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SUMMARY

st ———

The standard algorithm of the revised simplex methc¢ 3——with which
the reader is assumed to be familiar-——has been designed co provide
the simplest pPossible set of rules for solving a linear programming
problem in the general case where nothing is known or assumed about
the rank of the system, Expeiicnce indicates that this 8implicity
of operation is sometimes gained at the expense of several iterations
which tend to replace certain vectors over and over. It i1s believed
that this tendency can be reduced by a more c¢ritical analysis or the
ObJectives of the procedure on each iteration. While this compli-
cates the rules of Yperation somewhat, . the latter is not a serious
obstacle for large, high—speed computers.

Previous papers involving the use of & dual algorithm have
suggested that much information 1is inherent in a problem which is
not normally taken advantage of. The present proposal uses a com—
bination of the normal and dual algorithms, with Some modifications:

and keeps separate the three essentially distinct ideas with which
the simplex method is concerned, namely: non-singularity of a basis
matrix, feasibility of the solution, and optimality of the solution.
It 1s believed that an optimal solution will be obtained in fewer
iterations by this method.
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A lineer programming problem is concerned with minimiging (or

maximizing, which merely involves change of signs) a linear
| n
! (1) JZi 8,5 Xy = min

Subject to the conditions that

n
(2) 243 X3 =by , 1=1,2,...,m
Jgg 13 %5 i

(3) x,20 , Je=1,2,...,n,

form

Where we assume (without loss of generality) that all b, 2 O.

In the revised simplex method (and in partioular here,
of the method using the product form for the inverse of the

the form
basis),

the statements (1), (2) are combined in a single matrix equation

formed of the following columms (denoted by braces):

P, = {‘oJ’ Bgs weey amJ} , J=1,2,...,n
e {0, by, ..., by}

X = {xo, xl, ceey %}

which are combined to form the matrix P = [}o, Py ..o, P ]

' equation

and the




() Px =Q

whence Xo 18 to be maximized subject to (3) ana (4).

The simplex method works 80lely with basic solutions. If p
does not contain the (m+l)-order identity matrix I, then a basic
feasible solution is not in general available to start the iterative
procedure for maximizing X, That 1is, what is desired is the ex—
Plicit knowledge of the following quantities:

(5a) a basis for (m+1)~space chosen from the PJ and denoted
by

Be EP"O’ le ceey PJm] ’ PJO - PO H

(50) 1ts associated solution vector V = {vo, | vm:}
such that BV « Q, vi‘a O for 1 >0 ; and

(5¢) the inverse of B whose elements we denote by Byy» the
rows by p, = (pio’ Byys oo Bim) » 1 =0,1,...,m,
and the columns, when hecessar,/, by ck "{5ok' plk’ 5% oy 5mk}’
k =0,1,...,m ; that is, briefly,

B-l - (ﬂik) - {Boo 01: coe, 5m}

where the last braces signify a column of rows.

Besides the lack of knowledge of the quantities (5), 1t 18 1n
general not even known whether or not the matrix P has rank m+l,
that i1s, whether or not it &8 possible to choose a basis for (m+l)-
space from the columns of P. At the same time, if certain of the
equations (2) were redwndant (1.e., rank of P less than m+l), this
would not preclude the possibility of a solution to the problem,
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even perhaps a unique one. Furtbormort, even if the

quantities (5)
wWere known, it would be awkward to start the

iterative Procedure ofr
the simplex method using the product form o1

advantage of this knowledge.
one fell swoop,

5% 1n a way to taxe
To overconie all these difficulties at
"phase one" of the method was devised to provide a

convenient, practicable starting point from

which could be constructed
the necessary transformations which would 1le

ad to a basiec, feasible
solution or show

that none existed.

It 1s assumed that the reader
is familiar with this

Procedure and with the use of the product

form for B}

RS § Beg -+- By

where the E, are elementary column matrices. (1,3,5,6]

II-DISADVANTAGES OF PHASE ONE OF THE SIMPLEX METHOD.

Although phase one provides a theoretica

finding a solution to (3) and (4)—or of show
exists which, in a sense,

11y fool—proor1 way of
ing that no solution

is a solution to the whole problem—atill

it introduces difficulties of 1its own. In the first place, experi-
ence has shown that phase one is apt to be unduly long when P has
certain types of structures, @specially when Q contains many geros,

2 condition which arises fairly often,

This 1s costly in computing
time and

4180 introduces considerable round-off error into the

11¢ is literally "fool-proof,” at least by present knowledge,
only 1f some perturbation of Q is used to guarantee onvergence, as
for example in the Generalized Simplex Method.

1,3] Throughout
this paper this %érgioulty will be ignored, as 1t has been in practice
for some time. F
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; ) computations before the actual maximigation of X, 18 begun.

Secondly, there is no guarantee that the feasible basis obtained at
the end of phase one may not be nbbut as far from optimal as possible.
The algorithm to be herein presented is the second of two proposals
[8] for overcoming the second of these objections. The first objeo—
tion 1s closely related to the Aifficulty mentioned in footnote 1—
that is, although non—convergence appears to be extremely rere, slow
convergence 1s fairly common for phase one. However, it is believed

that even this difficulty will be improved by the present algorithm,

III-A WEW LOOK AT ARTIFICIAL VARIABLES AND THE PRODUCT FORM OF Bl
In the usual phase one, an "artificial” identity matrix is

adjoined to P and artificial variables are associated with these

' unit vectors, an auxiliary maximizing form then being introduced

for the purpose of eliminating the artificial vectors or at least

of driving the sum of the artificial variables to zero. (This aux—

iliary form consists of a redundant equation incorporating an additional
variable similar to xo.) Also when the product form of B™! is used,
this is usually considered as merely a computationally convenient
way of recording B, We now wish to look at these variables and
the elementary matrices whose product 1s B} from slightly—but
' importantly-—different viewpoints.
It is mandatory that we maintain-—at all stages of the simplex
, process—a basis for (m+l)-space, regardless of whether it is wholly
p or partly artificial, or completely contained in P. Thus when we

speak of a "basic, feasible solution” to (3) ana (4):
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(2) "solution" means that equation (4) 1s satisfied, and
(b) “feasible™ means that condition (3) 1s satisfied, whereas
(c) "blli;' means that for all Xy > O, the associated PJ are
linearly independent (and independent of Po) and hence if
there are p ¢ m such PJ (J > 0) then m-p unit vectors
must “£111 out"™ the basis.
Clearly these three notions are distinct and the idea of a solution
being "basic" i1s really extraneous to the linear programming problem.
Furthermore,

(d) "optimality" refers to (1)
and is still a fourth distinct notion. Although the simplex critoriop
for optimality requires, ir practice, the inverse of a basiz, the
degree of artificiality is not a consideration. The essence of the
present proposal is fo keep these four notions distinct but to work
on all of them simultaﬁoopsly.‘

Since we must always provide a basis, it is natural (and very
convenient) to start with the simplest of al1 bases, the identity
matrix I. We will not think of this as an "artificial basis" for
fho problem but simply as part of the necessary mechanism on which
the operation of the method depends. We can obtain feasibility
initially by setting all xJ =0, J= 0;1,...,n, However, this
does not provide a solution to (4 so 1t 1s necessary to modiry (%)
80 that the ri;ht-hmd side 1s null, Por t;hil purpose we introduce
B auxiliary non-negative variables u, 20, 1= 1,2,...,-.2 We then

exr_r contains some unit vectors U, other than P,, then the x,

for these vectors can be set equal to b1 initially and no u, need bde
introduced for this set. .




modify (2) to

n
(6) 84y X, = b, ~u, , 1= 1,2,...,m,
J% 13 %5 1 1

whence setting u - b1 provides a solution to the modified equation
(8) PX = Q — U where u-{o,-u,u,‘,, "‘"\n}'

We then seek both to maximize X, and to reduce U to nullity
while maintaining feasibility and continuing to provide a basis with
which to opornto.3

Clearly if P contains any non-null vector besides PB, some
PJ (3 > 0) can be introduced into the basis eliminating one of the
unit vectors Uj, 1> 3. The choice of which PJ to introduce will
be made to depend on the optimiging form (1) a8 long as it is pPos—
sible to improve X5 whereas the choice of which Ui to drop will bve
such as to maintain feasibility (1.e., keep (3) satisried) and also
meintain all u, > 0. The first substitution must reduce some u,
to zero (unless certain U, Were not introduced; see footnote 2) when
the corresponding U1 is eliminated from B, Whenever this happens,
the u, is then not allowed to re-enter the pProblem; that is, when
U; 1s eliminated from B, ui is removed from U and neither are o
considered again. However, some U, may formally remain in U at gero
level. Wnenever, in the sequel, we refer to z:uk, the sum 13 con-

sidered as taken over tho-o-uk still formally in U,

3!l‘ho variables Jjust introduced were suggested by a similar device
proposed by E. M. L. Beale and elaborated by Dantzig [8] in which a
variable measuring the sum of the deviations from Q was introduced in
the right member of the redundant equation usually employed in phase
one. Note that we have not used such an equation.
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One of the Ui is not necessarily
a8 always, certain P

eliminated on each iteration;

3 may be introduced into B and replaced later

by other PJ. However, the choice of a PJ to intrcduce depends on

(1) and not on an auxiliary form.

