When You Can't Beat 'em, Join 'em: Leveraging Complexity Science for Innovative Solutions

Presented at the 2017 NAVAIR Advances in Research & Engineering (ARE) Technical Interchange Meeting
by: Dr. Josef Schaff, NAVAIR 4.5
Current Problem Domain

- Commander’s intent: Networked Navy & the intent of CYBERSAFE
 - Weak links on autonomous vehicles
 - Challenges with large scale ad-hoc battlespace networks

- Needs:
 - Dynamically adaptable cyber resilience
 - Threats may use autonomous (e.g. machine learning) adaptation.
 - Collective behaviors, e.g., swarms.
 - Novel approach may need novel mathematics as foundation.
 - Fundamentally, a complex adaptive system.
Historical Problem Domain: Net-Centricity and its Problems

• Books by Moffat, Alberts, published 2000-2003 describe aspects of the Net-Centric Battlespace needed for NCW (Net-Centric Warfare):
 • Has attributes of self-similarity (fractal nature)
 • Involves thousands of entities (network nodes)
 • Answers may lie somewhere within complexity science / chaos theory

• A solution would need:
 • Adaptive dynamic behaviors for resiliency
 • Scale upwards at least several orders of magnitude
 • Be computationally tractable
 • Converge to solution in short timeframe (milliseconds to a few seconds)
Fields of study and their overlap

Complexity Science: deterministic / non-deterministic chaos

<table>
<thead>
<tr>
<th>Autonomy</th>
<th>Architecture & Topology</th>
<th>Cyber</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A.I./M.L.</td>
<td>• Hierarchical</td>
<td>• Resilience</td>
</tr>
<tr>
<td>• Emergent attributes</td>
<td>• Self-similar (Fractal)</td>
<td>• Adaptability</td>
</tr>
</tbody>
</table>
What shaped my perspective on tackling the problem

- Physics undergrad, software engineering jobs in comms, video games, robotics
- Started NAWCAD (NADC) as a computer scientist / engineer researching Neural Networks (NNs) and mathematical modeling of physical & biological phenomena
- A.I. Branch – broadened my focus on machine learning, also had opportunities to apply NNs to real-world Navy problems
 - Noticed need for distributed architectures & emergent phenomena
 - Leveraged fractals and chaotic systems for advanced NN prototypes
 - Deep dive on chaos & complexity science.
- Modeling & Simulation (DFS Centrifuge) developed expertise in distributed networks and graphical software
- Private start-up “big data” focus, was director of research focused on semantics, fractal topologies and genetic algorithms
- M&S –ACETEF, software, specific focus on algorithms
- 2010-now: cyber engineering, autonomy & Machine Learning, advanced architectures
What is complexity science?

- Complexity science is informally known as order creation science. Novel coherent properties can result from self-organizing System of Systems (SoS). Collective actions of many entities in a system produces emergence.

- There are various methods to create complex SoS and emergence, for example:
 - New approaches in computational (experimental) mathematics for multi-agent systems.
 - Deterministic chaos (fractals).
 - Pecora & Carroll’s research on information embedded below chaotic noise threshold, similar chaotic circuit can “decrypt” signal from noise.

- Application Focus: Cognitive robotics incorporates the behaviors of intelligent agents within the shared world model.
 - Multi-agent systems create challenges for desired behaviors within a planned environment due in part to the problem of translating and using symbolic reasoning for world abstractions.
 - Even the lowest level distributed C2 (Command & Control) comms can produce complexity.
Emergent behaviors result **not** from stochastic (e.g. thermodynamics) models, but instead from multi-agent interactions (e.g. RoboCup).

Emergence can produce ‘creative’ system behaviors.

Artificial Life - uses emergence generating algorithms:
- genetic algorithms, neural nets, cellular automata.

Emergent SoS **cannot** be designed by functional decomposition.

Nonlinear systems: Can they have predictable behavior?
- Predictability ‘collapses’ as sequence progresses (complexity increases).
- Chaos can result from even small changes.
- Known initial and intermediate conditions can have unpredictable results = Emergent behavior.
Why should we use complexity science & how?

• Why?
 • Systems engineering is limited by its current System of Systems (SoS) approach to consistently predict novel / emergent behaviors that would give the U.S. an edge on our adversaries.
 • Large-scale multi-agent SoS, which are complex systems, typically show emergent behaviors.
 • Collective actions of many entities in a system produces emergence.
 • Complexity can provide a solution to translating the world into actions, by bounding the behaviors of distributed agents to produce new (emergent) and desired collective behaviors.

• How?
 • System elements need to be more adaptable, loosely coupled, and create a dynamically interoperable environment.
 • Complexity science is better modeled by using a localized, connectionist ontology of heterogeneous agents than by using equilibrium models from thermodynamics.
 • Novel coherent properties can result from these self-organizing systems.
What is a Complex System?

• Consists of many components associated by structure or just abstract relationship.
• May be scalable and self-similar at more than one level.
• Not described by simple rule or from the fundamental level. Predictable parts can form unpredictable system behavior.
 • E.g. Mandelbrot (fractal’s inventor): “transmission line noise” appeared random, was predictable “Cantor Dust”.
 • Bifurcation - “Feigenbaum diagram” at phase transitions (solid/liquid/gas), etc. represents nonlinear dropoff.
 • Devil’s staircase – at phase transition = chaos.
Diagrams: Feigenbaum and Devil’s Staircase
Most body functions exhibit complex behavior - fractal pattern of heartbeat, ionic channels, etc.

- when ECG pattern becomes *less* complex, then indicates potential heart problem !!

