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DYNAMIC PROPraTIES 0? LINEAR DECISIOH RULES IN PRODPCTIOK PLANNING* 

1. Introduction 

This paper is concerned with derivation of an optimal decision rule 

from an integral representing the costs associated with adjustments in 

production to changing sales forecasts. The cost formulation usod here 

end the optimal rule associated with it are closely related to that 

examined by Holt, Modigliani, Simon, and the present writer [2,13. However, 

the simple case to be examined will allow some of the dynamic perfonnancs 

characteristics of tha scheduling rules and the effects of errors in 

estimates and expectations to be examined in a relatively convenient manner.. 

I 
*In the preparation of this paper I havo ber.efited from discussions with 
Charles C. Holt, Franco Modigliani, ana Herbert A. Simon. 
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As a first appioxLaation, the costs of inventory storage and depletion 

and of overtime pay to the work force of a factory might he represented by 

the following integral: 

(1.1) C - lim  ^f ft 2(H-H )2 • (P-P )2 dtl 

where C is the co3t per ui\it of time associated with inventory and overtime 

decisions, 7,    represents the relative costs of decreasing inventories to 

increasing the axnount of overtime of the woifc force, Hc and Pc are the 

minimum-cost Inventory level and production ratef respectively, H(t) 

represents the level of finishod-goods inventories at time t, P(t) represent?, 

the production sate at tirno t, and S(t) represents the rate of sales at titr* *>, 

The last three variables *tre i^lated by the condition: 

I;   * (1.2) 5(0 -p(t) -1.(0. 
that the rato of increase in inventories is oqual to the rate by which 

production exceeds sales» 

Cince a rationale for a cost formulation of this sort has been given cine- 

where 1,2], further explanation is probably not warranted here* Lied ted 

experience, however, indicates that estimation of the parameters is feasible 

and that the decl3.icn miles derived on the basis of such estimates are only 

aoderatcly sensitive to errors. 

In Section 2 we will be concerned vdth finding a rule for setting the 

production r.-.te optimally, in the sense that the expected vulue of the cos"- 

function (1.1) is minimized, taking into account new information available 

to the decision--maker which is, in turn, reflected in revisions of forecast* 

m of future saleso It will be shown that the optimal rule for this rclativo;;- 

l 
H 

v 

"-. 
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aiaple cost functional is as followst 

(1.3)   P(t) - tC°    e"  S(t,0) d»-yp(t)~H"|, 

where S(t,0) is the- forecast of sales made at time t for time t-»G, The 

production rato scheduled depends first upon a 'present value' of expected 

future sales as wall as the initial state of inventories of finished goods. 

Through the latter ternr corrections of errors in previous forecasts are 

gradually made* Subsequent sections will be concerned first with the 

response characteristics of the rule (1.3) for three simple kindn of fore- 

casts. It will be shown that the rule is a 'low-pass' filter (cf.Simon [6]) 

and that inventory adjustments sight lag behind sales changes for forecasts 

tending to extrapolate present sales conditions into the future. The sensi- 

tivity of the rules end costs associated with their performance to errors 

ft 2 9 in estimating the coefficient t  , in the sales forecasts, and in forecast- 

ing over only a limited 'horizon' will th6n be examined. 

Although the Y;cr- steos from production scheduling problems in a 

specific firs, formulations of this sort appear to be applicnble, with 

rectifications, to other situations. It is possible, too, that explicit 

"ii statements of a criterion :i3 in (l.l) will provide some clues to better 

t; design of physical servomechanisas (e.g., control of temperature, pressure,, 

B and recycle rates in a cracking tower together with the design implications 

fof better control). Furthermore, such techniques are potentially useful in 

the study of business fluctuations?. In particular, the derivation of 
£?^ 

££ behavior hypotheses frost cost criteria not only provides a bridge between 

the theories of the firm and business cycles „ but also suggests the structurs 

of such relations for statistical estimation (dacision variables, data 
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relevant to these decisions, tho role of expectations) and provides an 

independent source of estimates of the parameters of those relations. 

