Volume I: Select Presentations

by ARL Summer Student Research Symposium
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Volume I: Select Presentations

by ARL Summer Student Research Symposium

Approved for public release; distribution is unlimited.
The ARL Summer Student Research Symposium is an ARL Director’s Award Program for all the students participating in various summer scholarship and contract activities across ARL. The goal of the program is to recognize and publicize exceptional achievements made by the students and their mentors in the support of Army science.

All college undergraduate and graduate students receiving research appointments and conducting summer studies at ARL are automatically enrolled in the symposium program. As an integral part of their summer study, all students are required to write a paper on their work which summarizes their major activity and its end product.

The program is conducted on two separate competitive levels: undergraduate and graduate. The format of the paper in both levels is the same. However, the evaluation will take into consideration the difference in the academic level of the students.

All students submitted their research paper for directorate review. Directorate judging panels selected one or two papers from each competition category for the laboratory-wide competition at the Summer Student Symposium on 11 August 2016.

Students selected by their directorate for competition participated in the one-day Summer Student Symposium on 11 August 2016. At the symposium the students gave presentations on the focuses of their research papers to the ARL Director and an ARL Fellows panel.

This volume of the Summer Student Symposium Proceedings contains many of the presentations that the selected students gave at the symposium.

15. SUBJECT TERMS
ARL Summer Student Research, SEAP

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
136

19a. NAME OF RESPONSIBLE PERSON
Dr Vallen Emery

19b. TELEPHONE NUMBER (Include area code)
(301) 394-3585
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director’s Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Human Research & Engineering Directorate (HRED)</td>
<td>3</td>
</tr>
<tr>
<td>Sensors and Electron Devices Directorate (SEDD)</td>
<td>21</td>
</tr>
<tr>
<td>Survivability/Lethality Analysis Directorate (SLAD)</td>
<td>55</td>
</tr>
<tr>
<td>Vehicle Technology Directorate (VTD)</td>
<td>71</td>
</tr>
<tr>
<td>Weapons & Materials Research Directorate (WMRD)</td>
<td>85</td>
</tr>
<tr>
<td>Distribution List</td>
<td>129</td>
</tr>
</tbody>
</table>

Approved for public release; distribution is unlimited.
Director’s Foreword

The US Army Research Laboratory (ARL) mission is to “provide innovative science, technology, and analyses to enable full spectrum operations.” As the Army’s corporate laboratory, we provide the technological underpinnings critical to providing capabilities required by our current and future Soldiers.

Our nation is projected to experience a shortage of scientists and engineers. ARL recognizes the criticality of intellectual capital in generating capabilities for the Army. As the Army’s corporate laboratory, addressing the projected shortfall is a key responsibility for us. We have, therefore, identified the nation’s next generation of scientists and engineers as a key community of interest and have generated a robust educational outreach program to strengthen and support them. We have achieved many successes with this community. We believe that the breadth and depth of our outreach programs will have a significant positive effect on the participants, facilitating their journey toward becoming this Nation’s next generation of scientists and engineers.

A fundamental component of our outreach program is to provide students research experiences at ARL. During the summer of 2016, we supported research experiences at ARL for over 175 undergraduate and graduate students. Each of these students writes a paper describing the results of the work they performed while at ARL. All of the papers were of high quality, but only a few could be selected for presentation at our student symposium. Several of the presentations for the selected research papers prepared this summer are contained in this volume of the proceedings, and they indicate that there were many excellent research projects with outstanding results. It is unfortunate that there was not enough time for us to have all of the papers presented. We would have enjoyed hearing them all.

We are very pleased to have hosted this outstanding group of students for the summer. It is our hope that they will continue their pursuit of technical degrees and will someday assist us in providing critical technologies for our Soldiers.

Philip Perconti
Director
Introduction

The ARL Summer Student Research Symposium is an ARL Director’s Award Program for all the students participating in various summer scholarship and contract activities across ARL. The goal of the program is to recognize and publicize exceptional achievements made by the students and their mentors in the support of Army science.

All college undergraduate and graduate students receiving research appointments and conducting summer studies at ARL are automatically enrolled in the symposium program. As an integral part of their summer study, all students are expected to write a paper on their work which summarizes their major activity and its end product.

The program is conducted on two separate competitive levels: undergraduate and graduate. The format of the paper in both levels is the same. However, the evaluation will take into consideration the difference in the academic level of the students.

All students submitted their research paper for directorate review. Directorate judging panels selected one or two papers from each competition category for the laboratory-wide competition at the Summer Student Symposium on 11 August 2016.

Students selected by their directorate for competition participated in the one-day Summer Student Symposium on 11 August 2016. At the symposium, the students presented their papers to an audience of ARL scientists and engineers, including the ARL Director and an ARL Fellows panel.

