .00984 2.09 446.8 .0188 

.30 .02669 .01238 2.16 561.5 .0156 

.35 .0308 .01487 2.07 675 .0181 

.45 .03292 .01818 1.812 816.5 .0176 

.55 .03266 .02024 1.623 850 .00981 

Cl - 0 

s 
c 6*' in 0, in H Re 

„ e  du«» 
R9*a> dx- 

.06 .0157 .00538 2.918 244.2 - .00874 

.11 .02 .007575 2.64 344 - .0165 

.21 .0296 .01281 2.31 581.5 - .0417 

.31 .03109 .01605 1.937 714 - .0553 

.36 .0262 .0167 1.569 705 - .0473 

.46 .0267 .0171 1.561 691 - .0376 

.56 .0256 ,01725 1.484 638 - .0266 

Cl - 0.65 

s 
c 6*. in 6, in H Re 

.07 .0246 .0154 1.610 699 

.12 .0323 .0202 1.599 839 

.22 .0274 .0181 1.514 641 

.32 .02549 .01686 1.512 559 

.47 .0242 .0164 1.476 510 

.57 .021 .0132 1.591 381 

.67 .021 .014 1.5 413.2 
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TABLE III continued 

NACA 0012 airfoil 

<-'! -1 -Ü.J7 

s 
c 

&*,    in 9, in ii Re R £  du°° 

.05 .01014 .003892 2.603 176.8 - .0396 

.15 .01805 .007695 2.346 349.5 - .0245 

.25 .02522 .01027 2.456 466.5 - .0156 

.35 .026 .0125 2.08 568 - .00763 

.45 .0236 .0128 1.844 564 + .00188 

.55 .03138 .0164 1.913 704 + .00693 

.70 .03116 .01873 1.663 756 + .0292 

Cl = 0 

s 
c 6*, in 8, in H R9 RG^ P° 

.07 .0118 .0049 2.408 222.6 - .00949 

.17 .0224 .00886 2.528 402.5 .0207 

.27 .0287 .0109 2.633 495 .0300 

.37 .0275 .0164 1.677 726 .0708 

.47 .0235 .0162 1.451 677 .0598 

.57 .0234 .01535 1.525 578.5 .0448 

.72 .02177 .0157 1.386 534.5 .0384 

Cl =• 0.65 

s 
c &*. in O, in H Re 

.18 .02697 .01693 1.593 722.5 

.28 .0284 .01852 1.533 693.5 

.38 .02408 .0158 1.524 538 

.48 .0232 .01661 1.397 539.5 

.58 .02169 .01445 1.502 436.3 

.73 .02298 .01452 1.582 412 

20 
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TABLE III concluded 

NACA 0018 airfoil 

Ci -   -0.57 

c       ° 
G,   in H Re He?     j= 

"OD dx 

06 .0092 .00438 2.1 198.9 .9293 
16 .0164 .0073 2,246 331.4 .0223 
26 .02097 .00948 2.212 430.3 - .00328 
36 .0272 .01088 2.5 494 
46 .03304 .01656 1.996 729.5 - .0388 
56 .0277 .01589 1.744 674 - .0262 
66 .02252 .01474 1.528 575.5 - .00284 

j5 
C 

e, in H Re 
9 du 

Re -     zr- 
UQD   dx 

CD 

.08 .013 .0055 2.363 249, ,7 .0203 

.18 .02158 .00846 2.55 384. ,2 .0105 

.28 „02656 .01136 9 q-Jc 516 - .148 

.38 .0244 .01588 1.537 692 - .203 

.48 .02204 .01444 1.527 557 - .115 

.58 .0232 .01608 1.443 595 - .106 

.68 .02292 .01504 1.525 525. .5 - .0801 

Ci  -   0.65 

I   &*• ln e,   in H Re Re^     P* «  "       dx u CO 

.10 .0113 .00494 2.287 224.3 .0643 

.20 .02128 .0133 1.6 604 1 .534 

.30 .02744 .018 1.525 736 - 1 .676 

.40 .0248 .0162 1.531 596 - .406 

.50 .02356 .01476 1.595 489.4 - .172 

.60 .02292 .01546 1.483 481 - .114 

.70 .01968 .01268 1.553 363 .0460 

21 
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TABLE   IV 

Values  of  Boundary-Layer   Parameters   for   Data  of  Reference   1 
Stream Turbulence  Unknown 

U0 -  60  ft/sec 

s i* ,   in 9, in H RG 
R°L c   ' u« ■.u 

.0524 .00835 ,004045 2.067 145, .9 .0141 

.1007 .1239 .00578 2.144 215 .00715 

.151 .01578 .00759 2.08 286. .8 

.202 .01998 .00934 2.139 354. .5 

.252 .0216 .00978 2.209 371 - .00261 

.302 .03081 .01655 1.862 628 - .0210 

.403 .03073 .02025 1.518 743 - .0584 

.504 .04137 .03033 1,364 1076 - .162 

.605 .05717 .03994 1.431 1367 - .306 

.706 .07971 .05645 1.412 1880 - .573 

.807 .09655 .06888 1.402 2188 - .904 

.956 .1424 .09917 1.436 2930 -J -.428 

U0 - 80 ft/sec 

s 
c 6*» in 9, in H R© H "CO 

duoo 
dlF 

.0524 .00732 .0036 2.035 171. 3 .0148 

.1007 .013 .00519 2.174 258. 4 „00771 

.151 .01366 .00638 2.139 320. 2 

.202 .01693 .008734 1.938 440 

.252 .01836 .01085 1.692 553. 5 - .00432 

.302 .02533 .01783 1.421 897 - .0324 

.403 .02890 .02132 1.356 1045 - .0866 

.504 .04431 .03275 1.353 1564 - .254 

.605 .06479 .04693 1.381 2161 - ,568 

.706 .06908 .05129 1.347 2235 - .619 

.807 .09909 .07178 1.381 3023 -1 .302 

.956 .1404 .09655 1.454 3804 -1 .805 

22 
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