2. Derivation of Optimal Rules 

The problem posed before may be restated in a simpler form by extra- 

polating the 'certainty-equivalence' proof of Simon [7] to the situation 

in which decisions may change continuously in time. Lett 

P(t,£) be the rate of production planned at time t for tims t«Q, 

H(t,<5) be the level of inventor5.es planned at time t for tine t+9, ai.d 

S(t„Q) be the rate of sales forecasted at time t for time t*d, 

The plan which minimizes the following coot functional is the optimal rule 

for the dynamic problem: 

(2.1) C«15m \f*  lc^(H-Hc)
2 + (P-Pc)

2] dO, 
T-»co *J0 

where ?•   is a positive number and, for simplicity, Hg and Pc are constants, 

"we thon wish to find a way of minimising (2.1) subject to tho following 

consistency relation: 

(2.2) H* - F - 3, 

the prime indicating differentiation with respect to Q. 

The problem is to find some derivative P^m'(t,0) which, when set oqufJ. 

to P*m'(t) the actual production rate at time t, will minimize the ezpectr.a 

valuo of equation (l.l). The calculus of variations will yield the condj.cion.i 

for a mlniwum cost in the planning 3pace« With tho aid of the Laplaea trens 

form, we will then solva the resulting conditions for 0 - Qr    Theao cqvAt?<:n> 

represent the opttatal decision rule. Having gone through those manipulate •->>{.., 

we will examine some of the qualitative properties of such rulos, perhapo 

gaining insight a3 to possible applications and limitations of this appro-:-1^.-. 
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2.1 Conditions for Kinimua Cost, If we let P*(0) be the optimal 

production plan over the future (wo are dropping the argument t for the 

time being), any other plan may be written as a 'variation' from thie 

optimum: 

(2.3) P - P* • v'. 

Except that it bo differentiate and satisfy certain end-point conditions 

to bs specified below, the function v(0)is arbitrary.    Sin^e 

H« - (P* - S) • (P - P*) - H* • v', 

it follows that 

(2.4) H - H» • v 

plus a constant which, as we shall see later, is equal to zero. 

Substituting (2.3) and {2ok)  into the functional (2.1), an equation 

of the following form is obb&lneds 

(2.5) C - C* • 2L • Q. 

the average cost ueing the policy P* is given by: 

(2.6) C* - lia \f    C32(H«-KC)2   • &*•? f" 3 <». 
T-*oo-   ° 

L represents the linear t,&nns in v and its derivative: 

(2.7) L - lim   % [    [32(H»~H )v • (P*-P )v»] d© 
T-*© T-,0 C C 

and Q represents the quadratic terms: 

(2.8) Q - 11m \fT     [^(v)2 • (V)2] dO. 

Since P* is the minimum-cost plan for production, for all the 

admissible functions (alternatives) v, we must have: 

(2.9) C - C* • 2L • Q £ C*, 

and hence that 

(2.10a)  L - 0, and 

(2.10b)  Q  > 0 
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for all admissible functions v. Because the ratio of cost coefficients, 

t  , is positive, we can see immediately from (2.8) that condition (2.10b) 

for a minimum is satisfied* 

What, then, are the conditions under which L - 0? Clearly, this 

holds for the trivial case H*-Ifc - P*-Pc- 0, which implies a very special 

kind of sales forecast (without error). P* and H* nay be found under more 

general conditions as follows-. Equation (2.7) may be written in terms of v 

(and not its derivative) in the interval (0,T) and its values at the end• 

points as followst 

(2.11) L - lim iff* [#(H*-« ) - (P«')]v dO • (P*-Pjvf?- 0. 
T-w T^O        c c 'oj 

The intqjral will vanish if the following differential equation in 

planned future px-oducticn rates and tnrvt&ory Levnla iu butiffied: 

(2.12) tf2 (H* - Kg) - P»» - 0. 

For the equation to be satisfied, it is also necessary to specify that 

E v(0) - v(T) - 0. The condition on the 'variation' Implies 

I (2.13a) H*(0) - H(0), 

(2.13b) H»(T) - H(T), 

b jj That is, the initial and terminal inventory levels must be specified,   The 

it first condition means that H(0) is part of the data upon which the rate of 
I 

production P*(0) is set. We shall see below that if this condition were 

1 not imposedp it would be possible to have infinite average costs per unit 
1  ' 

time. The second condition, (2.13b), will not bo taken seriously because 

in taking the limit as T -» oo, the terminal inventory can be specified 

arbitrarily without affecting the decision for the immediate future. 

2.2 Solution for I-mnedlate Decision. Of course, the differential 

_ equation (2.12) is the classical Huler-Lagrange condition for an extreatua 
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jf of a functional. We are not, however* so much interested in finding the 

tine-path P*(0) as in the initial decision P*(0). Subsequent plans will, 

of course, be made on the basis later information. To solve the differ- 

ential equation for P*(0) and later planned production rates we will use 

an integral transformation that has been very useful in the analysis of 

other linear systems. 

Tha Laplace transform of a function f ($) over the interval (0,T) is 

defined ast 
•T 

(2.U)   f„ (p) -f  e"-1* f(») d». 

The transformed function no longer depends, of course, upon 0, but on the 

parameter p, as well as the upper limit of integration, T. fj(p) may be 

interpreted as the present-value of a timo-series f (0); it is a function 

of the interest rate, p, and not time. It follows from integration by 

x w parts thatt 

(2.15) IP (P) - Pk   fT(P> - A   f*lt***M - ^  f<J"l) (T)i' 
uefining 

(2.16) f(p) - lirn^    fT(p), 

it follows thatt 

(2.17) "7^ (p) - Pk     f(p) - JL pk"J f(^X)(0) 

as long as f (0) and ita derivatives do not approach infinity core quickly 

than a polynomial. 

Denoting the tran3foim of P*(0) over the interval (0,T) b7 VjC'ff) 

etc., we will transform the differential equation in 0 into an algobraic 

equation in p, obtaining: 

(2.16)    S2^ - p-1^ (l-e"*T)] - p?T* l?(0) - e~P
T P(T)3 - 0. 

From the definitional relation (2.2) we also have: 

(2.18) p Rj -tH(0) - e'pT H(T)] - PT - S*r 
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Substituting (2,19) into (2.18) and rearranging terms, we obtaint 

(2.20) UV1   - p)PT~ ff
1^ LHCO-V - e'^P^T) • P»(0) 

-*yi[sT-tH(0)-Hj . 
o 

3 " *ilV-"a9 ST ea*ets for ***• P hairinR positive real parts if the salsa 

forecast S(Q) is bounded. In the limit as T -» co , the terminal inventory 

level, H(T), becomes irrelevant and WO drops out, leaving! 

(2.21)   (oV1 ~P)P • P*(0) - *VX (s - [H(0)-Hc]J. 
The inventory level at the beginning of the period, H(0), and the 

forecast of sales, S(0), are pieces of information used in setting the 

production rate, P*(0), for the instant of time immediately ahead. That 

H(0) is not a decision variable comes from the end-point conditions from 

the variational analysis, vis. H*(C) «• H(0K However, P*(0) is not so 

specified. It may be chosen no that the differential equation (2.12), or 

equivalently the transform equation (2.21), will be satisfied., 

P*(0) may be found as follows. The 'present value* of planned future 

production rates, P, is finite for all p having positive real parts OM 

long as P(O) does not approach infinity any faster than a polynomial 

(ordinarily it would be bounded). The coefficient of P will vanish for 

values of p (say, p^) satisfying the equation: 

f. (2.22)    ** p"1  -Pk -0 

as well as the condition Re(p) > 0. Consequently, the desired root is p^ ^ 

wherei 

(2.23) p. • • tf , k-1,2, respectively. 

Substituting into equation (2.21), we then obtain the expression 

for the optimal production rate in the 'next instant* of time as a 

function of initial inventory levels and a forecast of future salest 

(2.24) P*(0) - * S(o) - -ilH(0)-Hc], 
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R©-Introducing the tlse argument, t, equation (2.24) nay be writton asi 

(2.25)    P(t) - P»(t,«0) - if•    ^     S(t,0) dO - *lH(t)-4i03. 

The rule states that the production rate to be sot for the t'th instant 

of tine should be a weighted sum of future expected sales, less some 

partial correction of inventory levels (arising,, in this case, from 

previous sales forecast errors). We can see from the equation a rationale 

for the stipulation H*(tw+0) • H(t)» There has been no restriction upon 

the forecast function->    Cons»;uently, if H(t) were directly set by the 

rule and there were a discontinuous change in the forecast, P(t) - H(t) • 

S(t) would become infinite* and so would the costs. 

2<>3 Solution for Distant Plans. It is also possible to calculate 

anticipated or planned rates of production In the future. Wo will start with 

equation (2.20), interpreting T not a3 the end of the planning horizon as 

before but as the running argument in the 'planning space'. Since H*(t) is 

no longer the specified end-point, the asterisk is usedu By choosing p^ 

ao • i„  respectively, the identity (2.20) gives the following two equations 

In H*(T) and P«(T) t 

(2.26a)    -*IH»(T)-He] - P»(T) - 6«**  lST(tf) - S(tf)] 

(2.26b)     otH*C:)-«c] - P*(T) - - •^
ri3T(^0«6(O] • 2eV*EH(0)-H0], 

Eliminating the term involving Inventories from this system, the 

following expression for P*(T) may be foundi 

(2.27)    P*(T) - i    F° .'tW    *g  eS<°-T> *£*  .^^>ls(0) d* 

-re*^CH(0)-Ho3. 

E 
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For large values of T, equation (2.27) may be approximated by: 

(2.28) P*(T) - $  C°    •    tS(T«0) *S(T-a)] <K». 

The inventory adjustment term has dropped out essentially because all 

the adjustment will be expecteu to take place over a relatively short 

period of time,    fines the calculation is completely In the kexpectation* 

space' there will be no new 'anodes-  from the forecast errors to correct. 

2.fr   Relation to the Rul»a Discrete in Time.    It is worth-while 

to examine at this point the relation of the 'rules' presented here with 

the work of Holt, Modigliani, &nd Simon 12].    If Instead of varying 

continuously in time, the production rate were set for a period of length 

h, the cost function would take the Torm of a sum: 

(2.29) C-limir      I    l#(H,-H)2      •h-2(P0-P)2] 
T-«co        ®"k 

where Hg is the inventory level at the end of the O'th period of time in 

the future. PQ is the amount of production during the ft'th period of length h, 

and the summation is over 0 - h, 2h,  • •», * h. 

The decision rule which leads to minimizing the expected value of 

the cost function above may be shown to bet 

(2.30) Pt4h   -    (1^)   ^   .fbSt<0   - (l^XH^. 

The parameter X. is related to the cost ratio 2P as followst 

(2.31) H   - | [2 • X2*2 - j£tf{k*£?Jl. 

If the period is rather short, the parameter Xj is approximately 

1 - h& Consequently the production rule may be written as 
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C (2.32)        Pt4h   - V6 ^h   (1 " ^>(9"h)A St,0 " ^ (W 

As we let h approach zero,  we have 
1 oo <0-h//h 1 - 

(2.33) P(t) - h   Pt4h   " » ^h   <l - h« h St,.0   h " « M) 

* "       3U,W> <id - tf tKCt.)-H0J, 

This Is, of course, identical with the continuous rule (2325) which has 

been previously obtained* 

If, on the other extremee we let the time interval become very large, 

-2 
then \± is approximately equal to (ha)  . Here the rule would become 

C 

a 

-st..h - <nt-H.>- 

This limit of the production adjustment which is due to Metsler (4) and 

analogous to that of Vassian l8j, can, of course, be obtained from a cost 

function involving inventory costs alone. 

3o Dynamic Performance Characteristics 

3^1 Resp^-.ae to a Sit)U3oidal Inputs Returning now to the decision 

rule, aquation (2.25), it is evident that the dynamic performance will depand 

critically upon the type of forecast that is used. We will examine the 

performance of the rule for a sinusoidal sales pattern for three types of 

forecasts! 

1. •Perfect': S(t,0) - S(t*0), 

2. •Null't S(t,0) -0, 

3. 'Naive*» S(t,0) - S(t). 

Other possibilities involve mistakes as to amplitude, frequency, and 

phase of the fluctuations, but we will not consider these here. 
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With the perfect forecast* the production performance may be obtained 

directly from the Euler-Lagrange equation (2,12) to be: 

(3.1)    o2 P(t) - P(t) - g*S(t). 

