A Brain-Controlled Interface (BCI) is a device that monitors and captures cerebrum transmissions of a subject who has the intent to initiate the movement of a bodily member. BCIs serve the purpose of restoring communication between the cerebrum and bodily member(s) that are immobilized. BCIs function by recording the electrical activity in the cerebrum via the scalp (electroencephalography), surface of the cerebrum or within the cerebral cortex (grey matter). These brain signals are transmitted to command signals.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.
ABSTRACT

A Brain-Controlled Interface (BCI) is a device that monitors and captures cerebrum transmissions of a subject who has the intent to initiate the movement of a bodily member. BCIs serve the purpose of restoring communication between the cerebrum and bodily member(s) that are immobilized. BCIs function by recording the electrical activity in the cerebrum via the scalp (electroencephalography), surface of the cerebrum or within the cerebral cortex (grey matter). These brain signals are transmitted to command signals that drive prosthetic limbs and or computer displays. This literature review is a meta analysis that serves the purpose of researching the neuroscience and psychology of cognitive decision-making, specifically intuition and analysis, and which parts of the cerebrum that controls these functions.
Cognitive Mode: Intuition & Analysis

Lavoris L. Langley

North Carolina Agricultural & Technical State University
Abstract

A Brain-Controlled Interface (BCI) is a device that monitors and captures cerebrum transmissions of a subject who has the intent to initiate the movement of a bodily member. BCIs serve the purpose of restoring communication between the cerebrum and bodily member(s) that are immobilized. BCIs function by recording the electrical activity in the cerebrum via the scalp (electroencephalography), surface of the cerebrum or within the cerebral cortex (grey matter). These brain signals are transmitted to command signals that drive prosthetic limbs and or computer displays. This literature review is a meta analysis that serves the purpose of researching the neuroscience and psychology of cognitive decision-making, specifically intuition and analysis, and which parts of the cerebrum that controls these functions.

Introduction

A Brain-Controlled Interface is a direct communication pathway between the brain and an external device. The utilization of BCIs consists of assisting, augmenting or repairing human cognitive or sensory-motor functions. The operation of BCIs consists of recording the electrical activity along the scalp via various synchronous activity including electroencephalography (EEG), electrocardiography (ECG), electromyography (EMG), magnetoencephalography (MEG) and electronystagmography (ENG). BCIs create a new non-muscular channel that is used to relay the intentions of an individual to external devices such as a computer, speech synthesizer, assistive appliance or neural prostheses. The use of BCIs is appealing for individuals with severe motor disabilities by partially or fully restoring functionality of a bodily member.
BCI research is a relatively young multidisciplinary field that integrates research from neuroscience, physiology, psychology, engineering, computer-science and other technical and health-care disciplines. This review discusses cognition, and the process of decision-making. Furthermore, this review will analyze what occurs during the decision-making process including: hemodynamics, brain signals recorded and the measurement used to enumerate the rhythms during the cognitive task.

Literature Review

Cognition

Cognition is a term and concept that has many different interpretations and definitions, and is studied by various disciplines including psychology, philosophy, science and linguistics. Consequently, how cognition is defined varies across the various disciplines that study this mental activity. *Merriam-Webster* defines cognition as “conscious mental activities, the activity of thinking, understanding learning and remembering”. *Psychology Today* defines cognition as “simply thinking”. Within the scientific community, cognition is defined as mental processing including attention, working memory, reasoning, problem solving and decision-making. Within the confines of this paper, cognition will be discussed from the perspective of cognitive neuroscience, and how cognitive processes arise from activity within the brain.

During the cognitive process, sensory inputs are transformed, reduced, elaborated, stored, recovered and used by the brain. The prevalent stance in modern cognitive science is that cognitive processes arise from functionally organized brain process. Cognitive neuroscience is a discipline that seeks to understand how these processes are initiated,
where they originate, and which areas of the brain show increased activity when a particular cognitive task is being performed. A realization of cognitive processes is the fact that they are not static, but dynamic and even the simplest percept, memory or decision is a process that requires time to unfold. The relationship between brain dynamics and cognitive dynamics can be described as a sequence of brain areas that “light up” during the various stages in the performance of a cognitive task. Contemporary research seeks to understand, describe and give an emerging view of brain processes as reverberations or reentrant activity in a complex neural network.

Intuition

Intuition is often thought to be a ‘gut feeling’, ‘hunch’ or a ‘six sense’. Intuition is essentially knowing without knowing how one knows. The debate over what intuition is and its use, is due to the difficulty of determining how intuition informs clinical decision-making. It is often thought wise to make a decision when an individual is cool, calm and collected and above all, rational. However, recent research and advances in cognitive neuroscience suggests that it is impossible for human beings to function effectively without using ‘gut feelings’ when making decisions. Cognitive research suggests that there is nothing mystical or magical about intuitive processes, and that they are neither paranormal nor irrational. Intuitive processes evolve from extended experience and learning, consisting of the mass of facts, patterns, concepts, techniques and generally formal knowledge or beliefs which are impressed on the mind of an individual. Intuition is a ‘synthetic’ psychological function in that it captures the totality of a given situation; it allows individuals to synthesize isolated bits of data and experiences into an integrated
picture. Intuition is a holistic perception of reality that transcends rational ways of knowing [11].

