Nanoscale Magnetism in Next Generation Magnetic Nanoparticles

Nguyen Thanh
UNIVERSITY COLLEGE LONDON

03/17/2018
Final Report

DISTRIBUTION A: Distribution approved for public release.
Nanoscale Magnetism in Next Generation Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are key components of a variety of sensors for diverse applications in electronics and biotechnologies. Nanoparticle properties are critically affected both by nanoscale size as well as surface interactions with the environment. These interactions are among the key fundamental properties such as magnetic moment and dynamic response that are required for use in applications. This was a collaborative project between groups at Northeastern University (USA), University College London-UCL (UK) and Institute of Materials Science (Vietnam Academy of Science and Technology-VAST) to synthesize and understand the fundamental aspects of magnetism at the nanometer length scale in confined geometries in nanoparticles. At Northeastern University, the dynamic relaxation of superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous media was studied. Using the MRI facilities at Northeastern University, MNPs from collaborators UCL and VAST, as well as dextran coated SPIONs were studied. From the measured T1 and T2 relaxation times, a new method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) was developed. The method was tested in vivo and demonstrated to yield positive contrast angiograms with high clarity and definition, and enabled quantitative MRI in biological samples. At UCL, the work included (i) fabricating multi-element magnetic systems, and (ii) controlling interactions by surface modification using organic compounds. The project involves systematic matter property studies by fabrication of novel organically modified coating of MNPs, physical characterization at both macroscopic level such as magnetic moments and AC susceptibility as well as microscopic one. The results provided fundamental insights into the nature of nanoscale magnetism relevant to a variety of nanomagnetic applications.
“Project Title”
Nanoscale Magnetism in Next Generation Magnetic Nanoparticles
Date 2017/12/21

Name of Principal Investigators (PI and Co-PIs):
1/ Nguyen Thi Kim Thanh
   - e-mail address: ntk.thanh@ucl.ac.uk
   - Institution: UCL Healthcare Biomagnetic and Nanomaterials Laboratory and Biophysics Group, Department of Physics & Astronomy
   - University College London
   - Mailing Address: 21 Albemarle Street, London W1S 4BS, UK
   - Phone: +44 (0) 207-491-6509
   - Fax: +44 (0) 207-670-2920
2/ Srinivas Sridhar
   - e-mail address: s.sridhar@northeastern.edu
   - Institution: Northeastern University
   - Mailing Address: 360 Huntington Avenue, Boston, MA 02115
   - Phone: 617-373-2930
   - Fax: 617-373-2823
3/ Nguyen Xuan Phuc
   - e-mail address: phucnx@ims.vast.ac.vn
   - Institution: Institute of Materials Science, Vietnam Academy of Science and Technology
   - Mailing Address: 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
   - Phone: +84912008563
   - Fax: +842438060705

Period of Performance: September/30/2014 – September/30/2017

Abstract: Short summary of most important research results that explain why the work was done, what was accomplished, and how it pushed scientific frontiers or advanced the field. This summary will be used for archival purposes and will be added to a searchable DoD database.

Magnetic nanoparticles (MNPs) are key components of a variety of sensors for diverse applications in electronics and biotechnologies. Nanoparticle properties are critically affected both by nanoscale size as well as surface interactions with the environment. These interactions among the key fundamental properties such as magnetic moment and dynamic response that are required for use in applications.

In this we have had a collaborative project between groups at Northeastern University (USA), University College London-UCL (UK) and Institute of Materials Science (Vietnam Academy of Science and Technology-VAST) to synthesis and understand the fundamental aspects of magnetism at the nanometer length scale in confined geometries in nanoparticles.

At Northeastern University, we studied the dynamic relaxation of superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous media. Using the MRI facilities at Northeastern University, MNPs from collaborators UCL and VAST as well as dextran coated SPIONs were studied. From the measured T₁ and T₂ relaxation times, a new method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) was developed. The method was tested in vivo and demonstrated to yield positive contrast angiograms with high clarity and definition, and enabled quantitative MRI in biological samples.

At UCL, the work included (i) fabricating multi-element magnetic systems, and (ii) controlling interactions by surface modification using organic compounds. The project involves systematic matter property studies by fabrication of novel organically modified coating of MNPs, physical characterization at both macroscopic level such as magnetic moments and AC susceptibility as well as microscopic one. The results provided fundamental insights into the nature of nanoscale magnetism relevant to a variety of nanomagnetic applications.
At Institute of Materials Science, Vietnam Academy of Science and Technology, apart from the effort to synthesize MNPs of high magnetization and monodispersity, we have also studied in details various parameters which may impact on magnetic heating power of MNPs of different materials, such as particle size, size distribution, ferrofluid viscosity etc.

The 3-year collaborative project has resulted in 9 publications in peer-reviewed journals and 34 presentations in major conferences, meeting and workshops around the world.

**List of Publications and Significant Collaborations that resulted from your AOARD supported project:** In standard format showing authors, title, journal, issue, pages, and date, for each category list the following:

a) papers published in peer-reviewed journals


2. NT Dung, NV Long, LTT Tam, PH Nam, LD Tung, NX Phuc, LT Lu and NTK Thanh, “High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles”, Nanoscale 2017(9)8952. Gold Open Access. FRONT COVER


d) conference presentations without papers,


11. “Genomic Nanomedicines for Cancer Therapy”, International Conference on Bioinformatics and Biostatistics Applications in Cancer Genomics Research, Qatar University, Qatar, April 26-28, 2015, S Sridhar.
16. “Fabrication of aqueous Fe3O4 fluid with high stability and potential for magnetic hyperthermia using polyacrylic acid as phase transfer medium”, report of IMS-UCL collaboration results, Contributions to the IWNN-APCBM conference in Danang, 2-4 Nov. 2015, Talk VTK Oanh et al.
17. “Superparamagnetic Fe3O4 nanoparticles coated by PLA-PEG copolymer and loaded with and without curcumin: structure, properties and biomedical applications”, report of IMS-NEU collaboration results, Contributions to the IWNN-APCBM conference in Danang, 2-4 Nov. 2015, Presented by NX Phuc.
23. 3rd International Conference on Photodynamic and Nanomedicine for Health Science”, Luxor- Egypt, Jan 2015, Keynote Speaker NTK Thanh.
25. ICMAT symposium AA of advanced ceramics and nanohybrids for energy, environment and health, June 2015, Invited Talk NTK Thanh.
26. UK-India Education and Research Initiative (UKIERI) Workshop on Magnetic nanoparticles characterisation and applications, University of Centre Lancashire, UK, August 2015, Invited Talk NTK Thanh.
27. NANOCON’15, Brno, Czech Republic, Invited Talk NTK Thanh.
28. "Nanoparticles for Cancer Diagnosis and Therapy" conference sponsored by British Society of
30. 6th Annual Postgraduate symposium on Nanoscience and Nanotechnology, School of Chemistry at the University of Birmingham, UK, Oct 2016, Keynote lecture NTK Thanh.

e. Manuscripts submitted but not yet published

f. Provide a list any interactions with industry or with Air Force Research Laboratory scientists or significant collaborations that resulted from this work.
   1. The IMS/VAST group has interacted with Prof. Sylvie Begin, IPCMS Strasbourg, France, which resulted in inviting her to visit Hanoi and give an invited talk at the International Workshop on Advanced Materials and Nanotechnology, November 2016.
1. Introduction

The interplay between spin-orbital interaction and phase transitions has attracted much interest recently in strongly correlated electron systems, in particular the transition metal (TM) oxides. Coupling to the lattice further enriches the interplay through lattice distortions, phonons, and cooperative effects such as Jahn-Teller (JT) distortions [1]. Cuprate superconductors and Manganites with colossal magnetoresistance belong to the TM oxides with 3d bands and show very interesting properties. In the perovskite-type RVO₃ compounds, the OO phenomenon investigated for LaVO₃ and YVO₃ indicated an orbitally induced-structural phase transition from orthorhombic to monoclinic when cooling through T₀₀. In LaVO₃, the SO temperature T₅₀ is 139 K which is slightly above T₀₀ of 137 K [5], whereas it is equal to 116 K and so well below the 200 K of T₀₀ for YVO₃. When cooling down further, interestingly, an additional first-order phase transition appears at transition at T₅ = 77 K for YVO₃ below which the orthorhombic phase is recovered and the magnetic structure becomes G-type [6,7]. Concerning the high temperature phase at T₅ < T < T₅₀ in YVO₃, a magnetic neutron scattering study [8] has revealed some unusual features: i) the magnetic structure is non-collinear, and just more complex than previously assumed for the simple C-type; ii) the magnon band width as derived from inelastic neutron scattering along the ferromagnetic c-axis is larger than that in the antiferromagnetic ab-plane. This violates the standard Goodenough-Kanamori rules according to which ferromagnetic superexchange interactions are generally substantially weaker than