The relative magnitude of production fluctuations to sales fluctuations 

1st 

(3-2)  lTfl TT-for 

where o> is the angular frequency of fluctuations of sales* The lag in 

production adjustments behind sales, £fp, would be zero, as we would 

expect with a perfect forecast. The relative response |Tp| is close to 

unity for #>< Q7, but drops off sharply for large d>. In other words, 

production adjusts to slow changss in sales, but ignores those of a very 

short duration. The •cut-offf frequency depends, of course, upon the 

relative costs of inventory storage and overtime, which are reflected in 

the coefficient 'Jp. The relative magnitude of Inventory adjustments to 

the fluctuations in sales is given by: 

(3.3)  M -Ir^lr w 
and /Zp - n/2 (i-e. the inventory reaches its mead— level when production 

equals sales and both are increasing The function |Zp\ls small for very high 

and very low frequencies, reaching a maximum of 1/2& for 63 «• t 

The analysis with the perfect forecast would give the best porforaar »> 

It is, however, dynamically unstable, so that any errors in the foreoastc 

would ultimately 'blow up*. It can be shown that the performance of the 

rule is, in general, dynamically stable if the forecast is what servo- 

(\ mechanism engineer* call •physically reallsable, (i.e. depends only upon 

past data). 
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Perhaps the most airple realisable forecast Is the 'null* forecast, 

that future sales are expected to be equal to some Ions-term average. 

With S(t,0) - 0, the rule (2.25) becomes: 

(3.0    P(t) - -tfH(t)-H0]. 

Consequently the relative magnitude of production and sales fluctuations 

1st 

1 
(3.5)   |Y0| - '/PrT 
^2 

Since all values of the function are less than unity, the rule with the 

null forecast responds more to sales fluctuations than that with the 

perfect forecast for all frequencies. The angle by which production lags 

behind sales is given fcyt 

(3.6)   /IQ   -tan"Y-|) 
increasing with the frequency. The magnitude of response of the inventor/ 

level is: 

(3.7)  |ibl- 4;  X = 
V 1 f <$)* 

with the same lag as production. 

A 'naive1 forecast is equivalent to the stipulation that S(t,0) - S(t). 

This leads to the production rulet 

(3.8)    P(t) - S(t) -^tH(t)-Hc], 

In a way, this case is rather uninteresting, because production will equal 

sales and consequently there will be no fluctuations in the level of 

inventories. 

3.2 Sales Impulse Anticipated T Units of Tims in Advance. Another 

way of examining the offects of the rule is the following. Suppose sales 

and production have been maintained for a long time at a constant rate 



t 

c 

(which can be assumed equal to zero without loss of generality). At time 

t - T, an impulse of sales* which was anticipated at time t - 0, occurs, 

it Is then possible to examine the cost of production as a function of T, 

the length of time In advance that such a sale is expected. 

The sales function would then be 

(3.9)   S(t) - 6 (t-T) 

where 6 is the  Virac  delta. The sales forecast function would be 
{o(t«0-T), 0 <t<T,0<0, 

0     , otherwise. 
If T - 0, there would be no advance notice of the sale; if T - oo. 

(3.10) 3(t,0) - 

there would be perfect advance knowledge. These two extremes have been 

examined by Holt and Simon [3] with different methods than those to be 

used here. 

With some reasonably convenient operations involving the Laplace trans- 

form, equations (3.9)-(3.10) and the decision rule lead to the following 

function for the production 'response'| 
<0 >    t < 0, 

(3.11)   P(t) Va"** cosh ft, C < t < T, 
v*e"

5t cost 0TS 
r < *• 

Similarly, the time-path of the inventory levels may be found by integration 

to be: 

(3.12)    H(t) - 

. t<0, 

"°T sinh "&, 0 < t < T, 

»ot sinh oT, T < t. 

Substitution of (3.U) and (3.12) into the cost function (1.1) leads 

to the total cost I 

(3.13)  0(T) - X (x • ."^va. 

0 
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Evidently C is a decreasing function of T and 

C(0) -   t. C(co) -  Y/z. 

The 'success* of the forecast is defined ant 

<>•*>   •<*> •$):$!) • 

This function measures the fraction of total cost savings in forecasting 

can be realized with a forecast having horizon T. Proa the cost function 

(3.13). the 'success* function becomes* 

(3.15)   s(T) - 1 - **  . 

With o • »C9, a forecast horizon of 5 months would be 9S£ 'successful. • 

Although the entire future is relevant to some extent* the cost effect of 

errors declines for this case quite rapidly. If the co t of inventory 

deviations is higher, only shorter horizons would be required! as the 

storage cost completely dominates the cost of deviations in the production 

rate, only the immediate future is relevant (as in the Hetzler model [4])° 

4.  Effects of Forecast and Estimation Errors 

Since imperfections in the information available to the decision* 

maker is an important characteristic of planning problems, it is certainly 

relevant to examine the effects of various kinds of errors upon not only 

the decisions that are made but also the extra costs that are incurred as 

a result of these errors. Possible sources of error in the types of modej-s 

considered here might be summarized as followsi 

1. Estimation of parameters t 

i.   Cost coefficients (6 ), 
ii.  Forecasts (S(t,0) - 8(t«0) ), 
ill. Feedback information (H(t,0) - H(t))j 

0 
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2. Performance (e,g., differences between planned production and 
actual production, P(t,0) - P(t))| 

3. Specification of the criterion function: 

1.     Time grid: planning horizon (T) and decision frequency 
(l/h for the rule discrete in time, infinite for the 
continuous rule)* 

ii.    Aggregation of components} product of the fira an. the 
organizational units and locations, 

Hi. Excluded components: decision variables (e.g., raw materials 
purchases, vork-in-procoss inventories, etc.) and costs, 

IT.   More fundamental assumptions: the quadratic model, lack of 
unilatorial restrictions, the expected value of the function 
as a criterion for choice, etc. 

Although little can yet be said about the sources of error toward the 

bottom of the list, some statements can be made about the effects of 

cost estimation errors and information, control, and forecast errors. 

This we do below. 

^,1   Errors in Cost Coefficients.   Since the parameters of the decision 

rules depend upon the values of the cost coefficients, the behavior indicated 

will be costly to the extent that incorrect estimates of the coefficients 

were used.    In the case involving inventory and production rate oosts, an 

error in the ratio {£   and the parameters H   and P   will result in different c c 
* 

decisions (and hence higher costs). 

* Costing errors in decision rules was first carried out by Roberson, 
OHolt, and Modiglianl [5] for the rule based on inventory, overtime, and 

labor turnover costs. H. Theil has made extensive investigations for a 
static quadratic welfare function in work that is as yet unpublished. 
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The cost functional (1*1) nay be written asi 

(4.1) C -   H1   Tjnn2 • (f-T )*. 
O 0 

The bars indicate the time average of the square of inventory and production 

deviations, respectively. 

Assume that sales can be forecasted perfectly, that there is no error 

in estimating Ho (P0 is irrelevant), and that sales may be represented by 

the undamped sinusoid! 

(4.2) S(t) - S • A cos o> t,   A- const. 

The resulting- production rates (if sales are perfectly known) will obey 

the following differential equation! 

(4.3) ^P(t) • o2 P(t) - c2 S(t) 

if c2 is the estimate of o"    •   The production performance would therefore be 

given byt 

(4.4)        P(t) - -s2^ A cos tot • 3 
0 

— i.e., production would have the same frequency and phase as sales and 

an amplitude no greater than that of sales whatever the value of the 

estimate of the cost ratio. 

The time average of production fluctuations would then bet 

i 

U.5)  (r-^-^T^yS- •(s-*/. 
Similarly, it can be shown that the average of the inventory fluctuations 1st 

U.6)    ("nV"4(OT-- 
If o were too large, then more of the fluctuations in sales would be * taken 

-J up* in production fluctuations than would be del arable (and conversely), but 
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neither of these errors in the estimate of the cost coefficient would 

sake much differenoe at low frequencies (i.e. if the sales rate changes 

slowly). 

Assuming that 3 - Pc. the tine average of costs can be written as a 

function of the true coefficient t2, its estimate o2, and the frequency of 
sales fluctuations from (4*1) *s followsi 

e 2 (^•c2)2 

I Similar results would, of course* be obtained with a rule with which 

decisions are made at distinct points of time. The relative increase 

in costs due to an error of estimating the cost coefficient 1st 

(4.6) 
c-3^ 

°min 
o2-c2 

,-i**o2 

jfj If, for example, the coat ratio c were 1D% greater than \^t t " .3 

per month(as is approximately the case for the factory studied in [2]), and 

w - a$25 radians/month (one cycle per year), then the error would increase 

costs by a factor of about 0»18$t. It is a distinct advantage that the 

performance of the rule and the cost of the performance is not very 

sensitive to errors in the estimates of „he coefficients. (Extreme 

insenaitivity is, however, equivalent to stating that costs are not affected 

much by the scheduling decisions.) Furthermore, substantial deviations from 

predictions of inventory fluctuations made with roles of this sort might be 

expected because cost differences might be hard for firms to perceive* 

Equation (4c8) is obviously a function of the frequency of the sales 

fluctuations. One can see that the costs 'peak' at the angular frequency 

a! - c, the square-root of the estimated cost* Ths marl mum value of the 

0 
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relative cost difference is: 

