Hydroxylammonium nitrate (HAN) is a promising candidate to replace highly toxic hydrazine in monopropellant thruster space applications. The reactivity of HAN aerosols on heated copper and iridium targets was investigated using tunable vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometry. The reaction products were identified by their mass-to-charge ratios and their ionization energies. Products include NH₃, H₂O, NO, hydroxylamine (HA), HNO₃, and a small amount of NO₂ at high temperature. No N₂O was detected under these experimental conditions, despite the fact that N₂O is one of the expected products according to the generally accepted thermal decomposition mechanism of HAN. Upon introduction of iridium catalyst, a significant enhancement of the NO/HA ratio was observed. This observation indicates that the formation of NO via decomposition of HA is an important pathway in the catalytic decomposition of HAN.
Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation

Steven D. Chambreau,† Denisia M. Popolan-Vaida,‡§ Ghanshyam L. Vaghjiani,*∥ and Stephen R. Leone‡§

†ERC, Inc., Edwards Air Force Base, California 93524, United States
‡Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
§Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
∥In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States

Supporting Information

ABSTRACT: Hydroxylammonium nitrate (HAN) is a promising candidate to replace highly toxic hydrazine in monopropellant thruster space applications. The reactivity of HAN aerosols on heated copper and iridium targets was investigated using tunable vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometry. The reaction products were identified by their mass-to-charge ratios and their ionization energies. Products include NH₃, H₂O, NO, hydroxylamine (HA), HNO₃, and a small amount of NO₂ at high temperature. No N₂O was detected under these experimental conditions, despite the fact that N₂O is one of the expected products according to the generally accepted thermal decomposition mechanism of HAN. Upon introduction of iridium catalyst, a significant enhancement of the NO/HA ratio was observed. This observation indicates that the formation of NO via decomposition of HA is an important pathway in the catalytic decomposition of HAN.

The introduction of hydroxylammonium nitrate (HAN) ionic liquid as a replacement for hydrazine as a spacecraft monopropellant has been of great interest recently due to the reduced toxicity and the improved performance afforded by HAN over hydrazine. HAN is one component of the formulation used in the small demonstration satellite-4 (SDS-4) developed by the Japan Aerospace Exploration Agency, and it is a component of the AF-M315E monopropellant to be used in NASA’s Green Propellant Infusion Mission. Extensive experimental work has been performed on the thermal decomposition of HAN by Cronin and Brill, Oxley and Brower, Lee and Litzinger, and Kappenstein et al. While much effort has been dedicated to understanding the HAN thermal decomposition mechanism (over 30 publications), only very recently have efforts been made to understand the catalytic decomposition mechanism of HAN in order to optimize the design of HAN-based monopropellant catalysts and thrusters. A brief summary of the HAN thermal decomposition mechanism is presented here. A detailed overview of the current understanding of both thermal decomposition and catalytic decomposition of HAN can be found elsewhere (in ref 1 and references therein).

Pure, solid HAN is unstable, so HAN is typically stored mixed with H₂O. Upon heating HAN solutions under atmospheric pressure, the first step is an endotherm that vaporizes water. The subsequent decomposition is a two-step exothermic process. Decomposition onset temperatures for HAN have been reported in the range of 100–140 °C. The thermal decomposition pathways are presented as a combination of elementary and global reactions that are based on experimental observations:

- \(\text{H}_3\text{NOH}^{\cdot}\text{NO}_3^{-} \rightarrow \text{H}_2\text{NOH} + \text{HNO}_3 \) (1)
- \(\text{H}_2\text{NOH} + 2\text{HNO}_3 \rightarrow 3\text{HNO}_2 + \text{H}_2\text{O} \) (2)
- \(\text{H}_2\text{NOH} + \text{HNO}_3 \rightarrow \text{NO} + \text{HNO}_2 + \text{H}_2\text{O} \) (3)
- \(\text{H}_2\text{NOH} + \text{NO} \rightarrow \text{N}_2 + \text{HNO}_2 + \text{H}_2\text{O} \) (4)
- \(\text{NOH} + \text{HNO}_3 \rightarrow 2\text{HNO}_2 \) (6)

In this mechanism proposed by Oxley and Brower, any NO formation was attributed to its possible formation from decomposition of HNO₂ or HNO₃. The addition of acetate anion retarded HAN decomposition due to reduction in the acidity (i.e., [HNO₃]) in the mixture. Reaction 2 has an activation barrier of \(E_a = 105 \text{ kJ/mol} \) and is dominant at low [NH₂OH], while reaction 3 has an \(E_a = 65 \text{ kJ/mol} \) and is dominant at high [NH₂OH]. Due to the different tendencies to form contact ion pairs in pure HAN versus aqueous HAN, the decomposition mechanism of pure HAN is believed to be
different from that of aqueous HAN decomposition, and catalytic decomposition is likely different from thermal decomposition of both pure HAN and its aqueous solution, HAN(aq). As HAN(aq) is heated, the dielectric constant of water decreases, and there is an increased tendency to form contact ion pairs rather than solvated ions, possibly enhancing decomposition.

