MEMORANDUM FOR SGVT
ATTN: CAPT DONOVAN REED

FROM: 59 MDW/SGVU

SUBJECT: Professional Presentation Approval

1. Your paper, entitled *Retrospective Analysis of the Post-Operative Changes in Higher Order Aberrations: A Comparison of the EX500 to the Allegretto and VISX S4 Laser in Refractive Surgery* presented at/published to *Journal of Military Medicine and San Antonio Military Health Systems and Universities Research Forum, 16 June 17* in accordance with MDWI 41-108, has been approved and assigned local file #17229.

2. Pertinent biographic information (name of author(s) title, etc.) has been entered into our computer file. Please advise us (by phone or mail) that your presentation was given. At that time, we will need the date (month, day and year) along with the location of your presentation. It is important to update this information so that we can provide quality support for you, your department, and the Medical Center commander. This information is used to document the scholarly activities of our professional staff and students, which is an essential component of Wilford Hall Ambulatory Surgical Center (WHASC) internship and residency programs.

3. Please know that if you are a Graduate Health Sciences Education student and your department has told you they cannot fund your publication, the 59th Clinical Research Division may pay for your basic journal publishing charges (to include costs for tables and black and white photos). We cannot pay for reprints. If you are a 59 MDW staff member, we can forward your request for funds to the designated Wing POC at the Chief Scientist’s Office, Ms. Alice Houy, office phone: 210-292-8029; email address: alice.houy.civ@mail.mil.

4. Congratulations, and thank you for your efforts and time. Your contributions are vital to the medical mission. We look forward to assisting you in your future publication/presentation efforts.

LINDA STEEL-GOODWIN, Col, USAF, BSC
Director, Clinical Investigations & Research Support

Warrior Medics – Mission Ready – Patient Focused
PROCESSING OF PROFESSIONAL MEDICAL RESEARCH/TECHNICAL PUBLICATIONS/PRESENTATIONS

INSTRUCTIONS

USE ONLY THE MOST CURRENT 59 MDW FORM 3039 LOCATED ON THE PUBLISHING

1. The author must complete page one of this form:
 a. In Section 2, add the funding source for your study (e.g., 59 MDW CRD Graduate Health Sciences Education (GHSE) (SGS &M), SGF R&D;
 Trans-Nursing Research Program (TNSR); Defense Medical Research & Development Program (DMRDP); NIH, Congressionally Directed
 Medical Research Program (CDMRP); Grants, etc.)
 b. In Section 2, there may be funding available for journal costs, if your department is paying for
 figures, tables or photographs for your publication. Please state "YES" or "NO" in Section 2 of the form. If you need publication funding support.

2. Print your name, rank/grade, sign and date the form in the author's signature block or use an electronic signature.

3. Attach a copy of the 59 MDW IRB or IACUC approval letter for the research related study. If this is a technical publication/presentation, state the type
 (e.g., case report, QA/QI study, program evaluation study, informational/report/briefing, etc.) in the "Protocol Title" box.

4. Attach a copy of your abstract, paper, poster and other supporting documentation.

5. Save and forward, via email, the processing form and all supporting documentation to your unit commander, program director or immediate supervisor for

6. On page 2, have either your unit commander, program director or immediate supervisor:
 a. Print their name, rank/grade, title, sign and date the form in the approving authority's signature block or use an electronic signature.

7. Submit your completed form and all supporting documentation to the CRD for processing (59crdpubs@ms.us.af.mil). This should be accomplished no
 later than 30 days before final clearance is required for publication/presentation.

8. The 59 CRD/Publishations and Presentations Section will route the request form to clinical investigations, 502 ISS/JAC (Ethics Review) and Public Affairs
 (59 MDWPA) for review and then forward you a final approval of approval or disapproval.

9. Once your manuscript, poster or presentation has been approved for a one-time public release, you may proceed with your publication or presentation
 submission activities, as stated on this form. Note: For each new release of medical research or technical information as a publication/presentation, a new
 59 MDW Form 3039 must be submitted for review and approval.

10. If your manuscript is accepted for scientific publication, please contact the 59 CRD/Publishations and Presentations Section at 522-7141. This information
 is reported to the 59 CRD/ICC. All medical research or technical information publications/presentations must be reported to the Defense Technical
 Information Center (DTIC). See 59 MDW 41-108, Presentation and Publication of Medical and Technical Papers, for additional information.

