Nonadiabatic Eigenfunctions Can Have Amplitude, Signed Conical Nodes, or Signed Higher Order Nodes at a Conical Intersection with Circular Symmetry

Published as part of The Journal of Physical Chemistry virtual special issue “Veronica Vaida Festschrift”.

Peter W. Foster and David M. Jonas*

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States

Supporting Information

ABSTRACT: Numerically exact nonadiabatic eigenfunctions are computed for a two-dimensional conical intersection with circular symmetry, for which a pseudorotation quantum number is conserved and all eigenstates are doubly degenerate. In the calculations reported here, the conical intersection is submerged, with energy below the zero point level. The complete real-valued vibrational-electronic eigenfunctions are visualized using Hunter’s exact factorization for the total vibrational amplitude factor and color for the electronic factor. The zero-point levels have nonzero amplitude at the conical intersection. Nodes in the degenerate nonadiabatic eigenfunctions are classified as accidental if they can be moved or removed by a change in degenerate basis and as essential if they cannot. An integer electronic index defines the order of the nodes for nonadiabatic eigenfunctions by simple closed counterclockwise line integrals. Higher eigenstates can have accidental conical nodes around the conical intersection and essential nodes of varying circular orders at the conical intersection. The signs of the essential nodes are all opposite the sign of the conical intersection and the signed node orders obey sum rules. Even for submerged conical intersections, the appearance of the exact eigenstates motivates use of signed, half-odd-integral, pseudorotation quantum numbers \(j \). Essential nodes of absolute order \(|j| \geq 3/2 \) are located on the conical intersection for \(|j| \) greater than or equal to 3/2. The eigenfunctions around essential first order nodes are right circular cones with their vertex at the conical intersection.

INTRODUCTION

Soon after Born and Oppenheimer published their fundamental paper on the separation of electronic and vibrational motions,1 von Neumann and Wigner established that potential energy surfaces in polyatomic molecules are likely to intersect, which can cause a breakdown of the Born—Oppenheimer approximation.2 The intersections between surfaces have the geometry of a right elliptical cone. Later, Jahn and Teller proved that degenerate electronic states in many point groups would split their degeneracy by lowering their symmetry away from a degenerate electronic state.9

In the static Jahn—Teller effect, the molecule effectively adopts one of a few equivalent low symmetry equilibrium geometries.15,18 For a dynamical Jahn—Teller effect, interconversion between equivalent low symmetry geometries is feasible and the average structure can recover the higher symmetry15,18 even if the high symmetry geometry has zero probability. When the Jahn—Teller coupling is also weak,15 the adiabatic potential energy of the Jahn—Teller conical intersection becomes energetically accessible. However, the lowest energy eigenstates of such systems are in a deeply quantum regime of nonadiabatic dynamics, where the concept of a potential surface should be abandoned13 and semiclassical and adiabatic intuition fail. Weak dynamical Jahn—Teller effects are so common in molecules that it took over a decade to find experimental evidence for the Jahn—Teller effect.19 This paper discusses wave functions at the high symmetry geometry under weak dynamical Jahn—Teller coupling for the highest symmetry conical intersection.
For nonadiabatic systems, Hunter developed a factorization that parallels the Born–Oppenheimer factorization in many ways. In Hunter’s exact factorization, each normalized eigenfunction \(\psi_m(r,q) \) is written as a product of a marginal vibrational factor,

\[
b_m(q) = \sqrt{\psi_m(r,q)} \psi_m(r,q) dr
\]

and a conditional electronic factor

\[
K_m(r;q) = \psi_m(r,q)/b_m(q)
\]

Each vibrational factor is square-normalized with respect to integration over all vibrational coordinates. Each conditional electronic factor is square-normalized, as a function of the electronic coordinates \(r \), for every set of vibrational coordinates \(q \) on which it depends parametrically. This factorization has been useful for nonadiabatic problems22,23 and extended to treat nonadiabatic dynamics.24,25 Reference 26 exploited the fact that, if only two electronic states \((x \) and \(y \) are involved, the electronic factor at each point in the vibrational coordinate space can be fully specified (in character and phase) by the electronic angle

\[
\Theta_m(q) \equiv \text{atan2}(y|\psi_m\rangle, (x|\psi_m\rangle) = \text{atan2}(y|K_m\rangle, (x|K_m\rangle)
\]

where \(\text{atan2} \) returns angles over a \(2\pi \) range. \(\Theta_m(q) \) does not depend on the division in eq 2. Representing the positive vibrational factor by amplitude contours and the signed electronic factor by color (a colored exact factorization) allows complete visualization of real-valued nonadiabatic eigenfunctions with a single map.26

Although the structure of marginal vibrational and conditional electronic factors parallels the Born–Oppenheimer factorization, Hunter’s exact factorization differs from the Born–Oppenheimer factorization in two key ways: first, nonadiabatic electronic factors can be different for each vibrational-electronic eigenstate; second, nonadiabatic vibrational factors need not have nodes. The Born–Oppenheimer approximation requires a sum of vibrational-electronic products for such nonadiabatic states. In both factorizations, the separate factors may not be allowed wave functions; the exact factors may not have continuous derivatives in the adiabatic limit and the Born–Oppenheimer factors may not be single-valued around a conical intersection (Berry phase). The Born–Oppenheimer factorization is quite naturally connected to spectroscopy measurements that depend on one-electron operators (which can image one electronic factor in a sum), while Hunter’s exact factorization is natural for diffraction and imaging measurements that probe the total vibrational probability density.26

For diatomics, the division used to define the electronic factor is made possible by the absence of nodes in the vibrational factor \(P_m \). This occurs because \(P_m \) is the square root of the total vibrational probability density obtained by tracing over the electronic states and because the vibrational amplitudes on different electronic states are unlikely to all have a zero at exactly the same place unless required by symmetry.28 As a result, nodes in the dominant adiabatic wave function are avoided by a continuous change in electronic character in which a nonadiabatically coupled state “peeks through” at and around the dominant node. This nodeless property is exploited in use of the exact factorization for nonadiabatic dynamics.24,25 Recently, it has been shown that accidental nodes can occur if the dimensionality of the vibrational coordinate space equals or exceeds the number of coupled electronic states.26 Such nodes have the shape of a right elliptical cone with the node at the vertex (conical nodes). In principle, this result does not contradict the absence of true vibrational nodes for an infinite number of coupled electronic states. In practice, it suggests observable weakly avoided vibrational zeroes of low dimensionality in the total vibrational probability density.26

This paper uses the colored exact factorization to examine the nodes of exact nonadiabatic eigenfunctions at a conical intersection with circular symmetry. The conical intersections studied here are submerged below the zero point energy. This high symmetry model is identical to that studied by Moffit and Liehr,4 by Longuet-Higgins et al.,5 and by Judd.29 It is also a higher symmetry version of the submerged conical intersection used to model experiments that measured loss of electronic alignment on a ~100 fs time scale30,31 and slower loss of electronic coherence32 in a doubly degenerate electronic state of a silicon naphthalocyanine.

