AWARD NUMBER: W81XWH-12-1-0441

TITLE: Pathogen-Reduced, Plasmalyte-Extended Stored Platelets

PRINCIPAL INVESTIGATOR: Sherrill J. Slichter, MD

CONTRACTING ORGANIZATION: Bloodworks Northwest
 Seattle, WA 98104

REPORT DATE: OCTOBER 2017

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.
This grant pertains to finding novel approaches for storage of platelets for transfusion. Our project proposes to determine the efficacy of using a pathogen inactivation technique (Mirasol) coupled with a platelet additive solution (PAS) to extend the life of stored platelets. Our project also aims to determine how long acceptable platelet viability can be maintained in platelets stored at 4°C.
Table of Contents

1. Introduction .. 7
2. Keywords ... 7
3. Accomplishments .. 7
4. Impact.. 8
5. Changes/Problems... 8
6. Products ... 10
7. Participants & Other Collaborating Organizations ... 10
8. References ... 11
9. Appendices.. 11
 • Poster - 2017 Military Health System Research Symposium .. 13
 • Statement of Work - Novel approaches to storage of platelets for transfusion 15
 • Protocol - Cold Apheresis Platelets in Plasma (CAPP) ... 19
 • Quad Chart ... 33
INTRODUCTION: The purpose of this project is to find better ways to store platelets for patients that need platelet transfusions. A deeper mechanistic understanding of the effects of collection and storage on platelet function could greatly aid in improving the availability and efficacy of platelets both on the battlefield and in the civilian transfusion setting. In this research study, we are interested in evaluating the novel combinations of collection, storage and pathogen reduction approaches on the structural and functional properties of platelets and on platelet viability and function following transfusion.

KEY WORDS: 4°C storage, bleeding, cold storage, extended storage, hemorrhage, hemostasis, Isoplate, InterSol, pathogen inactivation, pathogen reduction, pathogen reduction technology, PRT, platelet additive solution, PAS, platelet recovery and survival, platelet storage, platelet storage solution, platelets, refrigerated storage, thrombocytopenia, transfusion, whole blood

ACCOMPLISHMENTS: The following major goals are described in the July 2, 2014 revised statement of work, Novel Approaches to Storage of Platelets for Transfusion.

1. Evaluation of structural and functional changes to platelets during enhanced collection, storage and pathogen reduction (enhanced platelets).
2. Evaluation of enhanced platelets in animal models of trauma and hemorrhage.
3. Evaluate enhanced autologous platelets in normal subjects.
4. Evaluation of enhanced platelet recovery and survival, bleeding time and hemostatic activity in thrombocytopenic patients with and without acute hemorrhage.

An evaluation of changes in the structural and functional properties of platelets stored as whole blood under refrigeration [Assessment of Whole Blood Cold Stored Platelets (Brrr Study)] has been completed. Results of this trial were submitted previously in a document entitled, ‘Final Report - Storage of Platelets in Whole Blood at 4°C’.

From January 2016 to April 2017 we evaluated apheresis platelets stored at 4°C either in a platelet additive solution, such as InterSol or Isoplate, or stored in plasma. The protocol, entitled Cold Apheresis Platelets in Isoplate (CAPI), called for an apheresis platelet unit to be collected from a healthy subject and divided into two units. One half of the split unit was stored in plasma at 4°C for 3 days (control), the other half was stored at 4°C in a PAS/plasma mixture or in plasma alone (test) for 10 or 15 days. Subjects received radiolabeled platelet infusions on Day 3 (control) and Day 10 or 15 (test) to evaluate platelet recovery and survival. In addition to the in vivo platelet recovery and survival assays a number in vitro metabolic and functional platelet assays are performed on Day 3 and at the end of storage.
In April 2017 we revised our protocol. We changed our control comparator from a 3 day cold stored platelet unit to a fresh autologous platelet control comparator. Both the stored and the fresh platelets were administered simultaneously using two different radioisotopes (≤15 μCi of indium for the stored and ≤20 μCi of chromium for the fresh). We used plasma, not PAS, as the storage solution. The study was re-titled Cold Apheresis Platelets in Plasma (CAPP). We soon discovered that the stored/indium signal was swamped by the fresh/chromium signal when calculations were performed in accordance with the 2005 Biomedical Excellence for Safer Transfusion (BEST) method. This approach yielded unusable data outputs when comparing products of very different signal strengths.

In May 2017 we modified the protocol to replace the chromium label with a second indium label of fresh platelets administered a week after the stored radiolabeled platelets. We are currently evaluating in vivo platelet recovery and survival assays of apheresis platelets stored for 5, 10 and 15 days at 4°C in comparison to fresh platelets. Additionally, we are comparing in vitro metabolic and functional platelet assays on the day of collection to those at the end of storage. As of 14-SEP-2017, only three of these datasets are complete so no conclusions can be drawn at this point.

CAPI study

The poster presented to 2017 Military Health System Research Symposium, see appendix, gives the results of the radiolabeled autologous platelet recovery and survival data for our currently-completed studies.

We plan to evaluate the impact of platelet additive solution in comparison to fresh (control) platelets in the next reporting period.

We have nothing to report related to training and professional development or disseminating results to communities of interest.

IMPACT: A deeper understanding of the effects of cold storage on platelet function could greatly aid in improving the availability of platelets on the battlefield and in the civilian transfusion setting. We have nothing to report related to impact on other disciplines, impact on technology transfer or impact on society beyond science and technology.

CHANGES/PROBLEMS: Due to instructions by Grants Officer’s Representative work on pathogen-reduced, platelet additive solution, extended stored platelets was suspended and efforts were redirected towards evaluation of cold stored apheresis platelets.

In October 2016 the IRB approved our modification to allow us to agitate or not agitate control or test platelets. Also approved was recruitment language for Bloodworks Northwest intranet and internet.

In November 2016 we received Notice of Minor Non-Compliance after an audit by the Compliance Administrator, Regulatory Affairs of the University of Washington. We submitted and received approval for the following modifications in accordance with their recommendations:
A question was added to the eligibility screening questionnaire: “What gender were you at birth?” The platelet eligibility requirement was decreased from ≥225 X10^3/µL to ≥150 X10^3. The hematocrit requirement was changed from 38% for both genders to ≥38% for females, ≥39% for males, but not >55%. The weight requirement was decreased to 110 lbs from 225 lbs. An exclusion criteria was added to exclude subjects whose height, weight, hematocrit and platelet count will not allow us to achieve a platelet yield of 6.3 X 10^11 as calculated by the Trima Accel (apheresis machine) software algorithm. A clarification was made to the protocol indicating that the eligibility CBC will be run in duplicate from a single sample and the results averaged. Results > 10% difference from each other will be repeated. The protocol was modified to show that vital signs (temperature, pulse and blood pressure), height and weight will be assessed and recorded at the time of infusion. A check box was added to the Pre - Infusion Health Questionnaire to indicate Positive/Negative/Not Applicable for the pre-infusion pregnancy test.

