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DYNAMIC PROPFRTIES OF LINKAR DECISION RULES IN PRODUCTIOR PLANNINGH

1. Introduction .

This paper is concerned with derivation of an optimsl decision rule
fyom an integral representing the costs associated with adjustments in
production to chunging sales forecasts. The cost formulatfion used here
end the optimal rule associated with it are closely related to that
examined by Holt, Modigliani, Simon, and the present writer (2,1]. Ikwever,
the simple case to be examined will ellow some of the dynamic perforrmercs
characteristics of ths: scheduling rules and th2 effects of errors in

estimates amd expectations to be examined in a relatively convenient manner.

#In the preparation of this paper I have berefited from discussions with
Charles C. Holt, Franco Fodigliani, ana Hervert A. Simon.



vy

G e e

!

i

s

+ O R T AT 5 sasrirm st o . e . i . T ——
3

= 1

As a first approximation, the costs of inventory storage and depletion
and of overtime psy to the work force of a factory might be represented by
the following integral: '

- T
(1.1) C = lim -lf E{Z(H-H )2+ (p-p )2 dt]
T™~» 2 p ¢ c
where C 4s the cost ver unit of time associated with inventory and overtime

decisions, 7.2 rcpresents the relative cosis of decreasing inventories to

iricreasing the awmount of overtime of the work foree, Hc arxd Pc are the

‘minimum-cost inventory level and productién rate, respectively, H(%t)

represents the level of finish:d-goods inventorics at time t, P(t) represenis
the prouduction rate at time t, and S(t) roupresents the raite of sales at tira .
The last three variables are related by the condition:

(1.2) E(t) = P(t) ~ L (t),

that the rate of dncrense in inventories is oqual to the rate Ly which
production exceeds sales,

f4nce a rationale for a cost formmlaticn of this sort has been given cise-
where [{2], further explaration is probably not warranted here. Limited
experience, however, imiicates that estimation of the paramcters is feasible
and that the decisicn rules derived on the basis of such estimates asre only
mocerately sensitive to errcrs.

In Secticn 2 we will be concerned with finding a rule for setting the
production rate optimally, in the sense that the expected vidue of the cos*
function (1.1) is minimized, tzking into account new inforrution available
4o the dscision-msker which i3, in turn, reilectsd in revisions of forecasir.

of future sales, It will be shown that the optiwel ruie for thie relativel;
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‘ simple cost functional 13 as follows:

v

o -
(1.3)  P(e) - % e " 5(t,0) & - ¥ Ei(t)-H;,.
where S{t,0) is the forscast of sales made at tims t for time t+@. The

productiion rate scheduled deperds first upon a fpresent valuc! of expected

fature szles as well &8s the initlal state of inventories of finished goods,.

XMy ‘Y.ﬁ‘é-v’ gonenr xet

Through the latter temm, correctionp of errors in previocus forecasts are
gradually aade. Subsoguent sections will be concerned first with the
rzsnonee characteris:ics of the rulo (1.3) for three simple kinds of fore-
casts, It will be shown that the rule is a 'low-pass' filter (cf.Simon [6])

ard that invemtory edjustments might lag behind ssles changss for forecasts

T

b tending to extrapolate present sales conditions into the future. The sensi--
? tivity of the rules and costs assoclated with their peirfoimance to errors

E .

:‘ 8 in estimating tha coefficient ‘62, in the sales forecasis, and in forecast-

"

ing over only a limited *hordizon! will then be examined,

Although ¢the work siems from production scheduling problems in a

e )

g’ specific firm, forrulations of this sort anpear to be applicahle, with
o=

:;' modifications, to olher situations. It is possible, too, that explicit
P statcaments of a critericz a5 in (1.1) will provide some clues to better

R o e

13
i\

design of phyzical servomechanisus (e.g., control of temperature, pressure,
and recycle rates in a cracking tower togcther with the design implications
of better control). Furthermore, such technicues are potentially ugefd in
the study of business fluctuations. In particular, the derivation of
btehavior hiypothrses f@ cost criteria not only provides a bridge between

the theories of the firm and tusiness cycles, but also sugpests the structirs

of such relations for statistical estimation (docision variables, data

Rl L Bt
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‘ " relevant 4o theses decisions, tho role of expectations) and provides an

independent source of estimates of the parumeters of these relations,

2. Derivation of Optimal Rules

-~

The problem posed before may be restated in a simpler form by cxtra-

g

polating the fcertainty-equivalenca! proof of Simon [7] to the situation

in which decisions mey change continueusly in time. Let:

" _""”'f'“‘?“"\‘l e

P(t,3) be the rate of production plannod'at time t for tims t40,

i H(t,Q) be the level of inventorles planned at time t for time t+3, a:d

S(t,0) be the rate of sczles forecasted at time t for tims t+49,
The plan which minimizes the following cost functional is .the optinmal rule
for the dynamic problem:
(2,1) € = lim é f . l{Z(H-Hc)z + (P—Pe)zl @S,
0 :

T20 *=
: wiers 7."-2 is a positive mober end, for sizmplicity, H, and P, are constants.

ila then wish to find a wey of minimizing (2.1) subject to the fcllowirg

consistency relation:
(2.2) d' = F - 3,

the prime indicating differcntiation with respect to 0.

PRETIRY ct T

The problem is to find some derivative P(m)(t,o) vhich, when set equel.

to I'(m)(t.) the actual producidon rate at time t, will minimize the expectca

Py

valuo of eguation (1.1). The calzulus of variations will yield the condittona

P S STV WP

for a minivam cost in tae plamning space. With the sid of the Leplace trens-
form, we will then solve the yesulting ccnditlons for © = . Thess cquat!«i:

represent the optiwal decizion rule. Having gone through thess manipulatione,

A

we will examine mome of the gualitative propertics or auch rules, pechaps

r.
ARNem

fiigd

t gaining insight as to posaible applicaiions and limitations of this approccl:.
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t 2.1 Conditions for Hinimmm Cost. If we let P*(0) be the optimal

production plan over the future (wo are dropping the argument t for the

time being), any other plan may ba written as a 'variation' from this

‘e ETINE awia - F

:ﬂ optimums

;i : (2.3) PaPrevyr, '

j ; Ixcept that it be differentliable and satisfy certain end-point conditions
{' : to bs spocified below, the function v(©)is arbitrary. Since

RY = (P* - S) ¢ (P = P¥) = H* + ¥!,
it follows that

(2.4) H=Htevw
rlus a constant which, as we shall see later, is squal to zero.

Substitutirg (2,3) and (2.4) into the funetional (2.1), an equation

PO TR oy T e

of the followirng form is obtuineds
(2.5) C=0Cr+2L G,

kgl

the average cost ucing the policy P¥# is given by:
= O g 2 2
(2.6)  TrelUal/  (FEHIT ¢ (PrP)” ] B
T=00 = g

L ropresents the 1ine:r veims in v and its dorivative:

e o g o

V2 :
(2.7) L=1in £/ {3<(ne-H )v + (P5-P )v'] a0
and Q represents the quadratic terms:

oy B . ruth®
(2.8) & %ﬂ“fo (R(v)2 + (v1)2] 0.

Sinco P* is the ninirnm~cost plan for production, for all ths
admiesible functions (alternatives) v, we must have:
(2,99 CTeCrs2neq > O
and hence that
(2.10a) L =0, and
(2.100) Q@ > 0

i o L
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for &1l admissible functions v. Because the ratio of cost ccefficients,
32-, is positive, we can see immediately from (2.8) that condition (2.10b)
for a ninimm is satisfied, |

khat, thein, are the conditions undu.' vwhich L = 0? Clearly, this
holds for the trivial case H*-H, = PR-P = O, which implies a very spocial
kind of sales forccast (without error). P* and H* may be found under more
genoral conditions as follows. Equation (2.7) may bs writtcn in terms of v
(amd not its dorivative) in the interval (0,T) and its values at the end~
points as followa: . N
(21)  L=-lm % OT (P (re) - (Pr1)lvao + (P*-Pc)vlg- 0.

