Final Report

W911NF-16-1-0486

1. **REPORT DATE (DD-MM-YYYY)** 18-12-2017
2. **REPORT TYPE** Final Report
3. **DATES COVERED (From - To)** 1-Sep-2016 - 31-May-2017

4. **TITLE AND SUBTITLE**
 Final Report: PROOF OF CONCEPT FOR EFFICIENT APPLICATION OF QUANTUM-CHEMICAL TECHNIQUES TO MODEL ENVIRONMENTAL MERCURY DEPLETION REACTIONS THROUGH TRANSITION STATE THEORY

5. **AUTHORS**
 Jackson State University
 1400 John R. Lynch Street
 Jackson, MS 39217 -0002

6. **SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS**
 U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

7. **PERFORMING ORGANIZATION REPORT NUMBER**
 69798-CH-H.1

8. **DISTRIBUTION AVAILABILITY STATEMENT**
 Approved for public release; distribution is unlimited.

9. **SUBJECT TERMS**
 The views, opinions and/or findings contained in this report are those of the author(s) and should not construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

10. **ABSTRACT**
 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

11. **REPORT DOCUMENTATION PAGE**
 Form Approved OMB NO. 0704-0188

Jackson State University
1400 John R. Lynch Street
Jackson, MS 39217 -0002

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

69798-CH-H.1

Approved for public release; distribution is unlimited.

The views, opinions and/or findings contained in this report are those of the author(s) and should not construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

ABSTRACT

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
RPPR Final Report
as of 02-Jan-2018

Agency Code:

Proposal Number: 69798CHH
Agreement Number: W911NF-16-1-0486

INVESTIGATOR(S):

Name: Jerzy Leszczynski
Email: jerzy@icnanotox.org
Phone Number: 6019793723
Principal: Y

Organization: Jackson State University
Address: 1400 John R. Lynch Street, Jackson, MS 392170002
Country: USA
DUNS Number: 044507085
EIN: 646000507
Date Received: 18-Dec-2017

Final Report for Period Beginning 01-Sep-2016 and Ending 31-May-2017

Title: PROOF OF CONCEPT FOR EFFICIENT APPLICATION OF QUANTUM-CHEMICAL TECHNIQUES TO
MODEL ENVIRONMENTAL MERCURY DEPLETION REACTIONS THROUGH TRANSITION STATE THEORY

Begin Performance Period: 01-Sep-2016
End Performance Period: 31-May-2017

Submitted By: Shonda Allen
Email: shonda@icnanotox.org
Phone: (601) 979-3723

Distribution Statement: 1-Approved for public release; distribution is unlimited.

STEM Degrees: 0
STEM Participants: 1

Major Goals: Major goals are provided in the single uploaded file to maintain continuity.

Accomplishments: Accomplishments are provided in the single uploaded file to maintain continuity.

Training Opportunities: No official training activity to report at this time.

Results Dissemination: There is currently no dissemination update to report.

Honors and Awards: There are currently no honors to report.

Protocol Activity Status:

Technology Transfer: There is currently no tech transfer update to report.

PARTICIPANTS:

Participant Type: PD/PI
Participant: Devashis Majundar
Person Months Worked: 4.00
Funding Support:
Project Contribution:
International Collaboration:
International Travel:
National Academy Member: N
Other Collaborators:

Participant Type: PD/PI
Participant: Nataliia Syzochenko
Person Months Worked: 5.00
Funding Support:
Project Contribution:
International Collaboration:
International Travel:
RPPR Final Report
as of 02-Jan-2018

National Academy Member: N
Other Collaborators:
Award Information

<table>
<thead>
<tr>
<th>Award Number</th>
<th>ARO W911NF-16-1-0486</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Research</td>
<td>Proof of Concept for Efficient Application of Quantum-Chemical Techniques to Model Environmental Mercury Depletion Reactions Through Transition State Theory</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Jerzy Leszczynski</td>
</tr>
<tr>
<td>Organization</td>
<td>Jackson State University</td>
</tr>
</tbody>
</table>

