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FOXEVORL

This report. which presents the studies on the use of the aerodynamic
intluence coetficient method, was prepared by the Aeroelastic and Structures
Research Laboratory, Massachusetts Institute ot Technology, Cambridge 39,
Massachusetts tor tne Aircratt Laboratory, Wright Air Developrment Center,
Wright-Patterson Air Force Base, Ohio. The work was pertormed at the MIT
under the direction ot Protfessor H. Ashley, and the project was supervised
oy Mr. G. Zartarian. The research and development work was accomp | ished
under Air Force Contract, No. AF 35(616) -2482, Project No. 1370 (Unclassitied
Title) "eroelasticity, Vibration and Noise," and Task No. 13473 {Unclassitied
Title) "Theoretical Supersonic Flutter Studies."™ Mr. _Walter J. Mykytow ot
the Dynamjcs Branch, Aircraft Laboratory, is task engineer. Research was
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unclassified portions ot this report. Since he has no security clearance,
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The tirst author, Mr. G. Zartarian, integrated Dr, Hsu's contributions into
the tinal document torm without divulging security information to him.

The authors are indebted to Protessor H. Ashley, Mr. A. Heller, and
Mr.\L Veatherill tor their contributions to the research. In addition,
acknowledgements are due to Mr. G. Anitole tor preparing the tigures and to
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This document, including the illustrations, is classified CONFIDENTIAL
(excepting the title) because it contains the development of inproved me thods
tor conducting supersonic tlutter analysis; hence more accurate tlutter
analyses tor modern aircraft can be made.
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ABSTRACT

An extensive investigation is presented intoc the applicabii-
ity and accuracy of the method of aerodynamic influence coeffi-
c..ents for calculating the airload distribution on thin wings of
arbitrary planform, executing small steady or simple harmonic
motions in a supcisonic flow of perfect gas. Several represen-
tative examples; involving wings with various combinaticns of
subsonic and supersonic edges, are worked out. Where possible,
comparisons are made with results of more exact linearized theory,
The relative advantages of three types of elementary area for
subdividing the wing planform are studied. The type which ap-
pears most satisfactory from considerations of versatility, ac-
curacy and simplicity is the "Mach box," a rectangular area
element with diagonals parallel to the Mach lines. On the basis
of all available evidence, the method is concluded to be satis-
factory for use in flutter prediction or similar applications,
and recommendations are put forth regarding preparation of tables
of aerodynamic influence coefficients. A set of working rules
to assist the engineer in using these coefficients is published
in a subsequent report (Ref. 31).

PUBLICATION REVIEW

This report has been reviewed and is approved.

?L. DANIEL D. McKEE
__ Colonel, USAF

{y Chief, Aircraft Laboratory

FOR THE COMMANDER:;
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SECTION I
INTRODUCTION

The problem of determining the aerodynamic forces on a
harmonically oscillating, thin, almost-plane lifting surface

tions for the linearized differential equation. The two-

finite wings, several authors have presented solutions limi-
ted to specific planforms, Miles (Refs. 3,4) treated the
uarter-infinite wing and extended his formulation to plan-
2orms with oblique straight leading edges, (Ref. 5). Although
the prescribed motions are arbitrary, the results obtained for
the velocity potential are in integral form, and the applica-
tion of this theory is limited by practical considerations to
cases where the mode of oscillation is independent of the
spanwise coordinate. Other contributors, e.g., Goodman (Ref.
6?, Stewartson (Ref. 7) and Rott (Ref. 85, arrived at similar
solutions for deformations which are variable in the stream
direction only. Evvard's equivalent-area concept was used by
Stewart and Li for the oscillating rectangular wing (Ref. 9)
and by Chang for an oscillating swept finite wing with super-
sonic leading and trailing edges (Ref. 10). It was subse-
quently found that this concept is valid only for low fre -
quencies. An extension (Ref. 11) was proposed by Stewart and
Li, which would validate the method for higher frequencies.
Concurrently Watkins treated the rectangular wing, oscillating
in rigid-body motions, by a series expansion of the kernel

The simpler problem of the triangular or delta wing with
supersonic edges performing ri%id-body motions was studied by
Miles {Ref. 1¥), Froehlich (Ref. 15) and Nelson (Ref. 16).
Using a suitable form of the reverse-flow theorem, Walsh,
Zartarian and Voss (Ref. 17) were able to obtain direct gene-
ralized-force expressions for this ‘'wide" delta associated
'k recent publication by J. w. Miles summarizes the existing

aerodynamic theories for unsteady superscmic flow. (Ref. 4k)

Manuscript released by the author December 1955 for publication ag a WADC

Technical Report. N n
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with rather general elastic modes. The case of the "aarrow'
delta, i.e., the triangular wing with subsonic leading edges,
was formulated by Haskind and Falkovich (Ref. 18) and by
Watkins and Berman (Refs. 19, 20). The former solution is
considered impractical in view of the tediousness of the
numerical computations. One may conveniently use Ref. 19 for
rigid body motions and Ref. 20 for harmonic deformations rep-
resentable by a quadratic form. Mowever, the limitation to
low frequency and the inadequacy of the quadratic form for
representing many types of deformation restrict the useful-
ness of the results of Ref. 20.

In view of the variety of shapes and aspect ratics adopted
for mrdern aircraft wing and tail surfaces, it is desirable to
devise a unified theory which is free from the limitations in-
herent in nearly all of the analytical methods mentioned above.
A promising avenue in this direction, entirely numerical in
character, was first Suggested by Pines and collaborators (Refs.
21, 22)* for any planform with all supersonic ed%es (and later
extended to planforms with subsonic edges) oscil ating in an
arbitrary deformation mode. Their scheme is based on the use
of the "aerodynamic influence coefficient," defined as the
pressure developed at a point on the win% by constant normal
velocity of the fluid (downwash) on an e e~entary area of the
wing, while the downwash is assumed Zero over the rest of the
Planform. This influence coefficient method can readily be
adapted to loading computation or flutter analysis by over-
laying a grid of boxes on the wing and relating the pressure
on any box to the known motions of all the boxes. Numerical
applications yield quite satisfactory accuracy for the plan-
forms considered in Refs. 21, 22. This method was extended
for planforms with subsonic edges by introducing the diaphragm
concept of Evvard (Ref. 23)* and Placing boxes over the dig-
turbed flow region off the planform.

The elementary areas employed in these references are
Squares, and this can be shown to limit the applicability for
wings with subsonic edges to the range of ~> vZ. Extensive

sociated with square boxes are now available (Ref. 25). Follow-
ing a suggestion by Pines, Li (Refs. 26, 27) carried out Simi-
lar analysis using as elementary areas the so-called Mach boxes,
whose diagonals are perallel to the Mach lines. Although the
Mach box appears to be the most useful and versatile of the

*Reference 24 summarizes the essential features of Refs. 21.23,

WADC TR 56-97, Part 1
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elementary-area shapeswgroposed to date, some of the approxi-
mations adopted by Li when computing influence coefficients
are inadequate. His work is discussed in a subsequent section.
In a recent report (Ref. 28) the present authors suggested
another alternative g8rid system, made up of so-called charac-
teristic boxes. These elementary areas are rhombuses with
sides parallel to the Mach lines.

Another numerical scheme has been suggested by Brandstatter
and Mortzgchky (Refs. 29,30) for tapered Planforms with super-
sonic leading and trailing edges, performing arbitrary simple
harmonic motions. They employ Miles' solution for the quarter-
infinite wing, replacing the tapered wing with a rectangular
one (the foremost points of the two wings being the same) and
setting the downwash *qual to zero on the region of the rec-
tangular wing between the leading edges of the two planforms.
This step is permissible since the leading edge is supersonic.
The downwash is represented as a power series in the coordin-
ates, and if such a representation is to be satisfactory, one
must take a large number of terms to account for the discon-
tinuous downwash at the leading edge of the tapered planform.
The method of Ref. 29 will undoubtedly be useful for particular
types of wing performing certain oscillations, but it is
organized in such a Way as not to appear as efficient as the
box methods from the computational standpoint. Seven distinct
types of region must be treated on the most general planform

An attractive feature of all these numerical methods is
that they are highly systematized and therefore well suited to
high-speed machine computations. The aerodynamic theory can
be reduced to a large aggregate of repetitive, elementary op-
erations, which involve the use of universally applicable
tables. However, Preparing such tables for the first time is
likely to be an expensive project and requires careful and ef-
ficient planning.

The motivation for the present research is to furnish
recommendations for influence coefficient tables and to pre-
sent a set of working rules for the proper use of the box
method in practical flutter analyses. The basic problem is to
study the proposed 8rid systems and their applications to
various types of wings of current and future interest. As-
sociated with each of these systems there are certain diffj-
culties which must be clearly recognized, so that appropriate
Steps can be derived to alleviate them. Possible modified
Procedures for particular cases, such as the special treatment
of subsonic edges, must also be taken into consideration. For
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these purposes many aspects of the problem have been isolated
and lavestigated Separately. The &ccuracy of the method bhas
been studied by comparing the results for specific examples ac-
cording to the pPresent numerical techniques with those accord-
ing to other unsteady aerodynamic theories of known validicy.

The present Paper describes a]} the detailed investiga- -
tions and 1llustrative cases, along with complete statements
of the conclusions reached therefrom. A summary report (Ref.
31) summarizes these conclusions, for the reader wvho desires
to apply the method, in the form of working rules for the com-
putation of afrload distributions and &erodynamic terms in
flutter equations,

When trying to formulate a set of rules for the applica-
tion of aerodynamic influence coefficients, one 1s faced with
the question of what degree of accuracy is needed in the
determination of the airlioads. This is Particularly hard to
answer when the pProblem being analyzed involves the interaction
of several types of forces, such as in flutter Prediction. It
1s known that in Some cases a given percentage error in the
aerodynamic forces can give rise to g larger error in the esti-
mated flutter speed, whereas at other times this s eed may be
very insensitive. It is important to minimize eacg of the
Sources of error in any flutter celculation, and to this end
the ideal would be to have the percentage srror of the air-
loads (compared to their exact theoretical values) smaller by
at least one order of magnitude T an t.ae largest uncertainty

own to be present in other terms of the flutter equations,
Such precision can rarely be attained, so that the analyst must
normally be satisfied with an &Ccuracy no worse than that of
other terms. Ag o 8eneral rule, it {3 believed that this sort
of accuracy or better will be obtained if the procedures sug-
gested in the Present work are followed.

The conclusions reached herein regarding evaluation of the
airloads are based on the following underlying Principles:

(1) Computations should be organized and limited so that
8enerally available high-speed computing facilities
can handle any Practical problem within o reasonable
period of time.

(2) Maximum accuracy should be obtained, up to a point
where any further significant improvement ig &ssocia-
ted with excessive additional labor.

(3) Refined techniques which produce marked improvements
in accuracy should be sought and recommended, but only
when they yield 8reater computational efficiency and do
not interfere seriously with the conceptual simplicity
and degree of organization of the basic method.
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SECTION 11
AERODYNAMIC INFLUENCE COEFFICIENT EXPRESSIONS
FOR THE THREE BASIG TYPES OF GRID SYSTEM

II.1 aerodynamic Theory

According to linearized potential flow theory for simple
barmonic motion of an almost-plane lifting surface (Ref. 12?,

the complex amplitude of the velocity potential F(x,4) at a

point (&39 on the upper side of the surface isg*

ey
Jbp=- 1 //w/g,f)e s er ) et
/ Vix-5)* 6%

" Eq. (2.1)
where (%, ,) is the complex amplitude of the normal

component of fluid velocity (downwash)
produced by the wing's motion,

Ty - (wrod)otey

Eq. (2.2)
and
L;';g;g are rectangular coordinates (cf. Fig. II.1),
Z(7) is the deflection amplitude of the mean sur-
face of the wing at { x, ) (positive downm),
7
A is the entire disturbed region bounded by the

forward Mach lines emanating from (x4 ),
and the various constants are defined in the list of symbols.

#In accordance with the standard procedure for representing
simple harmonic motion, the actual numerical values of the
velocity potential, downwash, etc., are the real parts of
the complex expressions Pet, Fewt etc., where w 1is
the circular frequency.
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The expression for the complex amplitude of pressure dif-
ference between the upper arnd lower surfaces Cﬁz‘fi) is:

P2EF=2pfiwr U2 ]pty)

‘wh?
— T {x—;)
- vg* “’4 2 ?}Z)
~_2r D 7/[w(En)e s (@@ Vi-g) 8%
=~ t/e J/ a2

Vi(x-8)*-8%-7)?
A Eq. (2.3)

Except for some special cases, such ag algebraic-polynomial
deformation shapes in steady flow, the double integral cannot
be evaluated in terms of tabulated functions, with the result
that a numerical method must be resorted to. Following Pines'
idea (Refs. 21-24), one may split the area A. into sufficiently
small elementary areas to allow certain approximations in the
evaluation of the double integral. 1If one assumes that the
downwash ig constant over each area, for example, one obtainsg
the approximate expression

. wM?
YL L W
=2 TGl o)~ )
7

AE 4,
VIx-£)2 8%y -7 <71
Eq. (2.4)

where 47 is a suitable sverage downwash over area 4; . The
quantity in the square brackets of Eq. (2.4) 1is the aerodynamic
influence coefficient (abbreviated AIC from here on), i.e., the
Pressure at point ( X,# ) due to a unit downwasgh over Ao
The AIC will depend on the location of 4 relative to (xy )
and the shape of A; . Three basic shapes have been proposed
for the elementary’ areag (boxes): square boxes, rectangles
with diagonals parallel to the Mach lines (Mach boxes) and
rhombuses with sides parallel to Mach lines (characteristic
boxes). For grid systems constructed of each of these box
shapes, the expressions for the AIC are now derived.

II.2 Expressions for the Aerodynamic Influence Coefficients
of the Square Crid System

a. Approximate Formulas of Pines and Harvard Computation
Laboratory (Refs. 24, 2BY.

The only complete table of Supersonic aerodynamic in-
fluence coefficients now in existence (Ref. 25) has been
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calculated on the basis of certain approximate integrations of
Eq. (2.4), which are now described.

Equation (2.4) may be put into the form

- — T 22 "[—/‘ [
= - LB BT, 9. 7%55) K o
b, 5)= zfﬁ/Z,’f‘[Z A2 /)/)/e Ras/M ) e, ]
2

= 25””27 a;/“//‘?ftz)
/ Eq. (2.5)
where

_£ -2
x,=;’x-; ;,7?1 $<7 04

are the dimensionless coordinates, é 1s the side of the
square box,

»

2
Vi
2

g_w-ﬁ#
r
- Vh-56% 1P

and (4;), 1is the dimensionless area of integration correspond-
ing to ;"1, .+ In subsequent derivations, the subscript / will
be drupﬁed from the quantities Yoo B57,.04). As shown in Fig.
I.1, the pressure at the center of the receiving box (2.7 )
due to a constant unit downwash at the sending box ( 2, ) 1is
dependent on the distances

—_—

Ko =Xy =n-2o/ =

e = F
Eqs. (2.6a-b)

where n,m o u, ¥ & are all integers. The box (r, ) is the
7?4 box downstream, and the m 7 box to the right of an
arbitrarily chosen origin box ( 4,0 ). Since the arameters
%, and M appear within the brackets of Eq. (2.5? along with
v and iz , the aerodynamic influence coefficient is fixed
by four independent quantities. A complete tabulation of these
coefficlents therefore involves "four-dimensional' tables.
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(y,m)or(m,u)

AN

\ (v, //
fe— ] —l y'Iu

1 \\ (xvap.) T /
(x,)or(n,2) N ! /

\g,'y/
™)

fT(Xn,Ym)

Fig. 1II.1 The Square Box Grid System

For 'far boxes" (i.e., 2722

), the following types of
approximations are used:

5-(..@/1‘-;) p— 6"‘; _I(X_g-c),

—_ N Z;— o T3
Cﬂ&/—/%—/?/ = cos (3 R )= 605/,7'? Ve-£26627), Eqs. (2.7a-b)

where ( 3., 7. ) denotes the center of the sending box. For
sending boxes which lie completely inside the forward Mach
lines from ( x,

» the areas of integration are squares.
Then one obtains for the AIC the expression
35l i L s (& o) A
ras(- 1)k - cos (e 27 @7) A
-Z ;;_:S,,', ,;g.ws@;:‘/;z;y B,;,z]
%% sin (74 2, « cas (M_é:W Ara
s (7% - ws//.gl r3fefa) Az z
_éfyﬁzlcasgg,@sé@)gii (17;2)
Eq. (2.8)
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where
Yo ®a-F ~ B(i+4)
As = cos EZ a7yl
/4,7;2 = casT BC2) o1 Blar ) _ A" ,
’ -4 z,—_é[ -1,
Bop = (Pr4)AL o~ (7L As - Bl L )eas™ 74 e d
7, 7y 2/ M= 2/f@50 2 _peh” Tt
-~ B Frd -l g1 =
Blat3)jeosh™ -2 _ pop 5+ 4 Eqs. (2.9a-c)

Ba+$) crf)d |
If the sending box is cut by a Mach line, the above expressions
are still valid provided the following interpretations are

adopted:
cos™'x =0 for 14X
wos'x =0 t %k Sor 0<£X</
cos™'x = - cas"/—x) 74'— ~-1€Xx <0
Cs™'x =7 ﬁr x <€ -/
Vx =0 far X =0
cosh™ =0 H for /1< x
cosh™ =0 for —1€X €/

cosh™x = cash™ (“x) for x &=
Eqs. (2.10a-h)

