UNCLASSIFIED

AD NUMBER

AD119103

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; 21 NOV 1956.

O her requests shall be referred to U S. Naval
Ordnance Laboratory, Wiite QGak, MD.

AUTHORITY

USNOL |tr dtd 29 Aug 1974

THISPAGE ISUNCLASSIFIED




"UNCLASSIFIE
Al '] ¢

|

. A\

rmed Services |echnical Information Ageney

Reproduced by

DOCUMENT SERYVICE CENTER
KNOTT BUILDING, BAYTOR, 2, OHIO

This document i3 the property of the United States Government. It is furnished for the du-
ration of the contract and si:all be returned when no longer required, or upon recall by ASTIA
to the following address: Armed Services Technical Information Agency,
Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS

NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE

SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO B . RLGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THZ HCLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED




NAVORD REPORT 4339

21 NOVEMBER 1956

'U.S. NAVAL ORDNANCE LABORATORY

WHITE OAK, MARYLAND



o m——

NAVORD Report 4339

Aeroballistic Research Report 349

A STUDY OF BOUNDARY-LAYER TRANSITION
FROM LAMINAR TO TURBULENT FLOW

Prepared by:

Jerome Persh

ABSTRACT: A large amount of boundary-layer data in the region
of transition from laminar to turbulent flow Las been collected
from a number of experimental investigations of boundary-layer
flows on flat plates, circular cylinders, and airfoils., These
data are for both incompressible znd compressible fiows with-
out heat transfer.

The criterion for determining the axial position of the be-
glnning and end of transition proposed by the author in refer-
ence (a) is verified by examination of a large amount of experi-
mental data. Comparisons are given between the experimantal
values of soveral boundary-layer parameters at the start of
transition anrd the thecretical values pred:- .ted by the modified
(reference v) stability theory of 3chlichting and Ulrich (refer-
ence c¢). It is shown that for incompressible flows, the start
of transition may be roughly predicted by etzbility theory.

This is demonstrated by comparisons between a number of zero
pressure gradient and pressure gradient examples.
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This report contains the results of a preliminary investiga-

tion of the mechanics of the boundary-layer transition process.
From an examination of a large amount of experimental boundary-
layer veloucity profile data on flat plates, circular cylinders,
and airfoils in both subsonic and supersonic airstreams. Several
significant conclusions are drawn. This study is
the present time because probably the weakest 1link in the calcu-
lation of wall temperatures and heat transfer to missiles is the
determination of the transition region.

This work was sponsored by the U.
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of the investigation.

WILLIAM W. WILBOURNE
Captain, USN
Commander

H. H. KURZVEG
By direction

ii

K. Lobb for




NAVORD Report 4339
CONTENTS

Introductiolt ., . . . . . . . . . . . o
Review of Experimental Investigations,
Zero Pressure Gradient Data , , .
Pressure Gradient Data, ., . .
Evaluation and Presentation of Data
Discussion of Results. . . . . . &
Correlation of the Boundary-Layer Param
Start of Transition . . . o
Incompressible Flows. . . .o .
Compressible Flows . . . g o
Correlation of Boundarv-Layer Velocit
Concluding Remarks
References .
Table I, . .
Table IXI , .
Table III, .
Table IV , .,

. - .

e o e o o o o

.'....E

5 e e o o
* » e s o

e 5 5 e e

4 o e + e e
e o o s e =
e o ® & ¢ @
e » o o o o
e » & o o @

iii

t

s o o MDe o o o o o

e

Qo o o

[ Y

po o o Ui o o o 3 o o
[

Me* o o P o o o o o o
aolo.-go-oﬁoooooo

e o o o o o
o

cte s o

e o o o © o o =2 o

Page

W=JG® b b WWN N




Figure 1.
Figure 2.

Figure 3.
i Figure 4,
Figur> 5
Figure 6.
Figure 7
Figure 8
Figure 9.
: Figure 10.
Figure 11.

Figure 12,

Figure 13.

NAVORD Report 4339
ILLUSTRATIONS

Variation of H with distance along flat
plate. Data of reference d.

Variation of H with distance along flat
plate. Data of reference e.

