AWARD NUMBER: W81XWH-13-1-0352

TITLE: Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

PRINCIPAL INVESTIGATOR: Dean G. Tang, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center
Houston, TX 77030

REPORT DATE: October 2016

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

E-Mail: dean.tang@roswellpark.org

University of Texas MD Anderson Cancer Center
Houston, TX 77030

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

Prostate cancer (PCa) metastasis represents the worst outcome that eventually kills the patient. Although many PCa cell-intrinsic molecules and end-organ factors have been implicated in the metastatic dissemination of PCa cells, the role of primary tumor microenvironment and the nature of the metastatic PCa cells remain poorly defined. By establishing a reliable and quantifiable experimental PCa metastasis model in NOD/SCID mice, we have found that PCa cells implanted orthotopically (i.e., in the prostate) metastasize much more extensively and widely than those implanted ectopically (i.e., subcutaneously or s.c.). Microarray-based gene expression profiling reveals that the orthotopically implanted human PCa cells upregulate several classes of genes that have been intimately implicated in metastasis. These and many other preliminary observations allow us to HYPOTHESIZE that PCa cells reciprocally interact with the host cells to establish a proinflammatory microenvironment highly conducive to PCa metastasis and that metastatic PCa cells are endowed with CSC properties. By now we have accomplished all goals in Aims 1 and 2. Our lab recently relocated from the MD Anderson Cancer Center to Roswell Park Cancer Institute in Buffalo. We request a 6-month no-cost extension to wrap up a critical set of experiments testing the possibility that HOXB9 regulates PCa metastasis in a context- and model-dependent manner.

Prostate cancer (PCa) metastasis represents the worst outcome that eventually kills the patient. Although many PCa cell-intrinsic molecules and end-organ factors have been implicated in the metastatic dissemination of PCa cells, the role of primary tumor microenvironment and the nature of the metastatic PCa cells remain poorly defined. By establishing a reliable and quantifiable experimental PCa metastasis model in NOD/SCID mice, we have found that PCa cells implanted orthotopically (i.e., in the prostate) metastasize much more extensively and widely than those implanted ectopically (i.e., subcutaneously or s.c.). Microarray-based gene expression profiling reveals that the orthotopically implanted human PCa cells upregulate several classes of genes that have been intimately implicated in metastasis. These and many other preliminary observations allow us to HYPOTHESIZE that PCa cells reciprocally interact with the host cells to establish a proinflammatory microenvironment highly conducive to PCa metastasis and that metastatic PCa cells are endowed with CSC properties. By now we have accomplished all goals in Aims 1 and 2. Our lab recently relocated from the MD Anderson Cancer Center to Roswell Park Cancer Institute in Buffalo. We request a 6-month no-cost extension to wrap up a critical set of experiments testing the possibility that HOXB9 regulates PCa metastasis in a context- and model-dependent manner.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
<td>1</td>
</tr>
<tr>
<td>Standard Form (SF) 298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>4. Impact</td>
<td>12</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>13</td>
</tr>
<tr>
<td>6. Products</td>
<td>13</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>13</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>14</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION: The main goal of this IDEA project is to help elucidate the cellular and molecular mechanisms underlying prostate cancer (PCa) metastasis. Specifically, we test the overarching hypothesis that prostatic microenvironment facilitates PCa metastasis by promoting the phenotypic as well as functional manifestations of metastatic prostate cancer stem cells (mPCSCs). In the application, we proposed three Specific Aims:
1) To perform functional studies on the genes upregulated in the DP human prostate tumors;
2) To test the hypothesis that the DP human PCa cells overexpressing CSC markers possess mPCSC properties; and
3) To test the hypothesis that HOXB9 represents a ‘master’ regulator of mPCSCs and PCa metastasis.

2. KEYWORDS: Prostate cancer; metastasis; microenvironment; stem cells; cancer stem cells; orthotopic implantation; ectopic implantation; metastatic prostate cancer stem cells

3. ACCOMPLISHMENTS:

Dr. Tang, the PI of this grant, together with most lab members, moved from the M.D Anderson Cancer Center (MDACC) to Roswell Park Cancer Institute (RPCI) on June 1 of 2016. During the period of May 1 – early July of 2016, the lab had been mostly focused on moving related matters and therefore there was a gap in executing experiments related to this project. We have by now finished all goals proposed in Aims 1 & 2 but we still have some work to be accomplished for Specific Aim 3 (see below). Consequently, we request the transfer of the remaining balance for this grant to the RPCI and a 6-month no-cost extension to allow us to complete all goals proposed in Aim 3.