Recent work has discussed the adiabatic effects required to generate nonadiabatic wave function amplitude at a conical intersection in terms of compensating divergent nonadiabatic corrections33 or compensating discontinuities in the adiabatic factors.25 The amplitude and phase behavior around a conical intersection are critical for nonadiabatic tunneling.34–36 The nonadiabatic eigenfunctions obtained here are consistent with conjectures about nonzero amplitude at a conical intersection.25,33 At the conical intersection studied here, essential nodes in the nonadiabatic eigenfunctions can be required by symmetry. It will be shown that these conical nodes and higher order nodes have lowest radial exponents determined by the pseudorotation quantum number.

THEORY

Using the diabatic electronic basis \(\{ |x\rangle |y\rangle \} \) and dimensionless normal coordinates, the circularly symmetric Jahn–Teller Hamiltonian37 is (divided by \(\hbar \))

\[
\hat{H} = [(1/2)\omega(\hat{p}_x^2 + \hat{p}_y^2) + (1/2)\omega(\hat{p}_x^2 + \hat{p}_y^2)]I + \text{aod} \hat{a}_\delta |x\rangle \langle x| + \text{aod} \hat{a}_\delta |y\rangle \langle y| + \text{aod} \hat{a}_\gamma |x\rangle \langle y| + \text{aod} \hat{a}_\gamma |y\rangle \langle x| \]

where \(\omega \) is the vibrational frequency, \(\hat{q}_\delta \) and \(\hat{p}_\delta \) are the dimensionless normal coordinate position and momentum operators \((i = 1 \text{ or } 2) \) for asymmetric vibrations, \(\hat{I} = |x\rangle \langle x| + |y\rangle \langle y| \) is the electronic identity operator, and \(d \) is the vibrational displacement. The first line is an isotropic two-dimensional harmonic oscillator Hamiltonian. The second line contains vibrational-electronic couplings. This Hamiltonian separately commutes with two mutually noncommuting reflection operators \(\sigma_\alpha \) and \(\sigma_\beta \) and thus all energy eigenvalues are doubly degenerate.38 These reflection operators have the following effects32 on the asymmetric coordinates and the electronic basis states:

\[
\sigma_\alpha q_1 = q_1, \quad \sigma_\alpha q_2 = -q_2 \quad (5a)
\]

\[
\sigma_\alpha |x\rangle = +|x\rangle, \quad \sigma_\alpha |y\rangle = -|y\rangle \quad (5b)
\]

and

\[
\sigma_\beta q_1 = -q_1, \quad \sigma_\beta q_2 = +q_2 \quad (5c)
\]

\[
\sigma_\beta |x\rangle = +|y\rangle, \quad \sigma_\beta |y\rangle = -|x\rangle \quad (5d)
\]
Eigenstates can be chosen so that they are simultaneously eigenstates of the Hamiltonian and of either reflection operator. Figure 1 shows the two adiabatic potential energy surfaces obtained by neglecting the momentum operators and diagonalizing the resulting electronic Hamiltonian at each coordinate. Color indicates the coordinate-dependent electronic character and phase for each surface, which have been chosen for maximum continuity. The two adiabatic potential surfaces have circular symmetry, a Jahn–Teller conical intersection at the origin, and a lower surface minimum below it at \(V_{\text{min}} = -(1/2) \omega d^2 = -(2D_0) \). \((D_0)\) is known as the Jahn–Teller stabilization energy,\(^{39–41}\) and its definition exactly parallels that of the Marcus reorganization energy\(^{42}\) for a totally symmetric coordinate. In Figure 1, the zero point energy is marked by black rings on the potential energy surfaces. In some sense, only about half of the zero point energy is available to each of the two coordinates. Even so, the conical intersection is submerged below the zero point energy. The light blue to orange color discontinuities indicate \(\pi \) phase shifts along \(q_1 = 0 \) after one circuit around the conical intersection. The location of this discontinuity is arbitrary, but the necessity for such a "cut" was first noted by Mead and Truhlar,\(^{43}\) and it can be regarded as a consequence of Berry’s geometric phase.\(^{6}\)

Longuet-Higgins et al. discovered that the circularly symmetric Jahn–Teller Hamiltonian can be extended to reveal a rigorously conserved quantum number for what is now called pseudorotation.\(^{9}\) Subsequent work by Hogen\(^{37}\) and Oka\(^{44}\) has emphasized that the form of this quantum number depends on the phase convention (it is not the total angular momentum as stated in refs 4 and 5, see ref 8). In order to use the current standard phase conventions, we extend the Hamiltonian by regarding the electronic states \(|x\rangle\) and \(|y\rangle\) as \(-\cos \theta\) and \(-\sin \theta\) [these choices most resemble the standard doubly degenerate 2D particle in a square box states \((n_x,n_y) = (2,1)\) and \((1,2)\), respectively]. These two electronic states span \(\lambda = \pm 1\) within a complete set of electronic states of the form \(\exp(i\lambda \theta)\), where \(\theta \) is a continuous electronic rotation angle and \(\lambda \) is the electronic angular momentum projection quantum number, which may take on any integer value. Within this extended basis set, the electronic operators \(|x\rangle \langle x|\) and \(|y\rangle \langle y|\) (\(x\) in the Hamiltonian on the second line of eq 4 may be regarded as restrictions of \(2 \cos(2\theta)\) and \(-2 \sin(2\theta)\), respectively. Taking \(q_1 = \rho \cos \phi \) and \(q_2 = \rho \sin \phi \), where \(\rho \) and \(\phi \) are the standard coordinates for an isotropic two-dimensional harmonic oscillator,\(^{45}\) the Longuet-Higgins extended Hamiltonian thus has a vibrational-electronic interaction (second line of eq 4) given by

\[
\hat{H}_{\text{eff}} = 2\omega d\hat{p} \cos(2\hat{\theta} - \hat{\phi})
\]

Taking \(q_1 \) and \(q_2 \) as the standard \(b_{1x} \) and \(b_{2y} \) normal modes for a square symmetric molecule,\(^{37}\) a positive displacement \(d \) in eq 4 gives the Jahn–Teller effect on a particle in a square 2D box expected from the Hellmann–Feynman theorem.\(^{49}\)

The extended Hamiltonian does not depend on the pseudorotation angle \(\phi + (\Theta/2) \) orthogonal to \(2\Theta - \phi \). The cyclic coordinate \(\phi + (\Theta/2) \) thus gives rise to a conserved pseudorotation quantum number \(j = l + (\lambda/2) \) where \(l \) is the quantum number for the vibrational angular momentum conjugate to \(\phi \) (any multiple of \(j \) is conserved). Since \(l \) is an integer and \(\lambda = \pm 1\), this pseudorotation quantum number \(j \) has been chosen half-odd-integral,\(^{48}\) a choice motivated by the appearance of the eigenfunctions below. \(j \) is a signed quantum number with complex-valued eigenstates, all energy levels are doubly degenerate with respect to the sign of \(j \).

For the computations presented in this paper, we use a direct product of one-dimensional harmonic oscillator vibrational basis states in the dimensionless normal coordinates \(q_1 \) and \(q_2 \). The 1D harmonic oscillator matrix elements are also chosen to follow the phase convention in ref 45, which assumes that the rightmost lobe at positive \(q \) always has positive amplitude. With this phase convention, the complex-valued isotropic two-dimensional harmonic oscillator basis states obey \(\sigma(\lambda j) = |\lambda\rangle \langle -\lambda| \).\(^{52}\) This is consistent with the phase convention of Condon and Shortley and electronic angular momentum projection basis states that obey \(\sigma(\lambda j) = |\lambda\rangle \langle -\lambda| \).\(^{53}\) (This phase convention differs from those of Moffitt and Liehr\(^{1}\))
and of Oka.44 Together, these establish that degenerate energy eigenstates of the pseudorotation quantum number may be found from the corresponding pair of degenerate \(\sigma_\lambda \) eigenstates as \(\langle m, \pm j \rangle = (\langle m, + \rangle \pm i \langle m, - \rangle)/2^{1/2} \). Such complex-valued eigenstates exhibit the circular symmetry of the Hamiltonian.

For Jahn–Teller stabilization energies that are small relative to the vibrational frequency, second-order perturbation theory41 leads to the following expression for the energies

\[
E^{(2)}_{ij} = \omega (v + 1) - 2(D_{\text{oo}})[l + 1]
\]

(7)

In eq 7, the vibrational quantum number \(v \) and the pseudorotation quantum number \(j \) on the left combine to unambiguously determine the relative signs of the vibrational \((l) \) and electronic \((\lambda) \) angular momentum quantum numbers on the right. Since \(l = v \), \((v - 2) \ldots - v \) and \(\lambda = \pm 1 \), a given \(j = l + (\lambda/2) \) can only arise in one way for each \(v \). Equation 7 contains an isotropic 2D harmonic oscillator energy \(\omega (v + 1) \), Jahn–Teller stabilization along both coordinates \([-2(D_{\text{oo}})]\), and a typical internal angular momentum coupling24 contribution to the energy \([-2(D_{\text{oo}})]\lambda \). Equation 7 shows that the energy depends on the relative sign of \(l \) and \(\lambda \), not their individual signs. The form of this last term can be expected based on the analogy to vibrational-angular momentum coupling discussed by Oka.44

\section{COMPUTATIONAL METHODS}

Computations use a basis state approach to enable high local resolution in the vibrational coordinates for study of the nodes. States are calculated using a truncated vibronic Hamiltonian matrix that includes \(n \) one-dimensional harmonic oscillator basis states for each coordinate, so that there are \(n^2 \) vibrational basis states on each of the two diabatic electronic basis states. Diagonalizing this Hamiltonian matrix yields \(2n^2 \) nonadiabatic eigenstates. The harmonic oscillator basis states are all centered at the origin. Off-diagonal matrix elements in dimensionless normal coordinates are calculated analytically.45 The truncated Hamiltonian is numerically diagonalized using the DEVCSF routine from the IMSL library,55 which calculates eigenvectors and eigenvalues using an implicit QR algorithm66 (which does not respect other symmetries in the Hamiltonian). Four steps are taken to generate unique eigenstate symmetries and phases. First, a numerically stable basis set rotation for \(\sigma_\lambda \) symmetry27 is applied to each pair of degenerate eigenvectors before sorting into \(\sigma_\lambda \) eigenvalues of +1 and -1. Second, each pair of degenerate states is then basis-set-rotated by \(\pi/4 \) to generate \(\sigma_\lambda \) symmetry states,32 which are sorted into states with eigenvalues of +1 and -1. Third, for each \(\sigma_\lambda \) eigenstate, the overall sign is then changed, if necessary, to make the basis state coefficient with the largest magnitude positive [so states have dominant \(+|x| \) or \(+|y| \) electronic character]. Fourth, for each \(\sigma_\lambda \) eigenstate, the overall sign is changed, if necessary, to make the largest magnitude basis state coefficient on \(x \) positive [so states have dominant \((|x| + |y|)/2^{1/2} \) or \((|x| - |y|)/2^{1/2} \) electronic character]. In cases where these rules decide the sign based on finite numerical precision, sign adjustments are made for consistency between figures.

For a vibrational frequency of \(200 \text{ cm}^{-1} \) and a reorganization energy of \(10 \text{ cm}^{-1} \), increasing the number of harmonic oscillator basis states for each vibration from 13 to 25 (from a total of 338 to a total of 1250 vibronic states) indicates that the 12 lowest eigenvalues are all converged to within \(2 \times 10^{-12} \text{ cm}^{-1} \) and that all of their 338 common normalized basis state coefficients are converged to within \(4.3 \times 10^{-10} \). Higher energy states or larger stabilization energies can require a larger basis to establish convergence (see the Supporting Information). The lowest 12 eigenvalue pairs are degenerate beyond the 14th digit (to within \(2 \times 10^{-12} \text{ cm}^{-1} \)). With the basis states used, eigenstates of \(\sigma_\lambda \) have a systematic pattern of zeros in their coefficients;32 all coefficients that should be zero by symmetry have magnitudes of less than \(2 \times 10^{-14} \). Using a basis of 25 normalized harmonic oscillator eigenfunctions for each coordinate on a discrete 2D grid with 0.01 spacing over the domain \([-9,9]\), the 12 lowest two-dimensional eigenfunctions are orthogonal to within \(4.8 \times 10^{-14} \) and normalized to within \(2.2 \times 10^{-12} \). The normalized eigenfunctions are converged at all grid points to within \(10^{-14} \).

For several Jahn–Teller stabilization energies, Table 1 gives the quantum numbers and numerical energy eigenvalues for the six lowest energy levels. Dominant basis state quantum numbers and second order perturbation theory expressions for the energies from eq 7 are in the columns at left. Each energy level is doubly degenerate, so these levels correspond to the 12 lowest eigenstates.

The nonadiabatic energies in Table 1 demonstrate that perturbation theory is quantitatively accurate for small Jahn–Teller stabilization energies \([D_{\text{oo}} \ll \omega]\), smaller vibrational quantum numbers \(v \), and smaller magnitude pseudorotation quantum numbers \(j \). The Supporting Information contains a more extensive table with more states, a larger range of Jahn–Teller stabilization energies, and more accurate energies. The energies there quantitatively reproduce those reported by Longuet-Higgins et al.3 for pseudorotation quantum numbers \(j = 1/2 \) and \(3/2 \), all of which involve larger displacements than in Table 1.

\section{RESULTS}

Figure 2 provides a complete characterization of the 12 lowest nonadiabatic eigenfunctions for a “submerged” conical intersection that is well below the zero point energy. These 12 eigenfunctions occur in degenerate pairs for the 6 lowest energy levels in Table 1. The exact factorization is used to show a positive amplitude and color is used to show the electronic character, including all phase/sign information. At each point in

Table 1. Six Lowest Energy Eigenvalues for Small Jahn-Teller Stabilization Energies with \(\omega = 200 \text{ cm}^{-1} \)

<table>
<thead>
<tr>
<th>(v)</th>
<th>(j/l)</th>
<th>(\lambda)</th>
<th>(E^{(2)}) (D\text{oo}) [\text{cm}^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>±1</td>
</tr>
<tr>
<td>1</td>
<td>3/2</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>2</td>
<td>5/2</td>
<td>±2</td>
<td>±1</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>0</td>
<td>±1</td>
</tr>
<tr>
<td>2</td>
<td>3/2</td>
<td>±2</td>
<td>±1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
the vibrational coordinate space, the electronic character and phase are displayed as an electronic angle using eq 3. As in ref 26, isolated point nodes in the amplitude factor are always accompanied by singularities in the electronic factor. The total nonadiabatic eigenfunctions are single-valued and continuously differentiable, apparent derivative discontinuities in the vibrational amplitude on crossing through a vibrational node are compensated by an electronic sign change at the electronic singularity. The leftmost two columns show real-valued degenerate eigenstates of σ_z, the rightmost two columns show the real-valued linear combinations of these same two states that are eigenfunctions of σ_z and the middle column shows the magnitude for either complex-valued linear combination of these same two states with a signed pseudorotation quantum number.

Figure 2. Three representations of the lowest 12 nonadiabatic eigenstates of the Hamiltonian with Jahn–Teller stabilization energy $\langle D_{\omega} \rangle = 10 \text{ cm}^{-1}$ and vibrational frequency $\omega = 200 \text{ cm}^{-1}$. The contours indicate the nonadiabatic amplitude factor $\Phi_{\psi}(q_1, q_2)$ and the colors (in columns 1, 2, 4, and 5) indicate the nonadiabatic electronic character $|K_m(q_1, q_2)\rangle$ using the color wheel in Figure 1. Together, these factors fully characterize real-valued nonadiabatic eigenfunctions. For each eigenstate, the contours are at multiples of 10% of the maximum amplitude, with higher contour lines being thicker. Because of the pairwise exact degeneracy, these states have been further specified using three noncommuting operators that each commute with the Hamiltonian. The first two columns show real-valued eigenstates of the σ_z operator with eigenvalues of +1 and −1, respectively. These two columns contain the complete set of the lowest 12 eigenstates. The middle column shows the circularly symmetric amplitude factor for complex-valued eigenstates with a signed pseudorotation quantum number j. In this column, each panel also gives the vibrational quantum number v and the energy in wavenumbers (cm$^{-1}$) for its row. The fourth and fifth columns show the same complete set of the 12 lowest eigenstates as real-valued eigenstates of σ_z with eigenvalues of +1 and −1, respectively.
eigenfunctions occur in degenerate pairs, but the real and positive amplitude factor is independent of the sign of \(j \) and the complex-valued electronic character is not shown (it would require a different color wheel), so a single column suffices. Precursors of half-odd-integral adiabatic pseudorotation are already visible in the 3-fold and 5-fold symmetric vibrational amplitude factors \(P_\sigma \) for the real-valued eigenfunctions with \(|j| = 3/2 \) and \(|j| = 5/2 \), respectively.

At the same time, the adiabatic electronic sign change (Berry phase of \(\pm \pi \)) required for a path circling the conical intersection (see Figure 1) does not appear for the exact total eigenfunctions in Figure 2. As noted by Longuet-Higgins et al., an adiabatic sign change in the electronic factor must be compensated by a sign change in the nuclear factor so that their product is an overall single-valued total wave function. The single-valued total eigenfunctions in Figure 2 are not confined to a single adiabatic surface and are far from the adiabatic limit. Around the conical intersection, each nonadiabatic eigenfunction makes an integer number of circuits around the electronic color wheel (as required by continuity).

The \(v = 0, j = 1/2 \) zero point eigenstates and higher \(j = 1/2 \) states in Figure 2 all have nonzero amplitude at the origin, where the conical intersection is located. The higher \(|j| = 1/2 \) states have “accidental” conical nodes in different locations for \(\sigma_0 \) and \(\sigma_1 \) eigenstates. These disappear for circularly symmetric pseudorotation eigenstates. For example, in Figure 2, \(v = 1, j = 1/2 \) and \(v = 2, j = 1/2 = j \) have 1 and 2 accidental conical nodes, respectively. These “accidental” conical nodes arise in the same way as the “accidental” conical nodes in ref 26.

All \(|j| = 3/2 \) states have 3-fold symmetry in the amplitude factor \(P_\sigma(q_1, q_2) \) and “essential” conical nodes at the conical intersection. We call these nodes essential because they occur at the same location for eigenstates of all three noncommuting operators. For all essential nodes, the absolute numerical eigenfunction amplitudes at the origin are less than \(2 \times 10^{-14} \). In addition to the essential conical node, the higher \(|j| = 3/2 \) states have accidental conical nodes away from the origin; \(v = 2, |j| = 3/2 \) in Figure 2 has three accidental conical nodes. Circling each conical node by itself, the electronic character makes one circuit around the color wheel.

