Detection of Explosives on Surfaces Using UV Raman Spectroscopy: Effect of Substrate Color

by Cole Patrick, Charles J Cal, Dairen R Jean, and Nicholas F Fell Jr
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Detection of Explosives on Surfaces Using UV Raman Spectroscopy: Effect of Substrate Color

by Cole Patrick
University of Oklahoma College of Medicine, Oklahoma City, OK

Charles J Cal
2nd Cavalry Regiment, Camp Vilsek, Germany

Dairen R Jean
1st Cavalry Division, Ft. Hood, TX

Nicholas F Fell Jr
Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution is unlimited.
Detection of Explosives on Surfaces Using UV Raman Spectroscopy: Effect of Substrate Color

Detection of trace levels of explosives on vehicle surfaces is a significant challenge for deployed troops and domestic counterterrorism personnel. The ability to remotely detect a potential vehicle-borne improvised explosive device at a safe distance is a crucial capability. Several companies have proposed UV Raman spectroscopy to meet this need and have constructed and tested systems. One limitation of much of this testing is that it has been performed with bare metal, white-painted, or black-painted surfaces. This investigation seeks to determine the effect of additional colors of vehicle paints with Clearcoat on the ability of UV Raman to detect explosives on these surfaces. The initial results reported here compare visible Raman spectra of Ford Color Standards to the UV Raman spectra of the same panels to determine whether there is any significant background signal in either case. The results clearly show a strong luminescent background in all of the visible Raman spectra and only a weak Raman background signal in the case of UV Raman spectra with 150° backscattering at all 3 UV excitation wavelengths and the onset of luminescence between 1,400 and 1,500 cm\(^{-1}\) with 180° backscattering at 257.23-nm excitation.

14. ABSTRACT

UV Raman spectroscopy, explosives, surface characterization, Raman spectroscopy, Raman substrates
Contents

List of Figures iv
List of Tables v
Acknowledgments vi

1. Introduction 1

2. Experiment 2
 2.1 Materials 2
 2.2 Instrumentation 3

3. Results and Discussion 5

4. Future Work 11

5. Conclusions 11

6. References 12

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20
List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Examples of Ford standard panels being dried after deposition of 2,4-DNT and 2,6-DNT from acetonitrile slurry</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Visible Raman optical train</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Optical train for 150° backscattering arrangement. A) The frequency doubled Ar-ion laser is located in the lower left corner of the image. The triple monochromator is located in the upper left corner of the image. B) The frequency doubled Ar-ion laser is located in the upper left corner of the image. The Princeton Instruments TriVista triple monochromator is located in the center of the image</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Optical arrangement for UV Raman 180° backscattering measurements. Blue line indicates laser excitation path and green indicates Raman scattering</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>FTIR-ATR absorption spectra for Ford standard panels. Each spectrum is offset 0.05 absorbance units from the one below it</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>FTIR-ATR absorption spectra of Ford standard panels highlighting the nitrile and C-H and O-H stretching regions that were obscured in Fig. 5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Visible Raman spectra of Ford standard panels. Excitation was at 488 nm (90 mW at the laser) with a 100-ms integration time and 100 accumulations. The samples were excited and the Raman scattering collected with a 488-nm InPhotonics Raman probe fiber-optic assembly</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Visible Raman spectra of Ford standard panels. Rescaling of Fig. 7 to highlight the weaker luminescence observed with some of the panels. Excitation was at 488 nm (90 mW at the laser) with a 100-ms integration time and 100 accumulations. The samples were excited and the Raman scattering collected with a 488-nm InPhotonics Raman Probe fiber-optic assembly</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>UV Raman scattering collected at the 150° backscattering geometry (Fig. 3) for Ford standard panels. Spectra were collected with 257.23-nm excitation (25 mW at the laser) using 2.5-s integration time and 100 accumulations. Each spectrum is offset by 400 counts from the one below it</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Comparison of Raman scattering from 3 UV wavelengths (229, 244, and 257.23 nm) with 488 nm for one of the Ford standard panels (M7296 Green Gem). The UV Raman spectra were offset by 200 counts from the one below them. The 488-nm Raman spectrum was divided by 40 and then offset by 56,000 to be on-scale with the UV Raman spectra. All UV Raman spectra were collected with the 150° backscattering geometry with 2.5-s integration times and 100 accumulations</td>
<td>9</td>
</tr>
</tbody>
</table>
Fig. 11 UV Raman scattering collected at the 180° backscattering geometry (Fig. 4) for Ford standard panels. Spectra were collected with 257.23-nm excitation (10 mW at the laser) using 1.0-s integration time and 100 accumulations. Each spectrum is offset by 1,000 counts from the one below it.

