DIRECTED HANOVER MECHANISM FOR EFFECTIVE DOPPLER REDUCTION IN LTE CELLULAR TELEMETRY

DAN HARASTY
WILLIAM JOHNSON
ACHILLES KOGIANTIS
NAN MAUNG
KIRAN REGE
ANTHONY TRIOLO
HERB VAN HELMONDT
JEFFREY YOUNG

AIR FORCE TEST CENTER
EDWARDS AFB, CA

May 2018

Approved for public release; distribution is unlimited.
412TW-PA-18222
Directed Handover Mechanism for Effective Doppler Reduction in LTE Cellular Telemetry

Abstract
Aeronautical mobile telemetry needs for providing communication to very high-speed test articles falls beyond the nominal operating envelope of cellular LTE systems. Laboratory experimentation on operational LTE networks demonstrates the limitations on LTE uplink and downlink separately, illustrating the limits of frequency offset compensation procedures typically encountered in commercial systems. To address the limitation, a test range telemetry cellular network is devised to provide coverage and supervised handover mechanisms that are directed by a centralized control entity designed to reduce maximum Doppler shift. The method to exercise directed handover is illustrated in this talk and the expected reduction in the apparent Doppler to a test article is demonstrated. The technique uses standard mechanisms for informing base stations of the channel conditions observed at the mobile, selection of the settings for triggering of handover events and the choice of desirable overall LTE parameters for test range applications. To make use of the base station’s authority to make handover decisions a deviation from typical LTE procedures is needed and a description of the necessary interventions within the Radio Access Network are discussed. We describe the laboratory experiment setup used to verify the performance of handovers under conditions that can be encountered in the test range. The experiments provide us with guidance on designing the LTE radio access network and applying centralized control so as to stay within acceptable performance limits. A set of rules is deduced from these experimental observations, which are used for the near real-time control of a cellular telemetry network to allow use of LTE systems for AMT applications.

Subject Terms
Doppler, LTE, Telemetry

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Dates Covered</th>
<th>Contract Number</th>
<th>Grant Number</th>
<th>Program Element Number</th>
<th>Project Number</th>
<th>Task Number</th>
<th>Work Unit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-04-2018</td>
<td>Briefing</td>
<td>16-17 May 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
<th>Report Number</th>
</tr>
</thead>
</table>
| Perspecta Labs | 331 Newman Springs Road, Suite 241
Red Bank, NJ 07701 | 412TW-PA-18222 |

<table>
<thead>
<tr>
<th>Agency</th>
<th>Address</th>
<th>Report Number</th>
</tr>
</thead>
</table>
| Test Resource Management Center | Test and Evaluation/ Science and Technology
4800 Mark Center Drive, Suite 07J22
Alexandria, VA 22350 | N/A |

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release A: distribution is unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>
| International Test and Evaluation Association (ITEA)
The Tuscany Suites
255 E. Flamingo Road
Las Vegas, NV 89169 |

<table>
<thead>
<tr>
<th>Security Classification of Report/Abstract/Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report/Abstract/Page</td>
</tr>
<tr>
<td>Limitation of Abstract</td>
</tr>
<tr>
<td>Number of Pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Phone</td>
</tr>
</tbody>
</table>
Directed Handover Mechanism for Effective Doppler Reduction in LTE Cellular Telemetry

Dan Harasty
William Johnson
Achilles Kogiantis, PhD
Jenny Maung

Kiran Rege, PhD
Tony Triolo, PhD
Herb Van Helmondt
Jeff Young

Acknowledgement
Effort sponsored by the U.S. Government under Other Transaction number W15QKN-15-9-1004 between the NSC, and the Government. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

© 2018 Vencore Labs - A Vencore Company.
Directed handover

• LTE is a data packet oriented air-interface. Handover mechanisms are standardized.
• Handover aims for providing an adaptive radio link between the mobile device (UE) and base stations while traversing the network coverage area.
• Native LTE handover criterion is radio link quality. Handover is network controlled
• Network is informed by UE of the radio channel conditions. Base station may decide to assign a new base station to that UE
• We can modify the Handover criterion without violating LTE standard (blind handover)
 – Blind Handovers are typically not implemented by vendors
• To satisfy the Cellular Range Telemetry needs we modify the criterion to be links with relatively low Doppler to allow LTE operation within its nominal envelope (maximum 350-500Km/hr)
S1 Native Handover Call Flow

- UE reports radio conditions to source eNB
- eNB makes the decision to handover the UE to another (target) eNB
- Source eNB transfers context to target eNB
- UE performs an access attempt to the target

Directed Handover alters native LTE’s target cell

Higher layers guarantee no data loss
Native Handover: A3 Event

Entering Condition: $\text{RSRP}_{\text{Target}} > \text{RSRP}_{\text{Serving}} + A3_{\text{Offset}} + \text{Hysteresis}$

Leaving Condition: $\text{RSRP}_{\text{Target}} < \text{RSRP}_{\text{Serving}} + A3_{\text{Offset}} - \text{Hysteresis}$
Directed Handover

- High Offset + Hysteresis
- Periodic MRs
- HO Command

Directed HO (triggered by projected trajectory)

A3 Offset > 0

PCell

Neighbor

RSRP (dBm)

Max Δ for Directed Handover to sustain

UE Serving Cell

Directed HO

Meas Report

UE Serving Cell

Time
Problem Setup & Native LTE Operation

CeRTN Selection: Strong Cell with Low Doppler

Lowest Doppler Cell

Native LTE Selection: Strongest Cell
ICNC Operation: Directed Handovers

Directed Handover Command
Target Cell

Measurement Reports
1. Signal Quality (RSRP, RSRQ) Serving & Neighbor cells
2. Timing Advance (Distance)

- 3D Visualization
- HO Optimization Engine
- Command Generation

Controller

eNB 1

eNB 2

eNB 3
Connectivity During Handover

- TA detects the presence of multiple eNodeBs while connected to eNB1.
- Handover to an eNB will succeed if the corresponding SNR is adequate and the Doppler is reasonably low.
- Handover success also requires that UE Context has been established at the EPC with target eNB (handover preparation).
- In the case of handover failure, the TA will try to make a re-establishment attempt to the strongest eNB.
- The re-establishment attempt succeeds only if
 - The target eNB has UE context, AND
 - The signal quality (including Doppler) is adequate
- If no UE Context exists at the eNB during reconnection attempt, a new connection request is needed and new UE Context must be setup (longer process through the EPC).
Impact on Effective Doppler

- TA Oval trajectory: 20Km x 5Km
- Trajectory covered by 5 eNBs
- A hybrid Doppler strategy indicates a big reduction in the extreme Doppler experienced.
- Handover triggered by external controller
- Criteria to select Handover target can be adapted to optimize link quality, Doppler, or interference