The essential node at the origin of the 5-fold symmetric amplitude \(P_\sigma(q_1, q_2) \) for \(v = 2, j = 5/2 \) is not conical, as can be seen from the contour spacings. For this single node, the electronic character makes two circuits around the color wheel. These properties are connected and will be explored below after investigating the \(|j| = 1/2 \) levels.

For the zero point level and all states with pseudorotation quantum number \(|j| = 1/2 \), Figure 2 shows nonzero probability amplitude on top of the conical intersection at the origin. Furthermore, the maximum probability amplitude is off-center for the real-valued eigenfunctions. Table 1 shows that the perturbation theory errors in energy are small for the zero point level. Therefore, perturbation theory should be useful for understanding the off-center maximum in the zero point probability density indicated by Figure 2.

Figure 3 shows the zero point eigenstate’s exact factorization and its projections onto the diabatic basis states for Jahn–Teller stabilization energies of \((D_{20}) = 5 \text{ cm}^{-1} \) and \((D_{20}) = 20 \text{ cm}^{-1} \). In first-order perturbation theory, the zero-point basis state with \(\sigma_v = +1 \) becomes

\[
\frac{\langle \psi_0^{(1)} | \psi_0^{(1)} \rangle}{\langle \psi_0^{(1)} | \psi_0^{(1)} \rangle} = (d/2^{1/2})v_1 = 0, v_2 = 0 \langle \mathbf{x} \rangle
\]

\[
-(d/2^{1/2})v_1 = 1, v_2 = 0 \langle \mathbf{y} \rangle
\]

\[
-(d/2^{1/2})v_1 = 0, v_2 = 1 \langle \mathbf{y} \rangle
\]

In eq 8, all one-dimensional harmonic oscillator basis states are centered on the origin. For \((D_{20}) = 5 \text{ cm}^{-1} \), normalizing this approximation yields projections that are visually indistinguishable from the exact projections at the scale shown. The crucial insight from Figure 3 is that the off-center maximum occurs at \((q_1, q_2) = (0, 0) \) for \(\sigma_v = +1 \) eigenstate. Quantitatively, the maxima in Figure 3 occur at \(-0.220 \) (for \(d = 0.224 \)) and \(-0.425 \) (for \(d = 0.447 \)); the position of the maximum approaches \(-d \) quantitatively as \(d \) decreases, exceeding three digit accuracy for \(d = 0.1 \). Perturbation theory also correctly indicates that the off-center maximum occurs at \((0, 0) \) for \(\sigma_v = -1 \) zero point eigenstate, \((0, 0) \) for \(\sigma_v = +1 \), and \((0, 0) \) for \(\sigma_v = -1 \). The real-valued zero point eigenstates are driven off-center by the Jahn–Teller stabilization energy and have their maximum probability density near the equilibrium displacement of their dominant electronic basis state (so long as that displacement is small).

For this high symmetry model, the location and number of the “accidental” conical nodes are not truly accidental. For example, the accidental nodes for \(j = 3/2 \) states occur in sets of 3 at a common radius and have predictable angles for each reflection symmetry. Similarly, the higher \(j = 1/2 \) states with vibrational quantum number \(v \) have \(v \) accidental conical nodes. These nodes occur along the \(q_1 \) axis for \(\sigma_v \) eigenstates and along the \(q_2 \) axis for \(\sigma_2 \) eigenstates. Using the reflection symmetry dependent equilibrium displacements found in the discussion.
of the zero point states above, the locations approximate the zeroes of displaced one-dimensional harmonic oscillator eigenfunctions with \(v_1 = v \) (for \(\sigma_v \) eigenstates) and \(v_2 = v \) (for \(\sigma_d \) eigenstates). The higher states (see the Supporting Information) reveal more systematic patterns. The number of accidental axial and radial node distances is \((v - |j| + 1/2) \) and each radial node distance has \(2|j| \) nodes, so that the total number of accidental nodes is \(2|j|(v - |j| + 1/2) \). (This result has limited generality because the isotropic 2D harmonic oscillator quantum number \(v \) goes bad in the adiabatic limit.) For the same reasons stated in ref 26, these accidental nodes have the shape of right elliptical cones with the node at the vertex. For every state examined, their principal axes are observed to be radial and angular, with the minor axis in the radial direction. In short, the “accidental” conical nodes are consequences of the circular symmetry of the model.

Figure 4 shows the projections of 4 nonadiabatic eigenfunctions onto the diabatic electronic basis states. Nodes
in each projection are shown as dotted and dot-dashed white lines. When two white lines from different projections cross, the amplitude on both basis states must be zero so that the nonadiabatic eigenfunction must have a node; this occurs only at the origin for these states. Figure 4 illuminates how half-odd-integer avoided angular nodes arise from integer angular nodes in the underlying projections. The lowest states with $j = 3/2$, $5/2$, and $7/2$ have 1, 2, and 3 angular nodes through the origin in each projection, respectively, giving a total of 4, 8, and 12 angular half nodes over both projections. In each case, half of an angular node along the negative q_x axis disappears under a negative minimum in the x projection. This leaves 3 angular half nodes for $j = 3/2$, which all become avoided half nodes. For $j = 5/2$ and $7/2$, angular node halves curve close together in 2 and 4 pairs, respectively, to reduce the number of angular avoided half nodes to 5 and 7. Figure 5 zooms in to reveal the nodal behavior near the origin.