Thus, the mtadmm relative increase in cost for o   - 1,10 }j   would be 
0.23$. 

4.2   Forecast. Control, and Information Errors.   Letting h « 1, the 

discrete forts of the rule, (2.30), becomes: 

toJfl»     pt.i " TT &"X» - H (H*.o " "•" 
where Pt ^ is the amount of production planned for the eoalng period, H|. 0 

if the (imperfect) estimate of inventories at the end of the proceeding 

period, and St ^ is the forecast made at time t for sales in the (t-*0)lth 

period. If there were no errors in these variables, they would be equal 

to P*4i» H^ , and \+Q, respectively. 

Suppose that the time-series S. is stationary and independent: 

(4.11) St -   S • 6n ,  *b • 0, *3 > 0, 

and that the forecast of future sales 1st 

(4.12) St>0   -3. 

We will further stipulate the ' information1 error I 

(4.13) Htf0-Ht   • l^ , gjj   -0.     t\      >0. 

and the 'control' error: 
"2 

(4.14) Ptpl   - Pt#1 • 6^. , ftp   - 0.   «-p > 0. 

He will assume that the errors are statistically independent. 

Actual production in the (t*l)'st period is then described by: 

(4.15) Pt+1   - - €pt+1- (l-^Kh^   • t^   - Hc)      • S. 

0 

o 
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The dif ferenca equation above can readily be solved with the 

aid of the power-series transform: 

oo 
(4.16) 

From the relation Ht - Ht-i • ?t - St* ^8 can &^so And* 

(4.17) «,  -l,^- ci-*^ | 4^ • H - £ ^^ 

Consequently, the moan-equare deviation of production ist 

5»1-Xi   J3f (4.16)        (P-P0)2 - _2_ r| • 2(1-^)2 £2* £V £? * & " *0>2« 
i**x   p   1 • xx 

The deviation in inventoriea ist 

(4.19) 5   1  -?, %-*- -2. OHLT--L s/* acii */• 
°   •> ^2  V   ,     n 

1    r* 

1^ *• 
The average cost of thaae errore will than be: 

(4.20) 
-  U-*i) 
C - —5-*- (H-H,,)* • (P-Pc)

4 

, L ^»(l^l) I?*1^!^ • (S-P0) • 
^  "P   J^   H   3^  a 

Since ^ is always less than unity (andreal), it is possible to 

draw certain conclusions about the effect of the three errors upon average 

costs. The rule can clearly do reasonably well with sloppy information 

about existing inventory levels, while deviations fro* planned production 

are rather costly. Although the model is not particularly sensitive to 

forecast errors if they are serially independent, the rule is quite 

sensitive to a bias In the forecast* 
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For example,  if ~6    - .09, as in the previous illustration a, X^ would 

be equal to „7k. and the cost function Uc20) would become! 

(4.21) C   - 1.35 «£   • .09 «§   • .35 &g • (3 - Pc)2. 

Of course, the analysis of the effects of error ie by no means 

complete.  We have examined their effect for a rather simple cost function — 

and even here for special cases. To have done otherwise would have led us 

Into too nuch analytical underbrush. However, such analyses do help answer the 

question of what constitutes a good forecast. Obviously, one cannot tell 

unless he has some idea of the effects of errors upon the criterion far 

choice (e.g. production costs). The costs as we have formulated thai are 

quite insensitive to moderate errors* Again, interpreting the 'decision 

rules' as behavioral hypotheses, the insensitivity of coats to snail errors 

suggests deviations of a fair magnitude about predicted output. If la 

addition a •threshold level' in cost perceptions is postulated, it may, 

however, be possible to estimate the error of the prediction, at least at 

the alcroeconomie level. 

0 
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