Magnetic properties of a LuVO₃ single crystal studied by magnetometry, heat capacity and neutron diffraction

L.D. Tung a,*, J. Schefer b, M.R. Lees c, G. Balakrishnan c, D.McK. Paul c

a Department of Physics, University College London, Gower Street, London WC1E 6BT, United Kingdom
b Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
c Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

A R T I C L E   I N F O

Article history:
Received 12 June 2016
Accepted 14 June 2016
Available online 18 June 2016

Keywords:
Magnetic materials
Spin orbital order
Antiferromagnets
Disorder materials
Heat capacity

A B S T R A C T

We have studied the magnetic properties of a LuVO₃ single crystal. The compound shows an orbital ordering at T₀₀ = 179 K followed by the antiferromagnetic spin ordering at T₅₀ = 109 K. In the magnetically ordered regime, there appears an abrupt change at Tₙ = 82.5 K in the magnetisation, indicating a first-order transition. The compound has very large negative Weiss temperature observed along all the main crystallographic axes, suggesting a strong antiferromagnetic correlations in the paramagnetic state. The observation of hysteresis curves in the collinear antiferromagnetic regime is discussed in terms of an inhomogeneity generating some spins with weak local fields in a strongly antiferromagnetic matrix.

© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
the antiferromagnetic interactions; iii) The spectrum is split into optical and acoustic magnons with a gap of 5 meV. To explain the latter feature, C. Ulrich et al. [8] proposed two different ferromagnetic exchange bonds Jc along the c-axis (i.e. dimerisation) which can be made possible by an orbital Peierls state due to the formation of an orbital singlet. However, Z. Fang et al. [9] argued that the splitting should be accounted for by the two different exchange interaction Jab of inequivalent VO2 layers which have different amounts of JT distortion.

For LuVO3, an earlier powder neutron diffraction (PND) study by Zubkov et al. [3] indicated that the compound has a G-type magnetic structure at low temperature. Munoz et al. [10], also using PND, studied the structural and magnetic structure in the temperature range from 2 to 300 K. They pointed out that LuVO3 has G-type magnetic ordering below \( T_{SO} = 107 \) K and this magnetic structure remains stable down to 2 K. The material also has an OO temperature of 190 K, but without any structural phase transition at this temperature. The change in the crystallographic structure from orthorhombic to monoclinic symmetry occurs instead between -82 and 94 K, which is below the SO temperature. Recently, we have studied this compound in detail using high quality single crystals combining a variety of experimental methods including neutron and synchrotron studies [11]. In this work, a canted C-type magnetic structure was observed that transforms to a collinear G-type at lower temperature. It has also been shown that the features of orbital-Peierls state (i.e. orbital-singlet similar to spin-singlet dimers) attributed previously in YVO3 [8] are in fact a consequence of the static OO and corresponding JT distortion.

In this contribution, we report on the magnetic, heat capacity, and neutron diffraction studies of single crystal LuVO3. The compound appears to be an antiferromagnet and its observed magnetic properties are consistent with the inhomogeneous nature of the compound.

2. Experimental details

Single crystal LuVO3 was grown by means of the floating zone technique using a high temperature Xenon arc-furnace. At first, LuVO3 was prepared by mixing stoichiometric quantities of Lu2O3 and \( V_2O_5 \) (with purity of 99.9%), followed by annealing at 1100 °C for 48 h. The product was then reduced at 1000 °C in flowing H2 for 10 h to produce the LuVO3 powder phase. The LuVO3 feed and seed rods used for the single crystal growth were made by pressing the powder under hydrostatic pressure and then annealing these rods at 1500 °C under a flow of Ar. A similar procedure for single crystal growth is described elsewhere [12].

Measurements of the zero-field-cooled (ZFC) [13] and field-cooled (FC) magnetisations and the magnetic isotherms were carried out in a Quantum Design SQUID magnetometer. Here we use zero and ZFC in italics to indicate that we neglect the small trapped field in the superconducting solenoid of the magnetometer. For the FC measurements, the sample was cooled from the paramagnetic region to 1.8 K in an applied field, e.g. 0.1 kOe, with the data collected (FCC), then it was warming during the measurements (FCW). For the ZFC measurements, the sample was cooled in zero field to 1.8 K before the magnetic field was applied. The data were then taken on warming. Heat capacity measurements of the sample were carried out in a Quantum Design Physical Property Measurement System (PPMS) with a heat capacity option using a relaxation technique. The magnetic structure of the compound was determined from single crystal neutron diffraction measurements on the TriCS instrument at the Paul Scherrer Institute, Switzerland using a wavelength of 1.1807 Å [13].

3. Results and discussion

In Fig. 1, we present the results of the heat capacity measurements on the LuVO3 single crystal; C vs. T (left scale) and C/T vs. T (right scale). Three transitions are detected and defined as the orbital ordering (OO) \( T_{OO} = 179 \) K, the spin ordering (SO) \( T_{SO} = 107 \) K, and \( T_e = 82.5 \) K manifested as a drop in the heat capacity with decreasing temperature. The values of these transition temperatures are in good agreement with those obtained for the polycrystalline sample [10].

To determine the magnetic structure, the results of the neutron diffraction studies with some selected reflections as a function of temperature are presented in Fig. 2. Below \( T_e = 82.5 \) K, we observed the magnetic contribution on top of the \((h k l)\) reflections with h zero or even, k odd and vice versa, l odd (e.g. \((0 3 1) (0 1 1)\) reflections as seen in Fig. 2) indicating the collinear G-type magnetic structure [8]. Between \( T_e \) and \( T_{SO} \), a magnetic contribution is seen to develop on a different set of \((h k l)\) with h zero or even (odd), k odd (zero or even) and l zero or even characteristic of the G-type magnetic structure (see Fig. 2 for \((100)\) and \((012)\) reflections). The magnetic structure is, however, canted since the magnetic contribution due to a G-type magnetic structure is seen not to diminish completely which is also in accordance with that reported in Ref. [11].

To explore further, the results of the FCC and FCW M(T) measured in two different magnetic fields of 0.1 kOe and 0.4 kOe along the principal axes are displayed in Fig. 3. There is an upturn in the magnetisation with decreasing the temperature at \( T_{SO} = 107 \) K. In the SO regime, there is an additional first order transition at \( T_o \) of about 82.5 K, consistent with the observation of magnetic hysteresis between FCC and FCW data.

Earlier, we reported M(T) measurements for some different RVO3 compounds [12], and showed that the form of the ZFC curves are very much dependent on the very small value of the trapped field (TF) in the superconducting magnet of the SQUID magnetometer. We have examined this TF carefully. Before each measurement, we ran a degauss sequence to minimise the TF; its absolute value was estimated to be less than 2 Oe. We can "generate" a TF with opposite sign by reversing the sign of the magnetic fields in the degauss sequence [12]. In Fig. 4, it can be seen that the ZFC magnetisation measured in an applied field of 0.1 kOe observed after cooling in a positive TF (ZFC_PPF) is mirrored with that of the negative TF (ZFC_NTF) even though the TF is about two orders of magnitude smaller than the applied field used for the measurement. It is well known that for conventional magnetic materials, domain translation is reversible at (very) low magnetic

![Fig. 1. Heat capacity C and C/T as a function of temperature for a LuVO3 single crystal.](image-url)
fields \cite{14} and so the TF of the order of a few oersteds does not have any influence on the nominal ZFC results. However, this is clearly not the case for LuVO$_3$. It is surprising that a TF of less than 2 Oe can create the irreversible magnetisation at low temperature for this compound.

In Fig. 5, we present the results of the reciprocal of the magnetic susceptibility as a function of temperature. Since there is a OO transition at a temperature \( T_{OO} = 179 \) K accompanying a change in the crystallographic structure from a \( Pbnm \) orthorhombic space group to a monoclinic \( P21/b \) space group \cite{11}, there is a change in the slope in the \( \chi^{-1}(T) \) as well. We have tried to fit for the Curie-Weiss behaviour in the paramagnetic regime in two different temperature ranges, namely between 120–175 K and 185–300 K. The values of the effective moments \( \mu_{\text{eff}} \) and the Weiss temperatures \( \theta_p \) along different principal crystallographic axes as derived from the fitting are listed in Table 1. The values of \( \mu_{\text{eff}} \) ranged from 2.16 to 2.61 \( \mu_B/\text{f.u.} \) which is somewhat lower than the value of 2.83 \( \mu_B \) for a free ion \( V^{3+} \) \( (\text{spin only, } S = 1) \). The Weiss temperatures \( \theta_p \) are all negative in the range from \(-108.8 \) K to \(-265 \) K, indicating the presence of strong antiferromagnetic correlations in the compound.