Variation of Hinec with distance ulong
circular cylinder in axial flow at M =
2.41, Data of reference f.

Variation of Hjpce with distance along
circular cylinder in axial flow at M =
3.05. Data of reference g.

Variation of H with distance along NACA
0009 airfoil. Data of reference h,
Variaiion of H with distance along NACA
0612 airfoil. Data of reference h,
Variation of H with distance along NACA
0018 airfoil. Data of reference h,.
Variation of H with distance along sym-
metrical Joukowski airfoil. Dsta of
reference i,

Comparison between the theoretical values
of Rgcr mip and experimental data as a
function of Rg 68/uy dug /dx for incompres-
sible flow data.

Comparison between theoretical values of
Hcr . and experimental data as a function
of Rg 6/ug dugy/dx for incompressible flow
data.

Variation of RgTy with Mach number for
compressible flow data.

Variation of RgTr with supply pressure
for compressible flow data.

Correlation of transition region velocity
profile data.

iv




5*comp™

e

NAVORD Report 4339
SYMBOLS

boundary-layer shape parameter ( §*/@)

Mach number

stagnation pressure

dynanic pressure outside the boundary layer (1/2ng002)

boundary-layer Reynolds number based on momentum
thickness (Ug 9/p )

velocity parallel to surface at a perpendicular
distance y from wall

velocity parallel to surface at a distance 8 Iiva
wall

longitudinal distance from leading edge of flat
plate or circular cyliader

longitadinal distance from leading edge of airfoil
measured slong surface

perpendicular distance from wall to point at which
velocity u is measured

boundary-layer thickness, defined as perpendicular
distance from wall to point at which contribution
to the integrals for §* and © is negligible

boundary-layer displacement thickness for incompres-
sible flow

[
u
(1 - iGB) dy

boundary-layer displacement thickness for compressible
flow
&

(1 - Lu ) dy
Po P
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L] = boundary-layer momentum thickness for incompressible
flow
3
2 Q-3 ay
v (e o]
0 a0
ecomp = boundary-layer momentum thickness for compressible

11
ow ;
JZ_%___ (1 - %" ) dy
0 Lo "o )

/L = viscosity
/O
Y

= density

= kinematic viscosity,

cg = wall shear stress coefficient ( T}/q)
Subscripts:
inc = incompressible flow

comp = compressible flow

exp = experimental

Tr = experimental transition valus

When values of &%, 6, H, and Rg are not subscripted, the in-

compressible and experimental values of these parameters are
inferred.

vi
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A STUDY OF BOUNDARY-LAYER TRANSITION
FROM LAMINAR TO TURBULENT FLOW

INTRODWCTION

1. The study of boundary-layer transition from laminar to
turbulent flow involves not only the determination cf the
factors which control the occurrence of transition, but also
the changes that the boundary-layer velocity profile under-
goes while reverting from wholly laminar flow to fully turbu-
lent flow. Although a great deal of theoretical and experi-
mental work has been done on transition, very litile is known
of the behavior of the boundary layer in the transition region.

2. To the author's knowledge, no theoretical work on the
behavior of the boundary layer in the transition region has
been done. The present work deals with both aspects of the
problem. From an examination of a large amount of velocity
profile and pressure distribution data taken from a number
of experimental investigations of flat plates, hollow cylinder
models, and airfoils in both incompressible and compressible
flows, it is shown that the criterion for determining the
axlial location of the start of transition proposed by the
author in reference (a) is substantiated. It is also shown
that for incompressible flows with moderate values of stream
turbulence,roughness, or pressure gradient,the start of
transition may be roughly predicted by stability theory.

REVIEW OF EXPERIXENTAL INVESTIGATIONS

3. While it is realized that the published results of a
number of experimental investigations, in addition to the
results presented herein, are available, the data presented
were drawn from those investigations that were most suited
to the present work and it is felt that the results shown
are representative of the entire fund of information. It
should be noted that only the general features of each in-
vestigation can be discussed in the present reportand it is
suggested that the reader consult the original papers for
more detailed informatiorn.