The intg_ral will vawlsh if the following differcntial equation in
planned futvre producticn rates aml inveatow levels i sutisfieds "
(2.12) £ (= - Ye) - P#! = 0,

For the equation to be satisfied, it i3 elso necessary to specify that
v(0) = v(T) = 0. The condition on the 'variation' izplies

(2.13a) 1i#(0) = H(0),

(2.13b) B#(T) = H(T),

That is, the initial and terminal inventory levels mist be spscified. The
first condition means that H(O) is part of the data upon which the rate of
production P%(0) i1s set., Ve shall see below that if this condition were
not imposed, it would be possible to have infinite average costs per unit
time. The second condition, (2,13b), will not bo taken seriously because
in teking the 1limit as T = oo, the terminol inventory can be specified
arbitrarily without affecting the doc.iaion for the limedicte future,

2.2 Solution for Inmediate Declsion., Of course, the differential

equation (2.12) is the classicel Huler-Lagrange condition for an extremum



s P

a of a functional. Ve are not, howxever, so much interested in finding the
time-path P¥(Q) as in the initial decision P#(0). Subsequent plans will,
of courze, be maae on the basis later information. To solve the diffor-
ential equation for P#(0) and fator planned production rates we will use

. an integral transformation that has been very useful in the analysis of

other linear systems,

r The Laplace *ransform of a function £ (©) over the interval (0,T) 1s

defined ass
- T

(2.14) L ® -fo e P 2£(0) .
The transformed function no longer depends, of course, upon @, but on tho
parameter p, as well as the upper 1imit of integration, T. fp(p) may be
interpreted as the present-value of a timg-series £(0); it is a function
of the interest rate, p, and not time. It follows from integration by

x parts that:
(205 £ () = 5 ) - #NID0) - T O (@,
vafining
(2.16)  Tlp) = 1=, T (p)s
it follous thats
(207 9 (p) =¥ Fp) - .1?1 g3 £(3-1) ()
as long as £ (6) and ito derivatives do not approach infinity rore quickly
than a pélynomial.

Denoting the tranaform cf P*(Q) over the interval (0,T) by ;7,(?)3

etc., w5 will transfom the differential oquation in € into an algedraic

K

.equation in p, obtaining:
(2.18)  BAE, - p7H_ (1-e7FT)] - pF e (P(0) - T P(T)] - 0.

3 “AW

From the dofinitional relation (2.2) we also have:

ooy s
=y

T.

JE TN

(2.8)  p Ry -LH(0) - ¢’ PT H(1)) = F, -

vigs Tt N kg g

- ¥R3
a2

SRR A
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Substituting (2.19) into (2.18) and rearranging terms, we obtain:
@2) @ - pF- ETET () ) - PTex(n) o PRO)
- %l {31- - (H(O)-H_) .
§- 11".1._,00 §T exists for 21l p having positive real parts if the sales
forscast 5(6) is bounded. In the limit as T = o, the terminal inventory
level, H(T), becomes irrelevant and P*(T) drops out, leaving:

(220 (% p)F o pri0) = 7 5 - mco)n 1],
The inventory level at the beginning of the period, H(0), and the

forecast of sales, S(0Q), are pisces of information used in setting the
production rate, P#(0), for the instunt of time immeilately ahesd. That
H(0) is not a decision variatle comes from the end-point conditions from
the variational analysis, viz. H¥(C) = H(0). However, P*(0) is not so
specified. It may be chosen po that the differential equaticn (2.12), or
equivalently the transform equation (2.21), will be satisfied.

P#(0) may be found as follows. The 'present value' of planned future
production rates, P, is finite for all p having positive real parts as
long as P(®) does not approach infinity any faster than a polynomial
(ordinarily it would be bounded). The coefficient of P will vanish for
values of p (say, p,) satisfying the equation:

(2.22) ¥? p;l -p, "0

as well as the condition Re(p) > 0. Consequently, the desired root is p,,
where:
(2.23) P2 ¥, k=1,2, respectively.

Substituting into equation (2.21), we then ottain the expression
for the optimal production rate in the 'next :Lnstam..' of time as a
function of initial inventory levels and a forecast of future sales:
(2.24)  P#(0) = $ 5(0) - YLu(0)-4,).
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Ro-introducing the time argument, t, equation (2.24) may be writtea as:
(225 P(e) = Pr(2000) = ¥ ® 50 5(0,0) 0 - WH(1)H,).

The rule states that the produc‘t).ion rate to be sat for the t'th instant
of time should be a woighted sum of future expected sales, less some
partial correction of inventory levels (arising, in this case, from
previous sales forecast errors). Wwe can see from the equation a rationale
for the stipulation H¥(t,+0) = H(t). There has been no restriction upon
the forecast function, Consequently, if H(t) were directly set hy the
rule and there were a discontimuous change in the foredast, P(t) = fi(t) +
S(t) would become infinite, and so would the costs.