It should be noted that only positive values of A mneed be
considered since by symmetry

|
|
+
&
&.N ‘
{
l
\Q‘
]
\{.
[\
o
Y

Eq. (2.11)
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Equation {2.8) is identical with Eqs. (3a-b) of Ref. 25.
For near boxes (7=0/ ) a different numerical method is fol-
lowed in Ref. 25 to insure sufficient accuracy at high values
of £, . As 1illustrated in Fi%. 11.2, eacz near box is sub-
divided by a 5x5 grid. For this iner grid system, the refer-
ence length is £ /s~ and the reduced frequency is /£

.
»

< o C'?
ERREEREY
AN I //1
N [/
V=4
V=3 \\ 1/
72| \ C

Fig. II.2 Subdivision of Near Boxes

associated with the small boxes, there is a new set of indices
T, & . The contributions due to each box in rows 7 =2
to ¥’ = may then be calculated using Eq. (2.8), employing
/= 4/ /s instead of 4, . The AIC of a large box in row
7 =/ 1s obtained by sumning the contributions due to the
corresponding small boxes. For example, one has for box
Z7—=/I /.(,_:0)

’ i3 =2 ZIa VS - Eq. (2.12)

It remains to show how one may compute the contributions
of the small boxes in rows 7/ = o, , . 1f m 2= V.36 ,
which is an estimate of the practical range of applicability
of this theory, these rows are confined to the large box (g o0 )
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and they form a triangular region A as shown in Fig. II1.2. The
contribution of the whole region A is given by the first few
terms of the exact infinite series:

5. T _ / 22 9(o#+12M%) , &\#
Al g [l ()= 22221 8)

LT3 /k)_ 9(am%) &)
7L/v(a[/o (/‘7) 4 000 /M/] Eq. (2.13)

The third term in the real part of Eq. (2.13) is different
from the corresponding term of Eq. (7) of Ref. 25. This dis-
crepancy has introduced a small inaccuracy into the tabulations
of /.. in the above reference. This error is not regarded as
significant, since it is at most five units in the third place
for the highest 4, and lowest Mach number, whereas the ac-
curacy of the tabulations for rows > 2 from Eqs. (2.8) is
much poorer, as will be shown in Section III.4.

b. Exact Formulas

Making use of well-known relations in the theory of Bessel
functions, Watkins (private commrication; no formal reference
yet available) was able to reduce the double integral of the
potential function [Eq. (2.1)] into a single integral with an
integrand expressed in terms of an infinite series. Following
this idea, similar reduction is possible for the double inte-
gral of Eq. (2.4). 1Inasmuch as the AIC's are extensively
tabulated in Ref. 25 using the approximate formulas of Section
II.2a, the exact expressions for the square grid system will
not be presented here. The same mathematical technique will
be fully discussed in connection with the Mach grid system in
Section II.3.

I1.3 Expressions for the Aerodzgamic Influence Coefficients of
the Mac oX Gr ystem

For the Mach box grid system, Eq. (2.4) may be put in the
. form

b y)= 268 ST =1 o582 5 A7), £p
0= GG 245 [ € s (R 4 7
4

Eq. (2.1%)
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where p
X _ By -z ,_ B
A A A A
are the dimensionless coordinates and £ is the Streamwise di-
mension of a box (the spanwise dimension ig £/8 ).
"Z/= wb m*

——
—

U er’

R = V-5 G-nF

and (/4/ ), is the dimensionless area of a_Mach box. Here,
K+ <J 1is defined differently from 4+ .. r (by a factor of

6 ). This new definition is more convenient, since for Steady
flow, the AIC becomes independent of Mach number .

8. Approximate Formulas

. The procedure in obtairiing the approximate expressions is
similar to that for the square box and need not be repeated
here. It is worth noting that, in Fig. 11.3, the dimensions
of Mach boxes are so pProportioned that the forward Mach lines
from (x » ) always cut the boxes along the diagonal. Conse-
uently, for complete boxes > /&l , and for partial boxes
?half boxes) on the Mach line v=/g| - Again, because of the

symmetry

The approximate influence coefficient formulas read:
@qﬁﬂj;/z:i}[ cat (e 14 . wé@)&é}
#eas(7-)4- cos(& 7 gz )t
A sin k(B fm) G, |
1] 201 - os ([
T D s g7 A
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(y,'r;)or(m,,u.)

(x,f)or(n,u)l MACH LINE 7{
] .
|

&

VK]
1=k

)

bt
q_

.?
3
i
=
3
-
_!'\/

Fig. 11.3 The Mach Box Grid System

where
64*+ = cas™ A2 — cas™! ArE ,
TH D+ 4 —+2/-
- ; L -~ +
1}4"__ cos Cond 2-—(‘05—, /4-1 = ‘54‘_ 5]
Z -4 - b
+
— n -~ . AL T A
., - (TrE) = (7 1) -4k -4 _ 714]
-Z /1_.._
— -t =L - =, L
~(7@t2)] cosh™ TE ot ’7’“] s (Tr@rz2)
A+ %
Eqs. (2.16a-c)
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and the interpretations given in Egqe. (2.10a#) apply. The
quantities&££; ).%555 and 435/5 are independent” of Mach
number and reduced féequency. They are tabulated in Ref. 3i

for 7=2% 25 and /£ =0 & 25 , For the boxes in row 7=, , the
subdivision technique of Section II.2 may be employed, as shown

in Fig. IL.3, to yield
. z o 7 2 ‘
ot o 2Oy #2200 R i ]

£=-1/ 923 @ty GHA 5,’/2’,)2:; _é

77 _
Gesd, =2} (51727,,/_‘,”],7 ya s

2=3 pd Eqs. (2.17a-b)
For the only box (gs) in row 7=0, no subdivision is necessary
and the contribution of this box (Region A) 1is

. {2 %3) &
Pty = f10 3 (4] - S22 )
. P 2 — 3 - N
G l#8)- GHE (=0

Eguation (2.18) is obtained from the infinite series expansion
of the exact expression for Oaw,f(uzo » which is given below
in Eq. (2.29a). ’

It should be noted here that, although the exact expres-
sions given by Li for the AIC are correct (cf. Eq. 20, page 18,
Ref. 26}, certain approximations for the integrals, necessi-
tated by the type of computing equipment available, are in-
adequate. For example, Li approximates his Eq. (23b) by Eq.
(33). Consider the exact expression for the steady-state case
with constant downwash equal to unity:

Eq. (2.18)

V rtE e 27- %
hssgm= 5| [-Gr B0 [ergu-2)T et
x4
L
=._.l£cvs"4£22:fi
e JHt2
Eq. (2.19a)
Li's approximate formula (Eq. 33) for k;ws‘(i—/e) reads
WADC TR 56-97, Part 1 -1% -
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y a>_V / -/ 1)-%
1 5-(-p) A3 (7/£ "'Mf/t)fj/ "j Eq. (2.19b)
The integrand of Eq. (23) is singular at the upper limit and
therefore the finite power series expansion used by Li for the
singular term leads to large inaccuracies. This fact is con-

firmed by the brief table below, which compares Eqs. (2.19a)
and (2.19b):

(Z—/L) Exact ( - %‘k ) Approximate (- %‘K )
Eq. (2.19a) Eq. (2.19b)
1 1.231 0.577
2 0.927 0.567
3 0.775 0.503
4 0.680 0.452

b. Exact Formulas

Following Watkin's idea mentioned above, it ig possible to
reduce the dimensionless expressior for the AIC, 1i.e.,

. = -k (5B E‘W{TEEH‘TTEj
Cri- R 3) [ et i)
o (A/)/ VB~ (g *7

Eq. (2.20)

in the following manner. Consider an area A4 in the influenc-
ing region, bounded bg the lines (- g aws EL ) 7= % and 17, ).
Using a relation which can be derived from Eq. (1) on page 415,

Ref. 32 ’
« cost x%-a
‘[I(x,/f+12)wsaTdT= e Va’ for X >a
= ¢ or X<4&
= Eq. (2.21)
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Equation (2.20) may be put in the form

foi e (1 }/‘Z/ &g //[‘;-z) V(B Jesspy)rerded

Eq. (2.22)

Changing the order of integration, and carrying out the 7 -
part, one has ¢

{{—lz/-(l‘f) > , Y,
0‘1)+cf- - —/ £ ,}% +9;7 2/ € 0/2_1[ i -;),/zi/ﬁ"e‘, }_75,;,_?&.7‘)-5/” Tév—zfydz/_g
Eq. (2.23)

With the additional relations, Eq. (1), Page 358 and Eq. (2),
page 405 of Ref. 32

T%7%) = J) )+ zﬂ_Z”eM/dé (%)

(] r\- . . ﬂ
/Z:- (27) 5’;_/L/T= Z%S/n(zrsm Z) for a4
o Eqs. (2.24;-1;)
and since 47'7/5 (x-2) for this region, there resuliés

§l -
_ 76% -8, oty g
BTt il )| e M)t arzy]

w__r‘ ,T_ , e _ ._,g——?}j/.
+Z %Jr ( ,7'[ x-f]) /fmér.sm /%é) S, Zri:/: T(‘EE:) 25)§

Furthermore, since the limits are constant and the integrand
I of Eq (2 25) is a function of (x-%)

2 é’ (s - /L 2Tl - - / ‘3_(1)(/;

= I(%)- I(;;) Eq. (2.26)
Equation (2.25) becomes
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P
CreJ =il | "Tdg -3t (T)-1)
= Eq. (2.27)
It can be proved that Eq. (2.27) holds true even for the

partial boxes (boxes cut by Mach lines) provided the following
definitions are observed:

4
s x= % 7 /=X

“ < x </
Sy = —Z‘—z—ﬁzj—r ) F Sx &
Sm X = — é?. ’ xs -/

Eqs. (2.28a-c)

In the Mach box 8rid system,for a box with its center &
and Z units away from the point (x, 4 ), 2, S » 7. and
7¢ can be written as ¥-(7+4)y x-(T-4), 4-(i+%) , and o- (7-4)
An exception is box (0,0) , where x-& 1s zero instea{of s
The following expressions are therefore obtained: =

. — B @2 T -
Koridy =B E)- 2 B (7= 2)

a2 w+é—_L_~ — I v o=
+§ﬁ_§;[i e /X[_zl'[(gLX)rjo—/éX)SM ’7)/(2
-z
S EN
‘fg fF’%]a: {/_slx )Sm/erm ';&)]d X
(772 >1)
Eqs. (2.29a-b) ;
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O, +i ] =L I v 1) fon” 2 /laf oy At

Tr+#

2’ _;_Z /ﬁ. ﬁ,._l]) /ynﬁrs‘m A-F ).. sinfersim” £ ;“ 12 )} ]
E

5 T
Nh

+ %é-—z ﬁ: / 2 -k X[J (ﬁ){){sn _:'_ _sm L*i}
X ﬂi%ﬁ}%ﬁ

7‘)‘)()[5"(“’” IL) sinfersin /“z)}] * Eq. (2.29¢)

where ﬁ: is the familiar function of linearized unstead
supersonic flow theory (cf. Ref. 36 or Section III) and Jzr
is the Bessel function of the first kind of order Zr‘ . Al-
though, at first glance, these expressions seem rather compli-
cated, the evaluations are not difficult because of the rapid
convergence of the infinite series. For the ranges of Mach
number and reduced frequency of interest, only the first three
or four terms need be retained. Furthermore, the sine functions
can be reduced to Chebyshev polynomials .9 /x) (Ref. 33) when

IX| £/

sin (ersin”X) =(-2""I-x® S, _, (2X) [x[ <1

_ X| >/
¢ X Eq. (2.30)

where éirq (zX) are represented by the simple expressions
Si(ex) =
s
S, (2x) =(2X)-2(2X)
S 2x) =X~ 4/2X)+3(2X)

| Eq. (2.31)
)
l
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Cc. Steady-State Formulas

Since frequent use will be made of the Mach box scheme for
steady-flow problems, it is useful to have the corresponding
formulas and a tabulation for the AIC. For £ =0 , from Egs.
(2.29a-b), one finds all the imaginary parts equal to zero and

R, =-/
Koo = f-2m '3+
PRV o
W;/ =_7z'é/‘f'" 3"z —_ZL@W
=/ * ‘}
7 J%;; T a Eqs. (2.32a-d)

The values of 5?in;: are given in Table A.2 of Ref. 31 for

v ., & from O to 12. It should be emphasized that these
coefficients are independent of Mach number, unlike the corre-
sponding ones for the square box.

I1.% Expressions for the Aerodzgamic Influence Coefficients of
the aracteristic Gr ystem

in supersonic flow, the most natural coordinate system for
many purposes is one with axes parallel to Mach lines. Consider
such a dimensionless system witg origin at (¥, + ), as in Fig.
{I.4. The characteristic coordinates (s are defined by the
transformation

2= z/?MZ [6-9)-605-)]

52 zgfd[(x-;w@/;-w]
Eqs. (2.33a-b)
or
X-£ = —jéé(ns)
17 == %09
Egs. (2.33¢c-d)
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('0 ’ Sq) l U

Fig. II.4 Characteristic Coordinate System

where 4 ig a reference length. From Eq. (2.1), the potential

at point (x4 ) due to a unit constant downwash over a parallelo-
gram (such as Region A) 15

Se fla  ~cllrss) 28 -
W/x,y)=—I%f/ c cos ’7‘/—2{”/5

vrs Eq. (2.34)
where
_ WwMd
Eq. (2.35)
Similarly at point (x-J, # ), the potential is
M M
S mg [a ~iHfres) g
#d [ 2 26
Flody)=-< ¢ ) e
A b Vrs Eq. (2.36)
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The X -derivative of 4 1s conveniently obtained from the
operation

| _d TH-%ESp 2,
ox /x,, ﬁf’;’ T = o 4,)/

2 -1676' S‘%‘aj(ﬁ /—— “qlé"sjfd-‘ﬁ%
[/ )//z @—M équ (2.37)

The pressure at ( X,4 ) due to region A, according to Eq. (2.3)
in dimensionless form is

Alg) = Zf«’/[ G2 / / -‘9("*3)6“[/,5’0 /_)a/ra(s

/ e 68

;(g( /% #_s;/ldrf
= /bA(’Z-;Sa.)

Similarly, for regions B and C of Fig. II.5,

5wz 0[ mf/ /

L [ (%f o),

L8 &

e sl ]|

Eq. (2.38)
one obtains

+5-S -.1. 'B(r+s) ) s (219 t/}’-‘;)

drds

S
tB 9 Vﬁ‘f%'.S)S Eq' (2-39)
-6s, %
_ 1€ .3 —49/' Zafrg_“
Zﬂ‘ﬂ L[Szo/ \/—[ é) df]
2(e5) = 2 fU[ L_Q@// "9{'*5)505{2&\/_)
b7
- 05, ~L3r‘ 26
1L e 22 /fre.
g / F( rSC)d] Eq. (2.40)
0
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(rb+ Sb’ O) \)\((rc,sc)

\']/'(r |l gr5e3)

Fig. II.5 Basic Regions Under Consideration for the
Characteristic System

The expressions for the three basic regions A, 8 ,
may be combined appropriately to yield the contribution of com-
plete, half or quarter-rhombic boxes. For instance, the con-
tribution of the subregion C, (Fig. II1.5) is

£ =ple,s)-B (e-f 508) P (e-15) +5(c-2.5-4) Eq. (2.41)

The single integrals and the inner portions of the double
integrals in Eqs. (2.38)-(2.40) can be expressed explicitly in
terms of Fresnel integrals or Bessel functions. For instance,
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From the definition of the F
tabulated in Ref. 34,
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= /E-;,fzaz
M ~¢b2
ez + € aQi]
A
M

Eq. (2.42)

resnel integrals whick have been

Fh= Clg-i St = L / ety

2n

one may deduce the following

X . .2 —
-L62 _ X /x 2
[8 Az _/X-_I 20 ;{9%)

Therefore, Eq. (2.42) become

[4

V& Eq. (2.43)

identity

Eq. (2.44)

S

& -ior cps(28 Sa ¢ Lo z ,nréi 2
[+, I et ]

Eq. (2.45)

Also, using relations similar to Eqs. (2.21) and (2.24a-b), one

obtains

s 0 .n
[elibs =), 1o, SPF v EE] LT s lon onsi” 3%
=t

2 Y }Z-r% -S)s

Formulas of various types ob
(2.45)-(2.46) are given in R

a. Steady-State Formulas

Since frequent use will
sSystem for steady-flow probl
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tainable from Eqs. (2.38)-(2.40) and
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be made of the characteristic grid
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now presented. For & =0 , Eqs. (2.38-2.40) reduce to the
simple expressions

Blis) = 22/ [VEE]

- 2¢l n F8N_ 1 /1
hlas) = FE4E ) VE]

L-+E]

p(es)
Eqs. (2.47a-c)

If the grid numbering system is that of Fig. 1I1.6, the above
expressions yield, respectively, the foilowing formulas for
the complete rhombus, the inverted triangle and the right-half

rhombus:

Fig. 11.6 Numbering System for Characteristic Boxes
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quantities inside the square brackets of Egs.