Figure 5 shows how, for increasing values of the pseudorotation quantum number, the essential nodes at the origin have an increasing order. In the exact factorization (top panels), this order can be easily characterized by the number of rotations around the electronic color wheel. The order can also be characterized by the radial spacing of the contours, which are evenly spaced in amplitude for each panel. From left to right: $v = 0$, $j = 1/2$ has no node and the electronic character does not circle the color wheel (0th order): $v = 1, j = 3/2$ has a right circular conical node with its vertex at the origin, the even spacing of contours with radius indicates a linear amplitude proportional to ρ and the electronic factor makes one circuit around the electronic color wheel, so this is a first order node; for $v = 2$, $j = 5/2$, the growth in contour spacing with radius quantitatively indicates a quadratic amplitude proportional to ρ^2 and the electronic factor makes two circuits around the color wheel, so this is a second order node; for $v = 3, j = 7/2$, the contours have a cubic amplitude growing as ρ^3 for small ρ and the electronic factor makes three circuits around the color wheel, so this is a third order node. The coordinate dependent projections of the eigenstates onto diabatic basis states in the bottom panels provide insight into these orders. Except for the $j = 1/2$ state, the number of angular nodes in each projection matches the order. At the conical node in ($v = 1, j = 3/2$), one nodal line on $|x\rangle$ intersects one nodal line on $|y\rangle$. At the quadratic node in ($v = 2, j = 5/2$), two nodal lines on $|x\rangle$ and two nodal lines on $|y\rangle$ all intersect. For the cubic node in ($v = 3, j = 7/2$), there are three nodal lines on each state that all converge on the origin. The essential nodes at the conical intersection are consequences of circular symmetry, for which higher vibrational angular momentum requires higher radial powers in the amplitude.

In Figure 5, higher order nodes at the conical intersection exhibit a link between the radial exponent for the vibrational amplitude factor and the number of circles around the electronic color wheel at small ρ, both are given by $|l| - 1/2$, where l is the pseudorotation quantum number. This linkage can be proven based on a conserved pseudorotation quantum number. With a conserved pseudorotation quantum number and electronic angular momentum projection quantum numbers of $j = \pm 1/2$, an eigenstate with a given signed $j = l + (\lambda/2)$ can have contributions from basis states with only two signed vibrational angular momentum quantum numbers, $l = j \pm (1/2)$. Thus, $\Omega_{\min} = |l| - (1/2)$. Around the origin, the local behavior of the eigenstates for the isotropic two-dimensional harmonic oscillator is given by the power series term of lowest order, which is proportional to $\rho^0 \exp(il\phi)$. The two degenerate eigenstates have lowest order terms proportional to

$$
\psi_{\pm}(\rho, \phi) \sim \rho^{\Omega_{\min}} \exp(\pm \rho^{\Omega_{\min}} |l|) \cos{\pm \rho^{\Omega_{\min}} l \phi}
$$

(9)

In eq 9, the symbol \sim means leading order proportionality in the limit as $\rho \to 0$. Equation 9 proves that essential nodes have true zeros in eigenfunction amplitude at the conical intersection. Linear combinations can give real-valued eigenfunctions with a local behavior of

$$
\psi_{\pm}(\rho, \phi) \sim \rho^{\Omega_{\min}} \cos(\rho^{\Omega_{\min}} \phi - \alpha)l \rangle
$$

(10a)

and

$$
\psi_{\pm}(\rho, \phi) \sim \rho^{\Omega_{\min}} \sin(\rho^{\Omega_{\min}} \phi - \alpha)l \rangle
$$

(10b)

where α is an arbitrary reflection symmetry plane angle. The σ_v eigenstates have $\alpha = 0$, and the σ_e eigenstates have $\alpha = \pi/4$. The $\alpha = +1$ $[\sigma_e = -1]$ eigenfunctions in Figure 2 follow eq 10a $[eq 10b]$ with $\alpha = 0$ and $\Omega_{\min} = |l| - 1/2$. Inserting eq 10 into eqs 1–3 gives

$$
P_{\pm} l \rangle \sim \rho^{\Omega_{\min}}
$$

(11)

and

$$
\Theta_{\pm l \rangle}(\phi) \sim -\langle \Omega_{\min} \phi - \alpha
$$

(12a)

for the $\sigma_e = +1$ eigenfunctions in eq 10a or

$$
\Theta_{\pm l \rangle}(\phi) \sim -\langle \Omega_{\min} \phi - \alpha + \pi/2
$$

(12b)

for the $\sigma_e = -1$ eigenfunctions in eq 10b.

We now define the “electronic index” $\eta(C)$ through a line integral around any simple closed counterclockwise path C that does not pass through a node,

$$
\eta(C) = \frac{1}{2\pi} \oint_C d\phi \Theta(\phi) = \frac{1}{2\pi} \oint_C d\phi \rho \phi
$$

(13)

In pictorial terms, the electronic index is equal to the number of counterclockwise spins around the color wheel on the path of integration. With this definition, the electronic index is independent of the arbitrary overall sign of the eigenfunction $[\text{by the definition of } \Theta(\phi)]$ and the arbitrary phase α but does depend on the phase convention for the electronic basis states $|x\rangle$ and $|y\rangle$. In other words, electronic indices are significant relative to each other, even for different eigenstates. Since the nonadiabatic eigenfunctions are real-valued, continuous, and differentiable, they form a differentiable vector field (see ref 58) of electronic state vectors over the vibrational coordinates (this is why $\Theta(\phi)$ is defined in terms of ψ_ϕ). The electronic index is the index of this vector field over the oriented planar surface of vibrational coordinates. This has two consequences: first, the electronic index is an integer (a result also required by single-valued wave function continuity); second, the electronic index depends only on the number, order, and sign of the nonadiabatic nodes enclosed by the path (a new result). The electronic indices for paths that circle only the essential node at the conical intersection can be obtained from eqs 12 and 13 using a path at small constant radius so that
\[d\Theta_{ij}(\rho, \phi) = -\nu_{\text{min}} d\phi \] and \(\eta(C) = -\nu_{\text{min}} \) or by visual inspection of Figure 2. The electronic indices around the conical intersection are \(\eta(C) = 0 \) for \((v = 0, |I| = 1/2) \), \(\eta(C) = -1 \) for \((v = 1, |I| = 3/2) \), \(\eta(C) = 0 \) for \((v = 1, |I| = 1/2) \), \(\eta(C) = -2 \) for \((v = 2, |I| = 5/2) \), \(\eta(C) = 0 \) for \((v = 2, |I| = 1/2) \), and \(\eta(C) = -1 \) for \((v = 2, |I| = 3/2) \).