In November 2016 the IRB renewed the approval of our study. Approval dates are from 16 December 2016 to 15 December 2017. The radiation safety approval was also renewed.

In December 2016 annual reports were submitted to both the Food and Drug Administration (FDA) and the Human Research Protection Office (HRPO). In January we received Continuing Review Acceptance from HRPO.

In April 2017, we received approval for the protocol title change; discontinued use of the 3 day comparator; fresh autologous platelet control comparator used as the control; two different radioisotopes (≤15 µCi of indium and ≤20 µCi of chromium); single unit apheresis (3.0 X 10^11/unit) instead of double; plasma as the storage solution; platelet unit stored for 3 - 20 days; fewer study visits and blood draws in total; invivo testing on day of collection; compensation reduced from $1000 to $700; total amount of whole blood collected reduced by ~20 mL; apheresis collection volume decreased to ~ 350 mL; 45 instead of 40 complete data sets.

In April 2017 the FDA gave its approval to proceed with cold comparator modification.

In June 2017, we received IRB and radiation safety approval to replace the chromium label with a second indium label administered a week after the first indium-111 label. There were 17 instead of 12 study visits and more blood draws added. Study subject compensation increased to $900. The FDA was notified of this change in May 2017.

In July 2017 we received FDA email notification/advice from Kelly Abraham, MPH, CPH, U.S. Public Health Service, that “use of single label (In-111) method with one week separation for in vivo radiolabeling study for comparison of cold stored and fresh platelets are acceptable” for research purposes only and is not acceptable for ‘acceptance criterial of in vivo recovery/survival of platelet products.’ We are not doing licensing studies.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS: Terumo Corporation is a subcontractor on this grant and will be submitting a separate annual report.

Below is a list of individual who have worked more than one person hour on this grant over this reporting period.

<table>
<thead>
<tr>
<th>Name</th>
<th>Project Role</th>
<th>Researcher Identifier (e.g. ORCID ID)</th>
<th>Nearest person month worked</th>
<th>Contribution to Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherrill J. Slichter, MD</td>
<td>Principal Investigator</td>
<td>N/A</td>
<td>1</td>
<td>Design, oversight and conduct of research study.</td>
</tr>
<tr>
<td>Shawn Bailey, BS</td>
<td>Lab Technologist</td>
<td>N/A</td>
<td>2</td>
<td>Radiolabeling, laboratory testing, unit processing, data capture, data entry.</td>
</tr>
<tr>
<td>Todd Christoffel, BS, MT</td>
<td>Lab Technologist</td>
<td>N/A</td>
<td>2</td>
<td>Laboratory testing, unit processing, data capture, data entry.</td>
</tr>
<tr>
<td>Irena Gettinger, BA</td>
<td>Lab Technologist</td>
<td>N/A</td>
<td>2</td>
<td>Radiolabeling, laboratory testing, unit processing, data capture, data entry.</td>
</tr>
<tr>
<td>Esther Pellham, BS</td>
<td>Lab Technologist</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nearest person month worked: 2
Contribution to Project: Radiolabeling, laboratory testing, unit processing, data capture, data entry.

REFERENCES: None

APPENDICES:
- Poster - 2017 Military Health System Research Symposium
- Statement of Work - Novel approaches to storage of platelets for transfusion
- Protocol - Cold Apheresis Platelets in Plasma (CAPP)
In Vivo Viability of Extended 10-Day 4°C Stored Autologous Platelets

M. Stolla, L. Fitzpatrick, I. Gettering, S. Bailey, E. Pellham, T. Christoffel, S. Slichter

Bloodworks Northwest, Platelet Transfusion Research Laboratory, Seattle, WA, Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, WA

Background: The limited 5-day storage time of room temperature (22°C) stored platelets severely limits platelet availability at far-forward combat medical facilities and rural civilian hospitals. Prior studies comparing 3-day 22°C versus 4°C stored platelets showed comparable post-transfusion platelet recoveries of 40 ± 3% and 40 ± 5%, respectively, but survivals were significantly different: 7.9 ± 0.2 days and 1.0 ± 0.1 days (p<0.01). However, for the treatment of actively bleeding patients requiring immediate hemostasis, platelet survivals of 1 day or less may be adequate. Methods: Nineteen normal subjects had a 2-unit apheresis procedure. One unit was stored at 4°C in plasma for the FDA approved 3 days (“control unit”). The other “test” unit was stored for 10 days in plasma (n=6) or it was hyperconcentrated during collection and re-suspended in 35% plasma with either Isosol (n=5) or Isolate (n=3) at 65°C. An additional group was stored for 15 days in plasma (n=5). At the beginning and end of non-agitated storage, samples were drawn for in vitro parameters. All the end of non-agitated storage both units were re-dialyzed with 111 Indium and infused into their respective donors. Pre- and post-infusion samples were drawn to determine platelet recoveries and survivals.

Results: Platelet counts of the “control” units averaged 3.59 ± 0.31 x 10^10/L pre-storage, and 3.57 ± 0.26 x 10^10/L post-storage (98 ± 3% of pre-storage units). For the “test” units, plasma, Intersol, and Isolate, and 15 day plasma units, post-storage platelet counts averaged 2.89 ± 0.30 x 10^10/L, 2.82 ± 0.35 x 10^10/L, 2.52 ± 1.28 x 10^10/L, and 2.42 ± 0.36 x 10^10/L, respectively (80 ± 7%, 107 ± 12%, 90 ± 30%, and 72 ± 14% of pre-storage values). Most in vitro parameters did not differ significantly between 10 days stored plasma, Intersol, and Isolate, except for glucose and lactate, which may be due to plasma removal. 15 day plasma storage led to significantly more microparticle formation. For the “control” units, post-storage recoveries averaged 43 ± 11% and survivals 2 ± 0.4 days. For the “test” 10 day plasma, Intersol, Isolate, and 15 day plasma units, post-storage recoveries averaged 24 ± 8%, 18 ± 4%, and 9 ± 2%, and 11 ± 3% respectively (55 ± 11%, 43 ± 6%, 21 ± 8%, and 30 ± 3% of the same subject’s 3-day data). As a percentage of their 3-day recoveries, both the plasma and Intersol units were significantly greater than the Isolate units (p<0.001 and p<0.005, respectively), but there were no differences between the plasma and Isolate groups. Post-transfusion survivals for the 10-day platelets stored in plasma, Intersol, Isolate, and 15 day stored in plasma averaged 1.2 ± 0.3 days, 1.1 ± 0.3 days, 0.9 ± 0.8 days, and 0.7 ± 0.2 days respectively (59 ± 12%, 56 ± 8%, 48 ± 42%, and 36 ± 7% of the same subject's 3-day data). There were no significant differences in platelet survivals. Platelets stored for 10 days showed the ability to respond to agonists with integrin activation, which required active inside out signaling and integrin conformational change, indicating that they could contribute to hemostasis in vivo immediately upon transfusion.

Conclusions:
- Storage in Intersol led to a significantly higher platelet yield after 10 day storage compared with plasma.
- Most in vitro platelet activation parameters did not differ significantly between 100°C plasma, Intersol, and Isolate. As expected, glucose and lactate were significantly lower in Intersol and Isolate because of plasma removal.
- Post-storage recoveries for platelets stored in plasma or Intersol were significantly greater than for platelets stored in Isolate or stored for 15 days in plasma.
- Platelets, stored for 10 days at 4°C in plasma respond to agonists with inside out signaling and subsequent integrin activation, indicating that they could participate immediately in hemostatic processes.
- Platelet storage for 10 days at 4°C in either plasma or Intersol could be used to expand the available supply of platelets to treat bleeding patients.

p<0.01, *p<0.001, ns=not significant.

The authors have no conflict of interest to disclose.
APPENDIX A
REVISED STATEMENT OF WORK

Title: Novel approaches to storage of platelets for transfusion.

Background: Platelets are transfused to prevent bleeding and induce hemostasis, and can thus be critical in saving lives following trauma. Currently, platelets isolated from volunteers are stored at room temperature with gentle agitation for up to 5 days before transfusion. This short shelf-life severely compromises platelet inventories and creates chronic shortages for two important reasons: (1) platelets age during this period, and are functionally not as desirable as fresh platelets; and (2) storage at room temperature increases the risk of bacterial contamination. There is an urgent need to develop novel methods of storing platelets to minimize or even eliminate these issues. This need is particularly acute in the deployed military setting where platelet products are in especially short supply and are essentially unavailable far-forward, near the point of injury where they might be of greatest utility.

It is possible that manipulation of several collection and storage parameters, such as choice of apheresis systems, storage medium and temperature, and implementation of pathogen reduction technologies may improve platelet shelf life, safety and effectiveness. It is well known that platelets are sensitive to physical stimuli such as shear and contact with artificial surfaces, which may be activating and cause premature release of hemostatic and inflammatory mediators prior to or during storage. Selection of collection systems that minimize physical damage to platelets, in conjunction with storage optimization, could significantly enhance platelet product quality. Similarly, the current common practice of storing platelets in citrated plasma at room temperature may lead to significant product degradation due to the activity of endogenous proteases or other mechanisms. Use of platelet additive solutions (PAS), might reduce platelet stress. Alternatively, storage of platelets within whole blood under refrigeration may provide other factors that maintain important aspects of platelet function that need to be evaluated, as a potentially preferred product for battlefield polytrauma. This was once standard-of-care in transfusion medicine, but was abandoned once it was shown that refrigeration led to accelerated *in vivo* platelet clearance over about 48 hours rather than over one week. While not conducive to maintaining circulating platelet counts in thrombocytopenic cancer patients, this strategy might provide adequate platelet hemostatic capacity to bleeding trauma patients and improve platelet availability for such patients. This possibility has been inadequately evaluated, particularly in clinical studies. Finally, addition of a pathogen reduction technology to some combination of the preceding approaches may yield further benefit by impeding bacterial growth, which is the principal lethal transfusion risk associated with platelet transfusion. Pathogen reduction would have the greatest impact in resource-constrained settings such as the deployed military environment or the
developing world, where full transfusion transmitted disease testing is unavailable.

A deeper mechanistic understanding of the effects of collection and storage on platelet function could greatly aid in improving the availability and efficacy of platelets both on the battlefield and in the civilian transfusion setting. In this research proposal we are interested in evaluating the effect of novel combinations of collection, storage and pathogen reduction approaches on the structural and functional properties of platelets and on the functional consequences during transfusion.

We hypothesize that the “collection of platelets in a manner that minimizes physical damage combined with an alternative storage medium and/or temperature and pathogen reduction technology will improve platelet shelf life, safety and function.” We propose the following Specific Aims to test this hypothesis.

Aim 1. Evaluation of structural and functional changes to platelets during enhanced collection, storage and pathogen reduction (enhanced platelets)

We will evaluate changes in the structural and functional properties of platelets including metabolism, protein and microRNA expression, shape changes, cytoskeletal rearrangement, membrane fluidity, receptor expression and distribution, microparticle formation, aggregation in response to agonists, whole blood clotting function, adhesion and aggregation under high shear conditions.

Aim 2. Evaluation of enhanced platelets in animal models of trauma and hemorrhage

We will evaluate the hemostatic efficacy and inflammatory characteristics of enhanced platelets and these observations will be correlated with *in vitro* findings from Aim 1. Enhanced platelets will be optimized for collection methods, storage mediums (plasma, PAS etc.), Temperature (refrigerated, room temperature, temperature cycling etc.)and exposure to pathogen reduction technology.

Aim 3. Evaluate enhanced autologous platelets in normal subjects

As the first step in the in vivo evaluation of human platelets, autologous platelets will be obtained from whole blood or apheresis procedures. The whole blood or apheresis platelets will have been subjected to various storage conditions with or without pathogen reduction. The efficacy of the platelets obtained from these products will be assessed by determining the recovery and survival of the subjects’ autologous radiolabeled platelets following re-infusion. The results of these studies will be correlated with the studies performed in Aims 1 and 2.
Aim 4. Evaluation of enhanced platelet recovery and survival, bleeding time and hemostatic activity in thrombocytopenic patients with and without acute hemorrhage.

We will evaluate the shelf life, safety, and efficacy of enhanced platelets in patients and correlate these findings with observations from Aims 1, 2, and 3 in order to optimize platelet product collection and storage conditions.

We expect our results to generate important information on how changes in platelet collection, storage medium and temperature, and exposure to pathogen reduction technologies affect stored platelet structure and function, as well as shelf life and *in vivo* efficacy.

Our collaborators at the Puget Sound Blood Center, led by Dr. Sherrill J. Slichter, have extensive experience in studying platelet biology and transfusion medicine. Dr. Slichter's laboratory and clinical study group has made a number of the seminal observations on the effectiveness of platelet transfusion strategies.

A CRADA will cover collaborative research between the Puget Sound Blood Center and the USAISR Coagulation and Blood Research Task Area. This collaborative effort is envisioned to lead to development of new platelet storage techniques. Joint authorship in publications and inventors rights will be shared by both parties.

Collaboration:

USAISR agrees to:

1. evaluate changes in the structural and functional properties of platelets following collection, storage and pathogen reduction approaches that incorporate a number of combinations of currently available technologies, or technologies in advanced development (enhanced platelets).

2. evaluate the hemostatic efficacy and inflammatory characteristics of enhanced platelets in animal models of trauma and hemorrhage, and these observations will be correlated with *in vitro* findings.

3. evaluate the shelf life, safety, and efficacy of enhanced platelets in thrombocytopenic patients with acute hemorrhage and correlate these findings with observations from Aims 1 and 2 in order to optimize platelet product collection and storage conditions.

4. engage in analysis of data and validation of findings related to changes in platelet structure, function, and viability following enhanced collection, storage and pathogen reduction.
5. write manuscripts and scientific reports, submit invention disclosures and patents.

Puget Sound Blood Center agrees to:

1. identify candidate platelet collection, storage and pathogen reduction approaches to test in model in vitro and in vivo systems with the goal of improving platelet storage life, safety and efficacy. As needed, transfer candidate technologies to USAISR for in vitro and in vivo testing as described above.

2. conduct in vitro and in vivo platelet product testing as described above.

3. conduct clinical studies of enhanced platelets such as recovery and survival experiments in normal volunteers and thrombocytopenic patients. In addition, PSBC will perform bleeding time assays and trials of hemostatic efficacy studies in thrombocytopenic patients with and without acute hemorrhage. The first collection/storage conditions to be evaluated will be platelets stored within whole blood units under refrigeration.

4. engage in analysis of data and validation of findings related to changes in platelet structure, function, and viability following enhanced collection, storage and pathogen reduction procedures.

5. write manuscripts and scientific reports, submit invention disclosures and patents.

From time to time, USAISR personnel may work in the Puget Sound Blood Center’s laboratories and Puget Sound Blood Center’s personnel may work in USAISR’s laboratory as necessary to accomplish the goals of this collaboration.
Cold Apheresis Platelets in Plasma (CAPP)

I. PROTOCOL INFORMATION
Title: Cold Apheresis Platelets in Plasma (CAPP)
Phase of Study: Phase I/II. Proof of Principle.

II. SPONSOR INFORMATION
The study is being sponsored by the Department of Defense (DOD) Congressionally Directed Medical Research Program (CDMRP).

III. PRINCIPAL INVESTIGATOR’S INFORMATION
PI Name: Sherrill J. Slichter, MD
Title: Director Platelet Transfusion Research
Name & Address of Research Institution: BloodworksNW (formerly Puget Sound Blood Center)
Phone #: 206-689-6541
FAX #: 866-791-4098
Email: sherrills@BloodWorksNW.org

IV. ROLES AND RESPONSIBILITIES
Principal Investigator (PI): The PI will have overall responsibility for the study. She will ensure compliance with the protocol, institutional policies, and all applicable regulations. The PI will supervise the use of the test articles and review study data at regular intervals. The PI will permit and comply with audits and monitoring requirements. The PI will report all unanticipated problems involving risk to subjects or others to the Research Monitor, appropriate regulatory bodies, including the University of Washington Human Subjects Division and the USAMRMC, ORP, HRPO.

Study Coordinator (SC): The SC will assist in the preparation of the protocol, Institutional Review Board (IRB) applications and amendments, required quarterly reports, and other regulatory documents as needed. The SC will manage implementation of the research protocol under the supervision of the Principal Investigator. She will identify and recruit eligible subjects, review information on source documents to ensure data are complete and correct, and assist in rectifying discrepancies. She will maintain study records and logs and assist in evaluating study results. In addition the SC may perform all tasks ascribed to the Clinical Research Staff (below).

Clinical Research Staff (CRS) will perform research-related interventions under the direction of the PI and/or the SC. CRS will ensure that subjects have read and understand the informed consent document and have all questions appropriately answered and that informed consent documents are properly signed and dated. CRS will schedule study subject visits; explain study procedures; assess and document study subject’s clinical status as required by research protocol; collect apheresis units; obtain subject blood samples; administer radiolabeled platelets as required by the protocol (only trained Registered Nurse CRS will perform this task); monitor study subject’s progress and report adverse effects to the PI.

Laboratory Research Staff will perform research-related laboratory testing and platelet radiolabeling in accordance with the study protocol. Laboratory Research Staff will perform data entry into the study database. Upon occasion Laboratory Research Staff may also collect blood samples from subjects.
BloodworksNW Staff (either research or non-research) will collect follow-up blood samples and hold them for pick up and processing by Laboratory Research Staff.

Research Monitor: The Research Monitor will act as the safety advocate for study subjects. The Research Monitor will review all unanticipated problems involving risk to subjects or others and will provide an unbiased written report of the event to appropriate regulatory bodies, including the University of Washington Human Subjects Division and the USAMRMC, ORP, HRPO.

V. SITE INFORMATION
All study activities with the exception of the laboratory tests noted below will occur at the BloodworksNW (formerly Puget Sound Blood Center) under the direction of Dr. Sherrill J. Slichter. Bacterial testing and Gram Staining will be conducted by the University of Washington (UW) Microbiology Laboratory in Seattle, or by LabCorp in Seattle. All samples sent to outside microbiology laboratories will be stripped of all personal identifiers and labeled with a study ID number only.

VI. STUDY INFORMATION
Type of Research: Biomedical

VII. STUDY DESIGN
Background
Platelets are transfused to prevent bleeding and induce hemostasis, and can thus be critical in saving lives following trauma and in supporting thrombocytopenic cancer patients. Currently, platelets collected from volunteers are stored at room temperature. Room temperature storage has been demonstrated to maximize platelet recovery and survival in transfused patients; however it also increases the opportunity for bacterial growth in the platelet unit. The FDA limits the shelf life of platelets to 5 days or less to minimize this bacterial risk. Recently, the FDA has allowed 7 day storage with additional point-of-release bacterial testing. Nonetheless, transfusion associated sepsis remains the principal lethal risk associated with platelet transfusion.

Cold storage (4°C) is known to reduce post transfusion platelet recoveries but the effect is no more than 10% to 20% after 3 days of platelet concentrate storage. However, survivals are reduced to 1 to 2 days compared to an average survival of 4 to 5 days at 22°C storage\(^{[1-3]}\). In addition, there is controversy regarding the ability of 4°C stored platelets to correct bleeding times in thrombocytopenic patients compared to 22°C stored platelets\(^{[1]}\). However, we have demonstrated, in preliminary studies that platelets stored within whole blood for 15 days have radiolabeled autologous recoveries of 27±11% (49% of the same donor’s fresh autologous recoveries) and survivals averaging 1.2±0.4 days (16% of the same donor’s fresh autologous survivals)\(^{[4]}\). These data suggest that 4°C storage of apheresis platelets, as proposed in this study, may clearly show similar or even better platelet viability as platelet storage within whole blood.