In Fig. 6, we present the magnetic isotherms measured at 1.8 K along different principal crystallographic axes. Despite the fact that the compound has a simple collinear G-type antiferromagnetic structure, at 1.8 K we observe open hysteresis loops along all directions with coercivities \( H_c \) being 1.7 kOe, 3 kOe, 0.2 kOe and remanent magnetisation \( M_r \) of 0.012\( \mu_B \), 0.0011\( \mu_B \), 0.0002\( \mu_B \) along the \( a- \), \( b- \), and \( c- \) axes, respectively. This anomalous feature is indeed consistent with the inhomogeneous nature due to the defects in the

Fig. 2. Integrated intensity of some selected Bragg reflections as indicated, for a LuVO$_3$ single crystal as a function of temperature.

Fig. 3. FCC (solid symbols) and FCW (open symbols) magnetisation versus temperature curves measured along the main axes of a LuVO$_3$ single crystal in an applied field of 0.1 kOe (left panels) and 4 kOe (right panels).
spin orbital system as has been proposed recently for the RVO$_3$ compounds [12,15e17]. In this model, LuVO$_3$ can be considered as an inhomogeneous antiferromagnet in which a fraction of the spins interact via weak local fields and thus they can turn easily to lie along the direction of the applied field. The remaining spins are strongly antiferromagnetically coupled (i.e. are hardly affected by the applied field) and are responsible for the observed SO temperature $T_{SO}$ and the negative Weiss temperatures. In addition, we would like to note that the weak local fields of the former spins also imply that the crystal field effects can lead to the reduced magnetic moment as well as the anisotropy in the magnetisation along different directions. In order to estimate the number of spins with weak local fields we consider the ratio between $M_r/M_s$ where $M_s$ is the saturation magnetisation which we assume to be 2$\mu_B$ of the full moment expected for V$^{3+}$. At 1.8 K, the ratio $M_r/M_s$ measured along the $a$-$b$-$c$-directions is 0.6%, 0.055% and 0.01%, respectively. From these, we derive the number of spins with weak local fields in respect to the applied field of 0.3% which is determined as a half of the largest value obtained along the $a$-axis. This percentage of spins with weak local field is very small and can hardly be detected using experimental techniques like neutron diffraction, but as they are embedded in a strong antiferromagnetic matrix, their effect is strong and visible on the observed magnetic properties.

4. Conclusions

In summary, we have studied the magnetic properties of a LuVO$_3$ single crystal using magnetometry, heat capacity and neutron diffraction measurements. The compound undergoes an OO transition at $T_{OO} = 179$ K, followed by SO with a canted C-type magnetic structure at $T_{SO} = 109$ K. In the SO regime, with lowering temperature there is the change in magnetic structure from C-type to G-type at $T_g = 82.5$ K. The open hysteresis loops observed in the collinear G-type magnetic structure are attributed to the small inhomogeneity from spins with weak local fields embedded in the majority strongly antiferromagnetic matrix.

Acknowledgements

LD Tung would like to thank AFOSR for funding. The work at the University of Warwick was supported by EPSRC, UK, Grant EP/M028771/1. Part of the work is based on experiments performed on the single crystal neutron diffraction Instrument TriCS at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Switzerland. LD. Tung would like to dedicate this paper to Dr. P.E. Brommer.

References


Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging

Roxanne Hachani1,2, Martin A. Birchall3, Mark W. Lowdell4, Georgios Kasparis1,2, Le D. Tung1,2, Bella B. Manshian5, Stefaan J. Soenen5, Willy Gsell5, Uwe Himmelreich5, Codi A. Gharagouzloo6,7, Srinivas Sridhar7,8 & Nguyen T. K. Thanh1,2

Stem cell tracking in cellular therapy and regenerative medicine is an urgent need, superparamagnetic iron oxide nanoparticles (IONPs) could be used as contrast agents in magnetic resonance imaging (MRI) that allows visualization of the implanted cells ensuring they reach the desired sites in vivo. Herein, we report the study of the interaction of 3,4-dihydroxyhydrocinnamic acid (DHCA) functionalized IONPs that have desirable properties for T2-weighted MRI, with bone marrow-derived primary human mesenchymal stem cells (hMSCs). Using the multiparametric high-content imaging method, we evaluate cell viability, formation of reactive oxygen species, mitochondrial health, as well as cell morphology and determine that the hMSCs are minimally affected after labelling with IONPs. Their cellular uptake is visualized by transmission electron microscopy (TEM) and Prussian Blue staining, and quantified using an iron specific colourimetric method. In vitro and in vivo studies demonstrate that these IONPs are biocompatible and can produce significant contrast enhancement in T2-weighted MRI. Iron oxide nanoparticles are detected in vivo as hypointense regions in the liver up to two weeks post injection using 9.4T MRI. These DHCA functionalized IONPs are promising contrast agents for stem cell tracking by T2-weighted MRI as they are biocompatible and show no evidence of cytotoxic effects on hMSCs.

In recent years, research on the development of stem cell therapy has intensified. The potential to use stem cells (SC) in tissue engineering and regenerative medicine is promising, as their use has already been implemented in a few human clinical trials1–4. However, a number of questions remain regarding the function of the transplanted SCs as well as their localization and movement. To answer these, certain characteristics of IONPs can be used with a potential of gaining a better understanding of the role of stem cells and validating clinical transplantations5–9. Indeed, IONPs may be used to monitor the fate of SCs in a non-invasive manner using MRI. To date, IONPs, which were FDA-approved as MRI contrast agents for the liver have been taken off the market. We have therefore

1Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. 2UCL Healthcare and Biomagnetics and Nanomaterials Laboratory, 21 Albemarle Street, London, W1S 4BS, UK. 3University College London Ear Institute, 332 Gray’s Inn Road, London, WC1X 8EE, UK. 4Department of Haematology, Royal Free Hospital, University College London, London, NW3 2QG, UK. 5MoSAIC/Biomedical MRI Unit, Department of Imaging and Pathology, University of Leuven, B3000, Leuven, Belgium. 6Gordon Centre for Medical Imaging, Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 7Nanomedicine Science and Technology Centre, Northeastern University, Boston, Massachusetts, USA. 8Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA. Correspondence and requests for materials should be addressed to N.T.K.T. (email: ntk.thanh@ucl.ac.uk)
Synthesis and characterization of IONPs.

In our previous work, we successfully synthesized IONPs with the surface ligand DHCA. For this study, the IONPs obtained were spherical and with an average diameter of $d_{\text{TEM}} = 16.8 \pm 1.9 \text{nm}$ ($\delta d = 11.1\%$, $n = 324$) as determined by TEM (Fig. 1). The hydrodynamic diameter of these IONPs was measured in deionized water by dynamic light scattering (DLS) and was determined to be $d_H = 88.2 \pm 2.4 \text{nm}$. The zeta potential determined from at least three measurements in water was respectively $\zeta = -25.5 \pm 1.8 \text{mV}$, at pH 6.8 and electrical conductance $= 0.173 \mu\text{s}$. X-ray diffraction was used to confirm that these nanoparticles are indeed iron oxide and have an inverse spinel structure, either magnetite $\text{Fe}_3\text{O}_4$ or maghemite $\gamma$-$\text{Fe}_2\text{O}_3$, although these phases cannot be distinguished by XRD due to their similar diffraction pattern and peak broadening effects. The IONPs may contain either or both of these iron oxide phases. The crystallite diameter of 7.8 nm determined approximately by the Scherer equation was coherent with that of the core size measured by TEM. The IONPs displayed a superparamagnetic behaviour at room temperature (RT) as measured by SQUID-VSM between $-7$ and $7 \text{T}$ at $300 \text{K}$, with a saturation magnetization of $M_s = 90 \text{emu/g}$. This value is consistent with superparamagnetic iron oxide nanoparticles of similar size and obtained by the polyol method.
This value is slightly smaller than the theoretical magnetization value for bulk magnetite (92–100 emu/g)\textsuperscript{22, 23}, and this is due to a finite size effect: canting of surface spins which are unaligned with the spins present in the rest of the magnetic domain\textsuperscript{24}. This effect is more pronounced for nanoparticles of smaller size\textsuperscript{25}.