2.3 Solution for Distant Plsans. It is also possible to calculate
anticipated or planned ratea of production in the future. We will start with
equation (2,20), interpreting T not as the end of the planning horizon as
before tut as the running argument in the 'planning space’, Sinco H¥(t) is .
no longer the specified end-point, the asteriak is used, By choosing Px
as + {, respectively, the identity (2.20) glves the following two equations
in H*(T) end P*(T):

(2.26e)  -SIBXD)R] - Po(1) = 67T (500 - 50

(2.26b) BH#(2)-H) - PH(T) = - 'S“l'é}(a{)o‘s'(in + zse'éfu(o)-nol.
Eliminating the term involving inventories from this system, the
following expression for P*(T) msy be found:

(2.21)  pr(1) _g &«u 5(o-1) .gr RCEI CD e.x(m)'ls(o) ”

-

£ 5 (m(o)n,).
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For large values of T, equation (2.27) may be approximated by:
-
(2.28) P#(T) = {g‘p ) (S(T+0) + s(7-0)] a0,

The inventory adjustment term has dropped out essentially becsuse all

D e S e b e BT By
} RN

d
fPlanetg

3 the adjustment will be expectey to take place over a relatively short

: period of time. Since the calculation is completely in the ‘expectations

space! there will‘be no new 'shocks® froa the forecast errors to correct.
2.4 Belation to the Rules Discrete in Time. It is worth-while

to examine at this point the relstion of the ‘rules' presented here with

the work of Holt, Modigliani, snd Simon {2]. If instead of varying

continuwously in time, the production rate were set for a period of length

h, the cost function would take the form of a sum:

(2,29) CTe= ln ."r" o;fh (R(Hg-H, 2+ w2 (P, R)

ﬁ . T-c0

where Hy is the inventory level at the end of the G'th period of time in
the future, Py is the amount of production during the 9'th period of lengih h.

arnd the summation is over O = h, 2h, ..., Eh.
h

A )

The decision rule which leads to minimizing the expected value of

the cost function above may be shown L be:

| i (2.30) P, - (1:!) Sh Ha = (-2 ))(H-H ).
) K ‘

o

The parameter Ay is related to the cost ratio ¥2 as follows: ‘

@23) M =302« L2 - BB

If the period is rather short, the parameter )y 1is approximately
:c 1 - Y. Consequently the production rule may be written as




i,;’ i e -
1 =
' ﬁ (2.32) Peon * h¥ gh Q- hb’)(g'h),h St..o - hlf (Ht'ac)
% . As we let h approach zero. we have ( y
» 1 [e] O-h' h
H% (233) P =g Py =¥ I (1- 1D s b8 (Ben)
1

o -%
& ‘£ tH 3(L,6) W@~ & [H(L}—Hc]a

e s

This is, of course, identical wlth the oontimwus rule (2,25) which has

been previously obtained,
If, on the other extreme, we let the time interval become very large,
then Ay is approximately equal to (hl‘)-z . Here the rule would become
] d -2(G-1) 2
- o - H "H
(2.28) P, =¥ ) g (nH) Sy 5 ~-n 272 )

i st.h = (Ht - Hc)'
This limit of tho production adjustment which is due to Metzler (4] and

(: analogous to that of Vassian [8j, can, of course, be obtalned from a cost
function involving inventory costs alone.

3. Dynamic Performance Characteristiocs

3.1 Respr-se to a Sinuscidal Input, Retwrning now to the decision

ruls, aquation {2.25), it is evident that the dynamic performance will depmnd
critically upon ths type of forecast that is used. We will examine the

performance of the rule for a sinusoidal sales pattern for three types of

forecastas
1. ‘'Perfect’': 5(t,0) = s(t+¥),
2. 'Null': s(t,Q) =0,
3. ‘'Naive': S(t,8) = s(t).