4, For convenience, the resulis of the experimental investi-
gations have been separated into two categories, namely, the
zero pressure gradient cases (flat plate and b (low cylinder
models) and the cases for which pressure gradients existed
(airfoils). In order that the data presented be as complete
as possible, the values of stream turbulence when availatle,
are given in the tables presented.
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Zero Pressure Gradient Data

5. The pioneer measurements of the boundary-layer flow on
a flat plate were made by van der Hegge Zijnen (reference d)
with the aid of a hot-wire anemometer. The results are pre-
sented in the form of numerous tables and curves giving the
observed speeds at several hundred points, whose x and y co-
ordinates with respect to the leading edge of the plate are
tabulated for five subsonic speeds of the approaching air-
stream. All the results of this investigation are included
in the present report in both graphical and tabular form
(Table I).

6. Also included in this table are results obtained during
the course of an experimental investigation of the boundary-
layer flow on a flat plate made at the National Bureau of
Standards by Schubauer and Klebanoff (reference e). These
data were obtained at a free-stream velocity of about 80
feet/second.

7. The results of experimental investigations of the boundary-

layer development on hollow cylinder models conducted by O'Donnell

and Brinich and Diaconis (references f and g) with their axes
alignedparallel to the airstream at Mach numbers of 2.41 and .
3.05 are presented graphically and are tabulated in Table 1I.

Results are given for four model diameters (1.87, 3, 4, and 5

inchkes). Only the natural transition results for these models

are presented,

Pressure Gradient Data

8. The results of an experimental investigation of boundary-
layer transition on three symmetrical airfoil sections, each
at three angles of attack, presented by Silverst2in and Becker
(reference h) are given graphically and in Table II1I. 1In these
tests, boundary-layer velocity profiles were measured on the
upper surfaces of airfoils of the NACA 0009, 0012, and 0018
sections over a lift coefficient range from -0.57 to 0.65.
Although tests were made at tunnel velocities from 30 to 90
miles per hour, only those data at 60 miles per hour are in-
cluded in the present work because these are typical of all
the data included in this reference.

9. The results of an experimental investigation of the
boundary-layer flow on a symmetrical Joukowski airfoill sec-
tion presented by Fage and Falkner (reference i) are illus-
trated and are also tabulated in Table IV, For this experi-
ment a series of boundary-layer velocity profile measurements
were made on the airfoil surface at tunnel airspeeds of 60
and 80 feet per second.

— i

| %1
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EVALUATION AND PRESENTATION OF DATA

10. For all of the boundary-layer velocity profile data ac-
cumulated, values of the displacement thickness ( §*), mo-
mentum thickness (0), and boundary-layer shape parameter (H)
were ¢valuated by graphical integration. It has been pointed
out (reference j) that compressible boundary-layer velocity
profiles are similsr in shape to incompressible velocity pro-
files. The values of parameters derived from the compressible
boundary-layer velocity profiles, ignoring the temperature
distribution across the boundary layer, are therefore close

to those for incompressible flow. These values of the boundary-
layer parameters are ficticious in a sense, but their use
provides a common basis for comparisons between the results

for incompressible and compressible flows. For the compres-
sible flow data the boundary-layer parameters were therefore
evaluated using both the incompressible and compressible flow
definitions. Each of the tabulated sets of data are iden#ified
by the conditions of the experiment and the reference letter.

11. For the pressure gradient data investigated, the values
of the stability parameter (reference b)

r & fo 02 dug @
6 Uy 9x " P dx

are also tabulated. These values were calculated from the
pressure distribution graphs giver in the pertinent references.

DISCUSSION OF RESULTS

12, The large mass of experimental data preser*ed herein are
used first to give additional support to the transition cri-
terion proposed in reference (a). In this reference it is
shown that at the transition point an abrupt drop occurs in
the curve showing the varistion of the incompressible (or
compressible) value of H with distance along the surface.

This occurs because ut the start of transition, the velocity
gradient near the surface, or the skin friction, rises rapid-
ly. The value of H is quite sensitive to the velocity ratios
near the surface, and small increases in the velocity gradient
near the wall cause a dimunitiorn of the values of H, Since
near the leading edge, the laminar flow region is characterized
by values of H which are about 2.6 and in the turbulent region
the values of H are about 1.4 to 1.5, the mean position for
the start of transition should be readily recognizable.