- Chaotic (complex) chemical reactions:
 - Belousov-Zhabotinskii reaction (color change)

- Can even build an electronic circuit with complex behavior - can be driven to chaotic

- *Can we control chaos?*
Chaos rules!
Generalized conjecture on chaos:

• Simple deterministic or even random stochastic models may not be the answer in our quest for human-like behaviors, or even the self-organizing patterns that occur in nature

• Perhaps we should look to controlling chaotic phenomena, as nature does, for the discovery of emergent patterns. This may lead to solutions for self-organizing large scale networks, or even human-like behavior in robots
Self-Organizing Complex Systems: Chaos Under Control

• Artificial biological systems:
 • Neural networks, Genetic algorithms, Boolean nets (Kauffman), Cellular Automata (Wolfram).

• Real biological systems:
 • Civilizations, economies, evolution (Kauffman), biological organisms, cognitive thought process.

• Experimental mathematics:
 • A “new” type of mathematics, previously unexplored due to computational limitations of the past.
 • Not Formal Methods, and no available proofs.
 • May depend upon deterministic chaos.
Control of chaos – an example

Problem: Spatially distributed large dynamic networks:
• Lose edge node communications.
• Congressional Research Report (2007):
 • Scaling limitations for large numbers of battlespace networked nodes.
 • Combinatorial explosion from massive numbers of route calculations.
• To increase availability and resiliency in network-centric clouds and swarms, ad-hoc nodes must rapidly self-organize using shared topology data.
• Topology can affect network failures and success of cyber offense and defense.

Perhaps we can leverage complexity science for a solution:
• Moffat's 2003 paper titled "Complexity Theory and Network Centric Warfare" referenced complex systems and their relationship to fractals and decentralized NCW.
• High volume network traffic packets self-organize to fractal (Leyland et al., 1994), therefore fractal may increase availability for large networks.
• Use a fractal that can adapt to needed topology.
Adaptive fractal experimental math discovery: an outgrowth of the linear chaos game

Like the simple point-slope equation for line:

- Deterministic chaos equation is \(X(n) = M \times X(n-1) + Z \).

 \[X(n-1) = \text{current point}, \quad X(n) = \text{next point}. \]

Z: “vertices” = a set of initial points that constrain all node points, can represent network hubs. Z is randomly selected out of this set.

M: scale parameter = controls where the next point is generated from the current point. 0<|M|<1.

Both variables \(M \) and \(Z \) share interdependencies that affect the overall network topologies, including thresholds for clustering and the mappings to certain cluster elements.
Naming the algorithm and using the results

Algorithm Name: Non-predetermined Parametric Random (NPPR) Iterated Function System (IFS)

Running it:
• Node and hub considerations:
 • Points plotted show distribution of network nodes; vertices = hubs.
 • Hubs may be virtual, i.e. location for calculation purposes only, and can add, move, delete.
 • Nodes know relative layout of clusters, coalesce around hubs for communications clusters.

Results:
• Combinatorial explosion and cyber impact avoided by use of NPPR.
 • Usually is an issue in large ad-hoc networks (Adams & Heard, 2014).
• NPPR topology is information-dense: a little info can reconfigure network.
 • Hub changes broadcasted as lat/lon position.
 • Scale parameter changes from chaos to order.
• Produces repeatable macroscopic results, even with unique node positions
 • Can apply to large-scale swarm control, adaptive cyber warfare.
 • Shared stigmergic knowledge by all nodes – i.e. each knows position of “neighborhoods”
Attributes of this solution

• Solution is:
 • Self-similar – each node can “know” the topology relative to other nodes
 • Facilitates situational awareness for tens of thousands of distributed nodes
 • Uses Deterministic Chaos

• Solution has:
 • **Adaptive fractal topology** with dynamic behaviors for resiliency
 • Fractal **self-similarity** can scale upwards many orders of magnitude
 • **Linear equation** = like point-slope equation of line is computationally tractable
 • Converges to solution in short timeframe in 10-100 millisecond timeframe
 • Exhibits stigmergic behaviors

• **This is but one possible solution out of many, that can be discovered by using computational (experimental) mathematics**

DISTRIBUTION STATEMENT A
Personal Consequences of this Research

• Used as my successfully defended dissertation topic
• Discovered interesting emergent behaviors in a simple equation
• Received 2015 Outstanding Workforce Development Award as a direct result of this academic research project
• Wrote a chapter for engineering book on Engineering Emergence
Screen layout of NPPR “tool”:

A = Slider controls size (# pixels) in node-points plotting window, at bottom.
B = Hubs topology map, used to drag-and-drop a hub relative to others, or create hubs.
C = Resets diagram to a default 3-vertex, 0.5 scale for equilateral Sierpinski gasket.
D = Checkbox that toggles display of horizontal and vertical axes.
E = Slider for number of pixels selected to represent each node plotted.
F = Scale slider for the NPPR parameter (floating point multiplier).
G = Slider for the total number of points (nodes) to plot.
H = Lines indicate Voronoi partitions, for cluster observation guidance.
I = Nodes plotted using formula at top of window. Center points correspond to hubs.
From Random to Order
More Patterns

Point[n] = 0.172134 Point[n-1] + RandomVertex

Point[n] = 0.161066 Point[n-1] + RandomVertex
Changing the sign (+/-)
Some differing 4-vertex patterns
Some of the references

• Stigmergy:

• Network Topology:
 • Kleinberg, et al. (2004) showed topology affects network failures as well as attack successes.

• Fractal Traffic Self-organizing:
 • Paxson and Floyd (1995).