Other possibilities involve mistakes as to amplitude. frequency, and

Q phase of the fluctuations, but we will not consider these here.




e eI S TRGEF S80I 5 T

oS 4
i

T T MG T ] ST S TY o ey

l

e, R Sty v

¢

= T

With the perfect forecast, the production performance may be obtained
directly from the Fuler-Lagrange equation (2.12) to be:
(3.1)  ¥2 P(t) - F(t) = §3s(t).
The relative magnitude of production fluctuations to sales fluc't\;ations

is:

(3»2) 'IP, - 1—’—%*’-)7
\

where ¢) 13 the angular frequency of fluctuations of sales. The lag in
production adjustments behind sales, [Yp, would be zero, as we would
expect with a perfect forecast. The relaiive response ' !pl is close to
unity for » < h’. tut drops off sharply for large @. In other words,
production adjusts to slow changes in sales, tut ignores those of a very
short duration. The !cut-off? frequency depends, of course, upon the
relative costs of inventory storage and overtime, which are reflected in
the ccefficient ¥2. The relative magnitude of inventory adjustments to
the fluctuations in sales is given by:

(3.3 |z¢| -i:-—ﬁ’z-z-

Y143

and /Zp = /2 (4.0, the inventory reaches its maximm level when production
oquals sales and both are incrvasing. The function ‘ZP\ is smail for very high
and very low frequencles, reaching a maximm of 1/2¥ for w= Y.

The analysis with the perfect forecast would give the best porformarce,
It is, however, dynamically unstable, so that any errors in the forecastc
would ultimately 'blow up'e It can be shown that the performance of the
rule is, in general, dynamically stable if the forecast is what servo-
mechanism engineers call 'physically realisable' (i.e. depends only upon

past data).
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Perhaps the most sirple realizable forecast is the 'null' forecast,
that future sales are expected to be equal to some long-term average,
with S(t,0) = 0, the rule (2.25) beccmess
(3.4)  P(t) = <Y(H(t)-H,].

Consequently the relative magnitude of production and sales fluctuations

iss

1l
o0 Pl = s e

Since all values of the function are less than unity, the rule with the

null forecast responds more to sales fluctuations than that with the

perfect forecast for all frequencies. The angle by which production lags
behind sales is given hy:

3.6 [r =ten (- 'é’),
increasing with the frequency. The magnitude of response of the inventory
level is:

CR N FAT .% 1/_1_’_13!
T

with the same lag as production.

A '‘naive' forecast is equivalent to the stipulation that S(t,0) = S(%).
This leads to the production rule:
(3.8)  P(t) = 5(t) - ¥(H(t)-H).
In a way, this case is rather uninteresting, because production will equal

sales and consequently there will be no fluctuations in the level of
inventories.

3.2 Sales Impulse Anticipated T Units of Time in Advance., Another
way of examining the offects of the rule is the following. Suppose sales
and production have been maintained for & long time at a constant rate
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(which can be assumed equal to zero without loss of generality). At time

. ¢+ =T, an impulse of sales, which was anticipated at time t = O, occurs.

It 1s then poesible to exanix'm the cost of production as a function of T,
the length of time in advance that such a sale is expected.

The sales function would then be
(3.9) S(t) = & (+-1)

vhere & is the Virze delta. The sales forecast function would be

e 00O
(3.0) 8(t,0) = (b(t@-r). 0 <t<T,0<86,
0 , otherwise.

I£ T = 0, there would be no advance notice of the sale; if T = co,

there would be perfect advance knowledge. These two extremss have been
examined by Holt and Simon [3] with different methods than those to be

used here.
With some reasonably convenient operations involving the Laplace trans-
form, esquations (3.9)-(3.10) and the decision rule lead to the following

function for the production 'response’;
0 s t <9,

(3.11)  P(t) = {Ye T cosh¥r, Ccut<T,
ae‘m cost §T. T < t.

Similarly, the time-path of the inventory levels may be found by integration

to be:

(3.12) H(t) = e"T sinh %, 0<t<T,

...g"& sinh ¥r, T < t.
Substitution of (3.11) and (3.12) into the cost function (1.1) leads

to the total costs
(3.13) c(1) = B(1L e’m)/z.
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Evidently C 1a.a decreasing function of T and
c(0) = ¥, ¢(c0) = /2.

The 'success' of the jorecast is defined ass

(o) o) - SR =T,

This function measures the fraction of total cost savings in forecasting
can be realized with a forecast having horizon T, PFrom the cost function
(3.13), the 'success' function becomes:
(315)  a(m) = 1- 82T

With 2{;' = ,09, a forecast horizon of 5 months would be 95¢ 'muccessful.’
Although the entire future is relevant to some extent, the cost effoct of
errors declines for this case quite rapidly. If the co:t of inventory
deviations is higher, only shorter horizons would be required; as the
storage cost completely dominates the cost of deviations in the production
rate, only the immediate future is relevant (as in the Metzler model [4)).
L. Effects of Forecast and Estimstion Errors

Since imperfections in the information available to the decision-
maker is an important characteristic of planning problems, it is certainly
relevant to examine the effects of various kinds of errors upon not only
the decisions that are made but also the extra costs that are incurred as
a result of these errors, Possible sources of error in the types of models
considered here might be summarized as follows:

1. Estimation of parameters:

1.  Cost coefficients (62).

11, Porecasts (S(t,0) - S(t+0) ),
414, Feedback information (H(t,0) - H(t)});
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2, Performance (e.g., differences between planned production and
actual production, P(t,0) - P(t));

3. Specification of the criterion function:

1. Time grid: planning horizon (T) and decision frequency
1/h for the rule discrete in time, infinite for the

contimous rule), :

1i. Aggregation of componemts: product of the firm ar . the
organizational units and locations,

111, Ex¢luded cocyponents: decision variables (e.g., raw materials
purchases, work-in-procsss inventories, etc.) and costs,

iv, More fundamental assumptions: the quadratic model, lack of
unilatorial restrictions, the expected value of the function
as a criterion for choice, etec,

Although 1ittle can yet be said about the sources of error toward the
bottom of the 1list, some statements can be made about the effects of
cost estimation errors and information, control, end forecast errors.

This we do below,
4.1 Errors in Cost Coefficients. Since the parameters of the decision

rules depend upon the values of the cost coefficients, the behavior indicated
will be costly to the extent that incorrect estimates of the coefficients
were used, In the case involving inventory and production rate costs, an

error in the ratio &2 ard the parameters Hc end Pc will result in differeant

»
decisions (and hence higher costs).

# Costing errors in decisicn rules was first carried out by Roberson,
Holt, und Hodigliani (5] for the rule based on inventory, overtime, and
labor turnover costs., H. Theil has made extensive investigations for a
static quadratic welfare function in work that is as yet unpublished.
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The cost functional (1.l) may be written as:

(4.1) T= ¥ '(x':a:)'z + (PP c'S’.

The bars indicate the time average of the square of inventory and production

deviations, respectively,
Assume that sales can bs forecasted parfectly, that there is no error

78
e e e e T

in estimating Hy (P4 4s irrelevant), and that sales may be reprosented by

the undamped simusoids
(4.2) S(t) =S *Acos @ ¢, A = const.

iakaind Nl o

The resultin} production rates (if sales are perfectly known) will obey

the following differential equation:
2 2
(4.3)  <B(t) » > P(t) = & S(t)
1f ¢? 18 the estimate of ¥2 . The production performance would therefore be

e it i

e

given by:

(L&)  P(t) = -!-‘f? Aocosit +5
(]

e L

- 1.0., production would have the same frequency and phase as sales and
an amplitude no greater than that of sales whatever the value of the

PV TR

estimate of the cost ratio,
The time averags of production fluctuations would then be:
2 b
2 A c - 2
- S L
Similarly, it can bs shown that the average of the inveniory fluctuations is:

T O RN

i

2 A2 (,f?'
06 ® L4
O =)

It cz wers too large, then more of the fluctuations in sales would be 'taken
O up' in production fluctuations than would be deisrable (and conversely), but
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neither of thsse errors in the estimate of the cost coefficient would
make much differsnce at low frequencies (i.e. if the sales rate changes
slowly). _ '

Assuming that § = Py, the time average of costs can be written as a

function of the true coefficient ¥2, its estimate 02. and the frequency of
sales fluctuations from (4.1) as followss
o) T A (Bleh) .
2 (iec?)?
Similar results would, of course, be obtained with a rule with which

decisions are made at distinct points of time, The relative increase

in costs due to an error of estimating the cost coefficient is:

C - Cun A
(4,.8) - JE%<® o
Catn 4

If, for exampls, the cost ratio c? were JO£ greater than ‘2. ¥=.3
per month{as is approximately the case for the factory studied in (2]), and
w = 525 radians/month (one cycle psr year), then the error would increase
costs by a factor of about 0.18%. It is a distinct advantage that the
performance of the rule and the cost of the performance is not very
sensitive to errors in the estimates of Lhe coefficients. (Extreme
insensitivity is, however, oquivalent to stating that costs are not affected
mich by the scheduling decisions.) Furthermore, substantial deviations from
predictions of inventory fluctuations made with rules of this sort might be
expectod because cost differesnces might be hard for firms to percelive.