Hydroxylamine (H$_2$NOH) has been demonstrated to decompose completely on heated Ir catalysts at 45 °C, while the exposure of HNO$_3$ to heated Ir catalysts results in evaporation of HNO$_3$, indicating that the H$_2$NOH primary product further decomposes to create ignition conditions in HAN-based propellants. However, the H$_2$NOH catalytic decomposition products were not identified.

The intent of this investigation is to probe the secondary products of catalytic decomposition of HAN on Ir to identify important intermediate species in the ignition of HAN-based monopropellants. In this investigation, HAN is first aerosolized and introduced into a mass spectrometer equipped with a heated target upon which the aerosol particles are deposited. The targets in this case are copper (to probe thermal decomposition) and iridium (to probe catalytic decomposition). Upon decomposition (that occurs on the order of tens of microseconds), the products are vaporized into the vacuum chamber and rapidly ionized by tunable vacuum ultraviolet photons generated by the synchrotron source at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source, Berkeley, CA. The photoions are accelerated and detected as a function of their time-of-flight, yielding both the mass-to-charge ratio of the photoions and their ionization energies (IE) or appearance energies (AE) in the case of parent ion fragmentation. In this way, the initial products can be definitively identified by both their masses and their ionization energies. Details about the experimental setup can be found elsewhere.

By tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry, HAN decomposition product masses were detected with mass-to-charge ratios (m/z) of 17, 18, 30, 32, 33, 44, 46 and 63, seen in Figure 1. The primary thermal decomposition products (formation of HNO$_3$ at m/z 63 and H$_2$NOH at m/z 33 represented by reaction 1) can be seen in Figure 1. Other products observed are formation of NH$_3$ at m/z 17, H$_2$O at m/z 18, and the small peak at m/z 30 is identified as NO. While some H$_2$O is present in the aerosols even after passing the aerosols through a drying tube, a significant increase in H$_2$O production with increasing target temperature indicates H$_2$O product formation from HAN catalytic decomposition.

The presence of m/z 46 is assigned to be primarily a fragment of m/z 63 and the peak at m/z 32 is a fragment of HA (m/z 33), and this will be discussed further below. However, a very small amount of the m/z 46 signal can be attributed to the formation of NO$_2$ at 250 °C and above (also discussed below). Peaks at m/z 28 and 45 are contamination in the mass spectrometer and will not be discussed here. In the limited photon energy range investigated here (8.5–14.5 eV), we do not detect H$_2$ or N$_2$, as their IE values are 15.4 and 15.6 eV, respectively. Experimental photoionization energies are determined by fitting the photoionization efficiency curves (PIE) at the photoion onset as described previously (see Figure 2).

![Figure 1](image1.png)
Figure 1. Typical mass spectra at 12.6 eV photoionization energy and a target temperature of 300 °C for (a) the thermal decomposition of HAN on a copper target, and (b) the catalytic decomposition of HAN on an iridium target.

![Figure 2](image2.png)
Figure 2. Normalized photoionization efficiency curves for (a) m/z 17, 30, and 33, and for (b) m/z 18, 44, 46, and 63 at 300 °C on the copper target. Photoionization energies are listed in Table 1. Note that separate PIE scans were performed for photon energy ranges from 8.5 to 10.5 eV and 11.5–14.5 eV due to improved signal-to-noise ratios afforded by using a MgF$_2$ filter from 8.5 to 10.5 eV (MgF$_2$ is not transparent above 11 eV).

These experimental photoionization energy values (or photoion fragment appearance energies) are presented in Table 1 and are compared to literature values for definitive species identification.

<table>
<thead>
<tr>
<th>m/z</th>
<th>product</th>
<th>AE/IE (± 0.2 eV)</th>
<th>lit AE/IEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>NH$_3$</td>
<td>10.0</td>
<td>10.07</td>
</tr>
<tr>
<td>18</td>
<td>H$_2$O</td>
<td>12.6</td>
<td>12.62</td>
</tr>
<tr>
<td>30</td>
<td>NO</td>
<td>9.2</td>
<td>9.26</td>
</tr>
<tr>
<td>32</td>
<td>frag of HA</td>
<td>12.3</td>
<td>12.34</td>
</tr>
<tr>
<td>33</td>
<td>HA</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>44</td>
<td>CO$_2$</td>
<td>13.3</td>
<td>13.78</td>
</tr>
<tr>
<td>46</td>
<td>NO$_2$</td>
<td>9.2 ± 0.4</td>
<td>9.6</td>
</tr>
<tr>
<td>63</td>
<td>HNO$_3$</td>
<td>12.0</td>
<td>11.90</td>
</tr>
</tbody>
</table>

aThis work. bLiterature values from ref 23.