Cold Stored Platelets
While not conducive to maintaining circulating platelet counts in thrombocytopenic cancer patients, transfusion of refrigerated platelets for deployed military medical units might provide adequate platelet hemostatic capacity to bleeding trauma patients and improve platelet availability for such patients. Based on recent in vitro studies of 4°C versus 22°C stored platelets, clot strength, platelet aggregation and sheer induced platelet aggregation are all better maintained at 4°C\(^{[6-8]}\).
A deeper understanding of the effects of cold storage on platelet function could greatly aid in improving the availability of platelets on the battlefield and in the civilian transfusion setting. In this research proposal, we are interested in evaluating metabolic, functional and viability changes to apheresis platelets preserved in an additive solution and stored at 4°C. We will also determine the recovery and survival of these platelets by radiolabeling an aliquot of the apheresis platelets and re-infusing it into the donor/subject.

Current Research Approach
A standard single apheresis platelet unit (target platelet yield 3.0 X 10¹¹/unit and concentration of ~1500 x 10³ platelets/µL) will be collected from a healthy adult volunteer subject using the Trima Accel® Automated Blood Collection System. Fifty milliliters of concurrent plasma will also be collected. The platelet unit will be stored, not-agitated, for up to 20 days at 4°C. Various in vitro assays (see “In Vitro Tests Performed on Test Units”) will be performed on the day of collection.

At the end of the storage period, the subject will return to receive an¹¹¹Indium Oxine (Indium 111, In-111) radiolabeled aliquot of their 4°C stored platelets. Follow-up samples from the subject will be collected approximately 2 hours post-infusion and on Days 1 (2X), 2 (2X), and 3 to calculate recovery and survival of the subject’s 4°C stored platelets. The Day 1 and Day 2 the sample draws will be 2 - 10 hours apart.

In addition to radiolabeled platelet recovery and survival measurements, the same in vitro assays that were performed on the unit on the day of collection will also be performed on the unit at the end of 4°C storage.

One week after the infusion of the radiolabeled aliquot, the subject will return to receive a second radiolabeled aliquot of fresh platelets. To facilitate this, on the morning of the second infusion, the subject will return for collection of a 43 mL blood sample. The blood will be processed to obtain a fresh sample of the subject’s platelets to serve as a control comparator. The platelets will be radiolabeled with In-111. The subject will return later in the day for infusion of the radiolabeled fresh ‘control’ comparator aliquot. Follow-up blood samples will be drawn at ~2 hours after the infusion on Day 0 and then on Days 1, 2, 3, 4 or 5, and 6 or 7 day post infusion to calculate recovery and survival of the subject’s fresh vs. stored platelets.

VIII. INCLUSION / EXCLUSION CRITERIA

Inclusion Criteria
The subject is in good health, is taking no excluded medications and meets platelet donor suitability requirements aimed at assuring donor safety. Recipient safety restrictions (e.g. travel and sexual contact) do not apply for this study. No infectious disease testing will be performed.

Specific inclusion criteria are:

- Weight: ≥110 pounds
- Hematocrit: ≥38% for females, ≥39% for males, but not >55% *
- Platelet count ≥150X10³/mm³ *
- Temperature: ≤99.5°F
- Resting blood pressure: systolic ≤ 180 mmHg; diastolic ≤100 mmHg
- Resting heart rate: 40 to 100 beats per minute
- Subjects must be ≥ 18 years old, of either sex
• Subjects must be able to read, understand and sign the informed consent document and commit to the study follow-up schedule. The ability to read and speak English is required for participation.
• Subjects must have good veins for apheresis platelet collection and drawing blood samples.
• Subjects of child-bearing potential (either male or female) must agree to use an effective method of contraception during the course of the study. The following methods of contraception will be considered ‘effective’ when self-reported by subject; abstinence, intrauterine contraception devices, hormonal methods, barrier methods or history of sterilization.

* The CBC will be run in duplicate from a single sample and the results averaged. Results > 10% difference from each other will be repeated.

Exclusion Criteria
Healthy subjects will be excluded from the study for any of the following reasons:
• Unable to achieve target platelet yield of 3.0 X 10^11/unit per Trima Accel (apheresis machine) configuration parameters.
• Ever received radiation therapy.
• Already participated in 4 research studies involving radioisotopes within the current calendar-year.
• Taken aspirin, non-steroidal anti-inflammatory, or other platelet affecting drugs within 72 hours of collection or infusion. Subjects who have ever been prescribed anti-platelet medications (e.g. clopidogrel) will be excluded from study participation regardless of the interval to their last dose.
• Currently pregnant or nursing as assessed during interview. A urine pregnancy test prior to radioisotope infusion is required for women of childbearing potential.
• Unable to comply with the protocol in the opinion of the investigator.
• Donated granulocytes within the last 2 days.
• Donated whole blood within the last 7 days.
• Donated platelets or plasma within the last 28 days.

IX. SUBJECT RECRUITMENT & SCREENING
The study will advertise for healthy adult volunteers on websites, newspapers and/or bulletin boards. Prospective subjects will be asked to contact the Study Coordinator by email or phone. Email inquiries will be answered, by the Study Coordinator, with a summary email along with attachments of study documents (study consent, HIPAA policy, directions to BloodworksNW and a schedule of study visits). The subject will be encouraged to call the Coordinator to discuss the study by phone before making a screening appointment. The Study Coordinator may reference Talking Points for Volunteer Inquiries during the phone conversation.

Prospective subjects responding by phone will speak with the Study Coordinator, as described above, and will be offered an email with attached study documents.

Individuals who wish to make an in person appointment for consent and screening will make those arrangements by phone or email with the Study Coordinator. An email confirmation and reminder will be sent by the Study Coordinator. Contact information from people who do not make appointments will not be retained.
A total of 80 subjects may be enrolled to achieve 45 complete data sets.

X. INFORMED CONSENT PROCESS
At the time of the recruitment visit, Clinical Research Staff, usually the Study Coordinator will review the consent with the study subject in a private space at the BloodworksNW. The purpose of the study, the study procedures, the risks and options to not participate or to withdraw will be discussed. The number of venipunctures, the radioisotope exposure and the time demands of multiple blood draws will be emphasized. Throughout the process the subject will be encouraged to ask questions or make comments.

Subjects will sign the consent form in the presence of the staff administering the consent and that person will also sign the consent. The subject will be given a copy of the consent and HIPAA document.

After the subject has given informed consent eligibility screening will be performed. See Study Procedures section below. Screening questions are related to establishing that the subject is in good health. See Section 8, Inclusion/Exclusion Criteria.

All Clinical Research Staff have been trained and are certified in the Protection of Human Research Subjects.

XI. STUDY PROCEDURES

Screening
An abbreviated version of blood donor screening will be performed including completion of a study specific health history questionnaire, check of vital signs and a blood draw to obtain a 2 mL sample for a complete blood count (CBC) to obtain the hematocrit and platelet count. Only criteria aimed at assuring donor safety will apply. Recipient safety restrictions (e.g. travel and sexual contact) do not apply for this study. No infectious disease testing will be performed. If the subject meets eligibility criteria an appointment for apheresis platelet collection, within the next 35 days, will be made.

Apheresis Platelet Collection
Prior to apheresis, the pre-apheresis health history questionnaire and check of vital signs will be completed. The subject’s platelets will be collected using the Trima Accel Automated Blood Collection System which is licensed by the FDA for this purpose. A venipuncture site will be selected and cleaned using standard BloodworksNW procedures. A needle will be placed in one of the subject’s arms at the antecubital area. A CBC sample is obtained using an inline diversion pouch. Whole blood is drawn into the apheresis machine and the blood components are separated by centrifugation. Platelets and plasma are collected into the Terumo ELP storage bags and the red blood cells are returned to the subject. Along with the return of the subject’s red blood cells the subject receives approximately 350 mL of ACD (citrate) anticoagulant during the collection process. The platelet apheresis collection lasts ~2 hours. Subjects are observed throughout the collection by a nurse or technician specifically trained in apheresis.

Cold Storage
After collection units will rest for one hour at room temperature prior to sampling for in vitro assays. Units are weighed to calculate platelet yield. The units are placed in a locked cage in a refrigerator at 4±2°C and are not agitated during storage.
Temperature monitors will record temperatures and trigger alarms for out of range conditions. End of storage will be defined as the date and time when the aliquot for radiolabeling and infusion is removed from the stored unit.

Autologous infusion of radiolabeled platelets
Radiolabeling will be done according to a modified Biomedical Excellence for Safer Transfusion (BEST) method. In the BEST method, a concurrent, dual, fresh and stored label using two different isotopes is used to achieve an evaluable survival and recovery calculation. This approach is not practical as the error corrections inherent in the BEST method arrive at numerous irrational data outputs when comparing products of very different signal strengths. Therefore, Indium-111, will be used for both test and control platelets. In-111 infusions will be separated by one week. The In-111 administered on Day 0 will be undetectable by Day 7 and therefore re-use of the same isotope to measure both cold stored (test) and fresh (control) platelets is valid. To confirm this, we will collect a pre-infusion radioactivity sample to account for any residual In-111, and adjust our calculations accordingly.

Prior to infusion the subject’s health will be reassessed via interview. If the subject feels unwell, has flu-like symptoms, or has any significant negative change to his or her health status, then he/she will be considered ineligible for the radiolabeled infusion and will exit the study. Pre-menopausal female subjects will have a urine pregnancy test to confirm that they are not pregnant prior to the infusion. Any subject with a positive pregnancy test will be ineligible to continue with the infusion and will exit the study. Vital signs (temperature, pulse and blood pressure), height and weight will be assessed and recorded. Prior to infusion, microbiological tests (bacterial testing and Gram stain) of the platelet unit will be verified as negative.

Height and weight will be measured at the time of infusion. After venous access has been established, a blood sample (20 mL) will be obtained to determine baseline radioactivity. Approximately 10 mL (2-10 mL) of autologous cold-stored Indium-111 labeled platelets will be infused into the subject. During each platelet infusion, the subject will be carefully monitored for adverse reactions; i.e., fever, chills, dyspnea, urticaria or pain (infusion site, chest pain or other). Any adverse reactions will be recorded and reported to the study investigator.

After infusion, the line will be flushed with saline and removed. The subject will remain at, or return to, BloodworksNW for the Day 0 post-infusion blood sample, which will be collected ~2 hours after the infusion.

One week after the 1st radiolabeled aliquot is infused, the subject will return to have a 43 mL sample of whole blood collected to obtain a ‘fresh’ sample of the subject’s platelets. The whole blood sample will be processed using a soft centrifugation to obtain platelet-rich-plasma (PRP). The PRP will be hard spun to produce a fresh sample of concentrated platelets. The fresh platelets will be radiolabeled with 111Indium Oxine and infused into the subject as described in the above paragraphs.

Follow-up
The subject will return to BloodworksNW for sample collection (10 mL of blood) for measurement of radioactivity to calculate platelet-survival curves; Day 0, Day 1 (twice, 2-10 hours apart), Day 2 (twice, 2-10 hours apart), and Day 3 post infusion #1 for a total of 6 sample draws. After the second infusion the subject will return for the same 10 mL blood sample collections on Day 0, Day 1, Day 2, Day 3, Day 4 or 5 and Day 6 or 7 post infusion #2 for a total of 6 sample draws. (See Schedule of Events below). These
samples will be used to determine platelet recovery and survival using computerized modeling of a multiple hit decay function.

Schedule of Events

<table>
<thead>
<tr>
<th>Study Day</th>
<th>Study Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 35 days before apheresis</td>
<td>Informed consent process</td>
</tr>
<tr>
<td></td>
<td>Screening (including collection of a 2 mL blood sample for hematocrit and platelet count) and enrollment</td>
</tr>
<tr>
<td>Apheresis platelet collection day</td>
<td>Pre-apheresis vital signs and health assessment</td>
</tr>
<tr>
<td></td>
<td>Apheresis platelet collection</td>
</tr>
<tr>
<td></td>
<td>In vitro testing on platelet unit</td>
</tr>
<tr>
<td></td>
<td>Platelet unit put into storage at 4±2°C</td>
</tr>
<tr>
<td>1 day after apheresis</td>
<td>Bacterial culture sample collected from platelet unit and sent to UW microbiology laboratory</td>
</tr>
<tr>
<td>Day 0 Infusion day (3-20 days after apheresis platelet collection day)</td>
<td>Platelet storage ends</td>
</tr>
<tr>
<td></td>
<td>Aliquot removed from stored platelets and processed for 111Indium radiolabel (test)</td>
</tr>
<tr>
<td></td>
<td>In vitro testing on stored unit</td>
</tr>
<tr>
<td></td>
<td>Bacterial cultures evaluated</td>
</tr>
<tr>
<td></td>
<td>Gram stain on stored unit sent to UW microbiology laboratory and evaluated</td>
</tr>
<tr>
<td></td>
<td>Pre-infusion ID check, vital signs and health assessment. Urine pregnancy test if woman subject of childbearing potential.</td>
</tr>
<tr>
<td></td>
<td>20 mL blood sample from subject for baseline radioactivity</td>
</tr>
<tr>
<td></td>
<td>Infusion of 4°C stored radiolabeled platelet aliquot</td>
</tr>
<tr>
<td></td>
<td>Post infusion recovery and survival (R&S) sample from subject (≥2 hours post infusion)</td>
</tr>
<tr>
<td>Post Infusion Day 1</td>
<td>Post infusion R&S sample from subject (twice, 2 - 10 hours apart)</td>
</tr>
<tr>
<td>Day 2</td>
<td>Post infusion R&S sample from subject (twice, 2 - 10 hours apart)</td>
</tr>
<tr>
<td>Day 3</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td>Day 7</td>
<td>43 mL fresh blood sample collected from subject and processed for 111Indium radiolabel (control)</td>
</tr>
<tr>
<td></td>
<td>Pre-infusion ID check, vital signs and health assessment. Urine pregnancy test if woman subject of childbearing potential.</td>
</tr>
<tr>
<td></td>
<td>20 mL blood sample from subject for baseline radioactivity</td>
</tr>
<tr>
<td></td>
<td>Infusion of fresh radiolabeled platelet aliquot</td>
</tr>
<tr>
<td></td>
<td>Post infusion recovery and survival (R&S) sample from subject (≥2 hours post infusion)</td>
</tr>
<tr>
<td>Day 8</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td>Day 9</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td>Day 10</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td>Day 11 or 12</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td>Day 13 or 14</td>
<td>Post infusion R&S sample from subject</td>
</tr>
<tr>
<td></td>
<td>Subject exits study</td>
</tr>
</tbody>
</table>
Total Volume of Blood Collected
The total amount of blood loss during the course of the study is approximately 290 mL. This includes CBC (2 mL), diversion pouch sample (~25 mL), apheresis platelets (~60 mL residual in disposable kit), immediate pre-infusion for baseline radioactivity (20 mL, twice), fresh whole blood sample on morning of infusion for fresh platelet control comparator (43 mL), and post infusion blood samples (10 mL each X 12) to determine circulating radioactivity.

In addition to the above volumes, approximately 300 mL of apheresis platelets in plasma and 50 mL of concurrent plasma will be collected.

In Vitro Testing Schedule
In addition to the in vivo platelet viability measurements after re-infusion, a number of in vitro laboratory measurements will be performed. Samples for these experiments will be obtained from the apheresis unit on the day of collection and at the end of storage. These tests will be performed using standardized methods.

A sample from the platelet product will be sent for bacterial culture to an outside microbiology laboratory one day after the platelet collection. At the end of the storage period, a sample from the stored platelet unit will be sent to the University of Washington Microbiology Lab for a Gram stain. If either test is positive, the subject’s stored platelets will not be reinfused and the subject will be withdrawn from the study.

The following table provides a list of the tests that will be performed on the apheresis platelet unit at the end of storage. These are the standard in vitro assays that the FDA requires for platelet licensing.
In Vitro Tests Performed on Stored Apheresis Unit at the End of Storage

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Day of collection testing</th>
<th>End of storage testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet Concentration</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Volume</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Platelet yield</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Blood Gases (pH and pCO2, PO2, HC03)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glucose and Lactate</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>P-selectin</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Morphology</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Annexin V binding</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Extent of Shape Change</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hypotonic Shock Response</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Platelet Microparticles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Swirling</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mean Platelet Volume (MPV)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bacterial Culture*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gram stain</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

All samples will be discarded once testing is complete and no residual radiation is detectable.

*Bacterial Culture sample removed from unit 1 day after collection and evaluated at end of storage.
Adverse Event (AE) Assessments
During apheresis collection and infusion of platelets, the subject will be carefully monitored for adverse reactions; e.g., fever, chills, dyspnea, urticaria, or pain (infusion site, chest pain or other). Adverse reactions will be recorded in the study file and reported to the study investigator. Subjects will be instructed to report changes in health condition over the course of the study to the study coordinators. Minor AEs that are associated with venipuncture and blood collection, such as minor bruising at the needle site, will not be recorded as AEs, unless they worsen over time (e.g., become infected, etc.).

XII. DATA and ANALYSIS
Laboratory and other evaluable results will be transcribed from source documents (e.g. lab result print-outs) into an electronic database.

Summary statistics (means, medians, standard deviations, interquartile range) will be calculated for all in-vitro assays.

Tables of recovery and survival summary statistics will display values by group from fresh and stored platelets. Recovery and survival of stored platelets as percentage of corresponding fresh platelets will be plotted against days stored. Regression methods will be used to determine if there is evidence of any trend in the mean storage or recovery of 4°C stored platelets with respect to storage time as a percentage of each subject’s fresh platelet results. Histograms of recovery and survival as percentage of 4°C stored platelet measurements will be plotted, and corresponding confidence intervals will be calculated.

XII. LABELING & STORAGE OF DATA & SPECIMENS
Study records, samples, and test results will be identified with a unique identifier and access will be limited to sponsor authorized personnel, the investigator, site research staff, and authorized regulatory authorities, including representatives of the FDA.

An alpha-numeric code that is unique to this study will be used as study identifiers. The study ID number will be associated with the subject’s name on a study ID log. That log and the study database will be kept in separate folders on an electronic network at BloodworksNW. BloodworksNW uses Active Directory NT Authentication along with Access Control Lists (ACL's) for all network folders. File and folder access is logged on network shares. Security is enforced by the Information Technology Department. A network firewall is used to prevent unauthorized access to the network from outside entities.

Source paper documents will be kept in the Study Coordinator’s office at BloodworksNW which is a security-card-restricted-access-building. The door to the coordinator’s office is kept locked. Any documents not needed for source documentation will be shredded using a secure records-destruction service.

The link between the subject’s identify and their study data will be destroyed/deleted when the research ends and any required monitoring of the study is finished, which will be no later than December 31, 2025. Consents will be destroyed six years after the conclusion of data analysis.

BloodworksNW utilizes an independent waste management contractor to dispose of research samples. The waste management contractor is contractually obligated to be in compliance with all applicable regulations regarding the pick-up, transport and treatment of regulated medical waste.
Subject samples that are radioactive at the time of collection are stored on a secure-access floor until such time as they have no detectable residual radiation. This is generally about 2 weeks. At that point they are disposed of as described above.

XIII. RISK AND INJURY

Apheresis-Related Risks and Precautions

Risks associated with standard platelet-product apheresis procedures are listed below. A single apheresis procedure typically lasts about 2 hours.

- **Venipuncture-related risks:** Venipuncture may lead to apprehension, discomfort, pain, bruising or infiltration at the venipuncture site. A vasovagal response, such as lightheadedness or fainting, nausea, or vomiting may occur. There is a very small risk of infection at the venipuncture site.
- **Citrate infusion related risks (hypocalcaemia):** Citrate (Acid-Citrate-Dextrose) is added to the apheresis circuit as an anticoagulant. This may result in perioral tingling or paresthesias. Non-specific mild symptoms of hypocalcaemia include headaches, nervousness, irritability, lightheadedness, flushing, shivering, nausea, vomiting, chest discomfort and abdominal cramping. Slowing the collection rate, pausing the collection and/or administering oral calcium (TUMS) will effectively address these symptoms. Rarely, intravenous calcium is administered when symptoms do not resolve. If allowed to progress citrate toxicity could potentially manifest as muscle cramps, tremors, tetany, laryngospasm, seizures and life threatening cardiac arrhythmias.
- **Blood Loss:** In rare and unusual circumstances, blood loss has occurred due to inability to complete the procedure.

The following precautions will be taken: The subject’s pre-apheresis vital signs (blood pressure, heart rate, temperature) and pre-apheresis hematocrit will be determined. Subjects will be visually monitored for signs of distress during all procedures by trained and experienced staff. Citrate reactions will be treated according to the standard treatments at the site, which includes oral or, rarely, intravenous calcium supplementation, and/or slowing, pausing or stopping the procedure.

Radioisotope Infusion-Related Risks and Precautions

The radiation dose in this study is less than annual background radiation (3 mSv) and is not known to be associated with any health hazard. The amount of the isotope that will be infused is ≤30 μCi of Indium-111. The total radiation dose is approximately ≤30 μCi for a splenic dose of 8 mGy and a total body effective dose equivalent of 0.8 mSv. The risks of radiation exposure to a fetus are unknown. Therefore, women of childbearing potential will have a pregnancy test performed prior to the radiolabeled platelet infusion.

BloodworksNW’s Platelet Transfusion Research Department will maintain a record of each subject’s participation and will limit the number of studies any one individual can participate in to four studies in a calendar year. Patients who have received radiation therapy will be excluded from the study.
Platelet Transfusion-Related Risks and Precautions
Risks associated with receiving any blood product include chills, fever, hives, itching, immune response against blood cells, and/or blood infection from bacterial contamination. There is a rare risk of receiving the wrong subject’s cells upon infusion, which could cause symptoms similar to those listed above.

The following precautions will be taken: In this study, subjects will be infused with their own cells; confirmation of identification will be done by two person verification of the infusion material. To prevent bacterial contamination, the product will be bacterially screened before infusion and sterile technique will be used for all manipulations of the study platelets.

Venipuncture-Related Risks and Precautions
Risks associated with venipuncture for blood sampling are apprehension, pain, discomfort, venospasm, fainting, bleeding, or bruising or infiltration at the venipuncture site.

The following precautions will be taken: Trained and experienced phlebotomists will perform the venipuncture procedures so that discomfort of the subject should be minimal.

XIV. BENEFIT(S)
There is no direct benefit to the study subject. Real benefits are altruistic in nature: subjects participating in this study will assist the scientific and medical communities in gathering important information to improving the availability of platelet transfusions.

XV. COMPENSATION
Subjects will receive $900.00 at the conclusion of the study for their time involved in study participation. If the subject is unable to complete the entire study or has to be withdrawn from the study, they will receive partial payment for their time involved in the study. The partial payment scale is the following (number in parentheses equals the number of times each procedure occurs during the course of the study):

- Initial screening (Day -35 to Day -1, one visit during this time period) $30
- Apheresis collection (Day 0) $200
- Infusion of radiolabeled platelets, including pre-infusion sample draw (Day 0 and Day 7. Two separate infusions) $100 (x2) = $200
- Collection of 43 mL of whole blood on morning of 2nd infusion day $35
- Follow-up blood sample, platelet recovery and survival calculation $35 (X12) = $420
- End of study exit $15
- Total for completing all study procedures $900

XVI. CONFIDENTIALITY
BloodworksNW considers all data and information collected during this study confidential. All data used in the analysis and summary of this study will be anonymous, and without reference to specific subject names. Study records, samples, and test results will be identified with a unique identifier and access will be limited to sponsor authorized personnel, the investigator, site research staff, and authorized regulatory authorities, including representatives of the FDA.

XVII. USAMRMC REPORTING REQUIREMENTS FOR SAE
All unanticipated problems involving risk to subjects or others will be promptly reported by telephone (301-619-2165), by email (usarmy.detrick.medcom-usamrmc.other.hrpo@mail.mil), or by facsimile (301-619-7803) to the Human Research Protection Office (HRPO). A complete written report will follow the
initial notification. In addition to the methods above, the complete report will be sent to the U.S. Army Medical Research and Materiel Command, ATTN: MCMR-RP, 810 Schreider Street, Fort Detrick, Maryland 21702-5000.

XX. LITERATURE REVIEW

Pathogen-Reduced, Extended Platelet Storage in Platelet Additive Solution (PAS)
EDMS 5570/11105004 W81XWH-12-1-0441

PI: Sherrill J. Slichter MD
Org: Bloodworks Northwest
Award Amount: $4,100,464 which includes funds contracted to Terumo of $1,402,000

Study/Product Aim(s)
- Research related to cold storage of platelets derived from whole blood and apheresis
- 4°C storage of platelets in Platelet Additive Solution (PAS)
- 4°C extended storage of platelets in plasma

Approach
This is a non-clinical, exploratory study of apheresis platelets stored in the cold (4°C). We are testing radiolabeled recovery and survival in health volunteers utilizing two sequential Indium-111 labels. The first radiolabeled infusion is performed using an aliquot from the extended stored apheresis platelet unit. The test unit is stored from 3-20 days. The second infusion is a fresh comparator obtained from and administered to the subject one week later. Various invitro tests are also performed. Study title Cold Apheresis Platelets in Plasma (CAPP).

Timeline and Cost

<table>
<thead>
<tr>
<th>Activities</th>
<th>CY 14</th>
<th>CY 15</th>
<th>CY 16</th>
<th>CY 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study evaluating platelets in WB at 4°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development and regulatory approval of apheresis platelets in PAS at 4°C study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apheresis platelets in PAS at 4°C study enrollment, data collection and analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apheresis platelets in plasma at 4°C study enrollment, data collection and analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Budget ($K)

- CY 14: $1.124
- CY 15: $1.592
- CY 16: $1.745
- CY 17: $2.145

Goals/Milestones

CY16 Goal
- Regulatory approval and study initiation (CAPI)
- Final IRB approval
- HRPO approval
- Enrollment, data collection and analysis

CY17 Goal
- Continued enrollment, data collection and analysis
- Complete evaluation of Isoplate and InterSol cold stored platelets with and without agitation
- Enrollment, data collection and analysis (in progress)
- Compare apheresis platelets stored in plasma for 3-20 days at 4°C to same subject’s fresh platelets

Comments/Challenges/Issues/Concerns
CAPP is an exploratory study only. For confirmation of results the FDA requires a full set of in vivo platelet recovery/survival data and complimentary in vitro platelet quality data for 22-24 subjects for the selected cold storage period.

Budget Expenditure to Date
Projected Expenditure: $4,100,464 ($2,698,464 to Bloodworks + $1,402,000 to Terumo)
Actual Expenditure: $2,145,148 ($553,316 remaining for Bloodworks)

Updated: 09-OCT-2017