Each iteration £ will produce an elementary matrix 8‘ which

transforms the inverse of the (lua)'t basis

B‘_a to the inverse of
the lth basis:

-1 1 1
UOTESL RS . BE L B e1-g),

If and when a feasible solution to (3) ana (4) 1s obtained, say at

the Nth iteration, then the &ssociated basis has an inverse
(7) %-l-wl ® s 0 8‘ LN I ) El

where BV, = Q and for any v, (not in P) remaining in By,
Hence we can think of the

E

) Vg m 0.
N iterations as essentially computing the

s whose product gives the inverse of a feasidble basis BN' Note that

& feasible basis may be partly "artificial." On the other hand, a

basis chosen complelely from columns of P may not provide a feasible
solution to (3),(4).

& composite idea.

Hence the notion of a "feasible basis™ is really

IV.REQUIRED MODIPICATION OF THR FIRST SIMPLEX CRITERION
Choice A: (Some bJ < 0)

4
There are two main criteria which together with Gaussian

elimination essentially constitute the simplex method. First
& basis B, the first row of Bra, (-]

» Eiven
» 18 used as a "pricing vector."
°
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The inner products
(8) bJ - pO’J‘ ’ J=1,2,...,n
are formed. If any ibJ < 0, then an index s is chosen by

(9) 8 = mtn 5, <0,
the usual convention being that the smallest such index is chosen in
case of ties. If (9) applies, then the vector P, 1s introduced in
the amount € > O. Thc new value x; of the new solution, obtained

when P, replaces (1f possible) some vector in B, is given by
(10) X2 = x - éO. 2 X, .
This same rule will jc used in the present method whenever (9)

applies, i.e., whene
oriterion "Choice A.ﬁ

er some 53 < 0. VWe will ocall this selection

Choice B: (Al11 & 0, all u_, = 0)

J i
In the usual simplex procedure, the condition that all 63 20
implies that an opti*nl solution has been obtained, namely the basis
B and its associated solution vector V = E‘QQ. This implication
rests on the following two assumptions:
(1) V has been maintained feasible on every iteration;
(11) either B contains no artificial vectors or, if it
does, the sum of the corresponding artificial
variables is zero.
While we will maintain feasibility in the extended sense that (2)
holds and alsc all u, > O, we will certainly have artificial unit
vectors in B for at least the first m—u iterations (where u is the

-
-
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number of unit Vectors among the PJ, J > 0) and the corresponding
U; need not be Zero. Hence we oan not claim optimality because a1l
°J 2 O unless at the Same time all y

—
s TREER R
- 5 .

Choice C: /a3 OJ > 0, som~ u, > 0)

When al1 °J 2 0, we can obtain no improvement in Xo Without
violating roatibility.(cr. (10)), but 1r also some Y; > 0, then we
must yet attempt to reduce these Y, to zero in order to claim a
Solution to (4), Por this purpose, we borrow the criterion (slightly
modified) from the dual simplex algorithm, [2,7]
( Since in this case we wish to reduce the W >0, 1t seems

logical to work first on the largest one. Hence we choose the index
t by

(11) u, = max uy >0,

(taking the smallest such index, say, in ocase of ties) and then uge

By to form the inner products,ﬁtP - If we succeed in eliminating

Ut with some PJ-—khat is, 1f we ocan determine a P’ and replacing Ut

with P. does not violate rcalibilityh—thon ptP. Yy = Jp Will be

a the "pivot element” for the elimination. (Since Y - BF*P;, b A piP-.)
Then 2180, we will have o - “t/'yt = X, and this must be non-negative,
80 we must have Ve = pt!; > 0, 'urthornor!, although we cannot
inorease X,» We want to reduce it as little as Possible. 8ince the
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» u
f ® change in x, 1s ’r°- L] ?:T ¥y, Where Ve = poP. - 5. 2 0, we choose
8 by the following triple rule.