. (2.48a-f)
(2.48a-f),

srepresent the aerodynamic influence coefficients.
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SECTION III
APPLICATION TO TWO-DIMENSIONAL PROBLEMS

Before attempting to apply the aerodynamic-influence-
coefficient methods to finite wings, it 1s advantageous to
study various aspects of their application to two-dimensional
flow problems. In 8o doing, the following are three of the
important gueltions which can be Partially answered with rela-
tive simpl city:

(1) 1s it acce table to represent a swept lendinﬁ
edge by a groken line, an approximation whic
is necessitated b practical considerations if
numerical approacgel are to be followed?

(2) Is the assumption of an average constant down-
wash over each elementary area adequate?

(3) How many boxes must be distributed along the
chord of a wing before an acceptable degree of
accuracy is achieved?

While carrying out simple examples for these purposes, one
can also study the accuracy of the tabulations for the aero-
dynamic influence coefficients.

III.1 Representation of Swept Leading Edges by Broken Lines

Consider a two-dimensional swept wing in steady flow
with sweep angle A ; assume that the Mach number is large
enough so that the parallel leading and trailing edges are
Supersonic. If the wing produces constant downwash everywhere
(constant angle of attack), the dimensionless pressure dif-
ference at each point is constant and is given by the exact
formula of linearized theory (cf. Ref. 2)

A _BeA
?‘(“z;ﬁur“ N
e Eq. (3.1)

As a first example, let 4= & and A =7’an”{l/2). Since
B=¢ , the square and the Mach grid systems are identical. A
grid system is placed on the wing as shown in Fig. I1I.1. The
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Fig. I .1 Pressure Distribution on o Two-Dimensional
Swept Wing Using Mach (or Square) Boxes.

(7@"—‘0, tan A = '/2., M= VZ)

leading edge region is replaced by complete boxes having centers
on the wing, with the result that the leading edge is approxi-
mated by the broken line composed of the sides of the foremost
boxes. (It will be shown shortly that one Est resort to this
representstion.) The positioning of the Erid system is such
that the sum of the areas off the wing taken in by the resultant
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fan A =(Y2), the Sequence of types of chordwise columns of boxes
repeats with every second column, i.e., the results for columns
(3) and (5) will be 1dentical with those for (1), etc. There-
fore only rows (1) and (2) need be considered. Using Eq. (2.14)
and tabulations of the AICs (Table A.2 » Ref. 31), one can cal-
culate the approximate dimensionless pressure 5’ at the center
of each box. The results for A’ are shown in Fig. III.1. Ac-
cording to Eq. (3.1), the exact value of the pressure A7 at all
points is

/ 2
=~ <= [ /54 70
4 vE 7

and the dimensionless lift per unit distance perpendicular to
the flow is

Lift funif Span

=~ /. /5% Jo

where <24 1ig the chord of the wing in the Stream direction.
Although the comparison of the individual pressures on the boxes

crepancies, the average 1ift per unit span proves surprisingly
close to the exact.

Since the trailing edge is Supersonic, the pressures on
the wing are not influenced by the representation of the trail-
ing edge, and therefore one need not insist on complete boxes
near the trailing edge. Therefore, if the pressures are as-
sumed constant over each trailing edge box, one may write, for
instance, for the contribution of the partial box Ky £’ to the
lift of column (1)

Azea of ]S/f/)
Aeea of f9/8

Similarly, for the contribution of the partial boxes ;él;
to the 1ict of column (2),

2y/ Area o//’él//.
(-t20g51 4, )(Aim of,él/—)

(~1-035 9¢ 4%)(-

Here téz is the area of a compiete box. If this un{ of
dealing with trailin edge lift is adopted in the eva uation
of the 1ifts over columns (1) and (2), one cbtains the numbers
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No. of Z L)
Cgorgwise 4Q}) éd Average Cols.
Boxes Col.(1) Col.(2) (1) and (2)

3 - =1.140,23 -1.149,50 -1.144,87

4 -1.143,83 -1.177,79 -1.160,81

5 -1.161,75 -1.133,58 -1.147,67

6 -1.149,32 -1.152,39 -1.150,8s5
Exact -1.154%,70 -1.154,70 -1.154,70

Table I11.1 Comparison of Lift b
Exact Lift for a Two

(»é:a, fdnA =

shown in Table III.1.
four, five and 8ix boxe
the chordwise dimension

The table include
8 are successivel
R4 of the wing.

8 cases where three,
y assumed to £il1 up

Several conclusions can be drawn from these results:

(1) The deviations in

become less pPronou
Stream, indicating that
wise boxes are taken,

generalized forces (wh
of the pressure over t
Therefore, it is desirable to hav
chordwise boxes as practical.

WADC TR 56-97, Part 1

o

nced

pressure from
for boxes
y» 1f more
the estimat
ich are wei
be planform

-29-

CONFIDENTIAL

y Numerical Methods with
~Dimensional Swept Wing.

V2 , M= VZ)

the exact value
farther down-

&nd more chord-
es of the
hted integrals

will improve.

e as many

" e




CONFIDENTIAL

(2) For calculating the 11ft, which is the lowest-
order generalized force, relatively few boxes
suffice. However, for the higher order gener-
alized forces, such as the "first moment” and
the "second moment,” the results &re not ex-
pected in general to be as accurate with few
chordwise boxes.

(3) Since the pressures fluctuate appreciably from
the exact, the only logical and justifiable
chordwise integration~technique 1s the rectangu-
lar rule. This rule assumes that the pressure
times the weighting factor associated with each
generalized mode 1s constant over each box and
és taken to have its value at the center ¢ the

ox.

The pressure fluctuations across the chord are due to the
representation of the leading edge. The question that arises
at this point is whether it is possible to improve upon this
representation. If one had the tabulations for the AICs for
partial boxes, no sucn step would be necessary. However, such
tabulations would involve not only the sweep angle as a param-
eter, but also would have to account for various types of cuts
of the boxes by the leading edge. The scope of such an ex-
tensive tabulation is prohibitive. Another alterprative, which
at first glance might seem reasonable, is to take the AIC for
a partial box to be that of the corresponding complete box
times an area factor which is the ratio of the area of the
partial box to that of the complete box. Unon closer study,
this procedure proves inadequate. For instance, the contribu-

tion to the pressure 4’ at point < from ares 2/ of Fig. 1I11.1

is (- //3) = -p.s77 whereas the corresponding contribution for the
large area z4c 1is [~ (i/x) cas™( “3))<-a352. Now, if the proposed
correction had been used, cne would have for the contribution
of <4¢c , the value

Area of abc
- 0.392 = -0./96
( 9‘)/A@m qfa/c/)
as compared to the exact value of -o0.577 . This shows that a

simple "area correction" for the determination of the AIC for
partial boxes is not satisfactory. Incidentally, this type
of adjustment is suggested by Li (pages 33-37, Ref. 26)." 1f
this correction had been used for the determination of the

pressures at < and ¢ 1in the figure one would obtain the poorer

results
A=~/ s A=-033333,
.WADC TR 56-97, Part 1 -30-
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The exact #’ and £(3) in the foregoing example will re-
tain the value of - /. /54 7% as long as GBeot N =72 | Also,
the results of Fig. III.1 will not change if Mach boxes are used
for other two-dimensional wings in steady flow with constant
downwash (/o and GBcwZAN -2 Accordingly, 1f one uses
Mach boxes, the accuracy of the numerical method is dependent on
the factor (GozA . To investigate this dependency, con-
sider a wing at the same Mach number M=VZ , with sweep ,

A = 7an~"(2/3) ., Here (3cotA = /5. The resuits for A
are shown in Fig, IIT.2, and the corresponding values of 4

oflejjo]] T
a e
N
7 o
by 68685 (-4.0
A S49L6 [ /5RO5 T A9, ]

[P0V OT RS0 /15,35

A A26,32 4 160,46 [ #F3 10

LIORE0 1 #4801 [+, 4 768

1 ITH60 #9863 1 20315

-.fﬂ.;'r,ri

| ||

Fig. II11.2 Pressure Distribution on a Two-Dimensional
Swept Wing Using Mach (or Square) Boxes.

(A =0, Zan =2/3 , M= Z)
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£ A j%;) Col
No. o verage Cols.
Chordwise 42&) 4?}J ZZy) (1) ?2) and
Boxes Col.(1) Col.(2) Col.{3) J (3

4 -1.340,65 -1.295,86 -1.356,82 -1.331,11

5 -1.329,04 -1.335,60 -1.331,58 -1.332,07

6 -1.303,02 -1.356,25 -1.345,27 -1.334,85
Exact -1.341,64% -1.341,64 -1.341,64

-1.341,64

th

(=0, taend =25, M=VZ)

It is seen that the accuracies of the lifts

columns are sli
e sverage lift per unit span over
quite close, being within 1 per cent
is changed from 2 to /. s
for the total lift is observed. 0
the sonic condition,
pected to be as
of finite span.
dimensional wing.
two-dimensional swept wings in stead
that the accuracy is e
number combinations yi
the Mach and sﬂuare grid systems are the s
II1.2 also bear on the
At the lower Mach number, M-,z
(BcotA ~ 1.99), the results fo
in Table III.3.
at lower Mach number when s
ich would have been obtaine

Figs. III1.1 an

A = Fan™(1/3)
are shown in Fig. III.3 an
curacy is poorer
used than that wh
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The above and othe

-32-

CONFIDENTIAL

y flow su
ssentially uniform for all
elding @GcotA >/

, for a win

r examples

Since

case of the
g with sweep
Tr the square grid
Evidently the ac-
uare boxes are
with Mach boxes.

Table II1.2 Comparison of Lift by Numerical Methods with
Exact Lift for a Two-Dimensional Swept Wing.

for individual
Bet A =2
the three columns is st
Therefore, when Gwz A
nificant change in accuracy
course, when one approaches
the accuracy is not ex-
still tolerable f

related to

ggest the conclusion
Sweeps and Mach
at M= 3z~
ame, the results of
square grid.

or wings
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Fig. III.3 Pressure Distribution on a Two-Dimensionel Swept
Wing Using Square Boxes.

(k=0 tanA = tfs , M=12)

For the purpose of examining the same factors as above
for the characteristic box system, consider again the two-
dimensional wing for which #- v and A - tan™'( Y/2.)

The Mach lines bounding the boxes are arranged so that the
broken line representing the leading ed%e is as shown in

Fig. III.4. 1In this case a serious dif lculty arises: the
resultant pressures are always low compared to the exact
value of 4/ =-—-//54 90 | Furthermore, the convergence to-
ward this value is very slow as more and more boxes are taken
along the chord. This failure may be explained as follows.
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No. of Z 4 /(#)

Chordwise 'Z&} /}) (’) Average Cols.

Boxes Col.(1) | Col.(2) | cCol.(3) | (1)(5] aca't3) ,
4 '1.087,26 ‘1.170,43 '1-095’73 ‘1.117,81
6 -1.113,67 | -1.153,82 | -1.118,43 -1.128,64

Exact -1.156,65 -1.156,65 -1.156,65 -1.156,65

Table III.3 Comparison of Lift by the Square Grid System with i
Exact Lift for a Two-Dimensional Swept-Wing.

(#=0, tanlA =3, M=12)

h{?ﬂm .\"
\\.
~283439 x-a.sys;#
- 06364 ‘

. = O 7554/
&

- 0808/ - 08550

A

1082129 A\:0.83439 X -0.6752¢
@ “ .
-0.9/530 -0.90,8¢ =0. 81550 -0 73S
&
~Q82423 “
(=) .
7 -099,30

Pressure Distribution on a Two-Dimensional Swept
Wing Using Characteristic Boxes.

(R=0, lanA =Yz, M=VZ)

Fig. III.%
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In the evaluation of 4’ at point (1), the actual contributing
ares <4c ig effectively replaced by the area cZef . Evyen though
the two areas are approximately equal, the contribution of <4

to 4/ is a large negative quantity (as may be easily proven for
the steady-state case), whereas cdef  contributes a small posi-
tive guantity. Similar considerations for points (2), (3) etc.
explain why one obtains such low values of 4’ . This error is
consistently in one direction, for the characteristic grid
System, in contrast with the Mach box system where it can be in
either direction and produces compensating inaccurscies.

If use is to be made of the characteristic system, one must
apparently represent the leading edge by lines parallel and per-
Pendicular to the flow, as in the Mach ox system (see Fig. III.5).
In so doing, one is forced to tabulate the AICs for half-rhombic
boxes. It will be shown below that even these half boxes are
insufficient when there is a variation of downwash along the
chord, so that in the final analysis one must tabulate the co-
efficients for quarter-rhombic boxes.

FPig. III.5 Proper Representation of the Leading Edge when
Characteristic Grid System is Employed
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II1.2 Adequacy of the Ass tion of Average Constant Downwash
over Each EIementary grea: Steaay ﬁotlon

In any of the numerical methods, with the planforms split
into elementary areas, a basic assumption is that the downwash
distribution over the wing can be adequately approximated by a
set of suitably average constant downwashes over these areas.
Although it 1s possible to represent the downwash in each ele-
mentary area by some simple function other than a constant ( such
as the case of the singular downwash associated with a side
edge, which will be discussed below), the arbitrariness of these

functions would require amundesirably large amount of tabulation.

The degree of precision obtainable using the constant-downwasl
assumption is closely related to the reduced frequency of oscil-
lation and to the rapidity of variation of local angle of attack
along the chord, as will now be shown.

In order to separate the effects of frequency and downwash
variation on the accuracy of the results for pressure distribu-
tion and generalized forces, the study is carried out in two
steps. First, a straight two-dimensional wing in steady flow is
considered for which there is a chordwise variation in downwash.
In connection with this point, some remarks are also included

for the cese when there isz variation of downwash across the span.

Secondly, the results of going to unsteady flow and increasing
the reduced frequency are examined.

For a two-dimensional, unswept wing in steady motion, the
pressure is a point-function of the downwash, i.e.,

/ /b _ 78

—_— ——

_(%gj 7

A
Eq. (3.2)

The pressure calculated by AIC's at the center (x,zﬂ ) of any
Mach box ( 7, ) {in FPig. III.6 will also be equal fo the
quantity (- «/2 ), because all rows =42 ..... ... contribute
zero to the pressure .’ at ( x, 7). This can be proved easily.
All spanwise boxes in any particular row z7 ( 7 > /)  have
the same downwash; hence, according to Eq. (2.32d), the total
contribution of this rew to the pressure at (1’/' is

/ 7 v
b=ga ), W,;;'g;g{-ﬁét+s4~—_} 7>/
fevs

A=v “F Eq. (3.3)
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{n=-2,m){n-2 m+j) =

T [ (n=1,m)

|'Jl]_ ‘ y - "'1"] [ l

Fig. II1.6 A Two-Dimensional, Unswept Wing in Steady Flow.
(Mech Box System)

which is identically zero in view of Eqs. (2.17a-b). The pres-
sure at ( X,y ) 1is therefore

P GeRd, - - 4

Eq. (3.%)

A similar proof holds true also for the square grid system.
Equation (3.4) implies that, for the two-dimensional steady-
state case, the pressures calculated at the centers of Mach
(or squares boxes by numerical methods are exact, regardless of
the type of motion in the chorJwise direction (provided the
constant downwash over each box is set equal to the value of
the downwash at its center). Specifically, if the downwash
variation is linear in x , say ( Ux/2¢), the pressure 4’ will
be given by the relation L=~ (xf28).

If two chordwise boxes are taken, the pressures at the
centers of the two boxes will be exactly

/
b =-028 , /9_,: -0.75

where Z# is the chord. Using the rectanguliar rule (shown in
Sec. III.1 to be the numerica integration formula which one
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should adopt in general), one obtains for the 11ift

_ 4/,4‘ /aq;/ Shar -
)= (5927/24) = -5

This happens to be the exact value. However, one obtains for
the moment about the leading edge

)776/) o Momen)‘:/um/ Shan = ~0. 625
(ZET77
a8 compared to the exact value of (-2/3) |, If, say, six
boxesmtad been used, one would have found

4@7=—45 , mlg) = -o0.662,0,

This result Suggests that, to insyre &dequate chordwise integra-
tions for the generalized forcee, one must have a sufficient
number of integration points along the chord, even if the pres-
Sures are obtainable exactly with few chordwise boxes.

For the same wing, consider the use of the characteristic
8rid system. If the downwash is constant along the chord (1.e.,
f the wing has no camber), the results for the pressures 4’
will again be exact. If the downwash varies linearly with’ x '
W= Ulx/2¢), the Pressure varies linearly along the chord
ory, whereas the pressures yielded by the
ulation deviate. (See Fig. I11.7).

s e _5 __l

Al |I |

] I

@ |

|
®

| (\"'_*IIEXACT

@F ' |

2b

} SECTION ®—@)

Fig. II1.7 A Two-Dimensional Wing in Steady Flow. Downwash Vary-
ing Liyearly Along the Chord.(Characteristic Box
System) .
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Taking as one possible alternative, the constant downwash over
each box to be equal to its value at the lowest corner of the
box, one has for the pressures at points (1) and (2) in the
figure

/ /
= - s8 = _
b = - 020458 A = -o3883¢

These should be compared to the exact results of — 025 and -o.5 ,
respectively. This deviation of the value of 4’ is always
present and will be even worse for points farther along tze
chord. The re resentation of Fig. III.7 is therefore unsatis-
factory when the downwash varies along the chord.