**In vitro** cellular uptake of IONP-DHCA by hMSCs. Cell uptake visualized by TEM. Cell uptake and intracellular IONP distribution in hMSCs were visually confirmed by TEM. We obtained TEM images (Fig. 2), at different incubation times of 1 h, 4 h and 24 h and at a concentration of 50μg Fe per ml. From the in vitro cellular uptake study, it is shown that this concentration is deemed non-toxic and safe where the IONPs did not have any effect on cell morphology, viability, mitochondrial health and did not lead to the production of any reactive oxygen species.

From these images, we can confirm that the uptake of IONPs by hMSCs is successful; however this process is relatively slow as few IONPs are observed after incubation times of 1 h and 4 h. It is only after 24 h that significant amounts of IONPs can be visualized within the cells and at their surface as seen in Fig. 2. As it has also been reported extensively in literature\textsuperscript{26–29}, these IONPs seem to undergo endocytosis and can therefore be located in endosomes (Fig. 2f). The IONPs which are internalized within the cell vacuoles could mainly be found as aggregates.

Furthermore, we did not find any IONPs near the nucleus, as it is plausible these aggregates would be physically unable to breach the nuclear membrane pores with sizes in the range of 10–20 nm. Membrane deformation was also observed, confirming the internalization of IONPs by endocytosis.

**Prussian Blue staining of hMSCs with IONP-DHCA.** hMSCs were incubated with IONP-DHCA for 24 h at various concentrations ranging from 0 to 150μg Fe per ml, then the cells were fixed and stained with Prussian Blue, and the extent of IONP uptake was confirmed by optical microscopy.

The iron-specific Prussian Blue staining (Supplementary Figure S1) also allowed visual confirmation of the association of IONP-DHCA and hMSCs. The labelling efficiency seemed to increase in a dose dependent manner. However, we hypothesize that the uptake is not necessarily more important at the highest concentration, but instead that we observe aggregates of IONPs (examples marked with arrows), which may have attached to the bottom of the well or to the extracellular surface. This may be improved by modifying the IONP surface ligand or the incubation conditions. Overall, it is essential to note that hMSCs incubated with IONP-DHCA remained adherent and maintained their usual fibroblast-like shape similarly to the control.

**Quantification of cell uptake.** To quantify the amount of IONPs taken up by hMSCs, we used a colourimetric method based on the chelation of Fe\textsuperscript{3+} by Tiron. The quantity of IONPs taken up by cells is an important factor to consider as this will determine how efficient the nanoparticles are as MRI contrast agents, as well as the impact they will have on the cell viability and proliferation. Below is a table, which sums up the amount of iron taken up by hMSCs and the uptake efficiency (Table 1) after 24 h of incubation. The uptake percentage was determined as the ratio between the final amount of iron measured with 20,000 cells/well, and the initial incubation amount of iron per cell.

These results confirm that the uptake of these IONPs by hMSCs is significant; this can be supported by the TEM images obtained in vitro (Fig. 2). The significant uptake in IONPs of hMSCs may be correlated to their strong negative surface charge and is dose dependent. These results tend to confirm that some of the IONPs...
and it does not leach from cells40.

which is more frequently used than 7-AAD, the fluorescence emitted by 7-AAD has been shown to be more stable

Annexin V . 7-AAD will bind to DNA, and thus is a marker of necrotic cell death. Unlike propidium iodide (PI)

apoptosis, phosphatidylserine is flipped and can be found on the external cellular membrane, and can thus bind

which is normally located in the inner cell membrane in healthy cell populations. However, when a cell undergoes

to investigate the effect of nanoparticles on various cell populations. Annexin V binds to phosphatidylserine (PS),

which is normally located in the inner cell membrane in healthy cell populations. However, when a cell undergoes

to assess if the nanoparticles are internalized within the cells or not. Nanoparticles must be labelled with a flu-

been used to differentiate between nanoparticles extracellularly associated and those internalized by viable cells34.

Indeed, their uptake in cells is assessed by flow cytometry with Trypan Blue staining before the measurement.

This stain will quench the fluorescence of nanoparticles bound to the cellular surface, whereas the fluorescence of

internalized nanoparticles will not be affected35.

Cell – nanoparticle interaction study by MTT and MTS assays. We were able to demonstrate by TEM

and Prussian Blue staining that the synthesized IONPs were successfully taken up by endocytosis in hMSCs after

24 h. However, in order to be considered for stem cell labelling applications, we must ensure that these nanopar-

ticles are biocompatible and not toxic to hMSCs when exposed to increasing concentrations of IONPs. For this,

we conducted conventional colourimetric assays, MTT and MTS assays, which determine the cytotoxic effects of

IONPs on cell metabolic activity or cell viability.

These cytotoxicity assays rely on the same principle and only differ by the nature of the product obtained:

the MTS assay does not require solubilization of the formazan compound formed. Initial assays were conducted

with hMSCs incubated during 24 h with IONP-DHCA concentrations ranging from 0–1 mg Fe/ml. The results

obtained are presented in Supplementary Figure S2.

At lower concentrations of Fe, up to 100 μg Fe/ml, no significant toxic effects were observed by either assay:

a cell viability of about 80% was measured at 100 μg Fe/ml. However, it can be observed that the cell viability

increases significantly for elevated concentrations of IONPs (500 and 1,000 μg Fe/ml). Supplementary Figure S2c

clearly proves that this method is not suitable to assess the cytotoxic effects of IONPs at high concentrations

(above 100 μg Fe/ml) as the values measured (Abs > 1) are no longer within the linear absorbance range. The

increase in cell viability measured with both assays is therefore due to interference of the IONPs present in solu-

tion with the MTT and MTS dye (Supplementary Figure S2). This finding is in line with literature data, where

interference of IONPs with the MTT assay has been reported36, 37, and demonstrates that colourimetric assays

are not technically suitable for high concentrations of IONPs. In most of today’s published research, these assays

remain routinely used to confirm the biocompatibility of nanoparticles synthesized with various cell lines38, 39.

While the interference of IONPs may be deducted from the absorbance values measured, it is not possible to con-

clude with certainty on the effect of the internalized nanoparticles in vitro. Furthermore, these assays only give

us average information of the whole cell population being assessed, without being able to directly observe and
determine the impact of the nanoparticles on the cells.

High content analysis can be expanded to proliferation assays; however, it is quite difficult to obtain sufficient

hMSCs for this extra assay, due to their limited proliferation capacity which is dependent on the age of the donor

from which they are sourced and culture conditions (media composition, temperature, CO2 and humidity) used

for their initial expansion.

In vitro analysis of cell viability by flow cytometry. To assess the effect of IONP-DHCA, and the mode

of death they may induce on hMSCs, flow cytometry was tested as it is suitable to determine which cells are viable,
apoptotic or necrotic.

Annexin V-PE and 7-AAD double staining was used to detect cell membrane changes as this is routinely used
to investigate the effect of nanoparticles on various cell populations. Annexin V binds to phosphatidylserine (PS),
which is normally located in the inner cell membrane in healthy cell populations. However, when a cell undergoes
apoptosis, phosphatidylserine is flipped and can be found on the external cellular membrane, and can thus bind
Annexin V. 7-AAD will bind to DNA, and thus is a marker of necrotic cell death. Unlike propidium iodide (PI)
which is more frequently used than 7-AAD, the fluorescence emitted by 7-AAD has been shown to be more stable
and it does not leach from cells40.

<table>
<thead>
<tr>
<th>Incubation concentration (µg Fe/ml)</th>
<th>Iron uptake per cell determined by colourimetric method (pg/Uptake percentage (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>72/29</td>
</tr>
<tr>
<td>100</td>
<td>819/33</td>
</tr>
<tr>
<td>150</td>
<td>1,108/30</td>
</tr>
</tbody>
</table>

Table 1. Quantification of cellular uptake of IONPs by hMSCs determined by the colourimetric method.
However, as we can see from the results in Supplementary Figure S3, there are still some difficulties using this method. As it can be seen with the unstained cell population (a), 95% of the cell population is deemed viable (apoptosis negative, necrosis negative) which is expected of a control sample consisting of cells having undergone cell culture, and which is consistent with the Trypan Blue staining conducted (not shown here).

When treating cells with Annexin V and 7-AAD, within the same cell population, only 31% of the cells are viable (apoptosis −, necrosis −), 2% are dead (apoptosis +, necrosis +) and 67% are undergoing apoptosis (apoptosis +, necrosis −). From these experiments, we hypothesized that the abnormally high percentage of cells, which are Annexin V positive are false positives. This is probably due to the detachment of the hMSCs from tissue culture flasks by trypsinisation which may lead to temporary membrane damage, thus leading to an Annexin V positive signal. The method of detachment of cells is cell-line dependent and its effect on the integrity of the cellular membrane cannot be predicted. It is therefore crucial to evaluate the cell detachment method and analytical method to ensure the results obtained are conclusive.

The flow cytometry analysis was repeated with another stain: DRAQ7, which emits in the far-red region and stains dead cells by binding to the DNA of cells with compromised plasma membranes. This stain did not lead to an abnormally high percentage of dead cells: approximately 85% of cells were deemed viable which is coherent
with Trypan Blue staining and 83% of viable cells in the unstained control (Supplementary Figure S3). The results obtained with IONP-DHCA are illustrated in Fig. 3.

After 24 h of incubation with 100 μg Fe/ml of IONP-DHCA, the percentage of viable is 74%, and the corresponding value for 1000 μg Fe/ml is 68.7% (Fig. 3), indicating that the cell death induced in hMSCs by IONP-DHCA is dose-dependent. These results demonstrate that this method is suitable, and DRAQ7 is an adequate stain to determine the percentage of viable cells after exposure to IONPs.

High content analysis of cell–nanoparticle interactions. To overcome the colorimetric interference of IONPs with toxicity assays, high content imaging was used in order to determine cell viability and changes to cellular morphology after exposure to IONP-DHCA. In a 96-well plate, 1,000 hMSCs per well were incubated with IONP-DHCA during 24 h at concentrations ranging from 0 to 250 µg Fe/ml and the nucleus was stained with Hoechst, while actin was stained with Acti-Stain 48 (Fig. 4).

It has previously been shown that nanoparticles may result in actin cytoskeleton deformation, leading to disruption in actin-mediated cell signalling43. In this work, we were able to determine that the cell area was not affected following exposure to low concentrations of IONPs (Fig. 4b) and that it is only above 100 µg Fe/ml that the cell area starts to decrease. However, the IONPs seemed to have a more significant impact on the cell aspect ratio with the cell skewness increasing above 50 µg Fe/ml (Fig. 4c). The latter indicates that the cell length increases as the cells changes from its usual fibroblast-type shape to a slightly more elongated shape. This may be caused by the cells undergoing stress most probably due to the presence of IONPs in the intracellular environment leading to changes in the actin cytoskeleton. Therefore, the cells are unable to stretch as they normally would. The parallel organized thin actin fibres become disordered and lose their original morphology due to the presence of NPs. In order to investigate whether this had an impact on the cellular activity, we then used high-content imaging to determine the effect of the IONPs on cell viability, mitochondrial activity and reactive oxygen species (ROS) formation. The images obtained are shown in Fig. 5a.

The data obtained from high-content imaging are presented in Fig. 5b and c for the relative cell viability and relative ROS formation; and in Supplementary Table S1 for the mitochondrial area and activity. These results clearly demonstrate that the IONPs did not have a significant effect on the viability of the cells or on the mitochondrial area. However, a significant increase in ROS production was noticeable at 10 and 50 µg Fe per mL (Fig. 5c), but this did not have an impact on the mitochondrial health and was not induced at other concentrations (Supplementary Table S1). Elevated ROS production often does not cause any significant toxicity, as all cells possess intrinsic antioxidant properties that protect them against oxidative stress44.
In vitro relaxivity of IONP-DHCA. To determine the relaxivity value of the IONP dispersion, longitudinal ($T_1$) and transverse proton relaxation times ($T_2$) were measured as a function of iron concentration at 7 T, 37 °C. The different concentrations of IONPs for relaxivity characterization were obtained by dilution with deionized water. With these IONP solutions, the observed relaxation rate constant R is linearly dependent on the concentration of Fe. The slope of the dependence is the relaxivity r and the y-intercept is the native relaxation rate of the solution prior to the addition of IONPs. As shown in Fig. 6, the nanoparticles exhibit $r_1$ and $r_2$ values of 0.78 and 142.2 mM$^{-1}$ s$^{-1}$, respectively. The $r_2/r_1$ value of 182.3 confirms that the IONP-DHCA nanoparticle has the potential to be used as a $T_2$-weighted MRI contrast agent.

Figure 5. (a) Cell viability (yellow), oxidative stress (green) and mitochondrial health (red) of hMSCs labelled with IONPs at various concentrations and determined by high-content imaging reveals significant induction of reactive oxygen species (ROS; green colour) at 10 and 50 µg Fe/ml. Scale bar 100 µm. (b) Relative viability and (c) production of reactive oxygen species determined by high-content imaging. Data are represented relative to untreated control cells as mean ± SD for minimum 500 cells per condition, scale bar 100 µm. The degree of significance is indicated when appropriate *P < 0.05, **P < 0.01 and ***P < 0.001 (one-way ANOVA, Dunnett post-hoc test).

Figure 6. Left plot of relaxation rate $R_1$ ($R_1 = 1/T_1$) over Fe concentration of the IONP-DHCA nanoparticles in solution. The slope indicates the specific relaxivity ($r_1$); right plot of relaxation rate $R_2$ ($R_2 = 1/T_2$) over Fe concentration of the IONP-DHCA nanoparticles in solution. The slope indicates the specific relaxivity ($r_2$). Relaxivity values have been converted to mM$^{-1}$ s$^{-1}$ using the molar mass of iron (M = 55.845 g/mol).
In vitro MR image acquisition. In order to determine the suitability of IONP-DHCA as MRI contrast agents, it is essential to determine their physicochemical properties such as their relaxivity values in vitro when they interact with the cells. This will allow us to determine whether any change in relaxation effects occurs once they have been internalized by hMSCs.

Supplementary Figures S5 to S8 clearly demonstrates an overall dose dependent decrease of the mean values of $T_1$, $T_2$, and $T_2^*$ as a function of the concentration of Fe. This effect has been observed with several types of nanoparticles and has been attributed to their endosomal internalization in cells which causes a clustering and hence an increase in relaxivity\(^45\text{–}47\). Most relevant is the fact that Supplementary Figs S5 to S8 demonstrate that the IONP-DHCA may be used in MRI to provide contrast enhancement.

In vivo MR imaging of IONP-DHCA. Iron oxide nanoparticles as MRI $T_1$/$T_2^*$ contrast agents have been extensively used in liver MRI. Before the animal studies, we first tested the cytotoxicity of IONP-DHCA using hMSCs as a model. The high-content imaging method allowed us to determine that IONP-DHCA have no appreciable cytotoxicity for 24 h even at concentrations up to 250 $\mu$g Fe per ml, suggesting the high biocompatibility of these nanoparticles. Furthermore, in our previous work\(^10\), we determined their potential as MRI contrast agents with their high relaxivity values measured at 1.4 T in solution ($r_1$ and $r_2$ relaxivities of 7.95 mM$^{-1}$ s$^{-1}$ and 185.58 mM$^{-1}$ s$^{-1}$ respectively). To verify their ability as contrast agents in vivo, we conducted $T_2$-weighted MRI of liver using 6 female Swiss mice as a model. After intravenous injection of IONP-DHCA at a concentration of 300 $\mu$g Fe per ml, we immediately observed significant signal attenuation in the liver region for IONP-DHCA (Fig. 7).

To quantify the contrast, we identified the liver as the region of interest and calculated the normalized $T_2$-weighted signal intensity for each animal over a period of 2 wk. These results are shown in Fig. 8.

As can be expected, we observed the accumulation of IONP-DHCA in the liver, thus leading to a hypointense signal. This was quantified with the measured $T_2$ signal in the liver, with a significant decrease in its value immediately post injection and 1 wk later. On the other hand, the control remained relatively constant over the 2 wk period. The MRI signal in the region recovered gradually 2 wk after the injection of the IONP-DHCA nanoparticles, thus indicating that the IONP-DHCA are efficiently cleared from the liver, which is an important condition for the safe use of these NPs in clinical settings, as prolonged retention of IONPs in the liver that are slowly converted to ferroproteins are a serious safety concern\(^48\).