13. Figures 1 to 8 show the variation of H with distance
along the surface for each of the sets of data tabulated.
In each ¢f the cases shown, a more or less abrupt drop occurs
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in the H curve. In some cases (Figures 1lb and lc, for example)
the curves appear rounded at the transition point. These are
probably more physically realistic than the curves showing the
abrupt change in slope. It is reasonable to assume that the
rounding is probably present for all of the data and would

have been evident if more data in this region were available.
In general, however, all of the curves exhibit the same charac-
teristic behavior. These data validate the criterion proposed
in reference (a) for determining the start of transition.

14, The determination of the end of transition region is more
difficult because of the asymtotic nature of the curves shown
in the preceding figures. Consequently, the end of transition
is arbitrarily defined as the axial position where the value
of H first reaches its characteristic turbulent value of 1.4
or 1.5, or where no further decrease in H is noted. This is
indicated on each of the figures showing H as & function of

x.

CORRELATION OF THE BOUNDARY-LAYER PARAMETERS
AT THE START OF TRANSITION

Incompressible Flows

15. On each of the preceding figures, the point at which the
minimum critical Reynolds number for laminar boundary-layer
stability (Rg. n? is indicated as a shaded data point.

The position oi'%ﬁese points wes determined by first plotting
the experimental values of Rg ar a function of distance along
the surface, and noting the axial position at which Rger.min
occurred. For the incompressible flow data the values of

Rgcer .min which were used for this procedure were obtained from
the modified Schlichting analysis of reference {b). The ordi-
nate value for the shaded data points was determined as the
value of Her, associated with the value of R@er.min. An ex-
amination of Figure 1 indicated that, in general, the start

of iransition occurs close to Rgcr.min; this is more clearly
illustrated in Figure 9., In this figure the experimental
values of Rgtr, are compared to the theoretical curve of refer-
ence (b). While there is considerable scatter in the data,
which is probably due in part to insufficient data at the
start of transition, it is evident that transition starts

at values of Rg which are of the same order of magnitude as
those given by theory.

16. It is difficult to justify those data points which are
less than Rger ., min- This is because it was found in the
experimental investigation of reference (e), that efforts

to disturbd the laminar boundary layer in the region where

the Reynolds number was less than Rger .min Wure unsuccessful.
While the artificial distnnbance created in this region was

e
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not damped, it amplified only beyond the axial position of
R@er.min. For this reason, those transition data points
which fall below the theoretical value appear inconsistent,
unless the turbulence level of the airstream outside the
boundary layer exerts a disturbance which has characteristics
different than that created artificially in the experiments
of reference (e).

17. As pointed out previously, both Rgecr.min and H.p. are
uniquely defined when the value of the non-dimensicnal pres-
sure gradient parameter Rg 6/ugo dug /dx, is specified. A
ccmparison is shown in Figure 10 between the theoretical
curve of Hor, and experimental valuas of H as a function
of Rg O/uooduoo/dx. No conclusion can be réwn from this
comparison because of the large data scatter, It is indica-
tive, however, of the sensitive nature of H.

Compressible Flows

18, Figure 11 shows the values of Rgtr, determined in the
manner previously described for all of the compressible flow
data examined. In view of the large scatter of the data, it
is not possible to describe any trend with Mach number. To
determine whether the transition point is a function of stag-
nation pressure as was suggested in reference (k), the experi-
mental data shown in Figure 11, are plotted versus Pp in Fig-
ure 12, In this coordinate system, there seems to be some
trend of increasing Rgtr, with increasing stagnation pressure,
but the scatter of the data is too large to draw any definite
conclusions.

Correlation of Boundary-Layer Velocity Profile Data

19. From previous discussion and inspection of the related
figures, it is apparent that only a small portion of the large
mass of velocity profile data presented falls into the transi-
tion region. However, the data that are applicable have heen
isolated and are considered of sufficient quantity for the
present correlation.