Another possible approach is to make the downwash over each
box equal to its value at the mid-chord of the box and find the
pressure at this central Point. For example, if the constant
downwashes over boxes 4 recesss £ (Fig. 111.8) are taken from
the linearly varying case as

' T8 T %’

Fig. II1I.8 A Two-Dimensional Wing in Steady Flow. Downwash

Varying Linearly Along the Chord. (Characteristic

System with Control Points at Centers of Boxes)
one obtains the results for peints (/' ) and (z)

/ /
) = —=0.3a9
’6//’)— Qw229 , and ’(é’) 4

These contrast with the corresponding exact values of ~04./25
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and —g 375 » respectively. Again, the error 1is not
tolerable.

A final alternative is to divide the full rhombic boxes
into half rhombuses such that the c.:s are perpendicular to the
flow, as shown in Fig. III.q.

Fig. IIT.9 a Two-Dimensional Wing in Steady Flow. (Modified
Characteristic System?

Assuming that the downwashes over boxes 4, , A, K 47
are assigned the values at the points 2,, a, , &4 , the pres-
sures thus obtained prove to be exact for all] types of chordwise
variations when the motion igs steady. If the motion is un-
steady, chordwise strips (such as ()2)(3)(4) in Fig. II1.9) will
make contributions to the pressure at point «, . Then, it can
be shown that a consistent error is introduced for the pressure
at 4, , since the downwashes over the strips are taken to be
those at the downstream edges (such as (2)(3) ) rather than
average values at the centers of these strips. If central con-
trol points were employed, i.e., if one took the downwash at

the mid-chord points of boxes ./, 4 etc.,..., the results
could be improved, but one would then have to tabulate the AIC
for an odd-shaped area such as @f A £ . If the reduced

frequency based on box size 1s sufficiently small, however, the
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error associated with taking lower points rether than central
points as control stations is not serious.

When & three-dimensional wing has swept leading edges or
side edges, there will exist half-rhombic boxes with one edge
parallel to the flow. Since the foregoing analysis has shown
that it is desirable to divide the rhombic boxes by cuts per-
pendicular to the flow, quarter rhombuses will appear at such
edges. Hence the AIC must be tabulated for quarter rhombic
boxes. This is a serious disadvantage, since the number of
entries in the tabies will be four times that for a Mach grid
system.

With this fact in view, the characteristic grid system is
not recommended for general applications. Some small further
use will be made of the system, however, in special cases where
no chordwise variation of downwash exist.

As a next instructive example, consider linear and para-
bolic variations in downwash across the span of a finite wing
(Fig. II1.10). For the sake of simplicity at this stage,

;{_
]
_

\ i ;] y
\ | 2 / !
\ \ Z / !
\ ' \ / / /
\ | \ y | /
\ 2 , ! /
N\ | g1 A / ' /
\ | 2\ / : /
\ | A\ // : 7
oA A N
\\ : V/ \\ // : //
\\J V] \\ y L//
—y° — F"—dy Yo
Y

X

Fig. II1.10 Notations for a Finite Rectangular Wing in Steady
Flow with Spanwise Variation in Downwash

attention is focused on the portion A of the planform which is
purely supersonic and uninfluenced by the wing tip. Of interest
are the downwash distributions
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) = Uy — and wiy) = ﬁﬁé’y)z

for which gne may easit; prove that the %peady-flow lifts per
unit span for a strip in Region A /.y =, < are ex-
actly 7 (- e )

[,}[/qn/f:f/éa—n ﬂ/ ond .é/fl(/tlm/f5/6"l7 _ -/_/—+(d}a)
zpl/ - :gzyu A
(27 (5

respectively. Furthermore, in the case of linear variation of
downwash, the dimensionless pPressure is constant along the
chord and is equal to -8y . Using any of the numerical pro-
cedures, the resultant pressures and the 1lifts per unit span
will be exact (this is not true when the wing has a swept lead-
ing edge). However, when the downwash distribution is para-
bolic, none of the numerical methods ylelds the correct results
for the pressures along the chord, and hence the associated
lift distribution will also deviate from the exact. As may be

seen from Table I1I1.4, these discrepancies can be alleviated
by taking sufficient number of boxes along the chord.

Lift feunit Span Lift funi# span Lt feenit Shan

Z 2

ey | (5D ey (%7)

4 Chordvise Mhoch Goxes| G Chordurie Muck B Exacl

0 -0.139,95 -0.151,57 -0.166,67
(1/6) --- -0.179,34 -0.194 ,44
(1/4) -0.202,45 --- -0.229,17
(1/3) --- -0.262,68 -0.277,78
(1/2) -0.389,95 -0.401,57 -0.416,67
(2/3) --- -0.596,01 -0.611,11
(3/4) -0.702,45 --- -0.729,17
(5/6) --- -0.846,01 -0.861,11

Table III.4 Comperison of Lift Distribution According to the
Mach-Box Scheme with the Exact for the Purely Super-
sonic Region of a Rectangular Wing in Steady Motion.
(Downwash Varying Parabolically Across the Span)
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ITI.3 Adequacy of the Assg:_ngtion of Average Constant Downwash
er Fac ementary Area: nsteady Motion

In the previous section, it was shown that the square and
Mach box grid systems yield the exact pressure distribution for
a two-dimensional unswept wing in steady motion, regardless of
the variation of downwash across the chord. 1In this section,
the same problem will be studied in unsteady motion. It follows
from Eq. Fz) of Ref. 2 and Eq. (2.3) that the amplitude of pres-

sure difference between the upper and lower surface at (%) of
a two-dimensional straight oscillating wing is

B = 2gfiwrs Uﬁ—]{-éo/:?/éf)l/{, X)‘/E/

Eq. (3.5)
where « 1s the downwash amplitude, and
2
W
T L4 f)—,ééjo M) |
(/X)— va* Eq. (3.6)

and Ja_ 1s the Bessel function of the first kind of order zero.
If the chord 2/ 1is taken as the reference length, Eq. (3.5) be-
comes

f= Gl ek -2 | [T It s
Eq. (3.7)

Here ( X, £ ) are dimensionless chordwise coordinates, 4 1s
the reduced frequency based on the semi-chord, £-wét/ 7/ , &
1s the modified frequency & -z4~%3* and

Igx) = e “C O L (E )
Letting X-% = « , one has for Eq. (3.7)
— - X Py -
p= %LU Z_Z&— 5} ] _[ Wix-u)€ ‘WJ@Qu)Ju
¥ = - L DUT o~ -
= '%Z/:Zt@/ ?‘zv(ﬁ‘)e‘m“ odgu)o/a,— / 2 l I(ﬁ“’-a)é%{——wg ?}Ju
’ T0) (X T/ Eq. (3.8)
= EU(A)g (@ \/o(/%x)]

WADC TR 56-97, Part 1 -43-

| CONFIDENTIAL }
.



GONFIDENTIAL

Three types of motion will be considered ( £ being the
deflection at any point):

lwl P .
_ .~ =28 (vertical-translation
(1) % 28e &)7/2/ ¢ oscillation)
wt — .
(2) 22:20/7‘5’ Wz—/{/=/2b6¢+/) (pitching about an axis at

the leading edge)
Eqs. (3.9a-c)

2wt _
(3) Z3=Z/X € “@é:/&)ﬁxf&](parabolic chordwise bending)
For the first motion, one obtains from Eqs. (3.8) and (3.9a),

—

/ 2 [* ., —idu - ot GK Ty~
b=ty w2k j 2R (D)o - 24e )

) ,
© = -Zf /,gc;gx £ (M 5x)+e"mf /L"Tx)}
o M Eq. (3.10)

where jé(?% &DJ 1s the zero-th order of the well-known function

) — X 'w- —
A (M, &x)= X—,{:, $ e u[/,r,“"‘“)"/“ :
0

Eq. (3.11)

This function bas been tabulated by Schwarz (Ref. 35) and ampli-
fied for high values of the frequency in Ref. 36. One may use
Eq. (23) of Ref. 36 or the method of Ref. 37 (for low values of
the frequency parameter @Tx) to compute 4 for other values

of M .* Similarly, for the motions (2) and (3), one has

el_—_- —24)6[(]5(/!/‘ ;3)1.)/2 +2[)€X} - xz]{{M/ EIXIZL%}] _c-z'ﬁx\[/ﬁ%“x)

4= X;{(A{E)x)/l/,ézxz— &}éx-‘?f XM a?x)/- §A% ¢+ &;é}
* x?@[mﬂx){#é‘} Eqs. (3.12a-b)

¥An extensive set of tabulations for the £ -function is current-
ly being prepared by the Bureau of Standards for NACA, and it
wiil appear shortly as a Technical Note.
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Specifically, if the downwash (¥/1/) was unity rether than 2.4
Eq. (3.10) would be .

b= /zc'éX£//‘Zw*x)*e_L.‘a\/a—/%&)} Eq. (3.13)

Equation (3.13), applied in succession to the two trian-
gular regions i02 and 403 of Fig. III.11, yields for the con-
tribution of the strip A (for unit ar/yf to the pressure at
point 0

/ ‘ _ ~ALBAT [ A gx ) o~ @x, Ex/
b= /ztféxJ{{//*zwx)v*é" Lax)-2b, fman)- @ B ijq. (3.1%)

i
L A Zb(X‘h)

2b

Fig. III.11 1Illustrative Example: the Use of the Mach Grid
System for a Two-Dimensional Wing with Variation
of Downwash Across the Chord.

If the strip A is taken to be the row 7 of the Mach box grid
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System, Eq. (3.14) represents exactly the sum of the AlC of all
boxes in thig row, provided the ex.c¥ expressions, Eqs.(2.29),
a4re employed:

H- 2R, ] )=y
A==V ’

d Eq. (3.15)
When the Mach boxes are used for the evaluation of the

chordwise pressure distribution due to the motions (2) and (3),
one gets for the total Pressure at point ¢

—

A= Fh

Eq. (3.16)

Here w3 low represents the downwash at mid-chord of strip o,
so Eq. (3.16) is an approximation. As an example, let the
Parameters assume the values

#£=03,09 apd M2

The lowest Mach number for which the linearized theory is ex-
Pected to apply satisfactorily ( /7= /. 2 ) is taken in these
computations since conclusions drawn for such critical cases

are expected to apply at higher Mach numbers with ap element of
conservatism. The pressure distributions by the Mach-box numer{-
cal method are compared with the exact results in Figs. I1I1.12
through 111.17.

Several interesting conclusions may be drawn from these
plots:

(1) At moderate frequencies (around # =03 ), & few chordwise
boxes yield satisfactory accuracy for the pressure distribu-
tions, and the Precision improves as the number of boxes is in-
creased. Also, for motion 3) the results are slightly poorer
than those for motion (2).

(2) At higher frequencies (around # - 0.99), the pressure dis-
tributions using six boxes again are acceptable, but a lower
number of boxes wilj; yield very poor estimates (the_latter are
not shown on the plot for the saEe of clarity). When the fore-
going computation was made, it was felt that at this Mach number
and reduced frequency, the governing parameter was the modified

veduced frequency per box, i.e., £;==ﬁ26/20(7¢?8?) and that
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EXACT

© SIX CHORDWISE MACH (or SQUARE) BOXES.
EXACT EXPRESSIONS FOR AICS

X THREE CHORDWISE MACH (or SQUARE) BOXES
EXACT EXPRESSIONS FOR AICS

REAL OF 6
.A p

(%)

o 2 4 6 .8 1.0

CHORDWISE LOGATION 2Lb

Fig. I11.12 Real Part of Chordwise Pressure Distribution for a
Two-Dimensional Unswept Wing.
(Motion: z=2#xe“? f-03 M=1.2)
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EXACT

© SIX CHORDWISE MACH (or SQUARE) BOXES.
EXACT EXPRESSIONS FOR AICs

X  THREE CHORDWISE MACH (or SQUARE) BOXES
EXACT EXPRESSIONS FOR AlCs

.30 T
20 : /
10
IMAGINARY
OF
-ﬁp
(zpu 0
B

- 10 \ /
o I

CHORDWISE LOCATION -g;

Fig. III.13 1Imaginary Part of Chordwise Pressure Distribution for
a Two-Dimensional Unswept Wing.
(Motion: z= 26xe*t g-0.3 M=12)
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© SIX CHORDWISE MACH (or SQUARE) BOXES.
EXACT EXPRESSIONS FOR AICs

X  THREE CHORDWISE MACK (or SQUARE) BOXES
EXACT EXPRESSIONS FOR AICs

REAL OF

“dp 0 7

%)

6 —
4 / —
2
0
0 2 4 N .8 1.0
CHORDWISE LOCATION %—
Fig.I11.14. Real Part of Chordwise Pressure Dlstrlbutlgn for a Two-
Dimensional Unswept Wing . (Motion: = 24x%e<t p R=03, M=12)

WADC TR 56-97, Part 1 -4g.

WHB LTIRL |




(RS

EXACT

O SIX CHORDWISE MACH (or SQUARE) BOXES.
EXACT EXPRESSIONS FOR AlCs

X  THREE CHORDWISE MACH (or SQUARE) BOXES
EXACT EXPRESSIONS FOR AlCs

0 ‘_‘?T\\\\\
IMAGINARY X
oF
-1
-Ap
(5% x
B/, " %
-3
0 2 4 6 8 1.0
CHORDWISE LOCATION —Z"T

Fig. 1II1.15. Imaginary Part of Chordwise Pressure Distribution
~ for a Two-Dimmensional Unswept Wing.
(Motion: z:zlxze“"t, A=03 M=12)
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—0- REAL

—A— IMAGINARYJ

>+ EXACT

-

: “'3’:f5t.1u‘u
Pl
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&
“

REAL | SIX CHORDWISE MACH (or SQUARE)
IMAGINARY | BOXES. EXACT EXPRESSIONS FOR
AiCs
.2
rd
/
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8 v
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6 ‘ 7 \
-Ap \ 1 1 ﬁ
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2b

Fig. III.16 Chordwise Pressure Distribution for a Two-
Dimensional Unswept Wing.(Motion: Z-241e‘“#=0.99 M-/.2)
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—A- IMAGINARY [ EXACT

-0 REAL
4

O REAL L SIX CHORDWISE MACH (or SQUARE) BOXES.
X IMAGINARYJ EXACT EXPRESSIONS FOR AlCs.

1.2
.\'/'
) =3
/,,
1.0 7
./‘
g
/
A 4
.8 . /I, ,//
/
REAL OR /
IMAGINARY P 7
OF , /
6 L £
‘AP /] /
2p U? /' i
(22-) '
/]
B 7 £
4 na )
. A
/ 7/
// #
/
I, £
2 £ 7
2] S
/ y4
// 4
/ }‘
0 ‘*. Il
X \\\\a_,//
0 .2 4 6 .8 1.0
CHORDWISE LOCATION ﬁ

Fig. III.17 Chordwise Pressure Distribution for a Two-Dimensional
Unswept Wing. (Motion:_z:zg;(le'-'w{,q_-_o,gg’ M=1.2)
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this quantity was too lacge at the higher value of £ . Hence,
calculations were carried out for the case M=/5 , &= 0.99 ;
but again the pressure distributions were accurate to about the
same degree as those for M=r2 ., £=0.99 . It has there-
fore been concluded that the primary parameter is #, (which
enterg the formulas throvgh the expression for downwash) rather
than #,. As A increases, it appears that the problem requires
more and more chordwise boxes, regardless of the Mach number.

A more meaningful criterion for selecting the number of
boxes !s furnished by a comparison of the generalized forces
calculated by any of the numerical schemes with their exact
values. Using the rectangular rule for the chordwise integra-
tion when Mach boxes are employed, the lift and pitching moment
about the leading adge per unit span were computed for three
combinations of Mach number and reduced frequency. These are
compared with the exact results in Tables III.5-IIIL.T.

2 Boxes 3 Boxes 6 LBoxes Exacl

k=0.3, -0.204,96 | ----- -0.190,31 -0.188,46
M=1.2 -0.352,521 -0.351,511 | -0.351,391

L [k=0.99 | -0.378,43 | ----- -0.073,29 | -0.06k 51
(ﬂggk# M=1.2 | -0.645,691 -0.918,841 | -0.923,601

é k=0.99 | -0.070,43 | ----- -0.046,62 | -0.044,08
M=1.5 | -1.221,551 -1.247,614 | -1.250,291

T

k=0.3 -0.214,77 | ----- -0.202,87 | -0.200,73
M M=1.2 -0.264,561 -0.250,811 | -0.249,321

k=0.99 | -0.259,38 | ----- 0.103,74% 0.107,31
(-24—0-521‘ Me1.2 | -0.741,941 -0.837,671 | -0.823,381

¢ k=0.99 0.181,12 | =----- 0.171,80 '0.170,88
M=1.5 -1.068,101 -1.106,431i | -1.110,701

Table II1.5 Comparison of Lift and Moment About the Leading
Edge per Unit Span, Computed Using Mach Boxes,
with the Exact Values for a Two-Dimensional Un-
swept Wing Oscillating in the Motion z= 240 <w?
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2 Boxes 3 Boxes 6 Boxes Exacl
k=0.3 | -0.685,24 |-0.678,70 |-0.674,72 -0.673,74
M=1.2 +0.121,361 +0.102,551 | +0.091,08i +0.087,371
4 k=0.99 [ -0.574,85 [ ----- -0.591,53 | -0.583,42
(Qlf)z; M=1.2" | -0.083,601 -0.461,831 | -0.478,831
é k=0.99 | -1.029,47 | --... -0.762,62 | -0.760,97
M=1.5 | -0.143,77i -0.670,851 | -0.672,671
k=0,3 -0.564, 26 -0.550, 37 -0.542,43 -0.540,07
ﬂ? M=1.2 +0.093,191 | +0.069,38i +0.054,851 +0.047,931
27—, k=0.99 | -0.670,76 | ----- -0.553,75 | -0.544,40
(%zs“ M=1.2" | -0.224 401 -0.689,451 | -0.693.601
€7 o959 [T.085.55 | == -0.711,45 | -0.711,83
M=1.5 -0.169,421 -0.962,881 -0.9€7,251
Table II1.6 Comparison of Lift and Moment About the Leading
Edge per Unit Span, Computed Using Mach Boxesg,
with the Exact Values for a Two-Dimensional Un-
swept Wing Oscillating in the Motion = - 2#xe ‘“¢
2 Poxes 3 Boxes 6 Boxes Exact
k=0.3 -0.793,41 -0.801,39 -0.805,69 -0.807,42
M=1.2 +0.171,561 +0.145,494 +0.129,751 | +0.126,871
£ _ [10.99 | -0.%55,20 | —ooe- -0.628,78 | -0.622,4%
/_%ﬂ)z; M=1.2 | +0.097,601 -0.227,831 | -0.264,051
€ [k=0.99 [0.905,11 | -2 -0.813,48 | -0.810,32
M=1.5 -0.514,611 -0.370,17i | -0.378,101
k=0.3 -0.964,13 -1.002,53 -1.024,60 -1.036,06
p M=1.2 | +0.196,401i | +0.181,001 +0.171,111 | +0.167,97i
200702 £=0.99 | -0.606,44 | _11C -0.814,23 -0.804,46
LI M=1.2" | +0.082,721 -0.386,471 | -0.429,82i
€7 k099 [-1.186,76 | -0 -1.049.32 | -1.050,65
M=1.5 -0.796,561 -0.580,761 -0.593,841
Table 111.7 Comparison of Lift and Moment About the Leading
Edge per Unit Span, Computed Using Mach Boxes,

with the Exact Value

s for a Two-Dimensional Un-

swept Wing Oscillating in the Motion Z =24 x%e w0t
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The following points may be deduced:

(1) At moderste £5 (around # -023) and for all three motions
where the pressure distributions ere satisfactory, the approxi-
mate 1ifts and moments deviate somewhat from the exact, but im-
prove markedly as the number of boxes is increased. This might
be expected because more and more pressure points are available
for the chordwise integration.

(2) At higher A5 (around £=0.99), and for all motions, at

least six chordwise boxes are required for tolerable accuracy.
Ffor M=/.2 , the integrated lifts and moments are poorer than
those for M=/,5 at the same # . This fact is primarily

due to an insufficient number of chordwise points for integra-
tion of the sinuous pressure distributions shown in Fige. III.16
and III1.17. For M=.5 and A= 099 , the pressure distri-
butions are less sinuous; hence one obtains the better accuracy.

So far oniy three types of motion and the two lowest-order
generalized forces have been considered. If higher-order
generalized forces are required, which is often the caze in
flutter analysis, more than six chordwise boxes are needed.

The same rejuirement must be imposed if motions more sinuous
than (2) and (3) are considered. On the basis of assuming that
the "half wave'" of each such chordwise mode is adequately repre-
sented by & second-order polynomial, one may extrapolate and
accept the number 6 as a minimum for chordwise boxes per half
wave of any chordwise mode.

The caze of the three-dimensional wing with all edges
supersonic (e.g., the wide delta) represents only a slight ex-
tension of the case of the two-dimensional airfoil discussed
above. Pines et al (Refs. 21-24) have demonstrated that such
wings can be treated with satisfactory accuracy by the AIC
methods. Two examples of this type, one involving steady
motion and the other oscillations at a moderate reduced fre-
quency, are presented in Section V. From examination of thore
calculations, in conjunction with the vatious two-dimensional
cases given above, it has been concluded that a conservative
rule for wings with all supersonic edges is that a minimum of
eight boxes should be taken along the midspan chord. This
minimum should be increased if che wavelength of the mode of
chordwise deformation becowes too short.

The rule involves a slight upward revision of the re-
quirement of six chordwise boxes reccmmended for purely two-
dimensional cases. This modification is introduced to &account
for the possibility of added errors which may arise due to
spanwise deformation of the finite wing since these errors

WADC TR 56-97, Part 1 -55-

CORHDENTIAL



CONFIDENTIAL

may be additive upon those due to chordwise deformation and
already reduced to acceptable size by the six-box rule. Another
consideration affecting the decision to recommend eight boxes

is that the increment in computational labor caused by going
from six to eight is not severe.

ITI.4 Comments on the Accuracy of the Approximate Formulas for
the Aerodynamic Influence CoefEIcEents.

The approximate formulas given in Section II for the
square and Mach-box grid systems must be investigated for their
precision at high values of 4 . The most extreme case in
the tabulations of Ref. 25 (£4-04, #=,2) will be tested. For
rows =0 and 7/ , some caution was exercised in Ref. 25 for
high values of # ; a subdivision technique which splits the
basic square area into 25 smaller squares was introduced to
improve the accuracy. However, for rows & > = » no such step
was taken, because it would entail a much lengthier set of cal-
culations. One can determine the order of accuracy for 7= 2 R

A =204y and M =12 by using a subdivision technique. For in-
stance, if the large box 7=2 , @~/ (Fig. 1I.1) is taken and
subdivided into twenty-five smaller boxes, one has

/2 7' - =
ZZ{@,';'” 5" Eq. (3.17)
o8

Fig 7-3 =0,

Ckl/'*‘lgx) =
£=py
Since tabulations at this Mach number are also available from
Ref. 25 for #,-co0s , this check can be carried out very simply.
Table II1.8 shows the comparison of the AIC's for 4 =04 |,
M=12 5 7=2 glven in Ref. 25 with those calculated by

Eq. (3.17).

It is seen that all entries in the table are appreciably
different from those computed by the subdivision method. The
latter set, being obtaiged from a finer grid, must necessaril
be much closer to the exact values (this will be proved latery.
A similar calculation could not be carried out for ali bowes
(7=3) , there being insufficient entries in the tabies of
Ref. 25. Although a direct comparison of the values in the
first column of Table III.8 with the corresponding exact
values would have been preferable, such an undertaking would
bave required the difficult task of evaluating the AIC's from
the exact formulas for a square box.
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From Ref. 25,4 -04 | With Subdivision, Using
M=12 Ref, 25, ;él=a.aa,M=/_z

Rootily, | -0.001,77-0.004,241 -0.099,30-0.003, 141
Reitelz | -0.107,66-0.036, 251 -0.117,82-0.037,881

22t L, | -0.210,49-0.262,811 -0.236,11-0.258,861

R;3+‘1;3 -0.060,88+0.077,151 -0.020,95+0.045,891
ReeriT, | 0.176,40-0.016,241 | 0.153,12-0.011,671

Table II1.8 Aerodynamic Influence Coefficients in Row
v=2 Calculated with and without Sub-
division. (&,=0.4, M= 12)

Rather than compare the accuracy for the individual boxes
in a given row, one can more easily study the sum of the AIC in
this row. As was pointed out in Section III.3, the exact sum
of the contributions of all the boxes in a row is given by Eq.
(3.14). Table III.9 shows this sum, computed in three dif-
ferent ways, and indicates significant deviations for rows

2 > 2 at this value of 4, and M. With subdivisions
in row =2 , the accuracy improves markedly,

Additional calculations for lower values of 4, at this

Mach number have shown that, for the approximate fomulas, the
maximum tolerable value for #, 1s around o5 i1f one 1is to

obtain adequate estimations of /%; . At higher Mach numbers,

*% can be increased somewhat, but in all cases the value
of the modified reduced frequency should be lower than
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Eq. (3.18)

Ref.25, #,=0.4 M=/2 [With Subdivisions |Exact [Eq. (3.1%))]

i’m y) bons R . 4

b=62 (Ropti Ty, (Tabl;éul 8) b
0 |-0.794,33+0.382,334 |  =e--ooo_ -0.796,26+0.382,621
1 | +0.650,46-0.254 424 | = - .. +0.651,92-0.251,391

2 |-0.329,69-0.318,751 [-0.360,07-0.350, 351 -0.364,61-0.352,961

3 1-0.02L,63+40.312,314i| = ecmcccooao. +0.009,21+0.302,531

4 0.116,31-0.307,01i|  =-=eccco--. 0.131,36-0.265,071l

Table I11.9 The Sum of the Aerodynamic Influence Coefficients

/J,;' in Rows 2 =g, ... , & for 1@,:0.‘/,
M=t.2, Calculated by Various Methods

It should be pointed out that the majority of the tables in Ref.

25 fall within the limitations of Eq. {3.18). This statement
can also be made with regard to most actual cases of flutter,
so that no reflection on the practical utility of these tables
should be inferred. On the other hand, it is strongly recom-
mended that exact expressions such as those in Section II.3b be
used in the preparation of all future tabulations. If new
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tables are to be based on the Mach-box scheme, no serious diffi-
culty should be experienced in adepting the exact formulas to
high-speed machine computation.

One further minor point should be made regarding the tables
of Ref. 25. When the Mach number is less than 1.4, the entries
are not complete in the sense that a full 20 boxes along the
chord of a wing cannot be employed. Additional entries would
be needed for integral values of 4 1in the range/(5»2)/8] >3/,
which cover two small but significant regions more than 19 boxes
to the left and right of the "receiving point" but still be-
tween the forward Mach lines emanating from this point. Inas-
much as 20 boxes chordwise would probably never appear in an
application, no inconvenience can be expected to result from
this incompleteness.

WADC TR 56-97, Part 1 -59-

CONFIDENTIAL




e m— g e e

CONFIDENTIAL

SECTION 1V
LOADING OF PLANFORMS WITH SUBSONIC EDGES

For finite but purely supersonic lifting surfaces (e.g.,
the wide delta wing), the Pressures on the planform are not
influenced by any area off the planform. However, when the

diaphragm 1s assumed to coincide with a stream sheet, and
therefore it cannot alter the flow, nor can it Sustain a pres-

faces. The combination of the planform and the diaphragm forms
& new surface, which is purely supersonic and for which down-
washes are known on the planform, while the pressure jump is
Zéro over the remaining area. The problem is to find the
strengths of sources and sinks (or equivalently the downwash
distribution) which must be placed on the diaphragm to satisfy
there the boundary condition of Zero pressure. Once this is

When a numerical approach such as the AIC method is to be
used, satisfaction of the Zeéro-pressure condition on the
diaphragm region is necessarily limited to a finite number of
points of this region. At other points the pressures will not
in general be zero. There are two alternatives for minimizing
the effects of this approximation. The first is to take a large
number of boxes on the diaphragm. The second is to take fewer
boxes but assume beforehand a downwash variation over each box
which is specially adjusted to agree with the Zero-pressure
condition.

It is a major objective of this section to suggest pos-
sible methods for the proper treatment c{ subsonic edges. At
first, the particularly simple problem of & subsonic edge
parzllel to the flow will be studied. Afterward subsonic
leading and trailing edges will be discussed. In most in-
stances, the illustrative examples consist of cases of steady
flow. The main conclusions reached are expected to hold for
unsteady motion, however, for reasons given from time to time
in subsequent paragraphs.
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IV.1 The Side-Edge Problem in Steady Flow

Consider a rectangular wing in steady flow at a constant
angle of attack & (Fig. IV.1). The aspect ratio is sufficient-
ly large that the Mach lines 24 and c« intersect behind the
trailing edge (this is not a necessary restriction on the
method of approach). The exact dimensionless pressure dif-
ference at any point on the "mixed" region 5 is given by
Lighthill in Ref. 39 to be

4% g [ - )]
[

At any point in the purely supersonic region 54 , one has the
Ackeret result

Eq. (4.1)

/b’a A¢> - _
(2[0%9 Eq. (&.2)
é
1u
c\ 1 f ?u —y
Py
\.\ | | Fl
N ‘ s
LY /
Y ‘x
\_R A . 2
} N | 2p /
" ‘ ‘ ,f
LY /
E| Y . Bz
N, f/
\\ | l ,-"
Y | ——
l d | b
¢

Fig. IV.1 1Illustrative Example for the Treatment of a Side Edge.
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Because of the manner in which B= VM {g employed to make
Eqs. (4.1) and (4.2) dimensionless, 4’/ {g independent of Mach
number, as are all the loadings calculated by approximate numeri-

cal methods in this subsection.

As a first example of approximate calculation of the load-
ing of this wing by AIC methods, the characteristic grid system
1s chosen. Since there exists no chordwise variation in down-
wash, the most serious objection to the use of this system (see
Section ITI) is eliminated. It also offers the advantage of
being atle to satisfy the zero-pressure condition at discrete
points on the side edge, a fact which will become apparent as
the procedure is 1llustrated. Four chordwise characteristic
boxes are assumed, as shown in Fig. 1IV.2. The problem is

Fig. IV.2 Characteristic Grid System for a Rectangular Wing in
Steady Motion at Constant Angle of Attack

solved in two different ways, based on the following two as-
sumptions:

(1) The diaphragm region is replaced by the rhombuses.
Over each such rhombus, the disturbance (and hence
the downwash) is assumed constant.
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(2) The distribution of downwash on the diaphragm region
is made singular at the side edge. Thig singular
bebavior is indicated by the exact linearized solution
given by Lagerstrom {Ref. %0), and involves inverse
proportionalitg to the square root of perpendicular
distance off the edge.

Procedure 1:

At all points on the wing, the downwash is ¢4 . Denote

the downwashes over boxes l,...,6 in Fig. IV.2 by ¢, ... <
respectively, and let £’ be the pPressure at the lowest corner
of box 2 |, The condition of zero Pressure at point (7// yields

the relation

) ) (2 <
o' = L (Gt (5))+ 0 () = Eq. (4.3a)

or

oA (3) (2)
“= = (G GY)

—i'4)
C

e

Eq. (4.3b)

¢ )

where the AIC's C:Vc are those of Egs. (2.48). The same con-
dition for p.int (2) leads to

w; ~(3) (3). )
ay = — M(@Q/’“CM*(@Z) Eq. (4.4)

)
Coo

It can be seen that a sequential solution for the downwash
strengths «;,. ... ., 4, results from setting the pressures at
(r),.... , (6) successively equal to zero. (Note that boxes 7-10
need not be considered, since they do not affect the pressures
at the discrete points of interest.) Once these dowvnwashes

are determined, the pressure at any point 2 on the wing can be
calculated by simple summation of the effects of all boxes in
the forward Mach cone emanating from »» . The values of A/

to Eq. (4.1). The accuracy obtainable is not regarded as satis-
factory. As the number of boxes 1is increased, the results im-
prove somewhat, but the convergence is rather slow. For in-
stance, if eight boxes had been taken instead of four,,éé

would have the value of —0.273, 62 (,é; with four boxes)
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instead of -gzs4 6 » 48 compared to the exact -o.-99 43

As will be seen later, this convergence is more rapid when Mach

or square boxes are employed. The reason for the discrepancies

Procedure (1) | Procedure (2) Exact [Eq. (4.1)]
Downwash
Singularity
Included _
piE -0.254 ,62 -C.4o1,07 -0.391,83
Fiﬁ -0.171,97 -0.291,31 -0.295,17
Pig -0.135,03 -0.238,01 -0.246,75
Piu -0.377,99 -0.507,75 =0.5
PiB ‘0-2?3162 '0-389!33 -0'391r53
pé3 -0.221,55 -0.326,29 -0.333,33
pi.}, -0.454 ,83 -0.570,86 -0.564,00
péE -0.334,10 -0.452,62 -0.454 37
by | -0.508,67 -0.614,25 -0.608,17
= e —
Péﬁ '0-396795 -D.HQB,TD ‘0-5
Ph | -0.549,12 -0.646, 54 -0.640,98 |
Pig -0.580,96 -0.671,82 -0.666,67

Table IV.1 Dimensionless Pressures on the Mixed Region of a
Rectangular Wing in Steady Supersonic Motion at
a Constant Angle of Attack. Comparison Between
Exact Results and Two Forms of the Characteristic
Box Method
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Procedure 2:

It is known from Lagerstrom's exact solution (Ref. 40) that
the downwash over the diaphragm region exhibits a square-root
singularity as the side edge is approached from the outside and
vanishes on the forward Mach line 4= . The effect of this
singularity can be approximateiy accounted for. In Cartesian
coordinates, the receiving point is (x %) while 2,7 are the
running variables representing the influencing point (see Fig.
IV.3). A characteristic coordinate system 2,5 with origin at
(x,#) is defined such that the axes 7~ and s are, respectiv-
ely, the right and left forward Mach lines emanating from

2 E
M
r=is [(x-2)~4-1)]

M [ g
- Ze8)+Ayn) Eqs. (4.5a<b)

If the receiving point ( X,# ) lies on the side edge where
2=S , one may assume for tihe downwash distribution on the
diaphragm region

- 4

Equation (4.6) exhibits the proper singular behavior at the

eﬂge and vanishes on the Mach line Z¢ ( += ). Here 4 1is a
typical length** and «; 1is the "strength'" of the downwash. If
the receiving point is on the diaphragm region, Eq. (4.6) be-
comes

h=r (@ IV.4a)

\/;:25253 Eq. (4.7a)

and if the receiving point is on the planform,

N

wvs)=

*Note that in this section the coordinates 2,5 are dimensional,
in contrast to Sectiocn II.

##For conveuienc~, this typical length 4 1s taken in subsequent
derivations t- . the side of a rhombus or half the diagonal of
a Mach box.



a5 v-r
Wips)= %5 N r Fig. Iv.4 4)
A e (7
Eq. (4.7b)
where the notation is that of Figs. IV.4,
b
___,y

/S wflm O\ 5

o

Fig. IV.3 Characteristic Coordinate System for the Treatment
of the Side-Edge Downwash Singularity
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5% S+,

ALONG THIS SUBSONIC EDGE

CONTRIBUTING
REGION

DOWNWASH =
00
Fig. IV.4a
$|= rl—ro
r
ALONG THIS EDGE CONTRI-
-_Z-l-lUTIHG r
r-h—%:=0 REGION
s o
Wg  n-r
DOWNWASH = =5 .
fd JT=1s
0,0
Fig. 1IV.4b

Figs. IV.4a-b. Singular Downwash Distribution Near a Side Edge
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One can easily prove by direct substitution of Eqs. (4.7a-b) into
the characteristic-coordinate form of Eq. (2.3) that the as-
sociated pressure influence coefficients are given by (for w=0)

(5)_ A/b _ o ) 5 ,
C = VE = & e 55 e
: |

“EAF= G Sty 094,

Eqs. (4.8a-b)

Returning to Fig. IV.2, the following downwash distribu-
tions are assumed:

(1) A singular downwash distribution «5 over the
region bounded by ¢4 . Additional
singular distributions 45, , 45, over the
regions 2/ and a(3)e , respectively.

(2) Additional constant downwashes 4 , 4; and
«, over boxes Z, 4 and 5 .

Ore obtains from the zero-pressure condition at points (v)-(¢)
Chp'= U /C,,(:’+ ¥ )+ uz, (:s)(z”’—_—zj =0
G = S (€ + GE) 3 g, CE(F=r) +45 Gy
Cagf = Uhe (G4 G G 624 G54 G

0,2

(s) “) 5)
g, Q) Gl G0
| Eq. (4.9)

!
) .
] 3

as in Procedure 1 a sequential solution yields the required
values for the assumed downwashes. Incidentally, this sequential
solution is equivalent to the inversion of a triangular matrix,
as shown by Pines and Dugundji in Ref. 2%, if the equations are
cast in matrix form. Once 4 , .., «;, 4, , are determined, the

pressure at any point in the mixed wing region can be calculated.
For instance, '
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) ~0) (2] (z) @
(%zgg==é&(ﬁ;,+é;,-+é;z-+ C;/+-CT )

9/

(s) 7
tag G (Fe2, L) Eq. (%.10)

The pressures obtained in this manner are also shown in
Table IV.1. A marked improvement is evidently achieved when
the singularity of downwash is accounted for, even though the
zero-pressure condition is satisfied at the same number of
points on the diaphragm as in Procedure (1).

Next considered is the Mach grid system for the same wing,

with six chordwise boxes. As may be seen from Fig. 1V.5, two
difficulties arise:

(1) The pressures cannot be made identically zero at points on
the side edge since the control points (centers of the nearest
diaphragm boxes) lie off the wing;

(2) if Procedure (1) above is to be followed, no disturbances
can be assumed in the triangular regions 2 wunless additional
tables for such regions are prepared.

l__ A
| [34 Jza 22 16 T:]
b/3 o
T 35 (29 |23 T T =
® 0N,
36 (30 |24 /|18 2 [ 2
5 ® @|o
37 (3 25 |19 13 7 3 I
@ @ O
38 /|32 |26 |20 |[ia| |B 4 i
®_ @
39 |33 l27 |21 Is| |9 |
|
L ] peret|
A

Fig. IV.5 Mach Grid System for a Rectangular Wing in Steady
Motion at Constant Angle of Attack
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Table IV.2 presents the pressures at the centers of the
boxes calculated according to Procedures (1) and (2) aoove.

Procedure (1) ggggsggge (2) ?Eg?t(h.l)]

Singularity

Included
P11 -0.608,17 -0.445,87 -0.391,83
P -0.410,57 -0.326,22 -0.295,17
pi3 -0.352,90 -0.248,31 -0.246,75
Py -0.300,01 -0.233,31 -0.216,35
pis -0.274,05 -0.191,69 -0.194,98
pi8 -0.704,83 -0.599, 84 -0.564,09
pig -0.525,33 -0.475,17 -C.454,37
péo -0.460,54 -0.391,79 -0.391,83
P2y -0.401,99 -0.362,09 -0.349,80
pés -0.753,25 -0.669,62 -0.640,98
pé6 -0.590,81 -0.552,19 -0.535,44
P27 -0.525,88 -0.470,63 -0.471,02
pée -0.783,65 -0.712,07 -0.687,49
P33 -0.634,79 -0.602,35 -0.587,93
pég -0.805,02 -0.741,43 -0.719,56

Table IV.2 Dimensionless Pressures on the Mixed Region of a
Rectangular Wing in Steady Supersonic Flow at a
Constant Angle of Attack. Comparison between
Exact Results and Calculations by Two Forms of
the Mach Box Method
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As in the case of characteristic boxes, the Pressures found
without accounting for the singular downwash distribution are
not satisfactory, whereas the inclusion of the singularity im-
Proves the accuracy. However, Procedure (2), which gives ex-
cellent results in conjunction with characteristic boxes,
fails to yield a comparable accuracy with Mach boxes. This
discrepancy can be attributed entirely to the fact that one
has to satisfy the Zero-pressure condition at points (s y ()
(7) ,(8) , rather than at the side edge.. If half Mach boxes
had been used at the side edges with centers on that edge (1i.e.
if boxes were half boxes) the precision could have been im-
proved. However, the latter arrangement is very inconvenient
from the practical standpoint.

By simple integrations of Eqs. (4.1) and (4.2), one ob-
tains the following formulas for the dimensionless 1if¢ and
pitching moment about the 4 -axis per unit span for the left
half-span (See Fig. IV.1):

412 fymrt St
)= = - 2¢
{JJ /‘zfér )Ef £ / ;> @

{3
-/ /-
= ‘7?‘”5/“;2/—:?{;; //—Z'—é;l ’ (3—2/?0

/‘/amorf/w;)/‘s/an 24

M = i —-_Z P - -

4 (BU% ) 24° 77 6
e /- 28y
T Tr A—Z&)

‘;%\/f;”—//—ggf I+ %ﬁ”—), zy0

Eqs. (4.1ia-4d)
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discrete points. 1In general, these approximate integrations
introduce errors which can be quite significant, especially
if only a few points are available in the ranges of the inte-
grations. For instance, at Section A-A (Fig. Iv.2) the

/7 / /o~
trapezoidal rule yields (b= p=~1, A=pS)

SR AR YAl ST ¥
29)

2 ~ . ! ! ' ; é ;
§24 Mg = zé(‘/)é’é*?cé _/)4;£+ 12 %’4/*3{5’5%*{& %—Zﬁ gqf% (i.l?a-b)

I

At Section A-A (Fig. IV.5) the rectangular rule yields (3’--/)

‘44-'1 = 3'4[“/*/%/* ,.z/+/é3/+/i¢./+)é;]

Zﬁ’fm ;5’{ ")z”f */f?//z"f)*(f‘?z’zfé)"/‘?;%/*/%g‘//’é’fé/] Eqs. (4.13a-b)

Even if the pressures are determined from the exact Egs.
’u.l)-(h.Q), the EIft and moment distributions given by Eqs.
[4.12)-{4.13) do not check their exact counterparts. These
numerical integrations can be improved appreciably if one
accounts for the slope discontinuity in the pressure distribu-
tion across the Mach line 4f (Fig. IV.2I, which is known to
exist from the analytical solution, Eq. (4.2). The effect of
the infinite slope in the stream direction can be included

as shown in Appendix C, Ref. 31, provided the fluctuations

of the pressure as a function of X are not excessive. This
qualification limits the refined integration technique of the
above reference to cases where the leading edge is supersonic,
because subsonic leading edges produce severe fluctuations in
the chordwise pressure distribution as estimated by any
numerical approach.

For the particular numerical example at hand, even better
numerical integrations can be devised. For example, at Sec-
tion A-A (Fig. IV.2), if one uses the trapezoidal rule for
segment f-/3) , the refinement of Ref. 31 for the sharp drop
in pressure in segment (3/)-(/z) |, Simpson's rule for segment
" (12)-¢5) and the trapezoidal rule for segment (79) -2 , one
obtiéns satisfactory accuracy. This combined approximation
yields
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Cha SN L) e flhiery g, 44
U ZECU + AP B 2y 04 Z)

i éfé%;€§£ Eqs. (4.144-pb)

Typical applications show Eqs. (4.14a-p) definitely
preferable to Eqs. (4.12)-(4.13), and the improved formulas
also allow a more rational evaluation of the improvement
obtained by accounting for the downwash singularicy.

éxact curves and the curves obtained by the AXC method and
Eqs. (4.14a-pb) reveal that the inclusion of the downwash
singularity improves the accuracy considerably, Thig is
e€Specially true of the characteristic grid system, wkich per-
méts satisfaction of the Zero-pressure condition on the side
edges.

the box sizes are directly related to the Mach number . By

lustrated. When one attempts to include the downwash singu-
larity (Procedure 2), the forward Mach lines émanating from
the centers of Planform boxes (control points) cut the dia-
phragm region in an irregular manner, making thig refinement
a practical impossibility. Furthermore, when M<vZ , it
will be shown that the Square grid system cannot be used for
Planforms with subsonic edges.

Consider a rectangular wing at an angle of attack o in
Steady flow et s , 5 . As shown in Fig. Iv.8, a diephragm
box 7/, a) {g influenced by boxes (/7 ? and (/, ¢). 1In turn,
(/¢4 { 1s influenced by (/2 ) and (2c), and so on. Conse-
quently, if the Pressures are to be made zero at the centers
of all boxes off the wing, an infinite number of boxes must
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Fig. IV.8 Square Grid System for a Rectangular
Wing in Steady Motion at Constant
Angle of Attack.( M =, 2

be considered, and the downwashes on these boxes determined.
In practice, the number of boxes must be limited, so that
all boxes beyond some boundary line off the wing must be
arbitrarily assumed to have zero downwash. As a start, let
the following boxes and those which are further out have
zero downwash

w,

¢ s 4{,

c’’

The nonzero downwashes «/ , Woe 1 #z4,-- €tc. are then determined

by the conditions of zero pressure at the centers of boxes
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la, 2a, 2b, etc., ... ,. Here a sequential solution is not pos-
sible, since laterally adjacent boxes affect each other. The
equations that yield the downwashes for the diaphragm boxes

must b2 solved simultaneously. The resultant pressures at three
points on the planform are computed to be

’ ’ /
é,' 0.573,9 b,=-o0.s73%, /52'/=—a.262,56,

’ 7

a8 compared with the exact values
7 7
,64/ = ~0.60592, /31;_: ~0.605 92, ’bz,/ = -0.3/,65 .

During this computation the condition of zZero pressure on boxes
g?&), (2,¢) , etc., is violated. In fact, a simple computation
gives

Vs /
Be= 941945, ’g,c = 0.134%,00

Next, one additional box is taken in each row, i.e.,

w/:&'wz:cl"" ,F O . |

The corresponding pressures at two points on the wing turn out
to be

’ /
,b,}, = - 0.407, 56, 'bz,z= - 0.407 56

If the foregoing process is continued, taking one additional
box at a time in each row, the results can be shown to deviate
more and more from the exact values. Therefore, the first
trial, where only diaphragm boxes with centers inside the Mach
line A8 are considered, appears to give the best possible ac-
curacy, even though the pressure conditions at (1F), (2, c) ,
etc., are violated.

A similar difficulty occurs for planforms with swept super-

sonic leading edges (c.f., points 2 and £ , Fig. I11.3 where

P’#0  according to the box schewe). While this violation
of the zero-pressure condition is not serious for supersonic
leading edges, as indicated by the results of Table III.3, it
leads to much larger errors when there are subsonic edges. As
can be seen from Table IV.3, the pressures for the first case
treated above diverge more from the exact for boxes farther
dovnstream and fluctuate violently.

WADC TR 56-97, Part 1 -77-

 CONFIDENTIAL i

L____________________________________________________________________________________



GONFIDENTIAL

Procedure (1) Exact [Eq. (4.1)]
Using Square
Boxes
P1',1 -0.573,95 -0.605,94
P31 -0.262,56 -0.311,66
P35 -0.573,96 -0.605,94
| P 1 -0.310,63 -0.237,34
P35 -0.356,47 -0.288,28
p§’3 -0.644 50 -0.605,94
P3 y -0.808,53 -0.827.89
Py, 1 -2.410,91 -0.199,21
Pe 5 -2.652,43 -0.311,66
pé,3 +0.098,30 -0.370,07

Table IV.3 Pressures on the Mixéd Region of a Rectangular
Wing in Steady Motion at a Constant Angle of
Attack (Square Boxes, M =/.2 )

Iv.2 The Side-Edge Problem in Unsteady Flow

The foregoing illustrative examples have dealt with the
relatively simple problem of steady flow. In unsteady motion,
the general procedures just outlined are still valid. In ad-
dition to regular AIC tables, however, the use of Procedure
(2) of Section IV.1 requires tabulation of aerodynamic in-
fluence coefficients associated with an unsteady singular down-
wash distribution near the side edge. Using Eq. (2.3) and
the transformation of variabies Eqs. (4.5a-b), one obtains
for the pressure at the point (r=0, s="0 ) due to the down-
wash functions given by Eqs. (4.7a-b)
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(origin on diaphragm)

b _wekEppl , FE Eqs. (4.15a-b)
(7)) -7 (2T
é (origin on planform)

Here 4 is the amplitude of the singular downwash strength,
now assumed to have simple harmonic time dependence, «w is the
circular frequency of oscillation, and

L2

T-—t [Ty B, 120 o d
= e 8 20 Jor Jds dr,
' 47rz‘,“"*fz ) Vr-(s5-5,) Vrs € @ (7p ) ’

s

By [0 ) e
n 4”_'7"1/ W € @S[U’ﬁ—\/:—;_r:)s v, 7?—0,// .
o O

Eqs. (4.16a-b)
The notation is that of Fig. IV.4.

By_suitable changes of variables, the double integrals de-
fining 7, and £ can be reduced to the single integrated series

/

I~ L (eqM) = e_lé% 22—3‘.65724‘]; ( r2veir) ey )]

(2}

+2‘ (-')M\L(Mﬁz,/zﬁr)&[fﬁ' zﬂf}]
+ L.,_f;‘ (”)M\QZ (%E‘Z Z%%E{Z#F 2]} dz
m=p -
Eq. (4.17a)
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S L a3 W= 1

3

ST, ve 5 /77
+m§( /f"{;/mz/é

7 )/;,, [e(z27)]
W BT Ly 5205 ] o

m=p

Eq. (4.17b)
where
. e/
€= 7 7
— A
- > g ===
v/ s the Bessel function of the first kind end order /> .
Since

‘-Z(aj =/ g) 5.7/—/0) =0 when /;co

Eqs. (4.17a-b) in conjunction with Eqs. (4.15a-b) confirm the
expressions previously given for steady flow [Eqs. (4.8a-b)].
The infinite series of products of Bessel functions in the
integrands are rapidly convergent for the frequency and Mach
number ranges of interest, so that only a few terms need be
retained. The integrations indicated by Eqs. (%.17a-b) must
be carried out numerically. In this connection, it is worth
noting that the integrands are functions of Z? only. More-
over, for the Mach and characteristic grid systems {the only
ones which permit introducing the singularity effect), o 1is
an integer or a rational fraction, and 5~ is a rational frac-
tion less than unity. A suggested method for the evaluation
of these integrals is given in Appendix A,

As an exeémple to demonstrate that the inclusion of the
side-edge downwash singularity is feasible and results in

fairly accurate airload distributions, caiculations have been
carried out for a rectangular wing in rigid body translational
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oscillation. Since the downwash is constant everywhere, the
characteristic system can be used without encountering the
problems caused by «~ -variation over a box. This system is
chosen since it permits the satisfaction of the zerc pressure
condition at points along the side edge. 1In Figs. IV.9-1v.10,
the aerodynamic derivatives (Ref. 13)

&;fﬂ/«n.ll." S/&ﬂﬁ
—4p k% 7,

.é,f—iézz

Momen? aboul AM”j 34’_96 //n/.f Shen
~YpU KL £

: /
MM =

are presented. These were calculated using four characteristic
boxes along the chord of the rectangular wing at #=-03 and
M=/2 . The singular downwash was included in the diaphragm
region, and the chordwise integrations were carried out by
formulas like Egs. (4.1%a-b) to minimize errors associated with
this step. All thezgymbols have been previously defined ex-
cept the amplitude A, of the oscillation. The constant downwash
amplitude is —_—
@ = wh,

Also on the figures are shown corresponding results computed
by the more exact methods of Nelson, Rainey and Watkins (Ref.
13), which may be regarded as a rough standard of comparison.

For the present combination of Mach number and frequency the
-unsteadiness parameter for supersonic flow is

— 2AM?

5 = [, 943
= Ny ?

a value about as large as is allowable under the frequency-

expansion technique of Ref. 13. The figures indicate that the

Ref. 13 method gives values of 4 » 4y, M. and M/ in the

corresponding exact values according to Garrick and Rubinow
(Ref. 36). Therefore, small percentage differences between
the two sets of curves in these figures are nct too signifi-
cant. With this fact in mind, the lift and moment distribu-
tions by the box scheme can be regarded as quite satisfactory.

WADC TR 56-97, Part 1 -81-

CONFIDENTIAL



( 27=w ‘e :y) "8aaan) a4yl uo

JIWOTPU] spoylaW Ayl £ 2IP[NITR) §F "UOTIE]I}OFQ [PUOTIRTSURIL o
wﬂ wnwn huﬁwmmnuuuxsu :M ﬁoﬂu:#ﬁw“maﬁ 33T sSTmuedg ssajuojsuswiq 6°AI ‘914

q2
g
! ol & o v z 0
ﬂ _
| ]
o \\.\.Q......\.....ul. 0
" NOI93y 2 | b\
S .
. JINOSH3dNS | IP: - -
| n A138Nd “ . V\ﬂ\ \
; - B
| I i o \ NJ
lﬂﬂfr A 9l iq
= V\m
B “ —¥'2
1MW\\
" HI._ —— JHﬁ -
| T L2
5 Jﬁ 2¢

+

ALIHVINONIS ON—S3X0E JILSI¥ILOVHYHI ¢ @
ALIMVINONIS HLIM-S3X08 JILSIHILOVHYHI ¢ @
TYNOISNINIO OML — LOV¥XT — .
NOISNVdX3 S3183S 9.0¢ NI

-82-

CONFIDENTIAL

WADC TR 56-97, Part 1



CONFIDENTIAL

TN 3076 SERIES EXPANSION

=== EXACT—~TWO DIMENSIONAL
(0] 4 CHARACTERISTIC BOXES-—-WITH SINGULARITY
® 4 CHARACTERISTIC BOXES —NO SINGULARITY
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Fig. IV.10 Dimensionless Spanwise Moment Distribution on a Rectangu-
lar Wing in Translational Oscillation, as Calculated by
the Methods Indicated on the Curves. (&:a.a, M=,2)
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In the calculation above, only four chordwise boxes were
used, yet accuracy sufficient for most purposes was obtained.
By contrast, when the same number of boxes were used and the
downwash singularity had not been accounted for, much poorer
precision resulted.

Since individual pressures are not easily obtainable from
the expressions of Ref. 13, the pressure was checked only at
one point. For point 14, Fig. IV.2,

A/é# = —0.3076010./164 ( Fef /3)
20k, .
(:‘;—)w ] ~0. 31250 +0.115,18¢ (Charactristic Dores
= . 7

wi ;Sjn'jv/ar/¢ " \Zounmsé) )

Although the technique of including the downwash singular-
ity was shown to be feasible for unsteady flow, some question
arises as to its practical value. In steady flow the AIC's as-
sociated with the singular distributions have such simple mathe-
marical expressions [Eqs. (4.8a-b)] that Procedure (2) 1is no
more difficult than Procedure (1). When the motion is_unsteady,

however, one must first tabulate the functions Z, and 5 [Eqgs.

(4.17a-b)], each of which depends on three variables. The
scope of such a tabulation is not as great as it might seem at
first glance for the following reasons:

(1) Tables* need be prepared only for discrete values of
o and & . When a large number of chordwise boxes
is taken, the ranges of o and & may become exces-
sive. However, it will be shown below that the in-
clusion of the downwash singularity is no longer
necessary when a great many boxes are used.

(2) I, and £ are both smoothly varying functions of

the frequency parameter ¢ . Therefore., it is not
necessary to take a large number of € -entries, be-
cause interpolation can be done accurately over large
intervals.

Since tables are not as yet in existence, it is desirable
to establish a lower limit on the number of chordwise boxes re-
quired near the side edge if Procedure (1) is to be employed.
1f Mach boxes (or square boxes for Mz {/Z ) are used, it can be
shown (c.f., Figs. IV.6-IV.7) that the significant inaccuracies

*These tables are three-dimensional, whereas the tabulations
for the usual AIC are four-dimensional .
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in the 1lift and moment distributions are confined to the first
two or three stations near the side edge. The more boxes that
are taken, the more these critical stations will be confined

to a small portion of the total mixed region, and the lifts and
moments will then be closer to their exact values. This is
demonstrated by the points calculated by the ter-box analysis
in Figs. IV.6-IV.7. There the total 1ifts and moments for the
mixed region are expected to be sufficiently accurate. On the
basis of this steady-state example, a minimum of ten chordwise
boxes is believed to be required when using Procedure (1)

To substantiate this conclusion for unsteady motion,
another numerical example has been carried out. The lift and
moment distributioms calculated with six and ten square boxes
along the chord for a rectangular wing in rigid-body pitching
oscillation about its mid-chord (£=0.6 , #=/.5) are presented
in Figs. IV.11-1V.12 and compared with corresponding three-
dimensional values from Ref. 13 and two-dimensional values
from Ref. 36. For this combination of Mach number and reduced
frequency, the former can be regarded as a standaid of refer-
ence.

It is seen that with ten square boxes, the AIC results
are much improved over those obtained with six boxes. The
total lifts and moments over the mixed region with ten boxes
are acceptable, since the major discrepancies are confined to
a limited area near the tip. If the contributions of the
mixed regions to the airloads are small compared with those
of the total wing, one might tolerate somewhat poorer accuracy
in these regions and accept fewer than ten chordwise boxes.
However, this can be dcne only for certain special planforms
and motions. If the motion involves spanwise elastic deforma-
tions such that the deflections near the tip are large, which
is often the case in flutter, the aerodynamic loads will be
concentrated on the outboard sections. Maximum accuracy is
then demanded in the mixed region, regardless of the aspect
ratio. Therefore, the conservative and generally acceptable
rule seems to be either to adopt at least ten boxes along the
wing-tip chord or make special provisions to include the
proper downwash singularity off this tip.

IV.3 The Subsonic Leading and Trailing Edge Problems

In the previous section a method was devised which in-
cluded the effect of the downwash singularity at a side edge on
the pressure distribution over a finite win% oscillating in
supersonic flow. When a similar procedure is attempted for a
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Fig. IV.12 Dimensionless Spanwise Distribution of Pitching Moment
About the Mid-Chord of a Rectangular Wing in Pitching
Oscillation About Its Mid-Chord Axis, as Calculated by
the Indicated Methods. (£#=0¢, Mm=/5 )
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subsonic edge which is not pa:allel to the flow, it leads to
such complications that th.s approach is regarded &8s impractical
1f not impossible.

It was pointed out in Section III.1 that a swept leading
edge must be represented by a broken line in order to avoid tab-
ulating the AIC's for partial boxes. If thig approximation is
accepted, the question arises as to how one can represent singu-
lar downwash distributions near such edges. On the actual wing
the axis of the singularity parallels the swept edge. To con-

Having established the unsuitability of the singularity
scheme for subsonic edges other than gide edges, the authors in-
vestigated another alternative, which consists of removing the
singularity by analytical means and treating the remaining por-
tion of the solution by the box method, This proved equally im-
practical. The downwash singularity at a point on the subsonic
leading edge of a finite wing is determined by the motion of the
portion of the wing inside the forward Mach lines emanating from

As in the case of a side edge, it can be proved for other i
Pl 2nforms that progressively increasing the number of boxes along !
the chord causes tune results for the generalized forces tc con- )
verge toward the exact values. To establish a lower limit on the ‘
number of boxes required to achieve setisfactory precision in the '
treatment of a subsonic leading edge problem, the following nu-
merical example is first Presented. A triangular or delta wing
with sweep angle A _ cot "o.¢4 18 considered. The flow is at

M=VZ (B=/) and the wing is in steady motion at constant angle
of attack ¢ (A =0, . - U« ). For this case, the exact theo-
retical airloads can be derived from the expressions for the
velocity potential given by Watkins and Berman (Ref. 20).
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Eqs. (4.18a-c)

elliptic integral of the second kind,
are those of Fig. IV.13, and the

the 4 -axis; wotA/F = 0.490 94 .
of Egs. (u.léa-c), one obtains for the
and total moment

) 2
@“Z_A = ~0.987,09
Eqs. (4.19a-b)
2
4 Icéﬂ ~ — 130611

pattern of Mach boxes adopted for
this particular Mach number, inciden-

boxes are identical.

IV.13 two values for the pressure are
at calculated by the box scheme and
formula [Eq. (4.18a)]. 1t is seen
ures given by the numerical method
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Fig. IV.13 Dimensionless Pressure Distribution on a Tri-

angular Wing at Constant Angle of Attack.
£=0, ol A=0.6¢ M= JZ)
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fluctuate considerably in the stream direction. A similar
phenomenon was observed in connection with a swept supersonic
edge (see Section III.1), although there it was much less
severe. Despite these fluctuations, the spanwise life and
moment distributions follow the trends of the exact curves
(Figs. IV.1¥-15) rather well. There is marked improvement
when one goes to twelve chordwise boxes at midspan in place
of six. The results for the lift appear somewhat better than
those for the moment.

Spanwise integrations to obtain total lift and total moment
seem once more to average out the deviations, so that better
accuracies are achieved for these resultant airloads than for
the spanwise distributions. Table 1IV.4 ghows the behavior of
the calculated values for these two generalized forces 48 one
takes more and more chordwise boxes.* The following points
can be made regarding the rate of convergence toward the ex-
act regults:

(1) The convergence is not uniform but proceeds in cycles.
It happens in this example that the error increases
gradually and then suddenly jumps to a smaller value,
this phenomenon repeating each time the number of
boxes is increased by three. The only rational way
of estimating convergence is to examine the meximum
deviations of successive cycles.

(2) The convergence based on successive cycles is slow.
Therefore, many more than twelve boxes would have to
be taken to achieve a significant reduction of the

8-/0 % errors characteristic of the lower portion
of Table IV.4.

(3) Practical considerations of manageahle computations
rule out any increase far beyond twelve boxes, since
the labor grows at least in proportion to the square
of this number. 1t is therefore tentatively con-
cluded that twelve boxes along the midspan chord af-
fords an acceptable compromise between accuracy and
computational labor. Two additicnal examples of
triangular wings with subsonic leading edges in un-
steady motion are presented in Section V. It 18 seen

*In all these cases, the box sizes are adjusted so that the
sum of the areas of the complete boxes which replace the plan-
form is exactly equal to the area of the wing. Since the
chordwise pressures fluctuate, the rectangular rule has been
used for all numerical integrations.
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Number of
Chordwise
Boxes at L M
the Midspan
Station
' 1 -1.28 -1.536
2 -1.28 -1.792
3 -1.028,75 -1.193,55
Y4 -1.075,26 -1.378,69
5 -1.130,02 -1.540,59
6 -1.043,96 -1.345,13
T -1.061,81 -1.399,60
8 -1.093,96 -1.483,04
9 -1.040,12 -1.365,48
10 -1.048,12 -1.389,83
11 -1.069,35 -1.443,09
12 -1.035,23 -1.369,79
Exact
[Eqs. (4.19a-b)] -0.987,09 -1.316,11

Table IV.4. Total Lifts and Moments on a Triangular Wing at
Constant Angle of Attack in Steady Flow, Cal-
culated by the AIC Method with an Increasing
Number of Chordwise Boxes. (cwff=0.4¢, M=vZ)
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there that six or eight boxes along the midspan chord,
which proved sufficient for purely supersonic plan-
forms, are inadequate when subsonic edges are present.
If large-scale digital facilities are availatle and
costs do not have to be held down, the requirement of
higher accuracy in particular cases may increase the
tentative minimum by & substantial amount. The ex-
perience of the authors to date, however, does not
permit any quantitative estimation of the probable
error associated with any given number of boxes.

Originally it was believed that one could alleviate the
errors in calculations like the foregoing (wings with super-
sonic trailing edges and subsonic leading edges) by making
use of the reverse-flow theocem. After reversing the flow,
it is a case of dealing with a plagform with subsonic trail-
ing edges and supersonic leading edges, and thus eliminating
regions of pressure singularity. It will be demonstrated that
this artifice is unsuccessful. The identities implied by the
reverse-flow theorem (Ref. 17) for the total lift and total
moment on a wing at constant angle of attack in steady flow
can be written

L-=J6£é./ d&%&::JCXé-Gidkﬁ?
< =
M= z;///é;.[z.%//xa} =2////§a/x€} Eqs. (4.20a-b)
5 -1

Here éi and‘éz are the regions of integration over the plan-

form in forward and reversed flows, respectively; /4 1is the
pressure due to a downwash Lk in forward flow, ﬁz is due to
a downwash /- and 4 1is due to a downwash (x/.¢)- (/ in reverse

flow. If the assumption of constant downwash over each dia-
phragm box near a subsonic trailing edge were less critical
than the same assumption near a subsonic leading edge, then the
reverse-flow approach would improve the accuracies of the total
generalized forces. However, if one considers the triangular
wing and solves the same problem in forward and reversed flows,
one obtains identical results.* This indicates that, as far as

*#It is not obvious that the two configurations should yield the
same results, even though Eqs. (4.20a-b) are exact expressions
from linearized theory, since solutions by the box scheme for both
flow directions are approximations.
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the generalized force estimations by the AIC method are con-
cerned, the inherent errors introduced in the treatment of
subsonic trailing edges are just as large as those from sub-
sonic leading edges.

If one admits that a minimum of eight boxes along the
root-chord is required for purely supersonic planforms and
twelve boxes for planforms with subsonic leading edges, it
1s reasonable to extrapolate and set a minimum of sixteen
such boxes for planforms with both subsonic leading and trail-
ing edges. No calculations on examples of this sort have yet
been made.
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SECTION V
SUPPLEMENTARY NUMERICAL EXAMPLES

Certain edditional examples of the application of the AIC
method to oscillating delta wings are included in thls section.
Three of the cases involve the use of square boxes at /7=+5 ;
the fourth illustrates the Mach-box scheme at ~= /2 , which
is regarded as just about the lower practical liwmit of linear-
ized supersonic theory. These examples were worked out in the
course of investigating various difficulties associated with
numerical methods, and for the sake of clarity were left out
from previous Secticns. The reader will recognize from ac-
companying discussion, however, that each result tends to sub-
stantiate one or more of the conclusions and rules stated in
foregoing sections.

V.1 Purely Supersonic Planforms

Case 1: The spanwise lift and pitching moment distribu-
tions are given in Figs. V.1-V.2 for a triangular wing with
leading edge swept back forty-five degrees flying steadily at
M=/5 and constant angle of attack. Three, six and eight
square boxes were employed in the computations. All these
airload distributions are remarkably close to the exact ones,
which also appear on the figures. One obtains even more ac-
curate estimates for the total lift and total pitching mwoment
because of the averaging effect of the spanwise integrations.
Although in this particular case few boxes yield excellent
results, the same cannot be said for other purely supersonic
planforms undergoing elastic deformations at high frequencies,
as shown in Section III.

Case 2: The same wing as Case (1) is considered to per-
form parabolic bending_gscillati%ns at A= 0.51, this motion
] £ ¢
being described by £=’a(;t’/2/)e°w , where Z; is the tip

amplitude. With eight chordwise boxes at the root, one obtains
excellent estimates for the total 1lift and pitching moment
about the apex, as shown by the following comparisor with the
corresponding quantities from the exact theory of Ref. (17):
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Tofal Life . 5.003,09 - 0.158,831 Exact
20U A
(___)2& ,
p
= -0.023,21 - 0.158,914 Box Method
Total Moment _ ., (18 o6 . 0.252,951 Exact
(3Y) 26°4, '
é
= -0.038,17 - 0.251,204 Box Method

Both of the foregoing cases may be said to add further
substentiation to the qualitative rule that eight boxes should
be taken along the midspan chord of a wing with Supersonic edges.

V.2 Planforms with Subsonic Edges

Case 3: Spanwise lift and pitching moment distributions
are given in Figs. v.3-v.6 for a triangular wing with leading
edge swept back sixty degrees performing rigid-body transla-
tion and Pitching oscillations about the root mid-chord axis
at £=02 and M-, . Eight $quare boxes were employed
along the midspan chordline, It is evident that appreciabie
discrepancies exist between the airloads from the AIC scheme
and the more exact results of Ref. 20, especially for the
moment distributions, Although the total l1ifts and moments
turn out to be Somewhat better because of the averaging effects
of the spanwise integrations, one cannot obtain the same order
of accuracy as with a purely supersonic planform overlaid with
the same number of boxes . Experience has indicated that taking
twelve boxes rather than eight along the midspan chord yields
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Case 4: The spanwise 1ift and moment distributions are
given in Figs. V.7-V.8 for a triangular wing with leading edge
swept back forty-five degrees, at #=01, and M=/2, executing
a spanwise parabolic bending oscillation. Six chordwise Mach
boxes were employed in the calculation. The accuracies ob-
tained for these airload distributions are seen to be rather
poor. As in the previous case, one must apparently resort to
the order of twelve chordwise boxes at the root if one is to
get reasonable approximations for the airloads.
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SECTION VI
ALTERNATIVE NUMERICAL APPROACHES

The numerical method which forms the principal topic of
the present report is based on the concept of the direct aero-
dynamic pressure influence coefficient, which gives pressure
at a point due to an influencing elementary area with a pre-
scribed downwash. Two other types of influence coefficients
have been proposed and were studied to some extent by M.I.T.:

(1) The inverse pressure influence coefficient, which
gives the downwash at & point due to a prescribed
pressure distribution over an influencing elementary
area. This bhas the very desirable feature that it
avoids consideration of the diapbragm region, where
the pressure is everywhere zero, in casee of wings
with subsonic edges. It forms the basis of numeri-
cal methods in unsteady, three-dimensional subsonic
flow (Refs. 28, 41), where the direct AIC cannot
readily be calculated.

(2) The 1ift influence coefficient, which represents
the total 1ift acting on an elementary area due to
4 prescribed downwash over another elementary area.
This coefficient bhas been found to lead to complica-
tions (e.g., two additional integrations must be
performed) and affords no special advantage over
the originally proposed AIC. Therefore, for the
sake of brevity, numerical investigations based on
this type of influence coefficient are not reported
here.

It will now be demonstrated that the inverse pressure
coefficient, which seems quite promising at first, can be used
with no difficulty for steady-state analyses. For unsteady
motion, however, the required tabulations become so complex
as to render this method quite impractical.

VI.1 The Inverse Pressure Influence Coefficient

in a recent publication Voss and the present authors
*(Ref. 28) outline a procedure for determining the airloads on
an oscillating elastic wing in subsonic flow at low values of
the frequency by the method of the inverse pressure influence
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coefficients. It consists of obtaining expressions for the
downwash at specified pPoints on the wing in terms of the pres-
Sures at the same set of points. Since downwashes are the
quantities usually known in advance, the resulting sets of
simultaneous equations must be solved for the unknown pres-
Sures. In the subsonic range this indirect process is neces-
sary because, for the general case, no simple expression exists
that yields the pressure In terms of the downwash (1i.e., no
simple inversion of the integral equation has been found). In
supersonic flow, however, the usual form of the integral equa-
tion gives the Pressure directly in terms of a surface integral
of the weighted downwash {as in Eq. (2.3)).

A= /a—f[;,?) F(x_g,;-7)1¢/7 Eq. (6.1)
S

where ~ is the appropriate kernel. Equation (6.1) can be in-
verted to yield an expression which represents the downwash in
terms of a surface integral of the weighted pressure distribu-
tion,

_ ~ ~%, y-v)dsd,
= _S///s{;,r)/‘(x .- 0)Asdy Eq. (6.2)

where KA 1s the go-called "inverse" kernel.

One advanta%e of the latter form is that the diaphragm
representation of disturbed areas near subsonic edges need not
be considered, since in such regions the pressures are identi-
cally zero. Moreover, there is no need to introduce singular
downwashes at subsonic edges.

From the most general form of the inverse kernel, derived
by Watkins and Berman as 8iven by Eq. (16b), Ref. 42, one has
for the steady case

K(x-2,5-9) = zﬁ &Z—z) U—(X'i‘/@(??/)vé—ﬁ)z‘ﬁzé'ﬂz Eq. (6.3)

where [/ is the step function
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Us)= 1 x>0
Eq. (6.4)

If the inverse pressure influence coefficient £ is defined
as the downwash at a point due to a unit constant pressure over
an influencing box, then in the Mach grid system (Fig. II.3) the
relation corresponding to Eq. (2.14%) for the "direct case" is

7 B .
%M-ZS’UZ/; 1027_ Eq. (6.5)
yp A
Using Eqs. (6.2)-(6.3), one can derive the following expres-
. sions for these coefficients:
= — T=i=0
00 1 2

o

N

[/2 541\ -~/ 20~/ =
_ = L 2VHIV_, o cos £XTL =4 >0
7 VA { /227—/) / Ve kol } #

Lor = {z;—%[\/fmﬁféfﬂ)ﬂ Sere)= ]
—%717[ o1V (A~ N fori) - (?;E-O_’" ]

1 202+] -1 25—/ _( -1 24t/ s~/ ZE"/)
+ (es o TS ) (@5 e

27-/

7> p >0

Eqs. (6.6a-c)
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A partial 1ist of numerical values of /. _

SR

is given in Table

VIi.1 It is significant that this table covers all values of
the Mach number, since this parameter does not appear directly
in Eqs. (6.6).
)
7 0 1 2 3 L 5
0 -1
1 -1.016,98 | 0.508, 49
2 -1.230,00 | 0.485,75 {0.129,25
3 -1.254,91 [ 0.444,66 | 0.117,67. 0.065,13
] -1.263,09 | 0.435,10 | 0.097,68 |0.057,88 |0.040,89
5 -1.266,79 | 0.431,07 [ 0.092,27 |0.045,53 |0.035,82 0.028,70
Table VI.1 A Short Table for Inverse Pressure Influence
Coefficients in the Mach Grid System.
Steady State (£=0)

Regardless of which box scheme is to be followed, it is
most efficient to assume a constant pressure over each box.
This step limits the tabulations to a single type of inverse
pPressure influence coefficient. One must carefully examine
the adequacy of this assumption, especially near subsonic
leading edges where the pressures have singular behavior. For

this purpose two numerical example
connection with previous studies,
Mach boxes and inverse coefficient

(1) A reccanguiar wing in steady flow at a constant
& .

angle of attack

WADC TR 56-97, Part 1
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(2) A triangular wing, with leading edge sweep

A =cit™0.6#, in steady flow at a constant angle of
attack o«

a. The Rectangular Wing

The pressure distribution on the mixed region of this wing
is presented in Fig. VI.1l. A comparison between these values
and those from Table iV.2 reveals that the inverse-coefficient
approach yilelds better eccuracy for the pressuresat the box
certers than the direct method which omits the effect of the
side-edge singularity. However, the accuracy is poorer than
the direct method including the refinement for the edge. The
discrepancies between the results of the new method and their
exact counterparts can be solely attributed to the approxima-
tion that the pressure over each box is constant and equal to
its value at the center; this is most critical for a box ad-
jacent to the side edge, where the slope of the pressure is
singular. One might be able to get improved precision by ac-
counting in an approximate fashion for the known variation of
pressure over side-edge boxes. Such a step would require (as
in the case of the refinement in the direct case) developing
and tabulating an extra set of influence coefficients.

b. The Triangular Wing

The pressure distribution on this wing is presented in
Fig. VI.2. A comparison between these values and the corre-
sponding ones from Fig. IV.13 reveals that the chordwise
pressure fluctuations are even more severe than those en-
countered with the direct method. The dimensionless total
1lift and total moment are

L =-l00667 , M=-1,290399

These quantities are closer to the exact values of —7-987%9

and -—/.3/6,// » respectively, than the corresponding
estimates by the direct method using six chordwise boxes. The
latter are -/. 043,96 and — /. 3v5,/3 from Table 1IV.4.

It has been demonstrated so far that the inverse approach
offers a satisfactory alternative way for estimating steady-
state airload distributions. From the examples shown above
it appears that one may often expect to obtain better accuracy
than from the direct pressure influence coefficients without
refinements. However, the new method has a serious dis-
advantage when extended to wings in unsteady motion. The
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VALUES OF
2puU a)
+/.000,00
04945/
0.608(7
044587
039183

06/2,19 | 039364
0.70483 | 0410,57
0599,8¢ | 032622
056409 | 0.29517

0.671,96 | 0.52702 | 02939
0.75325 | 052533 | 0.352,90
0.669,62 | 0#75/7 | 024831
0.610,98 | 045437 | 0.2¢6,75

070807 | 0.602,63 | 040305 | 0259059
0.78365 | 05908/ | 0.460,5¢ | 0.300,0/
07/2,07 | 0.552/9 | 039179 | Q2333
068749 | 0.5354% | 039,83 | 0216,35

1

0.734392 | 065337 | 4677/ | 090873 | 022506
080502 | 063479 | 052588 | 090/99 | Q27405
O.74(43 | 060235 | 047063 | 0362,09 | 0/9/69
Q719,56 | 0.5687,93 | 0#7/,02 | 039360 | 0.19458

Fig. VvI.1

Dimensionless Pressures on the Mixed Region
of a Rectangular Wing in Steady Supersonic
Motion at a Constant Angle of Attack. Com-
parison Between Exact Results and Three
Forms of the Mach Box Method

[Values given are for the centers of boxes
in the following order: (1) Inverse pres-
sure method, (2) Direct method without down-
wash singularity, (3) Direct method with
downwash singularity, (4) Exact.)
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/f/d\ VALUES OF
AN

-00/6,98 |-150849

132/.38 |-005638

\

0054,39| 0.50580| 181925 \

"0.0//,/.9 0.795,63 01/4.86 245 A‘

121157 a.0/1062 1040,6'6 aJ0444

Fig. VI.2 Pressure Distributi
Wing in Steady Supe
Constant Angle of A
verse Presgsur

(éz‘dl CJA=0-6‘/I M-’-‘\/Z—)
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form of the inverse kernel K 1is much more complicated than
that of its counterpart <~ , rendering the task of evaluating
the inverse pressure influence coefficients a difficult one.
The downwash #;(x,4) at & point (xy) due to a unit constant
pressure on an elementary area A inside the forward Mach
cone from (r.y) can be written in dimensionless notation {cf. Eg.
(16b) of Ref. 42]:

AMe-e, gy
wd el T G atera ey
A
: 5/}7{% \é~§)z—(326”'7)2)]+
+ /{%"”"”/ 8 Tlpird)si (ga@%zfé‘@'?)?MM

/3/;-7/

Eq. (6.7)

Compared to the expression for the direct influence coefficient

(Eq. (2.4)], the evaluation of the inverse coefficient & ac-

cording to Eq. (6.7) calls for an additional integration over
the variable ) , Also, extreme caution must be exercised in
carrying out the A -integration, since the integrand is highly
singular at 7=4 .° Although Eq. (6.7) can be integrated in
closed form when #£=0 to yield the influence coefficients

Eqs. (6.6a-c), it is a difficult task to evaluate ig; &, 5)

when ##0 . Even for low frequencies, when A can be approxi-
mated by a finite power series in 4 (cf. Ref. 42), one still
is faced with the double integrations with respect to X ,

7
which require lengthy sets of ¢ tations. Further research is
recommen eé be%or% a%y systematgc %agulation of inverse coef-
ficients is undertaken.

V1.2 The Lift Influence Coefficient

The 1ift influence coefficient is defined as the total
lift over an elementary area due to a unit constant downwash
over another elementary area. Consider two such areas to be
the full boxes A B , respectively in the Mach system as
shown in Fig. VI1.3.
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Fig. VI.3 "The Use of Mach System in Connection with the
Lift Influence Coefficient.

In order to evaluate the total 1ift over A due to B 3
one must first find the pressure distribution over 4 . For
the point &, , the influencing area is the triangle cze ,

and foc the point «, , the quadrilateral gfc,/;£ . Since the

evaluation of the lift influence coefficient requires a double
integration over 4 , it is desirable to find the pressures at
all points of A 1in closed form. Although this is possible
for the steady-state case, the same cannot be said when £ o .
Furthermore this method was found to have no particular ad-
vantage over the original approach with the possible exception
of "smoothing out" the chordwise and spanwise fluctuations of
the airloads and allowing the specification of zero lift over
each diaphragm box rather than zero pressure at the centér of
each such box. Since the usefulness of this approach is 1limi-
ted to the steady-state case, and even there the additional
complications far ocutweigh its slight advantages, this ap-
proach was not pursued further.
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APPENDIX A

—

EVALUATION OF THE FUNCTIONS Z, AND A

It was pointed out in Section IV that two additional func-
tions must be tabulated in connection with the procedure for
including the effect of the downwash singularity near a side
edge. These are the 7, - and £; -functions, defined by Egs.
(4.17a-b). The integrations required must be carried out
numerically, and the recommendeﬁ integration technique is the
modified Gauss quadrature (Ref. 43), which appears to give
satisfactory accuracy with a minimum of computacional labor.

A.1 Numerical Integration Formula

Since the integrand in Z, is a function of =2 only, it
represents an integral of the type

[f‘/zz)“/z =.o/’/[f/’)27{;:é’ ' Eq. (A.1)

Applying the general technigue of Ref. 43 to Eq. (A.1), it
can be shown that the numerical integration formula

p N
Ly = 2 4 44)= 2l )

Eq. (A.2)

is exact, provided f(y) 1is a polynomial of order (2N-/) or less
in » and the stations g are properly chosen. The /% are
associated weighting factors. The valu~- of 4 ~are the roots
of the equation

d”Y N
Z@‘;F/zfjﬂ ;)/20 Eq. (A.3)

For example, if A#=5 , these roots turn out to be
g = 0022, 163 567 Z/ = 0.748, 33% 658
%" d./87, 831, 574 Is= 0-948 483900 .

A 46/, 597, 344
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The weighting factors

lowing set of simultaneous equations, which are derived by
sucgess}vely applying Eq. (A.2) to the functions

;’ ; ’ e /’V"

H/ t H, +

CONFIDENTIAL

/j‘ can then be obtained f

/-/3.,. /—/"f......f. '7l~=/

hHH, t 4 H f%//" *;;;/-/4‘{"'"'*”/7’,,:3,

SH g4 1 47, PGy R

N

!

!
I

rom the fol-

f(})‘_/ :;

s N-1 N-/ UL S
A A A R v

For =5, one has

H, = 0.295 524 2/5

H, = 0.269266 739
Hy = 0.2/9,086, 348

Let /~ (2®) denote the integrand of the Z,

Hy = 0.1%9 45 36/

»

If a finite power series of order (2N-1) in £2 wh
the same values as 4 (22 at the points %= e

approximates adequately the integrand over

gration, then one has from Eqs. (4.17a) and (A.2)

I =ee

2.
= V6 E)

-integral.
ich takes

2 a2
- Sl

the range of inte-

Eq. (A.4)

where ¢ 4 are those defined following Egs. (4.17a-b).

integrand vill become more and more sinuous as &
creased. Therefore, for a given Mach number M
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critical case will be when the frequency is maximum. Let the
maximum reduced frequency at which this method is to be ap-
plied be denoted by £., - In the process of calculating the

aerodynamic influence coefficients for a wing at Aer » One
need consider only the € -range for JZ, [Eq. (4.17a)]

Koar M?
0 ¢ € £ 2 = £
z?

me.x

For different boxes in the diaphragm region, both ¢ and o
vary. However, it can be easily inferred from the locations
of diaphragm boxes in Fig. IV.5 that

o~.5'~§£¥3-—/
Therefore for a given € in the tables, the only entries re-
quired are those for which

[

0< o< Smax_,
(=

If the Mach box system is used, and at most nine boxes are
taken along the side edge (beyond this number of boxes, the
inclusion of the downwash singularity is probably unnecessary,
as stated in Section 1IV), this limitation yields o<7.* There-

y fore the tabulations would have to cover the ranges
€,
é-éé‘,,,,.x, 050—5 _ém_ﬂ__ 5 0_(0—57

With these ranges established, it has been found that a
five-point integration will suffice for all €% and o% for
which ¢, <,¢.

When evaluating the function E » the situation is some-

what different because the limits of integration are V& and
1 rather than O and / . A numerical integration formula
similar to Eq. (A.2) can be devised when the lower limit is
gome constant other than zero. However, the formula will be
dependent on this lower limit. Since one must tabulate the

coefficients £ for several values of G , an equal number

of integration formulas would be necessary. To by-pass this
complication, the following alternative__is suggested. Let

G, (Z%) denote the integrand of the /2 -integral (Eq. 4.17b)

*It should be remembered that g~ can have only discrete values

when a box system is used; e.g., for nine Mach boxes, 0=/35,7,
!

3 4
25-FR TF 5
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l§_= ‘éa;/'é;(%z)dgf
17

/=

e 7| [66)de [ o

Eq. (4.5)

For 2°<5 , the arguments of the Bessel functions in Eq.
(4.17b) become imaginary. Instead of taking the true values
of G, for z2<5F , consider

N Py VB St e

= zzﬂe—..?dézz{i} ; zzsf
Z
Eq. (A.6)

The function G,,(Zz) is continuous across Z°=5 , and has also
at least a continuous first derivative. Therefore G:(zz) is
sufficiently smooth to be approximated by a finite polynomial

in Z*. Equation (A.5) then reduces to (since G,@E?- GT;,(iz)ﬁrZ?}?)

P = e“s;{[&,(zz)a/z —_O/%(zz)dz}

o€ {/Cn(zz)dz — zzne- 3led2 dZ}

Eq. (A.6)

Now both integrals have the limits O and / ; therefore, apply-
ing Eq. (A.2) to Eq. (A.6) yields

— P 4
_ L&O’“ "’*Z W -EoZ
- 2 G(Z e } Eq. (A.7)
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The number of integration points A that 1. be taker t¢
ensure adequate numerical irtegration depends s nhe values o

€ and o . By a method similar to that for .Z; . e CcAan

——

prove that tables of the £, have to cover the rany:g

Emax _ = < 15,
€€, s 2~ ;? <0 o sra*s:ﬁé
Once more,nine - e maximum number of boxes to b :aken along
the side edge. max fOTr this case is
M“!
Cmax = ’e""ix 8* )
It has been found that for the necessary tables, a . "ve-pcint

integration for €< 1.6, and a nine-point integrat »n for

1.6 £ ¢ < 3.2 will suffice, for all F’s , provide« Sax S 32,
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