Major Goals of the Project (SOW):
Specific Aim 1: To perform further functional studies on the genes upregulated in the DP human prostate tumors (months 1 – 24).
The main goal of this Aim is to perform systematic knockdown experiments in several PCa models on the following 12 genes, CXCR4, PROM1 (CD133), NOS2A, TACSTD2 (TROP2), LRIG1, ABCG2, CD24, WNT4, ID3, NKX3.1, SMAD1, and HOXB9, and to determine the impact of their knockdown on the metastatic potential of human PCa cells in the mouse DP.

A). Test 3 independent shRNA lentiviral vectors for each gene (i.e., a total of 36 knockdown vectors together with 3 control shRNA lentivectors targeting non-coding scramble, GFP, and luciferase) and determine their knockdown efficiency by performing qPCR and Western blotting analysis.
B. Employ the most efficient vector for each gene (i.e., 12 in total plus control vectors) for in vivo tumor/metastasis experiments first by working on PC3 and xenograft-purified LAPC9 cells.

Specific Aim 2: To test the hypothesis that the DP human PCa cells overexpressing CSC markers possess mPCSC properties (months 12-30)

The main goal of this Aim is to determine whether PCa cells overexpressing CSC surface markers actually possess mPCSC properties, i.e., enhanced metastatic potential.

A). To determine the metastatic potential of single marker-sorted PCa cells. (12-24 months).

B). To determine the metastatic potential of combinatorial marker purified PCa cells. (20-30 months).

Specific Aim 3: To test the hypothesis that HOXB9 represents a ‘master’ regulator of mPCSCs and PCa metastasis (months 15-36).

A). To correlate HOXB9 with PCa progression in patient tumors. (15-24 months)

B). To directly determine the functions and mechanisms of HOXB9 in mPCSCs and PCa metastasis. (20-36 months). We estimate to use ~250 male NOD/SCID mice for these functional studies.

What was accomplished under these goals:

A. **Accomplishment of all goals in Aim 1.**

 See last year’s Progress Report.

B. **Accomplishment of all goals in Aim 2.**

 By now we have completed this Aim. From last year’s Progress Report, we proposed to test several combinatorial marker profiles as potentially superior mPCSC markers (to single markers). Our lab has been systematically dissecting PCa cell heterogeneity in the context of their tumor-generating, tumor-propagating, and metastatic potentials (1-9). One strategy we have employed is to frequently compare PCa cell populations bearing double- or triple-marker profiles with those expressing a single marker. For instance, we initially showed that the CD44$^{+}$$\alpha 2$$\beta 1^{+}$ PCa cell population in xenograft models is more tumorigenic than either CD44$^{+}$ or $\alpha 2$$\beta 1^{+}$ cell population (3). Interestingly, we have recently observed that this phenomenon may be model-dependent (6, 9). For example, the CD44$^{+}$$\alpha 2$$\beta 1^{+}$ PCa cell population in LAPC9 and LAPC4 xenograft models is more tumorigenic than either CD44$^{+}$ or $\alpha 2$$\beta 1^{+}$ cell population (6). However, the CD44$^{+}$$\alpha 2$$\beta 1^{+}$ PCa cell population in the DU145 model appears to be slightly less tumorigenic than either CD44$^{+}$ or $\alpha 2$$\beta 1^{+}$ cell population (see Table 1 in ref. 6). This model-dependent difference in tumor-regenerating properties between single-marker vs. combinatorial marker positive populations also seem to apply to their differences in mediating metastasis. Specifically, we have observed that the CD44$^{+}$$\alpha 2$$\beta 1^{+}$ or the CD44$^{+}$$\alpha 2$$\beta 1^{+}$ALDHhi (i.e., TM$^{+}$; 9) PCa cell population in the LAPC9 but not DU145 model is more metastatic when implanted in the dorsal prostate than single marker-positive cell population. We have just recently obtained this data and are in the process of summarizing the data for publication.