Technical Section

Technical Objectives

The “Proof of Concept for Efficient Application of Quantum-Chemical Techniques to Model Environmental Mercury Depletion Reactions Through Transition State Theory” project focuses on the study of the atmospheric reactions of mercury through modeling of atmospheric mercury depletion processes. Among the essential reactions for mercury depletion in the environment are redox reactions. The existence of mercury either in elemental (Hg0) or in oxidized divalent Hg$^{2+}$ forms affects mercury availability and mobility within the ecosystem. There are scientific debates on this issue and some proofs were also forwarded for both type of particles. The present project has proposed investigation on a simple electrochemical reaction on the hydrated forms of mercury using state of the art computational techniques to figure out the feasibility of the interconversion between the two forms of mercury. For this purpose, we mainly deal with the experimental studies of interaction between halogens with mercury, X$_2$/X (X= Cl, Br, and I) + Hg0(g). [1]. We use the Transition State Theory (TST) to find the ways of mercuric halides formation in presence of water molecules (as water is present in upper atmosphere). Although we could locate the low barrier for the Hg—Br bond formation in presence of one water molecule, further increase of water molecules faced with the sampling difficulties caused by the relatively large number of degree of freedom. The formation of Hg—Cl and Hg—I bonds goes barrier-less, at least within classic TST. But, for reactions of active metals and halogens, the transition states could appear through the intersection of electronic terms of neutral and ionic species and caused by the electron transition from the metal atom to the halogen molecule. The classic TST is not valid for such cases. Important questions remain challenging for us: how does the interaction of water and solute ions affect the rate constants of mercury depletion? For this we need to study the microscopic mechanism of mercuric salt dissolution. Although the microsolvation model derived from salt-water cluster is not expected to quantitatively predict the liquid-phase solvation of the salts, it can be used to provide valuable insights into the interactions between the water, mercury ions, halogens and other oxidants. In this perspective, we have proposed an extension of studies to several other computational techniques, where the molecular dynamics trajectories of integrated tempering...
sampling simulations [2] are used to illustrate the microsolvation of mercury-halide ion pairs and to obtain valuable and reasonable thermodynamic characteristics.

Computational Approach

The computational approach includes:

1. The gas-phase and liquid-phase structural analyses for the compounds HgX⁺, HgX₂, (X = Cl, Br, I,) with n=1-6 water molecules with density function theory calculations (M06) including intrinsic reaction coordinate calculations (IRC).
2. Frequency calculations to ensure whether the computed structures are minima on the respective potential energy surfaces. Localization of transition state.
3. The aqueous salvation energies calculations at the same M06 levels using a polarized continuum model with conductor-like screening reaction field (CPMC).
4. Relativistic SBKJC VDZ effective core potential (ECP) basis set of the atoms. The Hg basis sets were further augmented with optimized f (ξ = 1.10) and g (ξ = 1.40) polarization functions. The basis sets of all other elements were augmented with one d and one f polarization functions (C: ξd = 0.75, ξf = 0.80; N: ξd = 0.80, ξf = 1.00; O: ξd = 0.85, ξf = 1.40; S: ξd = 0.65, ξf = 0.55; Cl: ξd = 0.75, ξf = 0.70; Br: ξd = 0.338, ξf = 0.56; I: ξd = 0.266, ξf = 0.4075).
5. GAUSSIAN 09 codes.

Progress Statement Summary

The main objectives of the project were to find the efficient computational approaches to study atmospheric mercury depletion reactions (AMD). The careful literature search of AMD suggests that unlike in the gas-phase, the mercury in the upper atmosphere exists mostly as soluble mercuric ion Hg²⁺(aq) and the reactivity of solvated mercuric ion affect significantly the atmospheric speciation of mercury. The reactivity of mercuric ion towards different halide ions was explored through electronic structure calculations combined with the calculation of Gibbs free energy of formation in aqueous solution using DFT level of theory (Table 1). A reasonable estimation of these thermochemical quantities is important as they could be subsequently used to compute the kinetics of several such reactions in aqueous medium. As can be seen from Table 1 the calculated values of ΔG⁰ are quite close to the experimental data for the systems, where both mercury ion and halogen ion are hydrated. The calculated ΔGₑq in most of such cases is within 2-5 kcal/mol of the experimental data. The results show that with more rigorous quantum chemical approaches it is possible to calculate the thermochemical properties, which are accurate enough to analyze kinetics of such reactions.

Table 1. Calculated ΔG°地下水 (kcal/mol) for the micro-solvated [HgX(H₂O)n]⁺ (X=Cl, Br, I and n=1-6) formation reactions due to vertical and equilibrium solvation of the respective solutes in aqueous solution at the M06/SBKJCVDZ ECP.

Experimental ΔG°地下水 (Hg²⁺(aq) + Cl⁻(aq) → HgCl⁺(aq)) = -9.22 kcal/mol.
The above observation paves way to consider that the mercury depletion reaction in the environment could be through reactions: HgX$_n^{0}$ (aq) + X$^-$ (aq) → HgX$_n^{q-1}$ (aq). The general equilibration in such reactions could be described as follows:

\[
\frac{k_1}{k_2}
\]

These reactions are formation/dissociation of diatomic systems. Hence transition-state, reaction rate etc. cannot be studied through classis TST. Application of TST is hypothetically possible in such reactions if water molecule is considered as a third body species. The preliminary investigation at the DFT level using continuum solvation model has shown the existence of transition state for the HgCl$^+$ formation from Hg$^{2+}$, Cl$^-$, and H$_2$O. However, further analysis demonstrates that transition states in such kind of “hydrated” systems (with one and more water molecules) characterize the vibrations of water molecules rather than the mercury halide bond formation. However, just for the H$_2$O—Hg—Br system the small barrier (1.2 kcal/mol) was found within CPCM. The optimized structure of HgBr$^+$...H$_2$O complex is shown in Fig. 1. Two-dimensional contour mapping of the whole reaction surfaces was generated in gas-phase as well as under solvated condition using CPCM and shown in Fig.2. The structure of transition state is proven by the appropriate IRC calculations (Table 2) and frequency analysis at the same level of theory.

Fig. 1. Optimized structure of HgBr$^+$...H$_2$O molecular system.
Fig. 2. Computed gas-phase (a) and CPCM (b) energy surface of HgBr\(^{+}\)...H\(_{2}\)O molecular system as a function of r1 and r2 (Fig. 1) at the DFT/M06 level of theory. The surface (a) is devoid of any transition state. The surface (b) shows clear transition state.

Table 2. Structural parameters of HgBr\(^{+}\)...H\(_{2}\)O molecular system and appropriate transitional state (TS).

<table>
<thead>
<tr>
<th></th>
<th>OPT from IRC</th>
<th>IRC, reverse</th>
<th>TS</th>
<th>IRC, forward</th>
<th>OPT from IRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>O—Hg, ang.</td>
<td>2.96</td>
<td>2.96</td>
<td>2.99</td>
<td>2.96</td>
<td>2.96</td>
</tr>
<tr>
<td>Hg—Br, ang.</td>
<td>2.58</td>
<td>2.55</td>
<td>2.58</td>
<td>2.55</td>
<td>2.58</td>
</tr>
<tr>
<td>< O-Hg-Br, deg.</td>
<td>179.7</td>
<td>177.80749</td>
<td>180.0</td>
<td>177.73</td>
<td>179.73</td>
</tr>
<tr>
<td>(E_{act}), kcal/mol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.22</td>
</tr>
</tbody>
</table>

Increasing of number of water molecules faced with the sampling difficulties in Hg-Hal-H\(_{2}\)O molecular system caused by the large number of degree of freedom, which made further thermodynamic calculations undefinable. However, we obtained the DFT-optimized water clusters of mercuric halides (with water molecules, \(n=1-6\)), Table 3, which are consistent with other \textit{ab initio} results [3].
Table 3. Optimized (in gas) surface (s) and interior (i) solvation geometries DFT calculated for Cl-, Br-, I- and mercury ions water clusters and for the mercuric halide ion water clusters; n is the number of water molecules.

<table>
<thead>
<tr>
<th></th>
<th>[X(H₂O)ₙ]⁻</th>
<th>[Hg(H₂O)ₙ]²⁺</th>
<th>[Hg(H₂O)ₙ, X]⁺</th>
<th>[Hg(H₂O)ₙ, Cl(H₂O)ₙ]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X=Cl, Br, I</td>
<td>X=Cl, Br, I</td>
<td>X=Cl, Br</td>
<td>X=Cl, Br, I</td>
</tr>
<tr>
<td>n=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=3(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=4(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We concluded that the standard Transition State Theory is not applicable for evaluation of the Mercury depletion reactions. However, it is feasible to use the structures of hydrated mercuric-halide ion-pairs, Hg-Br, Hg-Cl to obtain the reliable thermodynamic data, from the cation-anion
distance distribution over the range of temperatures. This could be done using integrated tempering sampling (ITS) classical MD simulations.

References