Conclusions
This study allowed us to determine the suitability of iron oxide nanoparticles synthesized as potential MRI contrast agents. It provides a comprehensive overview of methods assessing the biocompatibility of IONP-DHCA with hMSCs. We have seen that there remains a lack of standardization in the methods used to determine the impact of IONPs on cells, and these must be considered carefully in order to obtain accurate and reliable data.
We were able to confirm their uptake by hMSCs within 24 h by electron microscopy and iron-specific Prussian Blue staining. This is essential to ensure that the amount of IONPs internalized is sufficient to provide contrast by MRI. We were able ascertain that IONP-DHCA were taken up in large amounts by hMSCs by a colourimetric method. However, we found that the high amounts of internalized IONPs determined suggest some aggregates of IONP-DHCA can be taken up by hMSCs or bound to their surface. This is also supported by the Prussian Blue staining images obtained. As discussed, when quantifying the uptake of IONPs in cells, it is essential to determine whether these nanoparticles are internalized or remain bound to the cellular surface.

Also, an important aspect considered is their toxic effects on the cells. Standard colourimetric MTT and MTS assays were initially used to assess this; but these are not suitable for all IONP concentrations as we observed interference from the IONPs and the data obtained was no longer in the linear absorbance range for the highest concentrations of IONPs (500 and 1,000 µg Fe/ml). To overcome this, multiparametric high-content imaging was used to determine the impact of the IONPs on several factors such as cell viability, mitochondrial activity and cell morphology. No considerable toxic effects were noticed, although slight elongation of the cells could be observed. Furthermore, at 10 and 50 µg Fe/ml, an increase in ROS production was observed but could not be correlated to impaired mitochondria and was limited to these two IONP concentrations.

Finally, the potential of IONP-DHCA as MRI contrast agents was studied in vitro and in vivo. In solution at 7 T, the nanoparticles had the following relaxivity values: $r_1 = 0.78$ mM$^{-1}$s$^{-1}$ and $r_2 = 142.2$ mM$^{-1}$s$^{-1}$. The $r_2/r_1$ ratio of 182.3 confirms their potential as a T$_2$-weighted MRI contrast agent.

Results regarding the safety and properties of nanoparticles may differ between in vitro and in vivo experiments. After our in vitro studies of IONP-DHCA, their in vivo administration in Swiss female mice allowed us to confirm that they provide negative contrast by MRI for up to 2 wk post injection in the liver, and they did not induce any visible cytotoxic effects to the mice. These nanoparticles are safely eliminated by renal clearance and provide sufficient T$_2$ contrast which can be further optimized by their cell uptake, the latter being dose, incubation concentration or size dependent for example. We have carried out whole body imaging, and we only observed the contrast in the liver. These NPs can therefore be used to pre-label hMSCs in order to visualize this cell population by MRI in vivo.

Thus, our study provides new insights into determining nanostructures as bio-compatible and efficient MRI contrast agents to label and track stem cells in vivo. Moreover, the functionalization of IONPs with antibodies binding to specific cluster of differentiation molecules for example (e.g., CD90), and the limited phagocytic capacity of hMSCs in vivo would increase the specificity of the signal. This strategy could include the biofunctionalization of these IONPs towards biological molecules expressed in certain cellular states (for example Caspase 3 with apoptosis) in order to obtain trigger specific information at a cellular level.

hMSCs pre-labelled with IONPs could also be used to detect inflammatory processes as reported in the literature. In order to displace the surface ligand TREG. The ligand exchange reaction took place at room temperature during 48 h before undergoing dialysis (10 kDa molecular weight cut-off membrane) against distilled water. The water was changed 3 times daily during 5 d until a conductivity of 1 micro Siemens ($\mu$S) was measured using a SciQuip Pocket Salinity and conductivity meter (SciQuip Ltd, UK). The hydrodynamic diameter and surface zeta potential were determined in deionized ultrapure water (Milli-Q™ by Millipore) using the Malvern NanoZetaSizer (Laser

**Methods**

**Nanoparticle synthesis and characterization.** The IONPs were synthesized according to a procedure previously reported\(^{10}\). Briefly, 4 mmol of iron acetylacetonate Fe(acac)\(_3\) (Sigma Aldrich, UK) was dissolved in 20 ml triethylene glycol (TREG) (Sigma Aldrich, UK) and the mixture was transferred into an autoclave vessel. The reaction took place during 8 h at 250 °C before cooling down back to room temperature and the obtained black dispersion was cleaned with acetone by centrifugation at 8,500 rpm 3 times during 10 min. The nanoparticles were dispersed in distilled water and 3,4-DHCA (Sigma Aldrich, UK) was added in a ratio 2:1 to the IONPs in order to displace the surface ligand TREG. The ligand exchange reaction took place at room temperature during 48 h before undergoing dialysis (10 kDa molecular weight cut-off membrane) against distilled water. The water was changed 3 times daily during 5 d until a conductivity of 1 micro Siemens ($\mu$S) was measured using a SciQuip Pocket Salinity and conductivity meter (SciQuip Ltd, UK). The hydrodynamic diameter and surface zeta potential were determined in deionized ultrapure water (Milli-Q™ by Millipore) using the Malvern NanoZetaSizer.
were then post-fixed in a solution of 1% osmium tetroxide and 1.5% potassium ferrocyanide (1 h, 4 °C). Cells were rinsed with 0.1 M PBS, 1% tannic acid in 0.05 M PBS during 5 min, 0.1 M PBS during 5 min and then with 0.1 M PBS pH 7.3 for at least 24 h. The cells were then washed twice with 0.1 M PBS buffer during 5 min. Cells with cold sterile HBSS before adding a fixative solution of 2% paraformaldehyde (PFA) and 1.5% glutaraldehyde removed, and then the hMSCs were incubated for 10 min with 2% potassium ferrocyanide and 6% HCl in a volume ratio 1:1, until the appearance of blue colour. The cells were then rinsed with distilled water 3 times leaving the water on the cells for 5 min for each wash. Finally, cells were rinsed twice with HBSS to remove any excess HBSS to remove any free IONPs, before fixing with 4% PFA during 15 min at room temperature. The fixative was removed and the cells were rinsed again with cold sterile HBSS before adding a fixative solution of 2% paraformaldehyde (PFA) and 1.5% glutaraldehyde in 0.1 M PBS pH 7.3 for at least 24 h. The cells were then washed twice with 0.1 M PBS buffer during 5 min. Cells were then post-fixed in a solution of 1% osmium tetroxide and 1.5% potassium ferrocyanide (1 h, 4 °C). Cells were rinsed with 0.1 M PBS, 1% tannic acid in 0.05 M PBS during 5 min, 0.1 M PBS during 5 min and then with dH2O during 5 min. The cells were then dehydrated with increasing ethanol (25, 50, 70, 90 and 100%) each during 5 min. Cell layers were infiltrated with increasing embedding medium of epoxy resin (25, 50, 66%) in propylene and cured at 60 °C for 15 min at room temperature in the dark. The cells were then rinsed 3 times with distilled water 3 times leaving the water on the cells for 5 min for each wash. Finally, cells were rinsed twice with HBSS to get rid of any excess stain before being observed and captured using an Olympus BX51 light microscope.

Quantification of uptake of IONPs by hMSCs by a colourimetric method. This protocol was obtained from a method previously published25,35. This assay being based on absorbance measurements, we aimed to obtain sufficient signal with enough cells in order to differentiate it from background levels. hMSCs were seeded on a 24-well-plate (20,000 cells/well) and returned to culture overnight. Cell loading with nanoparticles dispersed in cMEM was carried out at a range of concentrations from 0 to 250 µg Fe/ml (V = 500 µl) during different periods of time (1 h, 4 h or 24 h). The media was then removed and the cells were rinsed again with cold sterile HBSS before adding a fixative solution of 2% paraformaldehyde (PFA) and 1.5% glutaraldehyde in 0.1 M PBS pH 7.3 for at least 24 h. The cells were then washed twice with 0.1 M PBS buffer during 5 min. Cells were then post-fixed in a solution of 1% osmium tetroxide and 1.5% potassium ferrocyanide (1 h, 4 °C). Cells were rinsed with 0.1 M PBS, 1% tannic acid in 0.05 M PBS during 5 min, 0.1 M PBS during 5 min and then with dH2O during 5 min. The cells were then dehydrated with increasing ethanol (25, 50, 70, 90 and 100%) each during 5 min. Cell layers were infiltrated with increasing embedding medium of epoxy resin (25, 50, 66%) in propylene oxide and transferred into polyethylene capsules. Fresh resin (100%) was added and allowed to harden at 60 °C during 24 h. The resin blocks obtained were sectioned and mounted onto copper TEM grids and examined under a JEOL 1010 TEM at 80kV.