The observation of photoion peaks at m/z 33 (IE = 9.6 eV) and m/z 63 (IE = 12.0 eV) confirms the production of H$_2$NOH (HA) and HNO$_3$, respectively. Another indication of the formation of HA is the appearance of a m/z 32 fragment with an appearance energy AE = 12.3 eV that is very close to the appearance energy of HNOH$^+$ from HA$^+$ in the literature (12.34 eV). The formation of NH$_3$ and H$_2$O is confirmed by their experimental IE values of 10.0 and 12.6 eV, respectively. Production of m/z 30 is identified as NO from its experimental IE = 9.2 eV, which matches well with the literature value of 9.26 eV, and the result is not due to NO$^+$ fragmentation from NO$_2^+$, as the NO$_2$ production is negligible, as discussed below.

DOI: 10.1021/acs.jpclett.7b00672

2127
The literature IE values for CO$_2$ and N$_2$O are 13.777 ± 0.00123 and 12.889 ± 0.004 eV25, respectively. In order to distinguish between CO$_2$ and N$_2$O, which both have $m/z = 44$, each pure gas was individually introduced into the aerosol time-of-flight mass spectrometer (ATOFMS), and photoionization efficiency response curves were measured.22 In the ATOFMS, the CO$_2$ onset is at 13.3 eV and the PIE has 3 peaks at 14.7, 14.2, and 14.8 eV (see Figure S1, Supporting Information). The N$_2$O PIE shows a very small signal between 13.2 and 13.6 eV, a significant onset at 13.8 eV that peaks at 14.3 eV, and decays back to the baseline at 15.0 eV. The HAN $m/z = 44$ PIE curve in Figure 2b matches almost exactly, in both peak positions and in peak intensities, with the CO$_2$ PIE (Figure S1a, Supporting Information), and therefore it is believed that the $m/z = 44$ signal originates exclusively from CO$_2$.4, the likely source being dissolved CO$_2$ in the HAN/H$_2$O mixture used to generate the aerosols. No evidence for the formation of N$_2$O was observed under these experimental conditions (\lesssim300 °C, 10$^{-6}$ Torr). It would be preferable to use distilled/purged water to make the aerosol solutions or any HAN formulations to avoid dissolved CO$_2$ contributing to $m/z = 44$ signals observed in electron-impact ionization mass spectrometric investigations of HAN reactivity.

Facile fragmentation of HNO$_3$ is indicated in the literature via reaction 8) below, with an $m/z = 46$ (NO$_2^+$) AE = 11.90 eV.25 Since the experimental IE for HNO$_3$ of 12.0 ± 0.2 eV matches well with the literature value of 11.96 eV, and the fact that, below 250 °C, $m/z = 46$ shows almost no signal below 11.8 eV (Figure 2b), this indicates that the photoions at $m/z = 46$ are almost exclusively from the fragmentation of HNO$_3$:

$$\text{HNO}_3 + h\nu \rightarrow \text{HNO}_3^+ + e^- \quad (7)$$

$$\text{HNO}_3^+ \rightarrow \text{NO}_2^+ + \text{OH} \quad (8)$$

It should be noted that, when investigating HAN decomposition using electron-impact ionization mass spectrometry, due to the near simultaneous appearance of HNO$_3^+$ and its NO$_2^+$ fragment, in order to detect HNO$_3$, it is particularly important to use low electron energies so as not to fragment all of the HNO$_3^+$ from excess internal energy in the initial HNO$_3$ ion. It is also important to determine the extent of fragmentation of the HNO$_3^+$ ion to NO$_2^+$ so as to be able to discern the difference between contributions from HNO$_3^+$ ion fragmentation via reaction 8) and from ionization of any direct NO$_2$ product.

The possibility of the thermal decomposition of HNO$_3$ has been proposed4,10 as

$$\text{HNO}_3 \rightarrow \text{NO}_2 + \text{OH} \quad (9)$$

with an estimated activation energy of $E_a \sim 50$ kcal/mol (∼210 kJ/mol).19 An indication that this is occurring in these experiments is the small increase in the $m/z = 46$ signal below 11 eV (NO$_2$, IE = 9.6 eV)23 at temperatures above 250 °C (see Figure S2, Supporting Information). Using the composite method CBS-QB3,26 reaction 9 is calculated here to have a free energy of reaction of $\Delta G_{\text{rxn}} = 35.4$ kcal/mol (148.1 kJ/mol), including zero point vibrational energy, at 298 K and 1 atm. Assuming there is no barrier to the reverse of reaction 9, i.e., $\Delta G_{\text{rxn}} = E_a$, it is possible that the NO$_2$ detected in previous thermal decomposition of HAN experiments could be formed through this route at high temperatures, while also producing the reactive OH radical that can contribute to the proper conditions for the ignition of HAN. Using $\Delta G_{\text{rxn}} = 35.4$ kcal/mol (148.1 kJ/mol), it is estimated that reaction 9 can have a percent dissociation of greater than 2% at equilibrium at 300 °C.

The ATOFMS was designed to promote flash vaporization,51 and, based on previously measured mass loss rates of ionic liquids27,28 and our measured aerosol mass flow rate into the ATOFMS, the residence and reaction time on the heated targets is estimated to be on the order of tens of microseconds before the volatile initial products are rapidly vaporized into the ionization region at $\sim 10^{-6}$ Torr. By integrating the photoion current over all photon energies and plotting the product photoion response as a function of target (Cu, Ir) temperature, differences in the thermal decomposition (copper) versus catalytic decomposition chemistry (iridium) can be evaluated (Figure 3). The most significant differences were observed for product species $m/z = 30$ (NO) and $m/z = 33$ (HA). In the case of thermal decomposition on the copper target, the response ratio of $m/z = 30/33$, i.e., NO/HA was approximately 1:8 at all temperatures investigated. When the copper target is replaced with the iridium target, the NO/HA ratio increases about four times to $\sim 1:2$, indicating decomposition of HA to form NO. These experiments were performed twice each to confirm reproducibility. It is interesting to note that for the case of thermal decomposition, the temperature response curves for both HA and NO are relatively flat as the temperature increases, with perhaps a slight decrease in HA response at the higher temperatures when integrated from 11.5 to 14.5 eV. For the case of catalytic decomposition, both the HA and NO signals increase significantly above 250 °C. This could potentially be explained by a catalytic effect on both the initial HAN proton transfer step (see Figure S3, Supporting Information) and on the subsequent HA decomposition. One possible interaction of HA with the iridium catalyst is to strip oxygen from the NO$_2$ by a proton transfer step (Figure 3).

$$\text{H}_2\text{NOH} \rightarrow \text{NO} + 3/2\text{H}_2 \quad (10)$$

Similar hydrogen removal/migration has been proposed for hydrazine (N$_2$H$_4$) on iridium, where the N–H bond remains intact and hydrogen can be transferred to the iridium...
N2O formation is not significant reaction (on the order of tens of microseconds), while iridium catalyst appears to be of significant characteristics of next-generation monopropellant thrusters. The enhanced formation of NO by way of H loss on the kinetics models used to simulate the ignition and combustion of NO2 by high-temperature thermal neutral and radical—radical reactions that could promote ignition. Understanding the catalytic reaction chemistry of HAN on iridium is very important to the propulsion community, and these results will help to guide the refinement of the chemical reaction models used to simulate the ignition and combustion of NO2 by high-temperature thermal neutral and radical—radical reactions that could promote ignition.

The authors gratefully acknowledge funding from the U.S. Air Force Office of Scientific Research for supporting S.R.L. (Grant Nos. FA9550-10-1-0163 and FA9550-14-0154), and S.D.C. (Grant No. FA9900-06-C-0023). The work carried out at the ALS was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (D.M.P.-V. and S.R.L.). D.M.P.-V. is also particularly grateful to the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b00672.

PIE curves for CO2 and N2O (Figure S1), temperature response curve and PIE curve for NO2 (Figure S2) and temperature response curve for HNO3 (Figure S3) (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: ghanshyam.vaghjiani@us.af.mil; Tel: 661-275-5657; Fax: 661-275-5203.

ORCID

Ghanshyam L. Vaghjiani: 0000-0001-7473-7388

Stephen R. Leone: 0000-0003-4006-2292

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the U.S. Air Force Office of Scientific Research for supporting S.R.L. (Grant Nos. FA9550-10-1-0163 and FA9550-14-0154), and S.D.C. (Grant No. FA9900-06-C-0023). The work carried out at the ALS was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (D.M.P.-V. and S.R.L.). D.M.P.-V. is also particularly grateful to the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship.

REFERENCES

Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols.