Equation (4.8) is obviously a function of the frequency of the sales
flunctuations. One can see that the costs 'peak! at the angular frequency
@ = ¢, the square-root of the estimated cost. The maximm value of the
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relative cost difference is:

2
L (Y.
(hﬂ9) ‘ (cu ?,) °
Thus, the maximum relative increase in cost for ozz:Z » 1.10 3'2 would be
0023’0

4.2 Forecast, Control, and Information Errors. Letting h = 1, the

discrete form of the rule, (2.30), becomes:

1I-a v 9
(4.30) B, = % EM%ee M (1, 5 - H)I

whers Pt.l is the amount of production plammed for the coming period, Ht.,o
if the (imperfect) estimate of inventories at the end of the preceeding
period, and Sy o 1s the forecast made at time t for sales in the (t+0)tth
period. If there were no errors in these varisbles, they would be equal
to Pt+1' “t v &rd 3, 4, respectively.

Suppose that the time-series St is stationary and independent:

= - =2
(4.11) Sy = S+€y, B =0, 85 >0,

and that the forecast of future sales is:

(1&012) st.o - §o

We will further stipulatec the 'information' error:

- 2

(’O'J-B) Ht.o - Ht ¢ ‘pt » BB - ol en > ol
&nd the 'control' error: —
2

(4.14) Pea =Frep *Epps & =0, S >0,

We will as=sume that the errora are statistically independent,
Actual production in the (t+l)'st period is them described by:

(4.15) Prgg = - €.°'t+1- (1-0)(H, * & - Hy) S.



)

-m-

The difference equation above can readily be solvsd with the
aid of the power-series transform: .
00
: e .. "
oo 1 25,60

o

® o
(16) Py = Qhy) B NG g h e ¢ (1Y)
i
(& w O &
* *:;" oE1 MOutu(IA) gy ¢ 8.

From the relation Hy - Hy-] = Py - Sg, we can also find: g 4
b17) B =-% e ¥ 2 ol -2 ag
e v " ok Mo T MM E MGee e T gl MBS 0.

Consequently, the mean—square deviation of production is:
(4.28) (PP )2 = 1’2 2 2(24) < 1-4 es+ (3 -Pg)
Al 1l e Kl 1911 2
The deviation in inwventorisa is:

Te— - 2 —
(%.19) () el 22 2y g% _2 g © o

© TLEYT L P g B

The average cost of thaue errors will then be:

2
(b20) Te e

(1ot )2 o (PP )2

M
2 - 2
<L o2 () ;5.5_1_1_32 + (3 -Po) .

"1;"1“‘13

Since A, is always less than unity (and real), it is possible to

(]

draw certain conclusions abtout the effect of the three errors upon averagn
costs. The rule can clearly do reasonably well with sloppy information
about existing inventory levels, while deviations from plammed production
are rather costly. Although the model is not particularly semsitive to
forecast errors if they are serially independent, the rule is quite

sensitive to a bias in the forecast.
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For example, if ’62 = ,09, as in the previocus illustrations, M would

be equal to .74, and the cost function (4.20) would become:

(2) T =2.356% +.096% +.3583 ¢ 5-p)%
0f course, the analysis of the effects of error is bty no means

complete. We have examined their effect for a rather simple cost function —

and even here for special cases. To have done otherwise would have led us

into too much analytical underbrush. However, such analyses do help answar the
question of what constitutes a good térocaat. Obviously, one cannot tell
unless he has some idea of the effects of errors upon the criterion for

choice (e.g. production costs), Ths costs as we have formulated them are
quite insensitive to moderate errors. Again, interpreting the 'decision
rules’ as behavioral hypotheses, the insensitivity of ocosts to small errors
suggests geviations of a fair magnitude sbout predicted output. If inm
addition a 'threshold level'! in cost perceptions is postulaled, it may,
however, bg possible to esbimate the error of the prediction, at least at

the microeconomic level.,
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