Visualization of cellular uptake by TEM. For TEM imaging, cells were harvested by gentle trypsinisation and the cell number was determined with Trypan Blue and a haemocytometer. The cells were then seeded on 12 mm cover slips in 24 well plates and allowed to adhere overnight. The next day, they were rinsed with sterile Hank's balanced salt solution (HBSS) twice, before incubating them with IONPs dispersed in cMEM, at a concentration previously deemed safe and at which their internalization was observed by TEM (50 µg Fe/ml, V = 500 µl) during different periods of time (1 h, 4 h or 24 h). The media was then removed and the cells were rinsed again with cold sterile HBSS before adding a fixative solution of 2% paraformaldehyde (PFA) and 1.5% glutaraldehyde in 0.1 M PBS pH 7.3 for at least 24 h. The cells were then washed twice with 0.1 M PBS buffer during 5 min. Cells were then post-fixed in a solution of 1% osmium tetroxide and 1.5% potassium ferrocyanide (1 h, 4 °C). Cells were rinsed with 0.1 M PBS, 1% tannic acid in 0.05 M PBS during 5 min, 0.1 M PBS during 5 min and then with dH2O during 5 min. The cells were then dehydrated with increasing ethanol (25, 50, 70, 90 and 100%) each during 5 min. Cell layers were infiltrated with increasing embedding medium of epoxy resin (25, 50, 66%) in propylene oxide and transferred into polyethylene capsules. Fresh resin (100%) was added and allowed to harden at 60 °C during 24 h. The resin blocks obtained were sectioned and mounted onto copper TEM grids and examined under a JEOL 1010 TEM at 80kV.

Visualization of cellular uptake of IONPs by Prussian Blue staining. hMSCs were seeded on a 96-well-plate (1,000 cells/well) and returned to culture overnight. The visualization of cellular uptake of IONPs by Prussian Blue staining being an image based assay, we aimed for the cells to remain in a monolayer for efficient staining and visualization. Cell loading with nanoparticles dispersed in cMEM was carried out at a range of concentrations from 0 to 250 µg Fe per ml (V = 100 µl), over a period of 24 h. Cells were then rinsed 3 times with HBSS to remove any free IONPs, before fixing with 4% PFA during 15 min at room temperature. The fixative was removed, and then the hMSCs were incubated for 10 min with 2% potassium ferrocyanide and 6% HCl in a volume ratio 1:1, until the appearance of blue colour. The cells were then rinsed with distilled water 3 times leaving the water on the cells for 5 min for each wash. Finally, cells were rinsed twice with HBSS to get rid of any excess stain before being observed and captured using an Olympus BX51 light microscope.

Quantification of uptake of IONPs by hMSCs by a colourimetric method. This protocol was obtained from a method previously published18,35. This assay being based on absorbance measurements, we aimed to obtain sufficient signal with enough cells in order to differentiate it from background levels. hMSCs were seeded on a 24-well-plate (20,000 cells/well) and returned to culture overnight. Cell loading with nanoparticles dispersed in cMEM was carried out at concentrations 0, 10, 100, and 150 µg Fe per ml (V = 500 µl), over a period of 24 h. Cells were then rinsed 3 times with HBSS to remove any free iron oxide. A standard curve ranging from 0 to 100 µg Fe3+ per ml was constructed. After rinsing with HBSS, HCl (9.6 µl, 37%) and HNO3 (3.2 µl, 65%) were added to each well, and the volume (28.8 µl) was adjusted with 2-[tris(hydroxymethyl)-methylamino]-ethanesulfonic acid (TES) buffer. Solubilization was enhanced by placing the plate on a shaker at room temperature for 2 h. After shaking, distilled water (52 µl) was added to each well. Then, both the samples and standards were mixed with a 5:1 solution (96 µl) of Tiron (16 µl, 0.25 M) and KOH (80 µl, 4 M), followed immediately by the addition of PBS (160 µl, 0.2 M, pH 9.5). After 15 min, A480nm was measured.

Apoptosis detection by flow cytometry. Cell viability was initially assessed using flow cytometry (MACSQuant Analyser, Miltenyi Biotec, Bergisch Gladbach, Germany) with FITC (fluorescein isothiocyanate) - Annexin V and 7-AAD - Annexin V apoptosis detection kits (BD Biosciences, United Kingdom)35. Cells cultured and adherent to tissue culture flasks were trypsinized, counted by Trypan Blue staining and haemocytometer, and resuspended in 1x binding buffer at 10⁶ cells/ml. The 1x buffer is obtained from dilution in water of a 10× concentrate solution. The latter is composed of 0.2 µm sterile filtered 0.1 M HEPES (pH 7.4), 1.4 M NaCl, and 25 mM CaCl₂ solution. The cell suspension (100 µl, 10⁵ cells) is transferred into a flow cytometry tube and 5 µl of FITC Annexin V and 5 µl of propidium iodide (PI) or 7-AAD is added. The tube is mixed gently and incubated for 15 min at room temperature in the dark. The 1x binding buffer (400 µl) is added to each tube and the cells are maintained on ice and analysed by flow cytometry within 1 h.

To overcome the large number of false positives obtained by Annexin V viability assay by flow cytometry, we aimed to use another method to determine the viability of cells after incubation with different incubation concentrations of IONPs. The far-red fluorescence dye used was DRAQ7 which binds and stains DNA in dead cells only. In comparison to PI, the use of DRAQ7 is advantageous as it does not absorb in the UV range, and is non-toxic to cells so can be used in long term culture of cells for the study of viability of cells by flow cytometry, live imaging or high content screening.

Bone marrow derived human mesenchymal stem cells (hMSCs) were purchased from Thermo Fisher, UK. hMSCs were cultured in alpha minimum essential media eagle (αMEM) supplemented with 10% foetal bovine serum (FBS). This is defined as the complete medium cMEM. Both reagents were purchased from Life Technologies, UK and used without further modification. All cells were cultured at 37 °C in a humidified atmosphere containing 5% CO₂.

Bone marrow derived human mesenchymal stem cells (hMSCs) were purchased from Thermo Fisher, UK. hMSCs were cultured in alpha minimum essential media eagle (αMEM) supplemented with 10% foetal bovine serum (FBS). This is defined as the complete medium cMEM. Both reagents were purchased from Life Technologies, UK and used without further modification. All cells were cultured at 37 °C in a humidified atmosphere containing 5% CO₂.
Cells cultured and adherent to tissue culture flasks were trypsinized, counted by Trypan Blue staining and haemacytometer, and resuspended in HBSS at 10^6 cells/ml. An aliquot of the cell solution is transferred into a flow cytometry tube and DRAQ7 is added to a final concentration of 3 μM (1 μl per 100 μl media). The tube is gently mixed and incubated for 10 min at room temperature in the dark. The cells are maintained on ice and analysed by flow cytometry within 1 h.

**High-content imaging.** The high-content (HC) imaging based methodology used here has been demonstrated in various publications to be an effective means for determining interactions between cells and NPs.\(^{55,56}\) This technique allows the generation of large datasets comprising of thousands of cells per sample per replicate. Coupled with a sophisticated automated image analysis software, multiple parameters can be studied in a population of cells or at a single cell level.

**Cell viability, oxidative stress and mitochondrial health.** hMSCs were seeded in 96-well plates (1,000 cells/well) and were allowed to adhere in a humidified atmosphere. The media was then removed and the cells were incubated with increasing concentrations of IONPs (0, 5, 10, 50, 100, 150, 200 and 250 μg Fe per ml, \(V = 100 μl\)) dispersed in cMEM during 24 h. After cell labelling, the cells were washed three times with HBSS to remove any remaining free IONPs, after which the cells were incubated with 10 μM 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H₂DCFDA; Molecular Probes, Invitrogen, Belgium) containing media for 30 min at 37 °C. The dye was then removed and cells were washed with HBSS after which they were exposed to 200 nM MitoTracker Red CMXRos cell containing media and incubated for 30 min at room temperature (RT) in the dark. Cells were then washed and incubated with DRAQ7 3 μM cell media containing 3 μM DRAQ7 during 10 min at RT in the dark. The cells were then fixed with 4% PFA for 15 min. The fixative was washed away, after which the cells were rinsed once with HBSS. The nucleus was then stained with Hoechst 33342 (Thermo Fisher Scientific, Belgium) during 10 min at RT in the dark. The cells were then rinsed with HBSS and the plates were analysed with the InCell analyser 2000, where bright field and fluorescence-based images for the following channels were acquired: DAPI/DAPI (Hoechst nuclear counterstain), FITC/FITC (DCFDA ROS probe),DsRed/DsRed (MitoTracker Red CMXRos) and Cy5/Cy5 (DRAQ7) for a minimum of 500 cells per condition. Data analysis was performed on the InCell Developer software (GE Healthcare Life Sciences, Belgium) using in-house developed protocols. Cell numbers were first determined by counting the number of nuclei. Cell nuclei were segmented based on the DAPI/DAPI channel (Hoechst stain). The level of oxidative stress was based on the FITC/FITC channel. Cell cytoplasm was segmented based on the FITC/FITC channel (autofluorescence), using the DAPI/DAPI channel as seed images. Then, the average intensity of the FITC/FITC channel was measured for every individual cell and normalized to the intensity level of untreated control cells (100%). Mitochondrial health was evaluated similarly using the DsRed/DsRed channel, where the intensity of the MitoTracker Red CMXRos probe depends on the mitochondrial membrane potential and thus is lost in non-functional mitochondria. All red spots localized within a single cytoplasm (based on the FITC/FITC channel) were counted and the average intensity of all mitochondria per cell was then measured. This value was then normalized to the intensity level of untreated control cells (100%). Viability was based on the Cy5/Cy5 channel as DRAQ7 emits at wavelengths above 650 nm. Dead cells were defined as DRAQ7 signal that had an intensity of 3-fold higher than background levels and that co-localized with cell nuclei of the DAPI/DAPI channel. The relative number of dead cells was then determined based on the number of red-stained cell nuclei over the total number of nuclei and normalized to the number of dead cells found for untreated control cells (100%).