Locally, the vibrational radial exponent and the electronic index have precisely the same magnitude and define the order of the essential node as \(\nu_{\text{min}} = |I| - 1/2 \). Furthermore, the sign of the electronic index for a sufficiently small loop around the origin is the same for all essential nodes. Remarkably, the essential node signs are all opposite the sign of the conical intersection, which is defined by the sign of the counterclockwise line integral around the conical intersection:

\[\gamma(C) = \frac{1}{2\pi} \int_C d\Theta'(q_i, q_j) \] (14)

In eq 14, \(\Theta' \) is the adiabatic electronic mixing angle. [2\(\pi \gamma(C) \) has been called the Longuet-Higgins phase\(^{59} \) and is an integer multiple of \(\pi \) for two real-valued electronic states. When 3 electronic states are involved, the geometric phase defined through the nonadiabatic derivative coupling\(^6,60 \) has been reported to differ from exact integer multiples of \(\pi \) but it converges to the Longuet-Higgins phase for infinitesimal loops.\(^58-61 \) The line integral can either start and stop at the discontinuity for a single-valued \(\Theta' \) or be closed for a double-valued \(\Theta' \) (half-integer line integrals are possible because the adiabatic electronic eigenfunctions do not form a differentiable vector field over an oriented surface). The sign of a conical intersection, \(\text{sgn}(\gamma) \), has the same dependence on the phase convention for the electronic basis set as the electronic index (and no dependence on arbitrary adiabatic eigenfunction sign or phase). The line integral around the conical intersection in Figure 1 is \(\gamma(C) = \pm 1/2 \), so the sign of the conical intersection is positive; it is independent of which adiabatic surface (upper or lower) is used to evaluate it. As a result, the sign of a conical intersection is meaningful relative to the electronic indices for all nodes. The sign of the conical intersection can be reversed by reversing the sign of the Jahn–Teller displacement \(d \) in either the diagonal or off-diagonal Jahn–Teller coupling term in the Hamiltonian. Figure 6 shows the adiabatic surfaces and the lowest energy 6 nonadiabatic eigenstates of \(\sigma \) for a conical intersection with a negative sign generated by reversing the sign of the diagonal coupling. All of the equilibrium displacements along \(q_i \) are reversed with respect to Figure 2, and all of the conical node signs are reversed.

In contrast to a submerged conical intersection, a high energy conical intersection will push the amplitude away from the origin on the lower surface. In the isotropic 2D harmonic oscillator basis, this involves cancellation of the lowest order radial powers between basis states with the same vibrational angular momentum \(I \) but different vibrational quantum numbers \(v \) [for example, cancellation of the constant radial term between \((v = 0, I = 0) \) and \((v = 2, I = 0) \)]. Thus, \(|I| - 1/2 \) is a lower bound on the radial power law exponent for the vibrational amplitude near the origin. For adiabatic eigenfunctions confined to the lower surface, which require a high conical intersection, various models indicate that the lowest radial power law exponent must exceed \(\sqrt{1/2} \) (ref 62), \((1/2) + \sqrt{1/2} \) (ref 63) or \(\sqrt{3/2} \) (ref 64).

This proves that, near the origin, all eigenstates of the circular symmetry conical intersection have a vibrational amplitude factor with a radial power law exponent of at least \(|I| - 1/2 \) and an electronic factor that circles the electronic color wheel exactly \(\nu(C) = |I| - 1/2 \) times. This allows states with \(|I| = 1/2 \) to have nonzero amplitude at the conical intersection, proves
that states with |j| = 3/2 can have conical nodes with the form of a right circular cone at the conical intersection, and establishes the linked vibrational-electronic form of the higher order nodes at the conical intersection. Circular symmetry was assumed for the above proof; the results may not apply for lower symmetry conical intersections.

It was proven above that the essential nodes at the conical intersection all have the same sign for the local electronic index. The accidental conical nodes do not. For example, the (v = 2, |j| = 1/2) states in Figure 2 have two oppositely signed nodes, such that the electronic index is zero for any path that encompasses them both. All of the conical nodes in ref 26 occur in such oppositely signed pairs. However, any counterclockwise circuit that encompasses all 4 conical nodes in (v = 2, |j| = 3/2) has an electronic index of η(C) = +2. This addition of electronic indices for the 4 conical nodes is precisely analogous to the addition of geometric phase line integrals for the 4 conical intersections in the linear plus quadratic $E \otimes e C_{3v}$, Jahn–Teller coupling treated by Zwanziger and Grant.17 Here, it arises because the conical node at the origin has an electronic index of −1 while the three accidental conical nodes have electronic indices of +1, so that the sum of the enclosed electronic indices is +2. Note that this eigenstate has $I = \pm 2$ and $\lambda = \mp 1$, so that $\lambda \eta = -2$. For every state examined (all states through v = 4), the signed large radius electronic index is equal in magnitude and opposite in sign to $\lambda \eta \text{sgn}(\gamma)$, where sgn(γ) is the sign of the conical intersection [sgn(γ) = +1 in Figure 1]; this is proportional to the electronic-vibrational angular momentum coupling term in the second-order perturbation theory eigenstate energies of eq 7.

Discussion

The results obtained here directly address questions about wave function amplitude around conical intersections. Mead has shown that single-surface eigenfunctions must approach zero at a conical intersection in two-dimensions.62 Varandas and Xu have provided analytic support for this result in X_{3v} molecules.64 For a pure conical intersection potential, Yarkony found that the eigenfunctions approach zero at the conical intersection.63 The above treatments do not directly address systems for which the conical intersection is weak or submerged.

Weak or submerged conical intersections are, as mentioned in the Introduction, common in molecular Jahn–Teller distortions. In such circumstances, nonadiabatic eigenfunctions can span more than one adiabatic surface, as in the pioneering study by Moffitt and Liehr.4 Although a different basis and phase convention are used, the perturbation theory results of Moffitt and Liehr [their eqs 36 and 38] are equivalent to eq 8. For the zero point level, these expressions place large amplitude at the conical intersection, and this amplitude is continuously present with the same sign as the Jahn–Teller displacement d is tuned through 0 (where the zero point eigenfunction becomes the zero point level for an isotropic two-dimensional harmonic oscillator, which guarantees a nonzero amplitude on the conical intersection). This example (which is 60 years old) thus concretely illustrates nonzero nonadiabatic eigenfunction amplitude at a conical intersection, a phenomenon discussed in refs 33 and 23.

The large wave function amplitude at the origin for low energy eigenstates of a submerged conical intersection with circular symmetry suggests similar amplitude at the submerged lower symmetry D_{4h} conical intersection for the silicon naphthalocyanine studied in refs 30–32. This actual sampling of the high symmetry geometry contrasts with the high symmetry average geometry produced by interconversion among equivalent low symmetry geometries18 (often while avoiding the high symmetry geometry9) in the dynamical Jahn–Teller effect. Evidently, nonzero wave function amplitude at the high symmetry geometry may be anticipated for the ground vibrational state in many molecules with weak dynamical Jahn–Teller effects.

