THE AIR FORCE TEST CENTER TECHNICAL CHALLENGES

ELISABETTA L JEROME
AIR FORCE TEST CENTER
EDWARDS AFB, CA

APRIL 2018

Approved for public release; distribution is unlimited.
412TW-PA-18192
The Air Force Test Center Technical Challenges

Author: Elisabetta L. Jerome

Performing Organization: AFTC/CZ
101 West D Avenue
Eglin AFB, FL 32542

Sponsoring Agency: 412th Test Wing
195 E Popson Ave
Edwards AFB CA 93524

DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release A: distribution is unlimited.

SUBJECT TERMS
AFRL, emerging technologies, Mission Area Panels, Strategic process

ABSTRACT
- Air Force Test Center Strategic process overview
- Center Challenges
- Relationship with AFRL
- Technical areas
- Examples of gaps and resolutions

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-04-2018</td>
<td>Briefing slides</td>
<td>02-04-2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Air Force Test Center Technical Challenges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elisabetta L. Jerome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTC/CZ</td>
</tr>
<tr>
<td>101 West D Avenue</td>
</tr>
<tr>
<td>Eglin AFB, FL 32542</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>412TW-PA-18192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>412th Test Wing</td>
</tr>
<tr>
<td>195 E Popson Ave</td>
</tr>
<tr>
<td>Edwards AFB CA 93524</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release A: distribution is unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAA Luncheon sponsored by AFRL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>
| - Air Force Test Center Strategic process overview
- Center Challenges
- Relationship with AFRL
- Technical areas
- Examples of gaps and resolutions |

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRL, emerging technologies, Mission Area Panels, Strategic process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>412 TENG/EN (Tech Pubs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>661-277-8615</td>
</tr>
</tbody>
</table>
The Air Force Test Center Technical Challenges

Dr. Elisabetta Jerome
April 05, 2018

Distribution Statement A: Approved for public release; distribution is unlimited. 412TW-PA-17611
OUTLINE

• Air Force Test Center overview
• Center Challenges
• Relationship with AFRL
• Technical areas
• Examples of gaps and resolution
• Conclusions
• Big challenges and technical gaps
• Aging infrastructures
• Emerging technologies
• Hard to predict the future
• Fiscal constraints
SIX AFMC Centers

HQ AFMC
Wright-Patterson AFB
Our Mission and Our Vision

Conduct Developmental Test and Evaluation of air, space, & cyber systems to provide timely, objective, and accurate information to decision makers

Tester of Choice…Today and Tomorrow
Span of Operations

32 Locations Total
$2B Annual Budget, BOS at 3 Major Installations
$31B in DoD Facilities & Test Ranges
100 Aircraft (21 Different Variants)
200+ Ground Test Facilities
12 Test Cells unique to the world

Beale AFB
Hill AFB
Creech AFB
Nellis AFB
White Sands Missile Range
Kirtland AFB
Holloman AFB
Tucson, AZ
AF Plant 04
Waco, TX
Lackland AFB
Languages AFB

Wright-Patterson AFB

AEDC
Arnold AFB

HQ AFTC
Edwards AFB

412 TW
Edwards AFB

96 TW
Eglin AFB
"The mission of the test center is a sacred trust. If we fail, we must face the widows, widowers and the children left fatherless or motherless because of the system's fail. We are the safety net; we are the warrior's best friend," Maj. Gen. David Harris, Commander, Air Force Test Center
Why Testing is needed

• “A defective ignition system is seldom found on a drafting board, night visibility cannot be discovered on a blueprint, and endurance cannot be calculated with a soft pencil and a pad of paper. These are things that can be determined by only one method – thorough testing. (GM Pamphlet – “Putting Progress Through Its Paces”)
Big Picture

• The Air Force Test Center conducts Developmental Tests for the Air Force
• To test emerging technology we need new instrumentation, new equipment, bigger and safer ranges,…
• The challenge is to know what we will need and when
• Agile – Must be able to rapidly respond in all phases of our mission
• Ready – Must be proactive and forward thinking to position us for success in the future
• Right – Must be correct in our answers to decision makers

One Enterprise providing world-class test
AFTC and AFRL

• AFTC technical leadership needs to be aware of ongoing research efforts within AFRL
 – AFTC must be ready to test new things
 – AFTC can identify applicable technologies

• AFRL scientists and engineers need to be aware of AFTC capabilities

• AFRL technical leadership needs to be aware of AFTC S&T gaps
 – Relevance of research
 – Research vectoring
Background / History

• AFMC/CC direction for a better relationship between AFRL and AFTC
• AFRL-AFTC Summit in January 2016
• AFRL-AFTC CS-SL first meeting in April 2016
Mission Area Panels

Technical Advisor
Dr. Elisabetta Jerome

Technical Advisor
Dr. Joe Nichols

• Air Combat
• C4ISR, Networks & Cyber
• Test Environments
• Space Combat
• S&T
• Armament and Munitions
• Common Range Instrumentation and Target Systems
• Electronic Combat
Mission Area Panels

Technical Advisor
Dr. Elisabetta Jerome

Technical Advisor
Dr. Joe Nichols

Technical Advisor
Dr. Tom Fetterhoff

- Air Combat
- C4ISR, Networks & Cyber
- Test Environments
- Space Combat
- S&T
- Armament and Munitions
- Common Range Instrumentation and Target Systems
- Electronic Combat
Strategic planning through the Mission Area Panels

- The Mission Area Panels (MAPs) are the AFTC T&E technical Capabilities

- The MAPs main objectives are:
 - Help plan the AFTC investments in a strategic and Enterprise level way.
 - Produce roadmaps, strategic guidance and a cohesive look and prioritization of all the T&E Needs

- MAPs also provide recommendations, guidance, and advise on potential science and technology (S&T) projects for the advancement of T&E
AFTC Strategic Guidance

- Assess “guiding stars”
- Interact/cooperate with AFRL (S&T)
- Interact with customers (i.e. AFLCM/EB, AFNWC)
- Participate in National level panels (i.e. S4G, cyber)

- Mission Area Panels products:
 - AFTC Strategic Guidance
 - 2023 priority list
“Translated” 2017 Guiding Stars for the AFTC (big rocks)

• F-35, KC-46, Long Range Strike Bomber and Long Range Standoff Weapon, and the next generation ISR platform

• 3rd Offset priorities: autonomy, human-machine interaction, cooperation, hypersonics and Directed Energy

• Testing in an A2/AD, GPS-denied environment with evolving and improving red threat systems will be important (speed, cooperation, swarming, …)

• Electromagnetic spectrum available for test will continue to shrink. We must be able operate in new restricted environment

• Cyber testing and Cyber threats will continue to grow and become more sophisticated
Key Challenges

- Interconnectivity/Interoperability
- Emerging technologies: directed energy, next gen advanced turbine engines, hypersonic weapons
- Autonomy
 - machine learning, artificial intelligence, big data analytics, and software intensive systems
- Simulation Environments – M&S
- Order of magnitude increase in cyber T&E workload coming FY18-FY22 and related development of new test tools and techniques
- Manpower issues
- Modernization needs
Examples

• Realistically sized targets
• Telemetry for hypersonics weapons
• Spectrum loss
Realistically sized and designed targets?
Gantry Crane Hard Target Test Capability
Holloman High Speed Test Track (HHSTT)
UAV – Global Hawk Application
Flight Technology Demonstration
Encroachment to DoD Testing
Spectrum Availability

- Increased complexity of weapon systems coupled with decreased availability of telemetry spectrum limits testing at national ranges (complexity of tests, data downlinks)
 - Available spectrum will be further reduced by potential loss of 1780-1850 MHz and sharing spectrum with commercial users
- Large amounts of data collected onboard system and analyzed post-test
- Continued investment in advanced RF and network technologies can partially mitigate the loss of spectrum
 - Advanced modulation schemes
 - Networked telemetry
 - Non-traditional portions of the RF spectrum (e.g. C-band, Ka/Ku-Band)

Increased Weapon System Complexity and Reductions in Available RF Spectrum Limit the Amount and Types of T&E Missions a Range Can Support

- DoD Requirement of 865 MHz by 2025
- 465 MHz Currently Available
- Shortfall of 400 MHz

From F-15 to F-22 (25 years):
~7000% Increase in Data Rate

- F-15 (1972): 128 Kbps
- F-16 (1985): 640 Kbps
- F-22 (1997): 10,000 Kbps
- SDB (2010): 23,000 Kbps
- BAMS (2013): 10,000 Kbps

Increased Data Rate Requirement

1780-1850 MHz Usable C-Band Assignment

Legacy Spectrum Assignment
Near Term Loss (AWS-3)
Usable C-Band Assignment
Anticipated Future Loss

Years

System Data Rates (Kbps)
Spectrum Availability (MHz)
Current AMT Paradigm at Test Ranges

- Data formats on test vehicles are predefined months in advance and are typically static
- Spectrum is statically assigned days/weeks in advance
- Transmitted telemetry is unidirectional, “point to point”
- Ground Station to Ground Station transitions are a manual process
- TM usage exclusively in DoD allocated bands
- Single carrier modulations
- Large guard bands between carriers
CONCLUSIONS

• Big challenges and technical gaps
• Aging infrastructures
• Emerging technologies
• Hard to predict the future
• Fiscal constraints
QUESTIONS?

Tester of Choice…Today and Tomorrow
Major Investment Activity

- Hypersonics ~ $350M
- Cyber ~ $100M
- Spectrum Relocation ~ $400M over 10 yrs
- Joint Simulation Environment (JSE) ~ $400M
- SLEP FSRM ~ $340M over 5 yrs
- CTEIP ~ $600M
Roadmap Example

<table>
<thead>
<tr>
<th>Title *</th>
<th>Prior</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
<th>FY29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort #2</td>
<td></td>
<td>800</td>
<td>800</td>
<td>4,300</td>
<td>4,500</td>
</tr>
<tr>
<td>Effort #3</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort #4</td>
<td></td>
<td>26,000</td>
</tr>
<tr>
<td>Effort #5</td>
<td></td>
<td>40,000</td>
</tr>
<tr>
<td>Effort #6</td>
<td></td>
<td>40,000</td>
</tr>
<tr>
<td>Effort #7</td>
<td></td>
</tr>
<tr>
<td>Effort #8</td>
<td></td>
</tr>
</tbody>
</table>

* Effort #1 - #8: Efforts for each fiscal year from FY16 to FY29.