20. It has been shown by von Doenhoff and Tetervin (reference
1) that turbulent boundary-layer velocity profiles form a
single parameter family of curves. To determine whether the
transition region velocity profiles are of a single parameter
family of curves, and, if so, whether the transition region
velocity profiles are of the same family as those for turbu-
lent boundary-layer velocity profiles, values of u/ugp were
plotted against H for various values of y/6 for all the data
entering into the analysis. The variation of u/ucowith H for
several values of y/0 is shown in Figure 13, Because of the
large amount of data points, and the fact that no significant
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trends were detected between sets of data, no effort was made
to identify the points of any one investigation. Also plotted
in Figure 13 are curves of u/ug versus H for corresponding
values of y/9 for turbulent boundary-layer velocity profiles.
Figure 13 shows that u/ugp is a function of H alone for a
given value of y/0. This conclusion is important because it
means that transition region boundary-layer velocity profiles
form single parameter family of curves. It is also apparent
that the transition region velocity profiles are of a dif-
ferent shape than those for turbulent boundary-layer velocity
profiles.

CONCLUDING REMARKS

21. A large amount of boundary-layer data in the region of
transition from laminar to turbulent flow has been collected
from a number of experimental investigations of boundary-layer
flows on flat plates, circular cylinders, and airfoils. These
data are presented in both graphical and tabular form.

22, A criterion for determining the axial position of the
beginning and end of transition previously proposed in refer-
ence (a) is substantiated. Comparisons are given between the
experimental values of two local boundary-layer parameters
(Rg and 82/ n dugp/dx) at the start of transition and the
theoretical values of these parameters as predicted by sta-
bility theory. It is shown that for incompressible flows the
start of transition may be roughly predicted by stability
theory. No correlation between the measured values of Rgtr,
at the start of transition and the minimum critical values

of Rg was found for the compressible flow data.

23. It is shown that the shape of all transition region
boundary-layer velocity profiles may be expressed as a func-
tion of a single parameter. It is also shown that transi-
tion region velocity profiles differ in shape from turbulent
boundary-layer velocity profiles, particularly in the region
near the wall.
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TABLE I

Values of Boundary-Layer Parameters for Data of Reference d
Estimated stream turbulence 1-2 percent

U = 400 cm/sec

X, cm &, cm 8, cm H Rg
15 .1166 .04 2.915 111.9
20 .1279 .04592 2.785 125
25 .14 .0506 2,767 136.8
37.5 .1732 .0692 2.503 183.3
50 .185 .0757 2.444 206
62.5 .2166 . 0976 2,22 264
75 2422 .1129 2.145 309.3
87.5 .2464 .119 2.071 321.6
100 .2596 .1182 2.196 313
125 .2876 .133 2.162 352.3
150 .29 .1508 1.923 418.7
U = 800 cm/sec
X, cm &, cm 6, cm H Reo
5 .04624 .01992 2,321 105.6
7.5 .05744 .02344 2.451 122.7
10 . 06592 .02744 2.402 145.5
12,5 .0756 .0284 2.662 149.5
15 .082 .03264 2,512 175.3
17.5 .08488 .034 2.497 179
20 .08624 .0343 2.516 184
25 .0912 .03824 2.385 207
30 .1036 . 0449 2.307 243
40 .1138 .0514 2.296 280
50 .1356 . 0642 2,112 336
62.5 .1506 .0761 1,974 406
75 .1544 .0884 1.747 456
80 1712 .108 1,585 576
85 .1616 . 105 1.539 545
90 .1808 .12 1,507 635.5
100 .2016 . 1448 1,392 777
125 .252 .182 1.385 971
150 .2992 .1536 1,948 825
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TABLE I continued