As the analysis of Figure 3 shows, the zero-point state’s maximum amplitude follows the Jahn–Teller displacement away from the conical intersection. Thus, even with the highest possible Jahn–Teller symmetry, the average geometry of one degenerate eigenstate is not necessarily the undistorted high symmetry geometry (though averaging over both degenerate eigenstates always restores the high symmetry). As the Jahn–Teller stabilization energy increases, these nonadiabatic results are apparently heading toward agreement with the adiabatic results for a conical intersection with sufficiently high energy to confine low energy eigenstates onto the lower adiabatic surface. However, to form a complete basis, some eigenstates with sufficiently high energy must have eigenfunction amplitude in an arbitrarily small region around the conical intersection.

Figure 7 shows how the nonadiabatic eigenfunctions for v = 1, $|j| = 3/2$ begin approaching the limit of adiabatic pseudorotation. For small Jahn–Teller stabilization energy, there is a conical node at the origin and three strongly avoided angular half nodes. These nonadiabatic eigenfunctions are everywhere single-valued and continuous, with continuous derivatives, the apparent derivative discontinuities in the amplitude crossing through the origin are compensated by the electronic sign change. Their 2π angular periodicity corresponds to the adiabatic product of compensating electronic and vibrational factors with half-odd-integral angular momenta,64 so the Longuet-Higgins phase is hidden. As the height of the conical intersection increases, the conical node at the origin starts to connect three weakly avoided angular half nodes that will become the three angular half nodes in the adiabatic limit. In the projections onto the diabatic states, the incipient formation of adiabatic nodes is associated with the dotted nodal curve on $|λx⟩$ that is moving in from the right.

Forming true angular half-nodes for the adiabatic limit will require that this nodal curve on $|λx⟩$ precisely coincide with the nodal curve on $|λy⟩$ (dot-dashed). Until this additional node coincides exactly, the derivation showing how conical nodes arise from crossing between nodes in the two separable electronic projections26 applies at sufficiently short-range. These observations for the lowest eigenstates suggest that, relative to the vibronic energy, the conical intersection energy is crucial for limiting nonadiabatic eigenfunction amplitude there (at least from a diabatic perspective). An understanding of the submerged conical intersection limit with lower symmetry may be useful for investigating questions about adiabatic eigenfunction behavior when there is nonadiabatic amplitude at a conical intersection23 and examining the transition from adiabatic to nonadiabatic tunneling.35

The above observations about the signs of nonadiabatic nodes deserve some comment. Examples above show a closed path that encircles two conical nodes can give an electronic index of $-2, 0$, or 2. The sum rule suggests that two overlapping conical nodes of the same sign might merge into a second order node, that second order nodes might split into two conical nodes of the same sign, and that oppositely signed...
conical nodes can be created or annihilated as model parameters are varied. Zwanziger and Grant showed that a path enclosing 4 conical intersections with a net sign of 2 gives rise to a Renner-Teller effect. This suggests that, just as conical nodes are in many ways analogous to conical intersections, second order nonadiabatic nodes may be analogous to Renner—Teller intersections between electronic states.

Analogies between the dimensionality dependence of conical intersections and the dimensionality dependence of conical nodes both suggest the above results may depend on the dimensionality of the Jahn—Teller conical intersection. Since electronic dimensionality determines whether the geometric phase around a finite loop is exactly equal to the Longuet-Higgins phase, such an investigation may be delicate. We have not yet investigated the vibrational and electronic dimensionality dependence of nonadiabatic nodes at conical intersections.

CONCLUSIONS

The conical intersection with circular symmetry investigated here is submerged below the zero point level so that eigenfunctions are not confined to a single surface. The nonadiabatic eigenfunctions can have nonzero amplitude at a conical intersection. The zero point levels have their maximum amplitude near the Jahn—Teller displacement, approaching it more accurately as the Jahn—Teller displacement goes to zero. Around the conical intersection, the lowest order essential node in the nonadiabatic eigenfunctions has the form of a right circular cone, and its vertex is a node at the conical intersection. For nonadiabatic eigenfunctions, electronic indices have been defined through line integrals around simple closed counterclockwise paths and proven to be integers. Circular conical nodes and higher order nodes at the conical intersection occur with a lowest radial power law exponent equal to the absolute value of the electronic index for a sufficiently small path around the conical intersection. The total number of additional nodes surrounding the conical intersection is found to be $23(v - \sqrt{2}) + 1/2$ so long as the 2D harmonic oscillator vibrational quantum number v is good. Nonadiabatic nodes have a sign manifested in their electronic index, and the sign of the nonadiabatic nodes at the conical intersection is always opposite the sign of the conical intersection. The electronic index is equal to the sum of the electronic indices for all nodes inside the simple closed path. So long as the 2D harmonic oscillator vibrational angular momentum quantum number I remains good, the electronic index at a radius sufficient to enclose all of the nodes enumerated above is $n(C) = -\lambda I \text{sgn}(y)$, where λI governs the perturbative energy from vibrational—electronic interaction and $\text{sgn}(y)$ is the sign of the conical intersection. The results about nonzero amplitude at a conical intersection, the signs and electronic indices of nonadiabatic nodes, and the sum rule for the electronic indices are independent of the circular symmetry and submerged nature of the conical intersection studied here.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.7b07140.

Table of eigenstates energies and quantum numbers for several Jahn—Teller stabilization energies, figure showing the nonadiabatic eigenstates for $v = 3$ and $v = 4$, and figure showing both reflection operator eigenstates for the reversed conical intersection (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: david.jonas@colorado.edu. Phone: (303)492-3818. Fax (303)492-5894.

ORCID

David M. Jonas: 0000-0002-1085-8161
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Markus Pillaum (University of Colorado Department of Mathematics) for a helpful discussion of vector bundles. We thank Artur Izmaylov (Toronto) and Ben Levine (Michigan State) for helpful comments on a draft manuscript. This material is based upon work supported by the National Science Foundation under Grant No. CHE-1405050 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0258. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

(54) Herzberg, G. H. Infrared and Raman Spectra of Polyatomic Molecules; Krieger: Malabar, FL, 1991; Vol. II.

(55) Visual Numerics IMSL Numerical Libraries; Rogue Wave Software: Boulder, CO.

(57) The first order perturbation theory approximation in eq 8 has a conical node that is either pushed far to positive q1 (beyond the region of accuracy) or eliminated by more accurate calculations. In Figure 3, the behavior as the Jahn–Teller stabilization energy (Dω) increases is connected to a more complicated approach to the adiabatic limit.