**Cell morphology.** After cell exposure to the IONPs, cells were washed three times with HBSS and fixed for 15 min at RT with 4% PFA. The fixative was removed, cells were washed once with HBSS after which they were permeabilized with Triton X-100 (1%) for 10 min at RT. Cells were then blocked with 10% serum-containing HBSS for 30 min at RT following by the addition of 200 μl (1/40 dilution) Acti-Stain 488 (Tebu-Bio, Belgium). Cells were incubated for 30 min at room temperature in the dark. The dye was removed, cells were washed with HBSS and the nucleus was stained with Hoechst 33342 (Thermo Fisher Scientific, Belgium) during 10 min at RT in the dark. The cells were then rinsed before 200 μl fresh HBSS was added to each well and plates were analysed on the InCell analyser 2000, where phase contrast and fluorescence-based images for the DAPI/DAPI and FITC/FITC channels were collected at minimum of 500 cells/condition. Data analysis was performed on the InCell Developer software (GE Healthcare Life Sciences, Belgium) using in-house developed protocols. First, cell nuclei were segmented based on the blue channel (Hoechst stain). Using the green channel, cells were then segmented, where any holes in the cells were filled up and included any cells on the border of the field of view were excluded from the analysis. The segmentation was based on the blue channel as seed channel for the nucleus. The total area of every individual cell was then determined. For determination of skewness (\(i.e.\) the shape of the cells, being the ratio of cell width over cell length), the same approach was used. After segmentation, the “form factor” was calculated which provides a ratio of the cell width over cell length. This value will always be between 0 (straight line) and 1 (perfect circle).

**Nanoparticles relaxivity in solution.** Characterization was performed with MRI. The longitudinal and transverse relaxivities (\(r_1\) and \(r_2\) respectively) were measured on a 7 T Bruker Biospec using a quadrature 300 MHz, 30 mm mouse coil (Animal Imaging Research, LLC, Holden, Massachusetts, USA). Additional information with details of all imaging acquisition parameters used can be found in the Supplementary Information.

**In vitro MR image acquisition.** hMSCs were seeded on a 24-well-plate (10,000 cells/well) and returned to culture overnight. A concentration of nanoparticles dispersed in cMEM was carried out at a range of concentrations from 0, 1, 5 and 10 μg Fe per ml (\(V = 500 μl\)) over a period of 24 h. Cells were then rinsed 3 times with HBSS to remove any free IONPs, before fixing with 4% PFA during 15 min at room temperature. The fixative was removed, and then the hMSCs were stored at 4 °C until use.
Cells were detached from the multiwell plate using cell scrapers (VWR®, United Kingdom) and counted on a haemocytometer. Ten thousand cells were retained for each sample, which were aliquoted into a 0.25 ml Eppendorf microfuge tube containing 1.5% agar (Sigma Aldrich, Belgium) in PBS. Samples were mounted onto a phatom holder and stored at 4°C until ready for MRI scanning. All MRI images were acquired with a 9.4 T Biospec small animal MR scanner (Bruker Biospin, Ettlingen, Germany, horizontal magnet) equipped with actively shielded gradients of 600 mT m⁻¹ and using a transmit/receive 72 mm quadrature resonator (Rapid Biomedical, Rimpar, Germany). Additional information with details of all imaging acquisition parameters used can be found in the Supplementary Information (Supplementary Figures S4 to S7).

**In vivo magnetic resonance imaging.** All experiments involving animals were approved by KU Leuven’s Institutional Animal Care and Use Committee (IACUC; Approval No. P259/2015), in accordance with the principles and procedures outlined in national and European regulations. All MR images were acquired with the 9.4 T Biospec small animal MR scanner (Bruker Biospin, Ettlingen, Germany, horizontal magnet) described in the previous paragraph using the same set up. Prior to scanning, mice were anaesthetized with 2% isoflurane for induction and 1.5% isoflurane for maintenance (carrier gas 100% O₂). Three female Swiss mice received PBS only (control), while 3 others received IONPs dispersed in PBS through intravenous injection of 200 µl of 300 µg Fe/ml (42.3 µmol Fe/kg) diluted in PBS. Animals were scanned on the day of the injection, then once a week for the next 2 wk. The *in vivo* MR imaging protocol used for liver imaging consisted of 2D T₁-weighted fast low angle shot (FLASH) and a multi-slice-multi-echo (MSME) sequence. The FLASH sequence (TE = 2.3 ms, TR = 203 ms, flip angle = 30 degrees, FOV = 30 × 30 mm, matrix = 256 × 256, 9 contiguous axial slices of 1 mm thickness acquired in an interleaved scheme, averages = 10) was used to determine the decrease in the signal intensity (SI) post injection. T₁ values (maps) were determined from the MSME experiments and were used for a semi-quantitative analysis. Parameters for the MSME sequences were TR of at least 3,000 ms, echo spacing of 7 ms, with 234 mm² in plane resolution with six slices of thickness 1 mm each. In order to evaluate particle distribution post intravenous administration in other organs, mice were subjected to whole body scan with a Rapid Acquisition with Relaxation Enhancement (RARE) sequence (TE = 15.88 ms, TR = 6,000 ms, spatial resolution of 200 mm², slice thickness = 0.5 mm with 50 slices) was performed. Mice were monitored using a monitoring and gating model (type 1030) from Small Animal Instruments Inc. (SAI, Stony Brook, NY, USA) for controlling physiological parameters. Temperature and respiration were monitored throughout the experiment and maintained at 37°C and 40 to 100 breaths min⁻¹.

**References**

52. Sridhar and C. Gharagouzloo thank AOARD grant (FA2386-14-1-0025) and IWT-SBO NanoCoMIT (140061). S.J. Soenen and B.B. Manshian thank the AOARD grant (FA2386-14-1-0025) and IWT-SBO NanoCoMIT (140061). S.J. Soenen and B.B. Manshian thank the AOARD grant (FA2386-14-1-0025) and IWT-SBO NanoCoMIT (140061).
characterization of IONPs. B.B.M., S.J.S., U.H. and W.G. contributed to the high content analysis, in vitro phantoms and in vivo MRI at 9.4 T. In vitro MRI experiments at 7 T were performed by C.G and S.S.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08092-w

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017
Study of specific loss power of magnetic fluids with various viscosities

Article in Journal of Magnetism and Magnetic Materials · December 2016
DOI: 10.1016/j.jmmm.2016.12.008

7 authors, including:

- **P.H. Nam**
  Vietnam Academy of Science and Technology
  13 PUBLICATIONS 93 CITATIONS
  [SEE PROFILE]

- **D.H. Manh**
  Vietnam Academy of Science and Technology
  80 PUBLICATIONS 489 CITATIONS
  [SEE PROFILE]

- **In-Ja Lee**
  Dongguk University-Gyeongju
  49 PUBLICATIONS 323 CITATIONS
  [SEE PROFILE]

- **N. X. Phuc**
  Vietnam Academy of Science and Technology
  137 PUBLICATIONS 1,269 CITATIONS
  [SEE PROFILE]

All content following this page was uploaded by Phong Pham Thanh on 15 December 2016.
The user has requested enhancement of the downloaded file.