C. **Accomplishment of part of the goals in Aim 3.**

The original goal of Aim 3 is to test the hypothesis that HOXB9 represents a ‘master’ regulator of mPCSCs and PCa metastasis via regulating the TGFβ/SMADs signaling which in turn controls CSC molecules such as SPP1, MMP9, CD44, and CD24 (see Figure 5e in the original proposal). Since our last year’s Progress Report, Pubmed search on “HOXB9 AND prostate
“cancer” still just turns up one reference (10), suggesting that either HOXB9 represents an extremely novel PCa metastasis regulator or HOXB9 might be a context- and model-dependent regulator of PCa metastasis. Our bioinformatics based correlation studies on HOXB9 mRNAs with various patient parameters revealed, surprisingly, reduced HOXB9 mRNA levels in prostate tumors vs. normal tissues in TCGA database. Moreover, only a weak upregulation of HOXB9 mRNA levels is observed in metastatic samples compared with primary tumors in all 9 eligible Oncomine datasets (see Figure 6A in last year’s Progress Report). FINALLY, Kaplan-Meier survival analysis revealed discordant results that in one data set high HOXB9 mRNA levels correlated with poor patient survival whereas in two other data sets high HOXB9 mRNA levels correlated with better overall patient survival (see last year’s Progress Report). These observations raise the possibility that HOXB9 regulates PCa metastasis in a context- and model-dependent manner. In the remainder 6 months, we will design several sets of experiments to test this possibility.

References:
Nothing to Report

What do you plan to do during the next reporting period to accomplish the goals?

Aim 1: We have finished Aim 1 and are in the process of summarizing some of the data for a manuscript to be submitted to *Semin. Cancer Biol.* in Dec of this year.

Aim 2: We have finished Aim 2 and are in the process of summarizing some of the data for a manuscript to be submitted to *Semin. Cancer Biol.* in Dec of this year.

Aim 3: In the final 6-month no-cost extension period, we design several sets of experiments to test the possibility that *HOXB9 regulates PCa metastasis in a context- and tumor model-dependent manner.* Briefly, we plan to establish Doxycyclin (Dox) inducible HOXB9 expressing LAPC9 and DU145 models and implant these cells subcutaneously, an anatomical site that normally does not support robust systemic metastasis. The expectation is that HOXB9 induction should upregulate various CSC markers, reprogram bulk LAPC9 and/or DU145 cells into mPCSCs and thus facilitate metastasis. In the mean time, we shall also establish Dox-inducible HOXB9 knockdown (KD) LAPC9 and DU145 cells and implant these cells into the DP, a site that supports widespread cancer cell dissemination and metastasis. We predict that HOXB9 KD may suppress LAPC9 and/or DU145 metastasis. We suspect that, based on our earlier tumorigenicity experiments, HOXB9 manipulations may lead to different metastasis phenotypes in LAPC9 vs. DU145 cells.

4. IMPACT:
 a. **What was the impact on the development of the principal discipline(s) of the project?**
 For the first time, we have generated convincing data that when human PCa cells are implanted subcutaneously in immunodeficient NOD/SCID mice, they readily regenerate tumors but rarely metastasize. In contrast, orthotopically implanted human PCa cells generate less tumors but extensively metastasize. This message should greatly impact how future studies on human PCa metastasis should be modeled and executed.

 b. **What was the impact on other disciplines?**
 The findings here should also have bearing on similar metastasis studies of other solid tumors such as breast and colon cancers.

 c. **What was the impact on technology transfer?**
 Nothing to Report

 d. **What was the impact on society beyond science and technology?**
 Nothing to Report

5. CHANGES/PROBLEMS:
 Nothing to Report

6. PRODUCTS:
 The current project intersects with several other projects in the lab, all of which have a common goal, i.e., to dissect PCa cell heterogeneity and to elucidate the role of different
subpopulations of PCa stem/progenitor cells in tumor initiation, maintenance, progression, drug resistance, and metastasis. The following published manuscripts, during the period of Sept 2015 to Sept 2016, have cited the partial support of this DOD grant.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

<table>
<thead>
<tr>
<th>Name:</th>
<th>Ruifang Liu, Ph.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Postdoc</td>
</tr>
<tr>
<td>Researcher Identifier (e.g.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ORCID ID):

Nearest person month worked: 9

Contribution to Project: Dr. Liu was involved in performing some combinatorial marker metastasis assays. She’ll also be involved in the HOXB9 metastasis experiments during the proposed 6-month no-cost extension period

Funding Support: This DOD grant

Name: Hseuh-Ping (Eva) Chao

Project Role: Graduate Student

Researcher Identifier (e.g. ORCID ID): N/A

Nearest person month worked: 6

Contribution to Project: Eva was involved in bioinformatically analyzing differentially expressed genes

Funding Support: This DOD grant

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?

Nothing to Report

What other organizations were involved as partners?

Nothing to Report

8. SPECIAL REPORTING REQUIREMENTS:

N/A

APPENDICES: