MEMORANDUM FOR SGOBS
ATTN: MAJ SUSAN WHITEWAY

FROM: 59 MDW/SGVU

SUBJECT: Professional Presentation Approval

1. Your paper, entitled *Ovarian Sertoli-Leydig Cell Tumor with Elevated Inhibin B as A Cause of Secondary Amenorrhea in Adolescent with Germline DICER1 Mutation* presented at/published to *Journal of Pediatric and Adolescent Gynecology* in accordance with MDWI 41-108, has been approved and assigned local file #17159.

2. Pertinent biographic information (name of author(s), title, etc.) has been entered into our computer file. Please advise us (by phone or mail) that your presentation was given. At that time, we will need the date (month, day and year) along with the location of your presentation. It is important to update this information so that we can provide quality support for you, your department, and the Medical Center commander. This information is used to document the scholarly activities of our professional staff and students, which is an essential component of Wilford Hall Ambulatory Surgical Center (WHASC) internship and residency programs.

3. Please know that if you are a Graduate Health Sciences Education student and your department has told you they cannot fund your publication, the 59th Clinical Research Division may pay for your basic journal publishing charges (to include costs for tables and black and white photos). We cannot pay for reprints. If you are a 59 MDW staff member, we can forward your request for funds to the designated Wing POC at the Chief Scientist’s Office, Ms. Alice Houy, office phone: 210-292-8029; email address: alice.houy.civ@mail.mil.

4. Congratulations, and thank you for your efforts and time. Your contributions are vital to the medical mission. We look forward to assisting you in your future publication/presentation efforts.

LINDA STEEL-GOODWIN, Col, USAF, BSC
Director, Clinical Investigations & Research Support

Warrior Medics — Mission Ready — Patient Focused
INSSTRUCTIONS

USE ONLY THE MOST CURRENT 59 MDW FORM 3039 LOCATED ON AF E-PUBLISHING

1. The author must complete page two of this form:
 a. In Section 2, add the funding source for your study (e.g., 59 MDW CRD Graduate Health Sciences Education (GHSE) (SGS O&M); SG5 R&D; Tri-Service Nursing Research Program (TSNRP); Defense Medical Research & Development Program (DMRDP); NIH; Congressionally Directed Medical Research Program (CDMRP); Grants; etc.)
 b. In Section 2, there may be funding available for journal costs, if your department is not paying for figures, tables or photographs for your publication. Please state “YES” or “NO” in Section 2 of the form, if you need publication funding support.

2. Print your name, rank/grade, sign and date the form in the author’s signature block or use an electronic signature.

3. Attach a copy of the 59 MDW IRB or IACUC approval letter for the research related study. If this is a technical publication/presentation, state the type (e.g. case report, QA/QI study, program evaluation study, informational report/briefing, etc.) in the "Protocol Title" box.

4. Attach a copy of your abstract, paper, poster and other supporting documentation.

5. Save and forward, via email, the processing form and all supporting documentation to your unit commander, program director or immediate supervisor for review/approval.

6. On page 2, have either your unit commander, program director or immediate supervisor:
 a. Print their name, rank/grade, title; sign and date the form in the approving authority's signature block or use an electronic signature.

7. Submit your completed form and all supporting documentation to the CRD for processing (59crdpubspres@us.af.mil). This should be accomplished no later than 30 days before final clearance is required to publish/present your materials. If you have any questions or concerns, please contact the 59 CRD/Publications and Presentations Section at 292-7141 for assistance.

8. The 59 CRD/Publications and Presentations Section will route the request form to clinical investigations, 502 ISG/JAC (Ethics Review) and Public Affairs (59 MDW/PA) for review and then forward you a final letter of approval or disapproval.

9. Once your manuscript, poster or presentation has been approved for a one-time public release, you may proceed with your publication or presentation submission activities, as stated on this form. Note: For each new release of medical research or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.

10. If your manuscript is accepted for scientific publication, please contact the 59 CRD/Publications and Presentations Section at 292-7141. This information is reported to the 59 MDW/CC. All medical research or technical information publications/presentations must be reported to the Defense Technical Information Center (DTIC). See 59 MDW 41-108, Presentation and Publication of Medical and Technical Papers, for additional information.

11. The Joint Ethics Regulation (JER) DoD 6500.07-R, Standards of Conduct, provides standards of ethical conduct for all DoD personnel and their interactions with other non-DoD entities, organizations, societies, conferences, etc. Part of the Form 3039 review and approval process includes a legal ethics review to address any potential conflicts related to DoD personnel participating in non-DoD sponsored conferences, professional meetings, publication/presentation disclosures to domestic and foreign audiences, DoD personnel accepting non-DoD contributions, awards, honors, gifts, etc. The specific circumstances for your presentation will determine whether a legal review is necessary. If you (as the author) or your supervisor check "NO" in block 17 of the Form 3039, your research or technical documents will not be forwarded to the 502 ISG/JAC legal office for an ethics review. To assist you in making this decision about whether to request a legal review, the following examples are provided as a guideline:

 For presentations before professional societies and like organizations, the 59 MDW Public Affairs Office (PAO) will provide the needed review to ensure proper disclaimers are included and the subject matter of the presentation does not create any cause for DoD concern.

 If the sponsor of a conference or meeting is a DoD entity, an ethics review of your presentation is not required, since the DoD entity is responsible to obtain all approvals for the event.

 If the sponsor of a conference or meeting is a non-DoD commercial entity or an entity seeking to do business with the government, then your presentation should have an ethics review.

 If your travel is being paid for (in whole or in part) by a non-Federal entity (someone other than the government), a legal ethics review is needed. These requests for legal review should come through the 59 MDW Gifts and Grants Office to 502 ISG/JAC.

 If you are receiving an honorarium or payment for speaking, a legal ethics review is required.

 If you (as the author) or your supervisor check "YES" in block 17 of the Form 3039, your research or technical documents will be forwarded simultaneously to the 502 ISG/JAC legal office and PAO for review to help reduce turn-around time. If you have any questions regarding legal reviews, please contact the legal office at (210) 502-7983/3305, DSN 473.

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement:

"The views expressed are those of the author(s) [presenter(s)] and do not reflect the official views or policy of the Department of Defense or its Components"

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement for research involving humans:

"The voluntary, fully informed consent of the subjects used in this research was obtained as required by 22 CFR 219 and DODI 3216.02_AFI 40-402."

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement for research involving animals, as required by AFMAN 40-401_IP:

"The experiments reported herein were conducted according to the principles set forth in the National Institutes of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966, as amended."
Prescribed

21. Approving Authority's Printed Name, Rank, Title

<table>
<thead>
<tr>
<th>Last Name, First Name, M.I.</th>
<th>Grade/Rank</th>
<th>Squadron/Group/Office Symbol</th>
<th>Institution (If not 59 MOW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Whiteway, Maj</td>
<td>0-4</td>
<td>SGOBS</td>
<td>Naval Hospital, Naples</td>
</tr>
<tr>
<td>Moroney, John W.</td>
<td>0-5</td>
<td>DCSS</td>
<td>University of Chicago</td>
</tr>
<tr>
<td>Snitchler, Andrea</td>
<td>0-4/Capt</td>
<td>959MDOS/959MDG/SGOBS</td>
<td>Naval Hospital, Naples</td>
</tr>
</tbody>
</table>

I certify any human or animal research related studies were approved and performed in strict accordance with 32 CFR 219, AFMAN 40-401_IP, and 59 MOW 41-108. I have read the final version of the attached material and certify that it is an accurate manuscript for publication and/or presentation.

<table>
<thead>
<tr>
<th>Date</th>
<th>Page 2 of 3 Pages</th>
<th>59 MDW FORM 3039, 20160628</th>
<th>PREVIOUS EDITIONS ARE OBSOLETE</th>
</tr>
</thead>
</table>
The abstract and manuscript are approved.
Abstract

Background: Although uncommon in children, ovarian tumors can retain endocrine function that disrupts normal feedback mechanisms leading to amenorrhea. Inheritance of germline DICER1 mutations can lead to increased risk for development of ovarian Sertoli-Leydig cell tumors (SLCT).

Case: We report the case of an adolescent female who developed secondary amenorrhea due to elevated inhibin B levels from an ovarian SLCT.

Summary and Conclusions: Ovarian tumors should be included in the differential diagnosis for pediatric patients presenting with menstrual irregularities. Early evaluation of the hypothalamic-pituitary-ovarian axis is appropriate to include screening of inhibin levels if an ovarian mass is identified. Our case also emphasizes the need for testing of DICER1 mutations in pediatric patients with ovarian SLCTs.

Disclaimer: The views expressed are those of the author(s)/presenter(s) and do not reflect the official views or policy of the Department of Defense or its Components.
Ovarian Sertoli-Leydig cell tumor with elevated inhibin B as a cause of secondary amenorrhea in adolescent with germline Dicer1 mutation

Amy M. Luke DO1, John W. Moroney MD2, Andrea Snitchler DO3, Susan L. Whiteway MD1

Affiliations:
1San Antonio Uniformed Services Health Education Consortium, JBSA-Fort Sam Houston, TX; 2University of Chicago Pritzker School of Medicine, Chicago, IL; 3U.S. Naval Hospital Naples, Naples, Italy

Address correspondence to: Susan L. Whiteway, MD, Department of Pediatrics, Brooke Army Medical Center, 3551 Roger Brooke Dr, JBSA-Fort Sam Houston, TX 78234. E-mail: susan.l.whiteway.mil@mail.mil Phone Number: (210) 916-7727 Fax Number: (210) 916-9319

Financial Disclosure: The authors have indicated they have no financial relationships relevant to this article to disclose.

Conflict of Interest: The authors have no conflicts of interest to disclose. The views expressed herein are those of the authors and do not reflect the official policy or position of Brooke Army Medical Center, the US Army Medical Department, the US Army Office of the Surgeon General, the Department of the Army, the US Air Force, Department of the Navy, Department of Defense, or the US Government.

Key Words: Sertoli-Leydig cell tumor, amenorrhea, inhibin B, Dicer1

Disclaimer: The views expressed are those of the author(s)/presenter(s) and do not reflect the official views or policy of the Department of Defense or its Components.
Introduction:

The normal menstrual cycle is regulated through a complex and closely coordinated cycle of activating and inhibiting signals that ultimately leads to the release of a mature oocyte. Ovarian tumors can retain endocrine function leading either to androgenic or estrogenic manifestations such as isosexual precocious puberty, virilization from hyperandrogenism, or secondary amenorrhea from disrupted hormonal pathways. Here we present the case of an adolescent female who developed secondary amenorrhea due to elevated inhibin B levels from an ovarian Sertoli-Leydig cell tumor (SLCT). After tumor recurrence, the patient was found to harbor a germline loss of function DICER1 mutation. This gene encodes an endonuclease that is critical for microRNA processing and affected individuals are at risk for developing rare tumors such as a SLCT. Identification of a DICER1 mutation is clinically relevant due to the potential for a synchronous DICER1-related disorder and increased tumor risk in affected family members.

Case:

The patient presented at age 14 years to her primary care provider for evaluation of irregular menstrual periods. She underwent menarche at age ten with menstrual cycles occurring at regular 28 day intervals with five days of menstrual flow. Three months prior to presentation, her menses stopped. She also reported intermittent, sharp, right-sided pelvic pain but denied sexual activity, recent weight change, hot flashes, voice changes, or increased hair growth.

Her past medical history was significant for a right ovarian SLCT, found at age eight years which presented with ovarian torsion. The tumor was 12 cm in size, para-ovarian in location, with retiform histology, and was removed via cystectomy to ensure ovarian
preservation during exploratory laparotomy. She was dispositioned for ultrasound surveillance and had been followed conservatively for three years.

At current evaluation, she was at the 60th percentile for height and weight with no increased growth velocity. She was Tanner stage V for sexual maturity rating and physical exam was without evidence of a palpable abdominal mass, acne, hirsutism, or clitoromegaly. Screening pelvic ultrasound and confirmatory magnetic resonance imaging (MRI) showed a 5 cm x 4.1 cm complex left ovarian mass with solid and cystic components. Laboratory evaluation demonstrated elevated inhibin B level 286 pg/mL (<177 pg/mL for Tanner Stage V female) and luteinizing hormone (LH) 40.2 mIU/mL (2.4 mIU/mL-12.6 mIU/mL in follicular phase) with negative beta human chorionic gonadotropin (beta-HCG), and normal testosterone, dehydroepiandrosterone sulfate (DHEA-S), estradiol, cancer antigen (CA)-125, follicle stimulating hormone (FSH), inhibin A, and thyroid hormone levels.

She underwent an uncomplicated left salpingo-oophorectomy, omental sampling, right ovarian biopsy, and peritoneal washings. Pathology was consistent with a moderately differentiated SLCT, without heterologous elements. The ovarian capsule was intact; however the peritoneal washings were positive for involvement of a SLCT. Immunohistochemical staining of the neoplastic cells were positive for alpha-inhibin. There was no omental involvement and two omental lymph nodes were negative for metastatic involvement. The tumor was International Federation of Obstetrics and Gynecology (FIGO) stage IC due to involved peritoneal washings at the pelvic entry. The patient resumed her regular menses 21 days after surgical resection and her hormone levels normalized with inhibin B 7.71 pg/mL and LH 12.4 mIU/mL. In light of her Stage IC disease, she was treated with 4 cycles of bleomycin, etoposide, and cisplatin chemotherapy without complication. At completion of therapy she was without
evidence of disease based on normal serum inhibin B levels and negative MRI findings. With close follow up monitoring of inhibin B levels and pelvic ultrasound, initially at an every 3 month interval and now at 6 month intervals, our patient continues in remission with no concern for disease recurrence at 23 months off therapy.

Given that our patient was diagnosed with an ovarian SLCT initially at a young age with late recurrence, she underwent a commercially available gene sequence analysis of DICER1 that showed the pathogenic mutation c.1839delA at exon 10, predicted to be an alternate stop codon. As there are no formal guidelines for patients with germline DICER1-related disorders, we pursued screening tests in conjunction with published recommendations. Our patient had chest computed tomography (CT) that was negative for pulmonary cysts seen in pleuropulmonary blastoma (PPB), pelvic MRI for her ovarian tumor was negative for renal pathology, and she had no thyroid nodules on physical exam. Apart from her pelvic imaging for SLCT surveillance, her DICER1 follow up will consist of annual physical exams, targeted review of systems, and imaging only to examine areas of concern if found on exam.

Summary and Conclusion:

The absence of normal menstruation, defined as primary or secondary amenorrhea, can arise from a variety of conditions. In the adolescent patient, most cases of secondary amenorrhea can be attributed to pregnancy, polycystic ovarian syndrome, hyperprolactinemia, hypothalamic amenorrhea, primary ovarian insufficiency, or an ovarian tumor. Initial evaluation for a patient with secondary amenorrhea involves a thorough history and physical exam to look for progression of height, weight, and Tanner staging. Presence of acne, hirsutism, and virilization would suggest an androgenic state. Laboratory evaluation includes serum beta-HCG, LH, FSH, prolactin level, and thyroid stimulating hormone. Diagnostic imaging with pelvic
ultrasonography can confirm the presence of a uterus, possible outflow tract abnormalities, or an ovarian tumor.¹

Ovarian tumors are extremely rare in young children, accounting for only 1% of all pediatric tumors.² Ovarian SLCTs belong to a heterogeneous group of tumors that arise from the non-germ cell component of the ovary. These tumors typically present in the first two to three decades of life.³ They are often unilateral, large (10-15cm), and present with abdominal pain, distension, and can lead to torsion. Histologic subtypes include well, intermediate, and poorly differentiated as well as retiform.⁴

Unlike other ovarian tumors such as germ cell or epithelial cancers, SLCT often present with evidence of hormonal dysfunction such as precocious puberty, amenorrhea, or hyperandrogenism with hirsutism and virilization.³ Laboratory findings may include elevation of hormonal markers such as inhibins A or B, estrogen, testosterone, or AFP which can be increased in the retiform subtype.⁵ Due to rarity of this tumor, no standard treatment approach had been identified. For localized FIGO Stage 1a disease in children and adolescents, most tumors can be treated with surgery alone to include fertility-sparing resection of affected ovary and fallopian tube instead of total hysterectomy and bilateral salpingo-oophorectomy often offered to women beyond reproductive age.³ For higher staged tumors, a cisplatin based regimen should be recommended as adjuvant therapy.⁴

Our patient presented with clinical findings of secondary amenorrhea and abdominal pain. Evaluation into potential etiologies led to identification of an elevated LH level in the presence of normal estradiol and FSH levels. With an ovarian mass seen on pelvic imaging, serum tumor markers were drawn and showed an elevated inhibin B level with normal inhibin A, testosterone, DHEA-S, and CA-125 levels. This unusual laboratory pattern has been previously
described in adult patients with an ovarian fibrothecoma and a leiomyoma but not previously in a patient with SLCT.\(^6\)

In the menstrual cycle, early in the follicular phase, gonadotropin releasing hormone (GnRH) pulses and a small surge of FSH initiates recruitment of the next cohort of follicles. With progression through the follicular phase, the modest increase in FSH stimulates folliculogenesis and estradiol production. Levels of inhibin B, secreted by the granulosa cells of developing follicles, rise and function to regulate FSH secretion through negative feedback inhibition.\(^6\) It is hypothesized that autonomous inhibin B production from these tumors results in amenorrhea from complete inhibition of follicular recruitment due to chronic FSH suppression. In an attempt to overcome FSH suppression, the hypothalamus has an exaggerated GnRH release which leads to disproportionately elevated release of LH.\(^6\) (Figure 1). In our patient, after complete tumor resection, normal physiologic feedback patterns were reestablished. Clinically, there was evidence of resumed follicular recruitment with an increase in estradiol, decrease in LH and inhibin B levels, and resumption of menses.

Recent reports have identified an association between germline \textit{DICER1} mutations and SLCTs\(^3\). \textit{DICER1} encodes an enzyme required for the production of mature microRNAs, which are important regulators of gene expression and critical in normal organ development.\(^7\) Germline \textit{DICER1} mutations were first identified in cases of PPB, the most common lung tumor of infancy and early childhood.\(^8\) The \textit{DICER1}-related disorders have expanded to include other ovarian sex cord-stromal tumors (juvenile granulosa cell tumor and gynandroblastoma), cystic nephroma, and thyroid gland neoplasia. Less common tumors include ciliary body medulloepithelioma, botryoid-type embryonal rhabdomyosarcoma, nasal chondromesenchymal hamartoma, pituitary blastoma, and pinealblastoma.\(^5\) Patients with germline \textit{DICER1} mutations and ovarian SLCTs
have been reported to present at a younger age, have a higher incidence of bilateral disease, and are at risk of developing a late contralateral, metachronous ovarian tumor after the general risk period for recurrence.3 \textit{DICER1} mutations are inherited in an autosomal dominant manner and although penetrance is suspected to be low, identification of a germline \textit{DICER1} affected patient is recommended as it may have screening implications for both the patient and family members.5

Given the rarity of this condition, no formal guidelines regarding initial screening evaluations or surveillance of persons with a germline \textit{DICER1} pathogenic variant have been established. However, based on data from the International PPB registry which includes more than 500 persons affected, screening recommendations include an annual physical exam with special attention to thyroid gland, targeted review of systems, and baseline screening imaging of chest (CT) and kidneys (ultrasound) that is tailored to age at diagnosis and presence of any suspicious clinical findings.5

This case highlights the importance of recognizing the potential for ovarian tumors to affect the menstrual cycle in pediatric and adolescent patients. We emphasize early evaluation of the hypothalamic-pituitary-ovarian axis and inhibin B levels if an ovarian tumor is identified to screen for these rare patients and advocate for \textit{DICER1} testing in affected pediatric patients to establish need for surveillance of possible synchronous tumors, risk for tumor recurrence, and to identify affected family members.
References

Figure 1: In early follicular phase, hypothalamic GnRH pulses lead to FSH release from the pituitary, initiating folliculogenesis. Inhibins B levels, from developing follicles, increase and through feedback inhibition, suppress FSH levels. Autonomous secretion of inhibin B by ovarian tumors interrupts this feedback loop leading to FSH suppression, absent folliculogenesis, and amenorrhea.
Inhibin B

(-)

Developing Follicles

Ovarian Tumor

FSH

(+)

Pituitary

GnRH

(+)

Hypothalamus

Inhibin B

(-)