Intuition is subconscious

Intuition lies along a continuum of consciousness and subconsciousness. However, only a fraction of the lessons individual experiences becomes fully crystallized as facts and are thus accessible to the conscious mind. Intuition is mostly subconscious, individuals draw from this reservoir of innumerable experiences that are stored within the brain without conscious thought. Yet some of these stored experiences or knowledge in the subconscious are more readily available than others via intuition. Parikh (1994) observed that intuition could well be a form of intelligence at a level individuals simply cannot access with rational thought. According to Parikh, intuition consists of “accessing the internal reservoir of cumulative experience and expertise developed over a period of years, and distilling out of that a response, or an urge to do or not to do something, or choose from some alternatives- again without being able to understand consciously how we get the answers” [11].

Intuition is complex

Parikh stated that intuition can “deal with systems more complex than those which can be figured out in our conscious minds”. Due to this complexity, it is challenging to measure intuition with models. Intuition embraces subtle quantitative and qualitative with balance, as a result intuition is probably superior to a purely rigorous quantitative model. Most of the rational-analytical models are confined because of the assumption of linearity.

Intuition is quick

Intuition is a process that occurs very quickly. It is a smooth automatic performance of learned behavior sequences which often short-circuit a step-wise decision making, therefore allowing an individual to know almost instantly what the best course of action is. The process consists of compressing years of experience and learning into split seconds [11].

Intuition is not emotion

Intuition is often mistrusted on the premise that is springs from emotion as opposed to reason, but intuition does not come from emotion. Vaughan (1990) observed that fear and desire both interfere with intuitive perception. If an individual happens to be anxious, angry or emotionally upset, they are not likely to be receptive to the subtle messages, which can come into consciousness via intuition. Similarly, Ray and Myers noted in 1990 that fear, anxiety and wishful thinking can get in the way of the clear operation of intuition [11].

Intuition is not biased

A consensus in cognitive psychology research suggests that intuitive decision-making; rather it be subjective or the use of the mind, is full with cognitive biases. Based upon this proposition in the above line of research, it leaves the question of how individuals are
able to make decision at all, much less effective decisions. However, there is another growing body of research that suggests that intuition is not necessarily a biased process, and it can be uncannily accurate. Ilgen and Feldman noted that research has focused on bias and invalidity almost exclusively, thus creating the impression that valid judgment based upon intuition are rare. Ilgen and Feldman also argued that the cognitive process by which valid judgments are made is exactly the same as the one that generates biased ones. An illustration of this premise can be explained by the forces determining an arrow’s flight, which are the same whether or not the arrow is on target. Seebo and Harung hypothesized that if intuitive synthesis suffers from biases or errors, so does rational analysis [11].

Intuition is part of all decisions

Intuition, even those based on the most concrete and hard facts are central to all decisions. In 1990, Goldberg stated: “seldom be used exclusively; by its very nature, prediction deals with the unknown, and we can calculate or measure only what is known… At the very least, a forecaster has to use intuition in gathering and interpreting data and in deciding which unusual future events might influence the outcome. Hence in virtually every decision there is always some intuitive component”. In sum, intuition is not an irrational process, it is based on a deep understanding of a situation. It is a complex phenomenon that draws from a vast storage of knowledge in our subconscious, and is rooted in past experience. Intuition is quick, but not necessarily biased as presumed in research conducted previously on rational decision-making.
Analysis

Brain-computer interface

A Brain-Computer interface (BCI) is an artificial intelligence system that is a direct pathway communication between the brain and an external device. A BCI functions by allowing a subject to interact with their surroundings via the measurement of neural activity that occurs during the mental process without the use of peripheral nerves and muscles. A BCI specifically operates by using control signals generated from EEG activity. The artificial intelligence of a BCI system can recognize a certain set of patterns in brain signals consisting of five consecutive stages: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. The signal acquisition stage captures the brain signals, and may also perform noise reduction and artifact processing. The preprocessing stage prepares the signal in a suitable form for further process. The extraction stage identifies discriminative information in the brain signals that has been recorded. After a signal is measured, it is mapped onto a vector containing effective and discriminate features from the observed signals. The classification stage classifies the signals taking the feature vectors into account. It is essential that good discriminative features be chosen to achieve effective pattern recognition, in order to decipher the intentions of the user. Finally, the control interface stage translates the classified signals into meaningful commands for any connected device, such a computer or a wheelchair [2].
Neuroimaging in BCIs

BCIs use brain signals to collect information for user intentions by rely on the recording stage, where brain activity is measured and translated into tractable electrical signals. Electrophysiological and hemodynamic are two types of brain activity that may be monitored. Electrophysiological activity is generated by electro-chemical transmitters that exchange information between the neurons, the neurons generate ionic currents that flow within and across neuronal assemblies. This large variety of current pathways can be simplified as a dipole conducting current from a source to a sink through the dendritic truck, these intracellular currents are known as primary currents. Conservation of electric charges means that primary currents are enclosed by extracellular current flows that are known as secondary currents; electrophysiological activity is measured by electroencephalography (recording of electrical activity along the scalp), electrocorticography (recording of electrical activity from the cerebral cortex using electrodes), magnetoencephalography (mapping brain activity by recording magnetic fields) and electrical signal acquisition in single neurons [2].

Electroencephalogram (EEG) and magnetoencephalogram (MEG) attempts to revel and describe the oscillatory activity of the brain, and how this relates to the dynamics of cognitive performance. There are limitations of EEG and MEG brain computer interfaces (BCI) including the relatively poor spatial resolution of EEG and MEG, although MEG spatial resolution can approach that of fMRI. Another limitation of these imagining techniques is EEG and MEG constitutes only part of the brain’s relevant dynamics,
consequently, models may not be complete and they may only illustrate what can be accomplished within the dynamical approach [1].

Current non-invasive BCIs

Most current BCIs obtain the relevant information from cerebrum activity through EEG. EEG is by far the most widely and commonly used neuroimaging modality due to its high temporal resolution, relative low cost, high portability and few potential risks to the users. BCIs that are based on EEG consist of a set of sensors that acquire EEG signals from different brain areas. However, the quality of EEG signals is affected by the scalp, skull and many other layers as well as background noise. Yet, noise is key to EEG and to other neuroimaging methods, as it reduces signal to noise ratio (SNR), and therefore the ability to extract meaningful information from the recorded signals [2]. Non-invasive BCI approaches have been successfully used to reacquire basic forms of communication, and to control neuroprostheses and wheelchairs by severely and partially paralyzed patients. Motor recovery has been limited due to the need for brain signals with a higher resolution, despite the outstanding utility of non-invasive BCI applications. As a result of the limitations of non-invasive BCIs, intracranial methods—which requires electrodes being placed directly on the exposed surface of the brain—such as electrocorticography (ECoG) or intracortical neuron recording were introduced in efforts to improve the quality of brain signals monitored by BCIs. Most researchers agree that movement restoration through prostheses with multiple degrees of freedom can only be achieved through invasive approaches, and that it is unlikely that the power of non-invasive modalities will be enhanced in the near future [2]. While it appears that invasive
modalities are indispensible for accurate neuroprostheses control, this issue is not yet entirely clear and some opinions disagree with this conjecture. Contrary to this established opinion, Wolpaw suggested that performance in multidimensional control may be independent of the recording method, and that further refinements of recording and analysis techniques will probably increase the performance of both invasive and non-invasive modalities. Nevertheless, the latest studies in neuroprostheses control appear to indicate that invasive modalities have inherent advantages in neuroprostheses control applications [2].

Invasive modalities

Invasive modalities require the implant of microelectrode arrays inside the skull, which poses significant health risks, therefore restricting their use in experimental settings. Electrocorticography and intracortical neuron recording are two invasive modalities that can be found in BCI research. EEG places electrodes on the surface of the cortex, either outside the dura mater (epidural electrocorticography), or under the dura mater (subdural electrocorticography). Intracortical neuron recording consists of electrodes implanted inside the cortex. There are several issues with invasive BCIs that has to be addressed before they become suitable for long-term applications. Tissue acceptance has to be addressed initially, for which reason proposals exist for electrodes with neurotropic mediums that promote neuronal growth to improve biocompatibility [2]. The solution for long-term invasive applications of BCIs may lie in the development of nanotechnologies, which may lead to the development of nano-detectors to be implanted inertly in the brain. Secondly, a link between the microelectrode and external hardware that uses wireless
technology is needed to reduce the risk of infection; wireless transmission of neuronal signals has previously been tested in animals [2]. Lastly, continuous stress caused by plugging and unplugging the recording system may lead to tissue damage, or system failure.

<table>
<thead>
<tr>
<th>Neuroimaging Method</th>
<th>Activity measured</th>
<th>Direct/Indirect Measurement</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>Risk</th>
<th>Portability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Electrical</td>
<td>Direct</td>
<td>~0.05 s</td>
<td>~10 mm</td>
<td>Non-invasive</td>
<td>Portable</td>
</tr>
<tr>
<td>MEG</td>
<td>Magnetic</td>
<td>Direct</td>
<td>~0.05 s</td>
<td>~5 mm</td>
<td>Non-invasive</td>
<td>Non-portable</td>
</tr>
<tr>
<td>ECoG</td>
<td>Electrical</td>
<td>Direct</td>
<td>~0.003 s</td>
<td>~1 mm</td>
<td>Invasive</td>
<td>Portable</td>
</tr>
<tr>
<td>Intracortical neuron recording</td>
<td>Electrical</td>
<td>Direct</td>
<td>~0.003 s</td>
<td>~0.5 mm (LFP)</td>
<td>Invasive</td>
<td>Portable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~0.1 mm (MUA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~0.5 mm (SUA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fMRI</td>
<td>Metabolic</td>
<td>Indirect</td>
<td>~1 s</td>
<td>~1 mm</td>
<td>Non-invasive</td>
<td>Non-portable</td>
</tr>
<tr>
<td>NIRS</td>
<td>Metabolic</td>
<td>Indirect</td>
<td>~1 s</td>
<td>~5 mm</td>
<td>Non-invasive</td>
<td>Portable</td>
</tr>
</tbody>
</table>

Table 1: Summary of neuroimaging methods

Explanation of each neuroimaging modality

Electroencephalography (EEG)

EEG measures the electric activity in the brain caused by the flow of electric currents during synaptic excitations of the dendrites in the neurons, and is extremely sensitive to
the effects of secondary currents [2]. EEG is the most widespread recording modality due to how easily signals are recorded in a non-invasive manner via electrodes placed on the scalp. However, there are disadvantages to EEG modality. These challenges include the quality of the signals, due to the fact that the signals have to cross the scalp, skull and many other layers. As a result, EEG signals in the electrodes are weak, hard to acquire and of modest quality. This technique is also affected by background noise generated either inside the brain, or externally over the scalp.

Magnoencephalography (MEG)

MEG is a non-invasive imaging technique that registers the magnetic activity of the brain via magnetic induction. MEG measures the intracellular currents flowing through dendrites, which produce magnetic fields that are measurable outside of the head [2]. The neurophysiological processes that produce MEG signals are identical to those that produce EEG signals. However, while EEG is extremely sensitive to secondary current sources, MEG is even more sensitive to those of primary currents [2]. The advantage of MEG is that magnetic fields are less distorted by the skull and scalp than electric fields [2].

Superconducting quantum interferences devices detect magnetic fields, which are extremely sensitive to magnetic disturbances produced by neural activity [2]. The electronic equipment that measures magnetic brain activity is cooled to almost -273 degrees Celsius to facilitate sensor superconductivity. Effective shielding from electromagnetic interferences is required for MEG. The electronic equipment is installed
inside a magnetically shielded room, which attenuates the effects of magnetic fields from external sources.

When compared to EEG, MEG provides signals with higher spatiotemporal resolution than EEG. Consequently the training time needed to control a MEG BCI is reduced, and reliable communication is sped up. MEG has also been successfully used to localize active regions inside the brain. Contrary to the advantageous features of MEG, MEG is not often used in BCI design because MEG technology is too bulky and expensive to become an acquisition modality suitable for everyday use. When compared to EEG, MEG based BCIs are still at an early stage [2].

Electrocorticography (ECoG)

ECoG is a technique that records electrical activity from the cerebral cortex by means of electrodes placed directly on the surface of the brain. ECoG provides higher temporal and spatial resolution when compared to EEG, as well as higher amplitudes and a lower vulnerability to artifacts such as blinks and eye movement. In spite of these advantageous features, ECoG is an invasive recording modality, which requires a craniotomy to implant an electrode grid, posing significant health hazards. As a consequence of this realization, the first studies on ECoG were with animals. These early studies conducted on animals were conducted with the goal of evaluating the long-term stability of signals from the brain that ECoG could acquire [2]. The results showed that subdural electrodes could provide stable signals over several months. Nevertheless, the long-term stability of the signals acquired by ECoG is currently unclear. Contemporary experiments conducted with the use of monkeys have shown that ECoG can perform at a high level for months
without any drift in accuracy or recalibration [2]. The results from these experiments include hand positions and arm joint angels could be successfully decoded during asynchronous movement, and the development of minimally invasive protocols to implant the probes required for ECoG [2].

ECoG research that has been conducted with the use of humans has been used for the analysis of alpha and beta waves or gamma waves produced during voluntary motor action [2]. Regarding the use of ECoG in BCIs systems, Levine et al. [2] designed a BCI which classified motor actions on the basis of the identification of the event-related potential (ERP) using ECoG. Levine et al. [2] showed for the first time that an ECoG-based BCI could provide information to control a one-dimensional cursor, as this information is more precise and more quickly acquired than by EEG-based BCIs. Years later, Schalk et al. [2] presented a more advanced ECoG-based BCI which allowed the user to control a two-dimensional cursor. The results of these studies might make it more feasible for people with severe motor disabilities to use ECoG-based BCIs for their communication and control needs [2].

Intracortical Neuron Recording

Intracortical neuron recording is a neuroimaging technique that measures electrical activity inside the gray matter of the brain [2]. It is an invasive recording modality, which requires the implant of microelectrode arrays inside the cortex to capture spike signals and local field potentials from neurons.
Three signals can be obtained via intracortical neuron recording: single-unit activity (SUA), multi-unit activity (MUA), and local field potentials (LFPs) [2]. SUA is obtained by high-pass filtering (>300 Hz) of the signal of a single neuron. MUA is obtained in the same way, but the signals may come from multiple neurons. LEPs are extracted by low-pass filtering (<300 Hz) of the neuron activity in the vicinity of an electrode tip. LFPs are analog signals whereas SUA and MUA measure the spiking activity of single neurons, and can be reduced to discrete events in time [2].

Intracortical neuron recording provides spatial and temporal resolution that is much higher than EEG recording. As a result, intracortical signals may be easier to use than EEG signals. However, signal quality may be affected by the reaction of cerebral tissue to the implanted recording microelectrode [2] and by changes in the sensitivity of the microelectrode, which may be progressively damaged over the course of days and years [2]. The user can naturally adapt to these slow changes in the relative sensitivity of the microelectrode, without the need for specific retraining. Nevertheless, periodic recalibrations of electrode sensitivity may be necessary [2].

The first attempts in the intracortical neuron-recording field were made in animals. Multielectrode arrays have been used to record neural activity from the motor cortex in monkeys or rats during learned movements [2]. These initial studies have shown that intracortical neuron recordings can indicate the nature of a movement and its direction. These studies do not reveal whether the same patterns will be present when the real movements are not made. In that regard, Taylor and Schwartz [2] experimented with rhesus macaques, which made real and virtual arm movements in a computer, the results suggested that the same patterns persisted. The most recent studies with monkeys
investigated the control of prosthetic devices for direct real-time interaction with the physical environment [2].

With regard to the application of intracortical neuron recording in BCI systems, microelectrode arrays such as Utah Intracortical Electrode Array (UIEA) have been reported as a suitable means of providing simultaneous and proportional control of a large number of external devices. Kennedy et al. employed cortical control signals to design a BCI that allowed users to control cursor movement and flexion of a cyber-digit finger on a virtual hand [2].

Functional Magnetic Resonance Imaging (fMRI)

fMRI is a non-invasive neuroimaging technique that detects changes in local cerebral blood volume, cerebral blood flow and oxygenation levels during neural activation by means of electromagnetic fields. fMRI is generally performed using MRI scanners which apply electromagnetic fields of strength in the order of 3T or 7T. High space is the main advantage of the use of fMRI. For that reason, fMRI has been applied for localizing active regions inside the brain. However, fMRI has a low temporal resolution of about 1 or 2 seconds. In addition to this, hemodynamic response introduces a physiological delay from 3 to 6 seconds. fMRI appears unsuitable for rapid communication in BCI systems, and is highly susceptible to head motion artifacts.

In BCI systems, fMRI is typically used to measure the Blood Oxygen Level Dependent (BOLD) during neuronal activation [2]. Although the BOLD signal is not directly related to neuronal activity, a correspondence between both does exist. The use of fMRI in BCI technology is relatively recent. Before the development of real-time fMRI, brain activity
recording by fMRI has traditionally taken a long time. The data acquired by fMRI techniques were processed offline and the results only became available after several hours or even days. fMRI-based BCIs have been made possible, due to the development of real-time fMRI. The information transfer rate in fMRI-based BCIs is between 0.60 and 1.20 bits/min. Non-clinical fMRI applications are not expected because fMRI requires overly bulky and expensive hardware [2].

Near Infrared Spectroscopy (NIRS)

NIRS is an optical spectroscopy method that employs infrared light to characterize noninvasively acquired fluctuations in cerebral metabolism during neural activity. Infrared light penetrated the skull to a depth of approximately 1-3 cm below its surface, where the intensity of the attenuated light allows alterations in oxyhemoglobin and deoxyhemoglobin concentrations to be measured. Light penetration in the brain is shallow; as a result this optical neuroimaging technique is limited to the other cortical layer. Similar to fMRI, one of the significant limitations of NIRS is the nature of the hemodynamic response changes occur a certain number of seconds after its associated neural activity [2]. The spatial resolution of NIRS is 1 cm, which is quite low. However, NIRS offers low costs, high portability and an acceptable temporal resolution in the order of 100 milliseconds [2].

A NIRS system consists of a light source, a driving electronic device, a light detector, signal processing devices and a recording device. The light source is an infrared emitting diode (IRED) placed in direct contact with the scalp. The driving electronic device is an electronic circuit that controls the IRED in order to modulate the light. The light detector
is a photodiode placed right next to the light source. The signal-processing devices are amplifiers and filter that process the electrical signal, and reduce the noise due to ambient light. The recording device is a computer, or any other device that digitalizes, stores and displays the electrical signal.

Ensuring good coupling light from the optical sources and detectors to and from the subjects’ head is not a trivial issue. Performance and signal quality can be worsened by head motions or hair obstruction. Good quality signals and noise reduction, especially background noise induced by head motions, are important requirements in real time BCI systems. Hair obstruction can be overcome by combing the hair out of the photons’ path by means of hair gel and hair clips. Noise can be reduced partially by bandpass filtering, moving averages and Wiener filtering. These classes of algorithms usually fail to remove abrupt spike-like noise produced by head motion. Ensuring rigid optode positions can minimize head motion artifacts. Solutions have been introduced that are based on helmets, thermoplastic forms, and fibers embedded in neoprene rubber forms. Exploiting the strong statistical association between oxygenated and deoxygenated hemoglobin dynamics can also attenuate background noise effects [2].

NIRS is a relatively new measurement modality, however NIRS promises to be a potent neuroimaging modality for future applicability to BCIs. Currently, NIRS provides a low information transfer rate of about 4bits/min but this transfer rate will increase in the future. NIRS may also be a good alternative to EEG, neither conductive gel nor corrosive electrodes are required. Nevertheless, communication speeds in NIRS-based BCIs are limited due to the inherent delays of the hemodynamic response. Some studies have
already demonstrated the feasibility of mental task detection through NIRS-derived optical responses [2].

Control Signal Types in BCIs

The purpose of a BCI is to interpret user intention by means of monitoring their cerebral activity. Brain signals involve numerous simultaneous phenomena relative to cognitive tasks. Most of them are still incomprehensible, and their origins are unknown. Yet, the physiological phenomena of some brain signals has been decoded in such a way that people may learn to modulate them at will, to enable the BCI systems to interpret their Intentions. These signals are regarded as possible control signals in BCIs.

Numerous studies have been described a vast group of brain signals that might serve as control signals in BCI systems. However, only those control signals employed in current BCI systems will be discussed below: visual evoked potentials, slow cortical potentials, P300 evoked potentials, and sensorimotor rhythms. The signal controls are listed in Table 2, along with some of their main features.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Physiological phenomena</th>
<th>Number of choices</th>
<th>Training</th>
<th>Information transfer rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEP</td>
<td>Brain signal modulations in the visual cortex</td>
<td>High</td>
<td>No</td>
<td>60-100 bits/min</td>
</tr>
<tr>
<td>SCP</td>
<td>Slow voltages shift in the brain signals</td>
<td>Low (2 or 4, very difficult)</td>
<td>Yes</td>
<td>5-12 bits/min</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-----</td>
<td>---------------</td>
</tr>
<tr>
<td>P300</td>
<td>Positive peaks due to infrequent stimulus</td>
<td>High</td>
<td>No</td>
<td>20-25 bits/min</td>
</tr>
<tr>
<td>Sensorimotor rhythms</td>
<td>Modulations in sensorimotor rhythms synchronized to motor activities</td>
<td>Low (2,3,4,5)</td>
<td>Yes</td>
<td>3-35 bits/min</td>
</tr>
</tbody>
</table>

Table 2: Summary of control signals

EEG BCI configuration

The EEG recording system consists of electrodes, amplifiers, A/D converter, and a recording device. As the electrodes acquire the signal from the scalp, the amplifiers process the analog signal to enlarge the amplitude of the EEG signals so that the A/D converter can digitalize the signal in a more accurate way. Lastly, a recording device, such as a personal computer or a similar device stores and displays the data.

The EEG signal is measured as the potential difference over time between signal or active electrode and reference electrode. An extra electrode, know as the ground electrode, is used to measure the difference between the active and the reference points. The minimal configuration for EEG measurement therefore consists of one active and the reference points. The minimal configuration for EEG measurement therefore consists of one active, one reference, and one ground electrode. Multi-channel configurations can comprise of
up to 128 or 256 active electrodes [2]. These electrodes are typically made of silver chloride (AgCl) [2]. Electrode-scalp contact impedance should be between 1kΩ to 10Ω to record accurate signal [2]. The electrode-tissue interface is not only resistive but also capacitive and it therefore behaves as a low pass filter. The impedance depends on several factors such as the interface layer, electrode surface area, and temperature [2]. EEG gel creates a conductive path between the skin and each electrode that reduces the impedance. Use of the gel is cumbersome, however, as continued maintenance is required to assure a relatively good quality signal. Electrodes that do not need the use of gels, called “dry” electrodes, have been made with other materials such as titanium and stainless-steel [2]. These kinds of electrodes may be “dry” active electrodes, which have preamplification circuits for dealing with high electrode/skin interfacial impedances [2], or “dry” passive electrodes, which have no active circuits, but are linked to EEG recording systems with ultra-high input impedance [2].

The amplitude of electrical bio-signals is in the order of microvolts. As a result, the signal is very sensitive to electronic noise. External sources such as power-lines may generate background noise and thermal, shot, flicker, and burst noises are generated by internal sources [2]. Design consideration should be addressed to reduce the effects of the noise, such as electromagnetic interference shielding or reduction for common mode signal, amongst others [2].

As previously discussed, EEG is recorded by electrodes. The electrodes placed over the scalp are commonly based on the International 10-20 system [2] which has been standardized by the American Electroencephalographic Society. The 10-20 system uses two reference points in the head to define the electrode location. The nasion is one of
these reference points, which is located at the top of the nose at the same level as the eyes. The inion is the other reference point, which is located at the base of the skull (Figure 1).

![Figure 1: Electrode placement over scalp](image)

The transverse and median planes divide the skull from these two points. The electrode locations are determined by marking these planes at intervals of 10% and 20%. The letters in each location corresponds to specific brain regions in such a way that A represents the ear lobe, C the central region, Pₜ the nasopharyngeal, P the parietal, F the frontal, Fₚ the frontal polar and O the occipital area.

EEG signals

EEG comprises a set of signals that may be classified according to their frequency. Well-know frequency ranges have been defined according to distribution over the scalp or biological significance. These frequency bands are referred to as delta (δ), theta (θ),
alpha (α), beta (β), and gamma (γ) from low to high, respectively. The relevant characteristics of these bands are detailed below.

Delta Band

The delta band lies below 4 Hz, and the amplitude of delta signals detected in babies decreases as they age. Delta rhythms are usually only observed in adults in deep sleep state and are unusual in adults in an awake state. A large amount of delta activity in awake adults is abnormal and is related to neurological diseases [2]. Due to its low frequency, it is easy to confuse delta waves with artifact signals, which are caused by the large muscles of the neck or jaw.

Theta Waves

Theta waves lie within the 4 to 7 Hz range. In a normal awake adult, only a small amount of theta frequencies can be recorded. Larger amounts of theta frequencies can be seen in young children, older children, and adults in drowsy, meditative or sleep states [2]. Similar to delta waves, a large amount of theta activity in awake adults is related to neurological disease [2]. Theta band has been associated with meditative concentration [2] and a wide range of cognitive processes such as mental calculation, maze task demands, or conscious awareness [2]. In the Sternberg memory scanning task [3], experimental subjects were given a set of items to remember such as letters ‘d’, ‘g’, and ‘z’ and after a short delay, were asked to say whether or not a probe item, such as ‘a’ was among the items in the memory set [1]. The time that it took subjects to respond in this task typically increased linearly with the number of items in the memory set. This model accounted for
the linear increases with memory set size of the mean, variance and skewness of response times, and for the faster responding for items most recently entered into the memory set when the list-probe delay is short. Both iEEG and MEG have revealed evidence that theta power increases during the performance of the Sternberg task, more so the greater the memory load. A MEG study performed by Jensen and Tesche [1][4] found that theta power in the frontal cortex increased during all phases, encoding, retention and scanning, contrary to the iEEG study performed by Raghavachari [5] which found an increase in theta power only during encoding and retention, while decreasing during scanning [1]. It must be noted that different neurons were monitored in the two studies, the iEEG electrodes were distributed in grids over various regions of cortical surface, these results indicate that theta oscillations might play different roles in different cortical areas. A potential explanation is that several different memory processes interact by phase locking their theta and other rhythms to communicate results and commands [1]. The results of the Raghavachari study is supported by another IEEG study performed by Halgren [6] that found increased phase locking (but decreased theta power) in the theta and alpha frequency bands between various distant sites in the brain during a difficult working memory task, suggestive of the interactions of a central executive process with an occipital visual scratch pad, an articulatory loop and a limbic monitor [1]. There are challenges that remain for the gamma/theta model of short-term memory, both in terms of further developing the model to account for additional empirical facts about short-term memory. Alternative models, such as the one presented by Townsend and Ashby [7] may do better with other memory facts and in terms of the functional anatomy of the brain regions associated with short-term memory such as frontal and temporal areas. However,
the gamma/theta model presented by Sternberg show that it is theoretically possible to bring brain oscillatory processes into close correspondence with dynamic memory processes [1].

Theta in memory encoding

Theta oscillations are seldom seen directly in EEG recording from humans, this occurrence has been difficult to understand what the classically observed increases in theta power meant. Recently, intracranial EEG (iEEG) recordings from epileptic patients have revealed strong theta oscillations from many areas of the human brain. From these experiments, it was show that periods in which theta oscillations were apparent were more frequent when patients were navigating through a virtual maze by memory alone, when compared to when they were guided through the maze by arrow cues. The theta periods were longer the longer the maze. However, theta did not covary with the time taken to make decision at choice points, rather gamma oscillations were more prevalent the longer the decision time. Consequently, theta oscillations are more closely linked to encoding and retrieval in memory than they are to other cognitive processes [1].

Alpha Rhythms

Alpha rhythms are found over the **occipital region** in the brain [2]. These waves lie within the 8 to 12 Hz range. Their amplitude increases when the eyes close and the body relaxes and they attenuate when the eyes open and mental effort is made [2]. These rhythms primarily reflect visual processing in the occipital brain region and may also be related to the memory brain function [2]. There is also evidence that alpha activity may be
associated with mental effort. Increasing mental effort causes a suppression of alpha activity, particularly from the frontal areas [2]. Consequently, these rhythms might be useful signals to measure mental effort. Mu rhythms may be found in the same range as alpha rhythms, although there are important physiological differences between both. In contrast to alpha rhythms, mu rhythms are strongly connected to motor activities and in some cases, appear to correlate with beta rhythms [2]. There is a notion that alpha synchronization indexes ‘cortical idling’, but it is becoming apparent that alpha oscillations indicate that attention is actively suppressing cortical activity related to distractors as a part of the process of focusing attention on important targets [1]. An illustration of this is evident in the Sternberg memory-scanning task [8], alpha power increased with memory load, reflecting a need to suppress distraction. A study by Cooper [9] indicated that attention is directed internally towards metal imagery, alpha power at attention-relevant scalp sites is greater than during externally-directed, information-intake tasks, reflecting suppression of external input during the imagery task [9][1]. The Cooper study also showed that when external task load increased, alpha power increased, reflecting the need to suppress competing information sources [1]. Changes in alpha power has been attributed to the anticipation of attentional demands, such as when a cue indicating an upcoming auditory stimulus induced increased alpha power over parieto-occipital (visual) cortex compared with when the cue indicated an upcoming visual stimulus [1]. When the task was purely visual, the changes occurred precisely over visual cortical areas where neural activity representing distractions in the visual field is likely to occur [1]. An noteworthy observation is induced alpha power decreased over the entire scalp (~300-700ms) after attended visual stimuli appeared in comparison with when
unattended stimuli appeared, whereas beta power (~16Hz) increased around 600 ms after the stimulus occurred [1]. This decrease in alpha power occurred concurrently as gamma power increased, possibly representing temporal binding of visual features [1], suggesting that gamma synchronization for feature binding might require alpha desynchronization.

Beta Rhythms

Beta rhythms, that are within the 12 to 30 Hz range, are recorded in the frontal and central regions of the brain and are associated with motor activities. Beta rhythms are desynchronized during real movement or motor imagery [2]. Beta waves are characterized by their symmetrical distribution when there is no motor activity. Conversely, in case of active movement, the beta waves attenuate, and their symmetrical distribution changes [2].

Gamma rhythms

Gamma rhythms are in the frequency range from 30 to 100 Hz. The presence of gamma waves in the brain activity of a healthy adult is related to certain motor functions or perceptions, among others [2]. A number of experiments have shown a relationship in normal humans between motor activities and gamma waves during maximal muscle contraction [2]. This gamma band coherence is replaced by a beta band coherence during weak contractions, which suggests a correlation between gamma or beta cortical oscillatory activity and force [2]. Additionally, several studies have provided evidence for the role of gamma activity in the perception of both visual and auditory stimuli [2]. Gamma rhythms are less commonly used in EEG-based BCI systems, due to artifacts.
such as electromyography (EMG) or electrooculography (EOG) are likely to affect them [2]. Nevertheless, this range is attracting growing attention in BCI research due to the comparison to traditional beta and alpha signals, gamma activity may increase the information transfer rate and offer higher spatial specificity [2]. Gamma frequency has been reported to have correlations between conscious awareness and synchronous neural activity at various frequencies. In 1993, Crick and Koch suggested that synchronous neural firing at the gamma frequency might be the neural correlate of visual awareness [1]. Since then there have been several important studies that reported correlations between conscious awareness and synchronous neural activity at various frequencies. In a study performed by Eugenio Rodriguez, EEG recorded while subjects viewed an ambiguous visual stimulus that could be perceived as either a face or as a meaningless shape. When the subjects reported seeing a face, a phase synchronization at the gamma frequency occurred across widely separated brain areas, while this synchronization did not appear when a meaningless pattern was reported [10]. Figure 2 shows idealized power spectra, showing peaks at canonical EEG frequencies. While any of the frequencies can occur at any electrode site, alpha power modulations are often recorded at posterior sites, theta at frontal sites and gamma over sensory cortices [1].
EEG oscillations and cognitive processes

The output of EEG activity varies in both humans and animals, particularly the sleep-wakefulness cycle. Spectral power, which is measured in power per unit area per unit wavelength, changes with age at various frequencies changes. Alpha power increases as children mature, whereas theta and delta power decreases. These changes are linked to a more general increase in cognitive competence with maturation, whereas the reverse changes signals declining metal abilities due to old age. Alpha waves have been evident in EEG recordings since the invention of electroencephalography by Hans Berger during the 1930’s. Alpha power is larger when the eyes are closed rather than open, as a result
the conventional wisdom was that alpha power reflected a relaxed unoccupied brain. An overall decrease in alpha power has been linked to increasing demand of attention, alertness and task load in general. In contrast to alpha power, theta power tends to increase in memory tasks, especially during encoding. These waves have been thought to reflect different cognitive operations occurring in cortico-thalamic circuits, theta for encoding and alpha for search and retrieval [1].

Hemodynamic response

The hemodynamic response is the process of blood releasing glucose to active neurons at the greater rate than in the area of inactive neurons. The result of this process is glucose and oxygen being delivered through the blood stream resulting in a surplus of oxyhemoglobin in the veins of the active area, and a distinguishable change of the local ratio of oxyhemoglobin to deoxyhemoglobin [2]. These changes can be quantified by neuroimaging methods such as functional magnetic resonance and near infrared spectroscopy. Functional magnetic response and near infrared spectroscopy are categorized as indirect because they measure hemodynamic response, which in contrast to electrophysiological activity, is not directly related to neuronal activity [2].

Challenges of BCI

BCI technology has not been the subject of serious scientific investigation. The idea of successfully deciphering thoughts or intentions via brain activity is vied as strange and remote in the past. As a result, research in the field of cerebrum activity has been limited to the clinical and laboratory analysis of neurological disorders. The design of BCI was
considered too complex due to the limited resolution and reliability of information that was detectable in the cerebrum, which has high variability. Compounding these challenges is the realization that BCI systems require real-time signal processing, therefore until recently the requisite technology was either extremely expensive, or simply did not exist. BCI research remains a relatively young field that integrates neuroscience, physiology, psychology, engineering and computer science. As a result of the infancy of this field, notable advance and a common language has yet to emerge, existing BCI technologies varies making their comparison difficult slowing down research as a result.

Neurophysiology

Discussion
References

Apa style

Appendices

Terms

Oxyhemoglobin
Deoxyhemoglobin

Brain areas

Background noise