U = 1200 cm/sec

X, cm &%, cm 8, cm H Rg
2.5 .03368 .01684 2.0 136.5
! 5 .04024 .01596 2.52 127.7
{ 7.5 .04944 .01828 2.705 144.3
! 10 .0553 .02036 2.715 164
! 15 .068 .02584 2.632 209.6
20 .07112 .02644 2.69 220.5
25 .07728 .0301 2.56 244
37.5 .0926 .0411 2.253 326.7
50 .1048 .0573 1.829 467.7
62.5 .1234 .0747 1.652 €14
75 .1424 .0956 1.49 760
87.5 .1668 .1126 1.481 908
100 .2188 .1542 1.419 1210
125 .2776 .1888 1.47 1471
150 .2492 .1788 1.394 1512
U = 1690 cm/sec
X, cm &*, cm 6, cm H Rg
10 .05104 .01868 2.732 196.7
FIE .05768 .0232 2.486 247.6
20 .06568 .02568 2.558 274
25 .0689 .0287 2.401 304
37.5 .0758 .034 2.229 357.7
50 .0982 .0625 1.571 680
62.5 .12 .078 1.539 849
75 .1512 .0994 1.521 1075
87.5 172 .1214 1.417 1278
100 .1852 L1312 1.412 1419
125 .2544 .1708 1.49 1872
150 .2416 .170 1.421 1890

o

10
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TABLE I concluded

U = 2400 cm/sec

X, cm &, cm 8, cm H Rg
10 .04 .01612 2,481 254.5
15 .04432 .01844 2.403 295
20 .049 .02046 2.395 329.5
25 .05168 .0218 2,371 346.6
37.5 .05696 .03124 1.823 493.5
50 .0928 .0628 1.478 1005
62.5 .108 .0718 1.504 1142
75 .1292 . 092 1.404 1473
87.5 .1496 .1064 1.406 1692
100 .1832 .1284 1.427 2069
125 .224 .1614 1.388 2619
150 .2384 .169 1.411 2836

Values of Boundary-Layer Parameters for Data ci Reference €
Stream turbulence 0.03 percent

U= 79 ft/sec

X, ft &%, in 6, in H Rg
5.00 .0€e7 .024 2.79 924
5.25 .067 . 024 2.79 928
5.75 .073 .028 2.61 1091
6.25 .060 .032 1.88 1281
6.75 .061 .041 1.49 1632
7.50 077 . 055 1.40 2180
8.00 .090 .064 1.41 2486

11
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TABLE 111

Values of Boundary-Layer Parameters for Data of Reference h
Stream turbulence 0.3 percent

NACA 0009 airfoil

C1 = -0.57
s x, in 8, in H Rg Rg & JUw
c & ’ 2 ugp dx
.05 .011125  .00465 2.392 211.2 .0294
.10  .01409 .00655 2.151 297.5 .0262
.20  .02057 .00984 2.09 446.8 .0188
.30  .02669 .01238 2.16 561.5 .0156
.35  .0308 .01487 2.07 675 .0181
.45  .03292 .01818 1.812 816.5 .0176
.55  .03266 .02024 1.623 850 .00981
Cy1 -0
s *, in 9, in H Rg 8 Jim
o & ’ Uy, dx
.06 .0157 .00538 2.918 244.2 - .00874
11 .02 .007575 2.64 344 ~ .0165
.21 .0296 .01281 2.31 581.5 -~ .0417
.31 .03109 .01605 1.937 714 - .0553
.36 .0262 .0167 1.569 705 ~ .0473
.46  .0267 .0171 1.561 691 - .0376
.56  .0256 .01725 1.484 638 ~ .0266
Cy = 0.65
5 &%, in @, in H Rg
C
.07  .0248 .0154 1.610 699
.12 ,0323 .0202 1.599 839
.22 .0274 .0181 1.514 641
.32 .02549 .01686 1.512 559
.47 .0242 .0164 1.476 510
.57 .021 .0132 1.591 381
.67  .021 .014 1.5 413.2

19
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TABLE III continued

NACA 00i2 airfoil

P

Cy = -0.57
s *, in 8, in I R 6 duw
Y 57 ) ) 0 U dx
.05 .01014 . 003892 2.603 176.8 - .0396
.15 .01805 .007695 2.346 349.5 - .0245
.25 .02522 .01027 2.456 466 .5 - .0156
139 .026 .0125 2.08 568 - .00763
.45 .0236 .0128 1.844 564 + .00188
.05 .03138 .0164 1.913 704 + .00693
.70 .03116 .01873 1.663 756 + .0292
Cy1 =0
s *, in 8, in H Ro Rg & Yo
ry S5 1 ’ e Ug ax
.07 .0118 .0049 2.408 222.6 - .00949
.17 .0224 . 00886 2.528 402.5 .0207
.27 .0287 .0109 2.633 495 . 0300
.37 .0275 .0164 1.677 726 .0708
.47 .0235 .0162 1.451 677 .0598
.97 .0234 .01535 1,525 578.5 .0448
.72 .02177 .0157 1.386 534.5 .0384
Ci1 = 0.65
% &*, in 9, in H Rg
.18 .02697 .01693 1.593 722.5
.28 .0284 .01852 1.533 693.5
.38 .02408 .0158 1.524 538
.48 .0232 .01661 1.397 539.5
.98 .02169 .01445 1.502 436.3
.73 .02298 .01452 1.582 412
20
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TABLE III concluded

NACA 0018 airfoil

Ci1 = -0.57
S g% in e, in H R R dup
s o ’ (¢] °] U dX
.06 .0092 .00438 2.1 198.9 .0293
.16 .0164 .0073 2.246 331.4 .0223
.26 .02097 .00948 2.212 430.3 - ,00328
.36 .0272 .01088 2.5 494
.46 .03304 .01656 1.996 729.5 - .0388
.56 0277 .01589 1.744 674 - .0262
.66 .02252 .01474 1.528 575.5 - .00284

Cl = 0

du

S * _9.. __CD
= &%, in 0, in H Rg N Ox
.08 .013 .0055 2.363 249.7 .0203
.18 .02158 .00846 2.55 384.2 .0105
.28 .02656 .01136 2.3328 516 - .148
.38 .0244 .01588 1.537 692 - .203
.48 .02204 .01444 1.527 557 - ,115
.58 .0232 .01608 1.443 595 - .106
.68 .02292 .01504 1.525 525.5 - .0801

C1 = 0.65
S g*, in 9, in H Rg RoW g_““’
c Up dX
.10 .0113 .00494 2.287 224 .3 .0643
.20 .02128 .0133 1.6 604 1.534
.30 .02744 .018 1.525 736 - 1.676
.40 .0248 .0162 1.531 596 -  .406
.50 .02356 .01476 1.595 489 .4 - .172
.60 .02292 .01546 1.483 481 - .114
.70 .01968 .01268 1.553 363 - .,0460

21
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TABLE IV

Values of Boundary-Layer Parameters for Data of Reference i
Stream Turbulence Unknown

Up = 60 ft/sec

S g*, i e, i H R Rg & 2
E. 8,1n , in e gﬁoa:
.0524 ,00835 .004045 2.067 145.9 .0141
.1007 .1239 .00578 2.144 215 .00715
.151 .01578 .00759 2.08 286.8
.202 .01998 .00934 2.139 354.5
.252 .0216 .00978 2.209 371 - .00261
.302 .03081 .01655 1.862 628 - ,.0210
.403 .03073 .02025 1.518 743 - .0584
.504 .04137 .03033 1.364 1076 - .162
.605 .05717 .03994 1.431 1367 - .306
.706 07971 .05645 1.412 1880 - .573
.807 . 09655 .06888 1.402 2188 - .904
.956 .1424 .09917 1.436 2930 -1.428

Up = 80 ft/sec
B & @, in H Rg Rg 2 duw
a 8 ’ Qum'a-f
.05824 ,00732 .0036 2.035 171.8 .0148
.1007 .0°13 .00519 2.174 258.4 00771
.151 .01366 .00638 2.139 320.2
.202 .01693 .008734 1.938 440
252 .0183¢6 .01085 1.692 5583.5 - .00432
.302 .02533 .01783 1.421 897 - .0324
.403 .02890 .02132 1.356 1045 - .0866
.504 .04431 .03275 1.353 1564 - .254
.605 .06479 .04693 1.381 2161 - .568
. 706 . 06908 .05129 1.347 2235 - .619
.807 .09909 .07178 1.381 3023 -1.302
.956 .1404 .0D9655 1.454 3804 -1.805

22
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