(12a) If any ptPJ > 0, choose the smallest index s such that

l Yo _ Bo¥s po’]
- w = min - P_ > 0.
' Ve BeFg " Ty B.F, Pets

! (12v) 1r a1l a'trd = O, then u, ocan never be reduced and there

1s no solution to (4). (U, 1s independent of a1l P,.)
(1ze) 1f an2 PPy < O and some B¢Py < O, then any allowable

change in B at this point will not decrease . In this
case we seek to reduce the sum J W, of the w  still
formally in U. Porming the corresponding sum By = ¥ By »
we compute ﬂzPJ for all J>0. Ir any AZ’J > 0, use

¢ (122) to determine s (replacing ByPy with A, P.). If al)
°z’.1 £ 0, then ¥ W > 0 1s minimum, i.e., cannot be

_ reduced without some xd going negative and there is no

feasible solution to (3),(4). (This 1s equivalent to

the condition in the normal pPhase one when it is deter-

v o

2 ema

mined that no feasible solution exists.)
The reader will note that (12¢) 1s rothing but a different way of
operating the usual phase one. However, this rule does not come
into play until all else has failed. Whatever novelty the present
proposal can claim lies in this change of order and emphasis in
tackling the four requirements (a), (b), (c), (a). Although the
rules of selection for vectors to enter in and drop from the basis

&re more complicated here than in the normal procedure, this is a

( secondary consideretion compared with time for and accuracy of
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solution on a large electronic computer.
Ir (12) aliows a Py to be chosen, then as usual we represent

it in terms of B
(13) Y. = B—IP. - {’O' yl’ ces, ym} .
There 1is no guarantee that ut can be elimirated and feasibility

maintained even though (12a) was used. However, whatever change is
made, P, will enter B with its coefficient Xg = © 2> 0. The change

in u, (or b Y, if (12¢c) was used) will be
UE T u - Oy <y
“"Z“;: --Z’uk -Oij SZ“}: in case (12¢)) .
Again 1t should be emphasized that when Choice C must be used
considerably, there is no guarentee that the present method will be
any faster than the normal phase one. However, if there is a ¢hence

of lhort-outting &N unduly long number of iterations, the present
method leaves the door open, as it were, for such a short cut to be

taken. b

br¢ is perhaps worth mentioning that when most of the a8,y are
£ 0, Choice A 1g likely to be used from the outset and for many -
iterations. On the other hand, if most (or 811) of the 8,5 are > 0,

Choice C may have to be used at the outset and perhaps thro ut the
Process and this involves more effort per iteration. Thus,
efficiency of this algorithm may well depend on the objectives of
the model.




V-MODIPICATIONS OF THE SECOND SIMPLEX CRITRRION

The second coriterion in the simplex method is concerned with
determining the index r of the basis vector to be replaced by P..
Representing Py, in terms of B by (13), the usual criterion is to
form the ratios (provided any ¥y > 0)

\'4
(18) oi--l for all y, >0 and 1>
Yy

and then to choose r by

(15) 6, = min €, for all 1 included in (14),

whence Or 2 0. Providing not all ¥y £ O this same oriterion will
be used here.

In the usual procedure, the case of all ¥4 <0 (1> 0)
implies that X, has no finite maximum. PFor the present methed,
however, this last implication is no longer valid. It must be modi-
fied and for this purpose we distinguish three cases. We first note
that all y, < O can only occur in the case 8, < 0. (See Chotce
A in IV.)

Case I. A1) u - 0, all yiso, and y, =0 i‘oranuk
remaining in U. In this case a class of feasible solutions
to (3),(%) can be constructed, whose values have no upper
bound, namely,

(16) B(V-O!.) + o,

with a new value x3 given by (10). Since Yo = BoPg = 8,°< 0
clearly :
x; -> +00 a8 >+ 0.
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‘ This case is equivalent to the case in the normal simplex

method (phase two) where all ¥ SO and the iterative

procedure terminates.
The function of the redundant equation during phase two of the normal
procedure is to insure that an artificial variable does not get al > ve
Zero since this would require the redundant variable to g0 below
zero (or vice versa) which is prohibited by (14) anda (15). Since in
the present method no redundant equation is used, this possibility
must be avoided by examining the Yy for which w is in U. This leads

us to case two.
Case II. Al u =0, all ¥y £ 0, but some Y < 0 for i
v, in U. Here P. can be introduced into B by eliminating
one of the U in B but. not in P. PFor, since all w =0, :
e, = “r/yr = 0 (y,. < 0) and the new solution vestor V*
will not differ from the present solution V (of. (16)) and
hence feasibility is maintained while one more w, is
discarded. .
Case IIXI. A1) Yy £ O but some wu, > 0. (Again note that
8, <0.) Ir @, >0, then X, Will increase but so will
all v, for which ¥ < O. Since there is no péint in
increasing X, indefinitely at the expense of likewise
increasing doviutionl from Q on the rizht-hl.nd side, we
arbitrarily mJoot the chosen P at this point and returmn
to Choice C in section IV. In this case, Choice C my
actually result in an increase in 3 but for the present
iteration we are concerned only with reducing ¥ v, of the
| ( w, still romlly in U,
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