11. The Joint Ethics Regulation (JER) DoD 5000.07-R, Standards of Conduct, provides standards of ethical conduct for all DoD personnel and their
 interactions with other non-DoD entities, organizations, societies, conferences, etc. Part of the Form 3039 review and approval process includes a legal
 ethics review to address any potential conflicts related to DoD personnel participating in non-DoD sponsored conferences, professional meetings,
 publications/presentations, disclosures to domestic and foreign audiences, DoD personnel accepting non-DoD contributions, awards, honoraria, gifts, etc.
 The specific circumstances for your presentation will determine whether a legal review is necessary. If you (as the author) or your supervisor check "NO" in
 block 17 of the Form 3039, your research or technical documents will not be forwarded to the 502 ISS/JAC legal office for an ethics review. To
 assist you in making this decision about whether to request a legal review, the following examples are provided as a guideline:

 For presentations before professional societies and like organizations, the 59 MDW Public Affairs Office (PAO) will provide the needed review to
 ensure proper disclaimers are included and the subject matter of the presentation does not cause any conflict for DoD concern.

 If the sponsor of a conference or meeting is a DoD entity, an ethics review of your presentation is not required, since the DoD entity is responsible to
 obtain all approvals for the event.

 If the sponsor of a conference or meeting is a non-DoD commercial entity or an entity seeking to do business with the government, then your presentation
 should have an ethics review.

 If your travel is being paid for (in whole or in part) by a non-Federal entity (someone other than the government), a legal ethics review is needed. These
 requests for legal review should come through the 59 MDW Gifts and Grants Office to 502 ISS/JAC.

 If you are receiving an honorarium or payment for speaking, a legal ethics review is required.

 If you (as the author) or your supervisor check "YES" in block 17 of the Form 3039, your research or technical documents will be forwarded simultaneously
 to the 502 ISS/JAC legal office for review to help reduce turn-around time. If you have any questions regarding legal reviews, please contact the legal
 office at (210) 671-6975/3365, DSN 473.

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement:
"The views expressed are those of the [author(s)] [presenter(s)] and do not reflect the official views or policy of the Department of Defense
or its Components"

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement for research involving humans:
"The voluntary, fully informed consent of the subjects used in this research was obtained as required by 32 CFR 219 and DODI 3216.02_AF
40-402."

NOTE: All abstracts, papers, posters, etc., should contain the following disclaimer statement for research involving animals, as required by AFMAN
40-401 IP:
"The experiments reported herein were conducted according to the principles set forth in the National Institute of Health Publication No.
80-23, Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966, as amended."
PROCESSING OF PROFESSIONAL MEDICAL RESEARCH/TECHNICAL PUBLICATIONS/PRESENTATIONS

1. TO CLINICAL RESEARCH 2. FROM (Author's Name, Rank, Grade, Office Symbol)
 Donovan Reed, Capt, O-3, 959 CSPS

3. OM/GHSE STUDENT
 X YES NO

4. PROTOCOL NUMBER
 201500993H

5. PROTOCOL TITLE
 (Note: For each new release of medical research or technical information as a publication/presentation, a new 69 MDW Form 3309 must be submitted for review and approval)
 Retrospective analysis of the post-operative changes in higher order aberrations: A comparison of the Ex500 to the Allegretto and Vixx lasers.

6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED
 Retrospective analysis of the post-operative changes in higher order aberrations: A comparison of the Ex500 to the Allegretto and Vixx lasers.

7. FUNDING RECEIVED FOR THIS STUDY? YES NO FUNDING SOURCE

8. DO YOU NEED FUNDING SUPPORT FOR PUBLICATION PURPOSES? YES NO

9. IS THIS MATERIAL CLASSIFIED? YES NO

10. IS THIS MATERIAL SUBJECT TO ANY LEGAL RESTRICTIONS FOR PUBLICATION OR PRESENTATION THROUGH A COLLABORATIVE RESEARCH AND DEVELOPMENT AGREEMENT (CRADA), MATERIAL TRANSFER AGREEMENT (MTA), INTELLECTUAL PROPERTY RIGHTS AGREEMENT ETC? YES NO
 NOTE: If the answer is YES then attach a copy of the Agreement to the Publications/Presentations Request Form.

11. MATERIAL IS FOR: DOMESTIC RELEASE FOREIGN RELEASE
 CHECK APPROPRIATE BOX OR BOXES FOR APPROVAL WITH THIS REQUEST. ATTACH COPY OF MATERIAL TO BE PUBLISHED/PRESENTED

 11a. PUBLICATION/JOURNAL (List intended publication/journal.)
 Military Medicine

 11b. PUBLISHED ABSTRACT (List intended journal.)

 11c. POSTER (To be demonstrated at meeting: name of meeting, city, state, and date of meeting.)
 San Antonio Military Health Systems and Universities Research Forum; 16 Jun 17

 11d. PLATFORM PRESENTATION (At civilian institutions: name of meeting, city, state, and date of meeting.)
 San Antonio Military Health Systems and Universities Research Forum; 16 Jun 17

 11e. OTHER (Describe: name of meeting, city, state, and date of meeting.)

12. HAVE YOUR ATTACHED RESEARCH/TECHNICAL MATERIALS BEEN PREVIOUSLY APPROVED TO BE PUBLISHED/PRESENTED? YES NO
 ASSIGNED FILE # DATE

13. EXPECTED DATE WHEN YOU WILL NEED THE ORD TO SUBMIT YOUR CLEARED PRESENTATION/PUBLICATION TO DTIC
 NOTE: All publications/presentations are required to be placed in the Defense Technical Information Center (DTIC).
 DATE
 1 June 2017

14. 59 MDW PRIMARY POINT OF CONTACT (Last Name, First Name, M.I., email)
 Apsley, Doug. A., douglas.apsley.2 ctr@us.army.mil

15. DUTY PHONE/PAGER NUMBER
 210-292-2554

16. AUTHORSHIP AND CO-AUTHOR(S) List in the order they will appear in the manuscript.

 LAST NAME, FIRST NAME AND M.I. GRADE/RANK SQUADRON/GROUP/OFFICE SYMBOL INSTITUTION (If not 59 MDW)
 a. Primary/Corresponding Author
 Reed, Donovan S.
 O-3/Capt CSPS 959
 b. Apsley, Douglas A.
 O-6/Col (Ret)
 59 TRS
 c. Steigleman, Walter A.
 O-5/CDR
 59 TRS
 d. Townley, James R.
 O-5/Lt Col
 59 TRS
 e. Caldwell, Michael C.
 O-5/Lt Col
 59 TRS

17. IS A 502 IS/GUAC ETHICS REVIEW REQUIRED (JER DOD 5500.05-R)? YES NO

18. CERTIFY ANY HUMAN OR ANIMAL RESEARCH RELATED STUDIES WERE APPROVED AND PERFORMED IN STRICT ACCORDANCE WITH 32 CFR 219, AFMAN 40-401 IP, AND 59 MDW 41-108. I HAVE READ THE FINAL VERSION OF THE ATTACHED MATERIAL AND CERTIFY THAT IT IS AN ACCURATE MANUSCRIPT FOR PUBLICATION AND/OR PRESENTATION.

19. AUTHOR'S PRINTED NAME, RANK, GRADE
 Donovan Reed, Capt, O-3

20. DATE
 04 Apr 2017

21. APPROVING AUTHORITY'S PRINTED NAME, RANK, TITLE
 Brett Davies, Maj, APD

22. APPROVING AUTHORITY'S SIGNATURE

23. DATE
 11 Apr 2017

69 MDW FORM 3309, 20160828
Previous editions are obsolete.
The poster presentation, article and oral presentation are approved.

Please include this Disclaimer:
"The opinions expressed on this document are solely those of the author(s) and do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government."

Once added, presentations are approved and cleared for public release.
Retrospective analysis of the post-operative changes in higher order aberrations: A comparison of the WaveLight® EX500 to the VISX® S4 laser in refractive surgery

Donovan Reed MD, Doug Apsey OD, Walter Steigleman MD, Matthew Caldwell MD, J. Richard Townley MD

Wilford Hall Ambulatory Surgical Center (WHASC)

Disclaimer

• The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of Brooke Army Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Air Force, the Department of the Army or the Department of Defense or the U.S. Government

The opinions expressed on this document are solely those of the author(s) and do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.
Introduction

- PRK & LASIK reduce spherical and cylindrical defocus
 - Aberrations of the cornea are insufficient to characterize the entire visual quality of an eye.

- Measurement of the entirety of ocular aberrations is the most definitive means to establish the true effect of refractive surgery on image quality and visual performance.¹

- PRK and LASIK increase wavefront aberrations and alter the comparative contributions of coma- and spherical-like higher order aberrations often inherent to the natural eye.²

- RMS wavefront error as a metric of global image quality³

- Moshirfar et al. demonstrated both the VISX® CustomVue and WaveLight® Allegretto systems perform equally in terms of visual acuity, safety, and predictability in both PRK and LASIK⁴,⁵
 - Higher-order and spherical aberrations during photorefractive keratectomy, not statistically significant⁴
Purpose

- Future advancements in refractive surgery
- Investigate the utility of the current excimer lasers employed by the DoD in terms of induced aberrations to maximize refractive treatment.
- The impact on post-operative higher order aberrations between the currently available DoD laser platforms
 - Offer insight as to which provides the best overall image quality following refractive surgery in the active duty and DoD beneficiary population

Methods

- Retrospective analysis
- Pre and post-operative changes in higher order aberrations following refractive surgery with the WaveLight® EX500 Excimer Laser System (Alcon, Fort Worth, TX) and the VISX® Star S4 IR Excimer Laser System (Abbott Medical Optics, Santa Ana, CA)
- RMS
 - Pentacam
Inclusion Criteria

• Active duty military or DoD beneficiaries who had refractive surgery at the Joint Warfighter Refractive Surgery Center and:
 – were 21 years of age or older
 – had PRK or LASIK refractive surgery
 – completed a 3 month follow-up visit

Exclusion Criteria

• Subjects who do not meet the inclusion criteria listed
• Subjects who previously had refractive surgery
• Patients who did not have follow-up data
• Pregnant women or incompetent adults
Methods

- Matching
- SPSS statistics
 - Student’s T-test
 - Regression analysis: preoperative SE
 - Larger refractive errors = larger ablations

Results

<table>
<thead>
<tr>
<th></th>
<th>PRK</th>
<th>LASIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at Surgery (Mean)</td>
<td>29.4</td>
<td>31.5</td>
</tr>
<tr>
<td>Gender (Total)</td>
<td>74M 26F</td>
<td>16M 6F</td>
</tr>
<tr>
<td>PreOp MSE</td>
<td>-3.33</td>
<td>-2.73</td>
</tr>
<tr>
<td>Total Eyes</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>EX500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at Surgery (Mean)</td>
<td>29.1</td>
<td>30.2</td>
</tr>
<tr>
<td>Gender (Total)</td>
<td>56M 40F</td>
<td>16M 6F</td>
</tr>
<tr>
<td>PreOp MSE</td>
<td>-3.35</td>
<td>-4.38</td>
</tr>
<tr>
<td>Total Eyes</td>
<td>96</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 1: Patient Demographics
Results

<table>
<thead>
<tr>
<th></th>
<th>Mean Δ RMS</th>
<th>SD</th>
<th>p-Value (T-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRK</td>
<td></td>
<td></td>
<td>0.431</td>
</tr>
<tr>
<td>VISX®</td>
<td>0.00122</td>
<td>0.02583</td>
<td></td>
</tr>
<tr>
<td>EX500</td>
<td>0.004323</td>
<td>0.02916</td>
<td></td>
</tr>
<tr>
<td>LASIK</td>
<td></td>
<td></td>
<td>0.295</td>
</tr>
<tr>
<td>VISX</td>
<td>0.00841</td>
<td>0.03011</td>
<td></td>
</tr>
<tr>
<td>EX500</td>
<td>0.0174</td>
<td>0.02417</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Change in RMS statistics

Results

<table>
<thead>
<tr>
<th></th>
<th>PRK</th>
<th></th>
<th>LASIK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>p</td>
<td>b</td>
<td>p</td>
</tr>
<tr>
<td>PreOp MSE</td>
<td>-0.001</td>
<td>0.551</td>
<td>-0.003</td>
<td>0.161</td>
</tr>
<tr>
<td>Laser (EX500 w</td>
<td>0.003</td>
<td>0.433</td>
<td>0.004</td>
<td>0.670</td>
</tr>
<tr>
<td>VISX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Regression Analysis concerning pre-operative refractive error for both LASIK and PRK
Figure 1: Change in RMS data for PRK between the VISX© and WaveLight© EX500 Lasers. p-value is 0.431

Figure 2: Change in RMS data for PRK between the VISX© and WaveLight© EX500 Lasers. p-value is 0.295
Discussion

• No statistically significant difference
 – Adjusting for preoperative refractive error
• Observations:
 – LASIK higher pre-operative MSE in EX500
 – VISX laser lower induced RMS values
 – 2-4x higher in each category for EX500
 • Moshirfar et al.
• Power

Limitations

• Design
• Sample size
• Generalizability
• Clinical significance
Recommendations

• Further investigation of visual outcomes
• Additional factors
 – Cost
 – Patient characteristics
 – Surgeon preference

References

Introduction

Both photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) effectively reduce spherical and cylindrical defocus, the key lower order optical aberrations contributing to decreased visual acuity. Aberrations of the cornea are insufficient to characterize the entire visual quality of an eye. Measurement of the entire ocular aberrations is the most definitive means to establish the true effect of refractive surgery on image quality and visual performance.

Both PRK and LASIK have been demonstrated to improve wavefront aberrations of the cornea and alter the comparative contributions of coma- and spherical-like higher order aberrations often inherent to the natural eye.

Previous studies have utilized the root-mean-square (RMS) wavefront error as a metric of global image quality, thus effectively isolating different aberration orders contributing to post-operative vision. Manfris et al. demonstrated both the VISX CustomVue and WaveLight Allegretto systems perform equally in terms of visual acuity, safety, and predictability in both PRK and LASIK refractive surgery procedures. Both platforms induce a comparable degree of higher-order and spherical aberrations during photorefractive keratectomy, though no statistically significant difference in terms of the RMS of higher-order optical aberrations was demonstrated.

As future advancements in refractive surgery are being directed toward customized ablation to correct not only lower-order aberrations, but also higher-order aberrations specific to the individual eye, it is important to investigate the utility of the current excimer lasers employed by the DoD in terms of induced aberrations to maximize refractive treatment. The impact on post-operative higher order aberrations between the currently available DoD laser platforms was investigated to offer insight as to which provides the best overall image quality following refractive surgery in the active duty and DoD beneficiary population.

Methods

A retrospective analysis was performed to evaluate the pre and post-operative changes in higher order aberrations following refractive surgery with the WaveLight EX500 Excimer Laser System (Alcon, Fort Worth, TX) and the VISX Star S4 IR Excimer Laser System (Abbott Medical Optics, Santa Ana, CA) by evaluating the RMS value of the higher order corneal aberrations post-operatively.

Inclusion Criteria:
- Active duty military or DoD beneficiaries who had refractive surgery at the Joint Warfighter Refractive Surgery Center and;
- were 21 years of age or older
- had PRK or LASIK refractive surgery
- completed a 3 month follow-up visit

Exclusion Criteria:
- Subjects who do not meet the inclusion criteria listed
- Subjects who previously had refractive surgery
- Patients who did not have follow-up data
- Pregnant women, or incompetent adults

Patient demographics were matched to avoid bias. Utilizing SPSS statistics software, the mean change in RMS values between the two lasers and refractive surgery procedures were determined. A student's t-test was performed to compare the root mean square of the higher order aberrations of the subjects' corneas from the lasers being studied. A regression analysis was performed to adjust for postoperative SE, as larger refractive errors often require larger ablations, which could ultimately affect the amount of higher order aberrations post-operatively.

Results

<table>
<thead>
<tr>
<th>Table 1: Patient demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Surgery</td>
</tr>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

Figure 1: Change in RMS data for PRK between the VISX® and WaveLight® EX500 lasers. P-value of 0.001.

Discussion

The results suggest no statistically significant difference concerning induced higher order aberrations between the two laser platforms albeit LASIK or PRK. After adjusting for preoperative refractive error there was still no statistically significant difference. This is despite the fact patients who received LASIK did have a significantly higher pre-operative SE in the EX500 group. It is likely the statistical significance of this study was hindered by the power, given the relatively small sample size. For instance, every value calculated demonstrated the VISX laser to have lower induced RMS values. Additionally, the induced higher order aberrations by the EX500 were two to four times higher in each category. These findings coincide with the study performed by Manfris et al.

Additional limitations of the study include its design and the generalizability of the study, as the Department of Defense population may be significantly different from the commercial refractive surgery population in terms of overall health and refractive error.

The level at which induced higher order aberrations reach clinical significance is debatable and it is difficult to quantify subjective reports of visual disturbances. Therefore, it remains a challenge to determine whether statistically significant differences in higher order aberrations have a clinically significant impact on visual outcomes. Further investigation of visual outcomes between the two laser platforms should be investigated before determining superiority in terms of visual image quality and post-operatively. Additional factors such as cost, availability, patient characteristics, and surgery preferences should be taken into consideration determining the most appropriate laser to utilize for refractive surgery.

References

1. Donovan Reed MD, Doug Apsey OD, Walter Steigleman MD, Matthew Caldwell MD, J. Richard Townley MD
2. Wilford Hall Ambulatory Surgical Center (WHASC)