List of Tables

Table 1 Ford standard panels used in experiments

Approved for public release; distribution is unlimited.

V
Acknowledgments

Funding from the Army Research Office supported this effort.
1. Introduction

The threat of vehicle-borne improvised explosive devices is a pervasive one for deployed US forces and is increasingly a potential threat domestically. A standoff method to identify vehicles carrying these devices or that are part of the supply chain to build such devices is crucial to ensuring the safety of US personnel. UV Raman scattering spectroscopy has been proposed as a candidate technique to meet this need.1–3

Numerous other methods have been examined to detect explosives in the environment and on surfaces. Among the techniques used are a group of techniques based on recognition elements immobilized on sensor surfaces that capture and respond to the presence of explosives including antibodies,4 immunoassays,5 differential chemical recognition (electronic nose concepts),6 aptamer-based assays,7 surface-modified cantilever-based sensors,8 and surface plasmon resonance sensors.9 Both traditional mass spectrometry10 and ion mobility spectrometry11 have been examined. Optical methods12 have also been proposed including standoff IR,13,14 light detection and ranging (LIDAR),15 laser-induced breakdown spectroscopy (LIBS),16–19 and photothermal methods.20 In addition, time-resolved Raman spectroscopy,21 visible Raman scattering spectroscopy,22–26 stimulated Raman scattering,27 surface-enhanced Raman spectroscopy,28–36 coherent-anti-Stokes Raman spectroscopy,37 and Raman spectroscopy combined with LIBS38–40 have been investigated. UV Raman spectroscopy41–57 has also been demonstrated both alone and in combination with LIBS.40,58–62

UV Raman provides several advantages over other methods.63 When UV Raman is used below 300 nm, it takes advantage of the “solar blind” region where sunlight is absorbed by the ozone layer and little background is observed. In addition, the potential fluorescence background that frequently plagues Raman spectroscopy is reduced by excitation below 250 nm, by either not being excited or being shifted to sufficiently high wavelengths such that the Raman signal is background-free. While UV light is more strongly absorbed by the atmosphere, standoff ranges in the tens of meters have been reported.

The testing of UV Raman spectroscopy systems for standoff UV Raman spectroscopy has been generally limited to bare metal, white, black, and a small number of colored targets.58–62 To fully test the capability of UV Raman spectroscopy to detect explosive traces on surfaces, it will be necessary to test substrates with additional colors. The goal of this project is to determine whether colored substrates will interfere with the ability of UV Raman spectroscopy to
detect traces of explosives on surfaces. This report describes our initial results examining over a dozen Ford standard panels for their background signals in the visible and UV.

2. Experiment

2.1 Materials

The color panels used were Ford Color Standards (ACT Test Panels). Fourteen different colors were chosen for these tests based on the number of models of vehicles using them and the frequency with which they are observed on the roads. Table 1 lists the colors and their M-code numbers. The panels were used as received. Examples of the panels are shown in Fig. 1. The following chemicals were obtained from Sigma Aldrich and were used as received, without further purification: 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), acetonitrile, and tetrahydrofuran.

Table 1 Ford standard panels used in experiments

<table>
<thead>
<tr>
<th>Standard</th>
<th>M-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Bus Yellow</td>
<td>M6284</td>
</tr>
<tr>
<td>Vermillion Red</td>
<td>M6470</td>
</tr>
<tr>
<td>Pueblo Gold</td>
<td>M7113</td>
</tr>
<tr>
<td>Sterling Gray Metallic</td>
<td>M7205</td>
</tr>
<tr>
<td>Ingot Silver Metallic</td>
<td>M7226</td>
</tr>
<tr>
<td>Ginger Ale</td>
<td>M7262</td>
</tr>
<tr>
<td>Green Gem</td>
<td>M7289</td>
</tr>
<tr>
<td>Oxford White</td>
<td>M6466</td>
</tr>
<tr>
<td>Dark Pearl Blue</td>
<td>M7083</td>
</tr>
<tr>
<td>White Titanium Tricoat</td>
<td>M7204</td>
</tr>
<tr>
<td>Tuxedo Black Metallic</td>
<td>M7211</td>
</tr>
<tr>
<td>Kodiak Brown</td>
<td>M7261</td>
</tr>
<tr>
<td>Ruby Red</td>
<td>M7283</td>
</tr>
<tr>
<td>Deep Impact Blue</td>
<td>M7296</td>
</tr>
</tbody>
</table>
2.2 Instrumentation

IR spectra were collected on a Jasco FT/IR-4100 (Easton, MD) with a Jasco ATR-PRO450-S diamond single-pass attenuated total reflection (ATR) assembly (Easton, MD). Spectra were collected with 4 cm⁻¹ resolution and 64 accumulations. Two different Raman systems were utilized in these experiments. The visible Raman system used a Lexel 95L argon (Ar) ion laser (Cambridge Lasers Laboratories, Fremont, CA) at 488 nm with an Acton SP2500A 500-mm focal length monochromator and a PIXIS 400 × 3048 pixel charge-coupled device (CCD) camera (Princeton Instruments, Trenton, NJ). An InPhotonics 488-nm RamanProbe Raman fiber-optic assembly (InPhotonics, Norwood, MA) was used to deliver the excitation and collect the Raman scattered light. The fiber probe contains filters to remove the Rayleigh scattered light before it enters the emission fiber. Spectra were collected with 90-mW of excitation power at the laser head, 1-s integration time, and 100 accumulations. Figure 2 shows the optical arrangement for this system.
The UV Raman spectra were collected using a Lexel 95-SHG frequency doubled Ar ion laser (Cambridge Lasers Laboratories, Fremont, CA) with an Acton TriVista 555 triple monochromator (Princeton Instruments, Trenton, NJ) and a PIXIS 2KBUV, 2048 × 512 pixel, UV-enhanced, backthinned CCD camera (Princeton Instruments, Trenton, NJ). The TriVista triple monochromator was equipped with UV-enhanced gratings with 1,800 grooves/mm in the first 2 monochromators, which comprise the filter stage, and 3,600 grooves/mm in the third monochromator, which serves as the spectrograph stage. Spectra were collected with 1- to 5-s integration times, depending on the signal level, and 100 accumulations. Spectra were collected of the blank panels at 229-, 244-, and 257.23-nm excitation wavelengths by changing the doubling crystal in the laser to change the excitation wavelength. The power of the laser was also varied with spectra collected at 1-, 5-, 10-, and 25-mW excitation power, when the power level desired was available. The initial background study was performed with the collection optics in a 150° backscatter arrangement. Figure 3 shows the optical arrangement of this system.
Fig. 3 Optical train for 150° backscattering arrangement. A) The frequency doubled Ar-ion laser is located in the lower left corner of the image. The triple monochromator is located in the upper left corner of the image. B) The frequency doubled Ar-ion laser is located in the upper left corner of the image. The Princeton Instruments TriVista triple monochromator is located in the center of the image.

Later work was performed using an off-axis parabolic mirror (MPD249HF01SP, Thor Labs, Newton, NJ) to collect Raman scattering at 180°. The move to 180° backscattering was precipitated by difficulty obtaining UV Raman spectra from solid samples. It was also determined that the height adjustment needed to be separated from changing the beam path to preserve the vertical polarization of the excitation beam. The TriVista system UV-enhanced gratings have a highly polarization-dependent response, so it was necessary to ensure that the excitation and collected Raman photons had the vertical polarization to match the highest throughput of the monochromator system. Figure 4 shows this optical arrangement.

Fig. 4 Optical arrangement for UV Raman 180° backscattering measurements. Blue line indicates laser excitation path and green indicates Raman scattering.

3. Results and Discussion

IR absorption spectra are frequently used for forensic examination of car paint and identification of vehicles involved in criminal activities.64–65 The spectra of the Ford standard panels are shown in Figs. 5 and 6. Figure 5 shows the entire spectra collected using Fourier-transform IR spectroscopy (FTIR)-ATR absorption, and
Fig. 6 shows more focused spectra on the nitrile and C-H and O-H stretching regions. Clearly visible differences are evident among the panels based on differences in the pigments used and potentially on the Clearcoat used as well. The literature in this area is focused on the use of the spectra rather than their interpretation, so further investigation is necessary to discuss them more completely. It is clear from visual examination of the spectra that they all contain nitrile bands in the 2,300–2,400 cm$^{-1}$ region. This is perhaps indicative of an acrylonitrile polymer as part of the Clearcoat. The fingerprint region indicates a mixture of polymer and pigment bands. This region will be further investigated.

![Fig. 5 FTIR-ATR absorption spectra for Ford standard panels. Each spectrum is offset 0.05 absorbance units from the one below it.](image)

![Fig. 6 FTIR-ATR absorption spectra of Ford standard panels highlighting the nitrile and C-H and O-H stretching regions that were obscured in Fig. 5](image)
Collecting spectra using visible wavelength excitation poses significant challenges with the various colored panels. Both a strong luminescence and highly variable response were observed as shown in Figs. 7 and 8. When operating with visible wavelength excitation (488 nm), each panel had significantly different background spectra. More specifically, there was a trend toward lighter color panels exhibiting stronger luminescence backgrounds. The cause of the differing background spectra is most likely due to varying levels of fluorescent components in the pigments and Clearcoat. Consequently, because of the higher background activity in the visible spectra, any hopes of being able to distinguish any sort of Raman peaks are lost.

Fig. 7 Visible Raman spectra of Ford standard panels. Excitation was at 488 nm (90 mW at the laser) with a 100-ms integration time and 100 accumulations. The samples were excited and the Raman scattering collected with a 488-nm InPhotonics Raman probe fiber-optic assembly.
Fig. 8 Visible Raman spectra of Ford standard panels. Rescaling of Fig. 7 to highlight the weaker luminescence observed with some of the panels. Excitation was at 488 nm (90 mW at the laser) with a 100-ms integration time and 100 accumulations. The samples were excited and the Raman scattering collected with a 488-nm InPhotonics Raman Probe fiber-optic assembly.

UV excitation provides much more useful background spectra that should be useful in the future detection of explosives. Figure 9 shows the background spectra of every color standard tested using the 150° backscattering geometry (Fig. 3), each one being offset slightly to show comparison rather than overlap of the spectra. With UV excitation, the background spectra did not differ significantly between different colored panels. Furthermore, there were no noticeable differences in background spectra when using different UV wavelengths or laser powers. Figure 10 compares the spectra from one panel being tested using the 3 UV wavelengths with one using a visible wavelength. One of the limitations observed with this geometry is that the polarization of the collected Raman scattering only partially matches the preferred polarization of the monochromator gratings. Therefore, it is unclear whether the low background signal is due to the small amount of light reaching the detector or a low background signal. We were unable to collect Raman spectra of solid samples in this geometry and only saw weak spectra from liquid samples. For these reasons, we switched to the 180° backscattering geometry (Fig. 4).
Fig. 9 UV Raman scattering collected at the 150° backscattering geometry (Fig. 3) for Ford standard panels. Spectra were collected with 257.23-nm excitation (25 mW at the laser) using 2.5-s integration time and 100 accumulations. Each spectrum is offset by 400 counts from the one below it.

Fig. 10 Comparison of Raman scattering from 3 UV wavelengths (229, 244, and 257.23 nm) with 488 nm for one of the Ford standard panels (M7296 Green Gem). The UV Raman spectra were offset by 200 counts from the one below them. The 488-nm Raman spectrum was divided by 40 and then offset by 56,000 to be on-scale with the UV Raman spectra. All UV Raman spectra were collected with the 150° backscattering geometry with 2.5-s integration times and 100 accumulations.

In the 180° backscattering geometry (Fig. 4), signals were observed from both liquid and solid samples. Figure 11 depicts the background Raman scattering and luminescence onset from excitation at 257.23 nm. In addition to the change in excitation and collection geometry, a new set of gratings was obtained for the system that is better optimized for the UV. These gratings have twice the groove
density, so one-half of the spectral range collected previously can be observed without moving the gratings in this case. As can be seen in these spectra, several colors exhibited a luminescence background beginning as a Raman shift between 1,400 and 1,500 cm\(^{-1}\). As with the visible Raman results (Fig. 7), the luminescence tends to be stronger for lighter and brighter panel colors. These results suggest that excitation at 257.23 nm may not be suitable for detection of trace explosives on all possible colors of vehicles. We will continue to investigate the use of 257.23 nm, but will also shift to 244 and 229 nm to determine whether the background at those wavelengths is more suitable for surface contamination determinations. The colors with the strongest luminescence background are the White Titanium Tricoat, Sterling Gray Metallic, Ingot Silver Metallic, Green Gem, and Deep Impact Blue panels. The School Bus Yellow, Oxford White, Dark Pearl Blue, and Kodiak Brown panels showed lower but clearly observable luminescence backgrounds. The similarity may lie more in the Clearcoat composition rather than the pigments. Further investigation will be required to determine the best excitation wavelength for the detection of surface explosive traces.

Fig. 11 UV Raman scattering collected at the 180° backscattering geometry (Fig. 4) for Ford standard panels. Spectra were collected with 257.23-nm excitation (10 mW at the laser) using 1.0-s integration time and 100 accumulations. Each spectrum is offset by 1,000 counts from the one below it.
4. Future Work

Several aspects of the project remain to be investigated during the remainder of the academic year 2016. First, efforts will be made to interpret the fingerprint region of the IR spectra of the blank panels to better understand the chemical nature of pigments and Clearcoat. We will also investigate the background of the blank panels in the other 2 UV excitation wavelengths (244 and 229 nm) we have available. Finally, we will continue to pursue determinations of the limits of detection of explosives in the Ford standard panels. This will entail both evaporative deposition from tetrahydrofuran solutions and more control depositions provided by US Army Research Laboratory scientists using their inkjet printing method.66

5. Conclusions

After determining that the visible spectrum does not effectively permit elucidation of the DNT peaks, the UV spectrum was found to be a better approach to the solution because it results in minimal background scattering. The color of the panel, wavelength of the UV laser, and the power of the laser do not significantly affect the background spectra while in the UV spectrum in 150° backscattering. Therefore, UV wavelengths should be used in explosive detection because of the minimal and consistent background scattering across all panels of different colors. However, in 180° backscattering, where the monochromator grating polarizations are better matched, some luminescence was observed under UV excitation. Future experiments will be conducted to determine the optimum excitation wavelength and the limits of detection of surface explosive traces for our system. Consequently, explosive detection using UV wavelengths should provide for a consistent measurement without the complications found when using visible excitation.
6. References

Approved for public release; distribution is unlimited.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-DNT</td>
<td>2,4-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>2,6-DNT</td>
<td>2,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>argon</td>
<td></td>
</tr>
<tr>
<td>ATR</td>
<td>attenuated total reflection</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-transform infrared spectroscopy</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
<td></td>
</tr>
<tr>
<td>LIBS</td>
<td>laser-induced breakdown spectroscopy</td>
<td></td>
</tr>
<tr>
<td>LIDAR</td>
<td>light detection and ranging</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
<td></td>
</tr>
</tbody>
</table>