This volume of the Summer Student Symposium Proceedings contains many of the selected presentations given at the symposium.
INTENTIONALLY LEFT BLANK
Applying Noise Stimulation to Improve Trigger Pull Steadiness

Christopher J. Blount, B.S.
The University of Texas at San Antonio

What is Noise Stimulation?

• Application of Gaussian noise in the form of vibration to elicit an improved performance response

• Imperceptible (Not felt by participants)
How can noise benefit steadiness?

Previous Studies

- Past studies have shown that introducing imperceptible noise stimulation to biological systems can increase force steadiness. (Mendez-Baluena, 2012)

- The input of imperceptible noise could decrease motor unit force fluctuations. (Kozak, 2012)

The Big Question:

How can I determine an optimal imperceptible noise level to increase force steadiness?
Specific Aim 1

- To define the individual optimal imperceptible noise stimulation parameters that provide the greatest improvement in force steadiness in the muscles that produce the trigger pulling action.

Specific Aim 2

- To compare vibration stimulus placements at the forearm and wrist locations.

Methods

7 male and 1 female participants completed the pilot study (n=8)

- Participants were seated with their dominant arm outstretched on a custom-made apparatus used to simulate the grip and trigger of an M4 carbine.

- Based upon verbal feedback, I determined the imperceptible vibratory threshold per individual.

- Vibration levels were applied to the participants skin at the wrist and forearm.

- Participants performed three maximal voluntary muscle contractions (MVCs).

- 20% of the greatest MVC was chosen as target force during phase 2, the ramp-and-hold task.
Ramp-and-Hold Phase

- Participants were instructed to trace a line that ramps up to 20% MVC and then maintain that force.
- Participants were prompted to pull the trigger and ramp up maintaining steady force for 6 s and then to slowly release the trigger.
- Various imperceptible noise levels were applied to the subject to determine which amplitude resulted in greatest force steadiness.

Data Reduction (forearm placement)

- Root mean square error (RMSE) was calculated to determine the error between measured values of applied force and the actual force trace during the ramp-and-hold phase.
- Graphs were constructed using the inverse RMSE. *(Mendez-Balbuena, 2012)*
- Repeated measures t-test was performed to compare the RMSE with zero noise (placebo) and the RMSE with optimal noise.
- For analysis, statistical significance was set at 0.05.
Results (forearm placement)

- Paired t-test was performed to compare the RMSE with zero noise and the RMSE with optimal noise values.

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>Optimal Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.377</td>
<td>0.239</td>
</tr>
<tr>
<td>SD</td>
<td>0.1323</td>
<td>0.0423</td>
</tr>
<tr>
<td>SEM</td>
<td>0.0487</td>
<td>0.0149</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\((p = 0.0234)\)

- Optimal noise values were significantly different than Placebo.

Wrist placement

- RMSE was calculated to determine the error between measured values of applied force and the actual force trace during the ramp-and-hold phase.

- Pearson’s correlation was performed on placebo amplitudes to test if a learning effect had appeared.

- Repeated Measures t-test was performed to compare the RMSE with zero noise and the RMSE with optimal noise.

- For analysis, statistical significance was set at 0.05.
Results (wrist placement)

- Paired t-test was performed to compare the RMSE with zero noise and the RMSE with optimal noise values.

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>Optimal Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.410</td>
<td>0.273</td>
</tr>
<tr>
<td>SD</td>
<td>0.1365</td>
<td>0.0458</td>
</tr>
<tr>
<td>SEM</td>
<td>0.0488</td>
<td>0.0162</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

\(p = 0.017 \)

- Optimal noise values were significantly different than Placebo.
Paired t-test

- Paired t-test was performed to compare Optimal Noise (ON) level values from wrist placement and ON values from forearm placement between participants.

Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Wrist ON</th>
<th>Forearm ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.273</td>
<td>0.239</td>
</tr>
<tr>
<td>SD</td>
<td>0.0436</td>
<td>0.0383</td>
</tr>
<tr>
<td>SEM</td>
<td>0.0154</td>
<td>0.0135</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

DF = 7, M = 0.018
p = (0.102)

- Force steadiness in the optimal noise condition was not significantly different between wrist placement and forearm placement.

Military

- Applying imperceptible noise levels to increase force stability could yield many benefits to aid our Soldiers in tasks that require fine motor control.

- Further research could be conducted on how this technique can be applied and improve performance in other military applications.
 - Shooting

Civilian

Using imperceptible noise levels to increase force steadiness could also benefit many different areas in the civilian sector such as:

- Surgeons
- Sports

The author wishes to thank Dr. Matthew Tenan and Dr. Courtney Webster for their guidance and expertise.
A Systematic Study of the Electrical Properties of Organic Ballistic Gelatin

Ben Burke
University of Maryland, College Park
Major: Biological Sciences
RSQ-HRED

Outline

• Background
 • What is electroencephalography? What is a phantom?
• Methods
 • What variables were tested? How were these variables tested?
• Results
 • How do these variables affect the gelatin?
• Discussion
 • What are the next steps for this research?

Citation: https://upload.wikimedia.org/wikipedia/commons/5/5f/ElectroEncephalogram.png
Background

- Electroencephalography (EEG) is the measurement of brain activity via electric potentials at the scalp.
- EEG allows researchers to understand cognitive effects of various tasks.
- Phantom-electrical surrogate with known signal and composition that can be used to verify EEG devices.
 - Currently no inexpensive, standard phantom recipe or material.

The Nation's Premier Laboratory for Land Forces

Background (cont.)

- Organic ballistic gelatin can be used to simulate human tissue due to its electrical and mechanical properties.
- Ballistic gelatin is already conductive to electricity.
 - No in-depth study of electrical properties of ballistic gelatin
- The purpose was to determine the extent to which the electrical properties of ballistic gelatin can be controlled.
• Designed a frame setup for producing perfectly flat, equally sized samples
• Developed a process for mixing gelatin samples
• Used LCR meter to take resistance and capacitance readings of each sample
• Experimented with independent variables during mixing

• Independent variables tested during this project:
 • Directly impacted material composition:
 • Density
 • Salinity
 • Indirectly impacted material composition:
 • Warm-up time inside/outside frame
 • Mixing time
A 2-way ANOVA was performed with frequency and density as independent variables.

<table>
<thead>
<tr>
<th></th>
<th>Resistance</th>
<th>Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>p</td>
</tr>
<tr>
<td>Frequency</td>
<td>4034.92</td>
<td><0.001</td>
</tr>
<tr>
<td>Density</td>
<td>34.93</td>
<td><0.001</td>
</tr>
<tr>
<td>Frequency*Density</td>
<td>36.25</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Resistance increased as density increased
Noticeably at lower frequency levels

Inconclusive effect of density on capacitance
Capacitance decreased as frequency increased

Key point: Density has a relatively limited effect.
A 3-way ANOVA was performed with frequency, salinity, and density as independent variables.

Resistance tended to decrease as salinity increased across all density levels. Capacitance tended to increase as salinity increased across all density levels.

Key point: Salinity has a clear effect.
• Increase in warm-up time led to inconclusive effect on resistance and increase in capacitance.

• Increased mixing time and warm-up time had contradictory effects on resistance.
• Increased capacitance as mixing time and warm-up time increased.
• Weighed a finished head (20% density, 5% salinity) over a 16-day period to observe loss in mass
• 5.17% of original mass lost over the period
• Average loss of original mass per day of 0.3%

The mass of the phantom head over a period of almost 400 h

• Density and salinity can be changed to improve resistance and capacitance.
• Salinity has greater effect than density.
• Increasing density to increase firmness can be counteracted by increasing salinity to lower resistance.
• Loss of gelatin mass over time is an issue, but changes to density can be anticipated.
Future research will focus on utilizing head for testing.
Need to look for an alternative, longer-lasting material.
- Synthetic gelatin
- Carbon nanofilaments

Main takeaways:
- Density and salinity can be changed to tune electrical properties.
- Organic gelatin can be used for a phantom head.
- Other variables and materials need to be tested.
- Immediate, real-world applications for this research.

Any questions?
Sensors and Electron Devices Directorate (SEDD)
Statistical Analysis of Atmospheric Corrections for UAS Acoustic Signals

Minas Benyamin
University of Maryland at College Park
Electrical Engineering: Graduate 2016

Mentor: Geoffrey Goldman
SEDD/SIP
Acoustic and E&M Sensing Branch

Unattended transient acoustic MASINT System (UTAMS)
- ARL-developed system
- Acoustic localization of weapon systems
- Army top 10 invention of the year: 2004
- Fielded in Iraq and Afghanistan
- Classifier still being developed

Estimate target location by triangulation

Approved for public release; distribution is unlimited.
Class I Gasoline Powered UAS acoustic data was obtained from Webster Field using a small tetrahedral array.
Fundamental frequency was calculated for each block of time using autocorrelation-based approach. Data was resampled to have a consistent fundamental frequency.

Spherical Spreading
- Amplitude drops as a factor of 1/Range.

Frequency Attenuation
- Atmosphere acts like a low pass filter dependent on the humidity, temperature, and pressure.

UAS Spectra: Average Signal Power

Approved for public release; distribution is unlimited.
\[y(t) = h(t) \otimes x(t) + n(t) \]

\[Y(\omega) = H(\omega) \cdot X(\omega) + N(\omega) \]

- \(y(t) \) – time dependent measured signal
- \(x(t) \) – true signal
- \(n(t) \) – noise
- \(h(t) \) – convolution term of atmosphere
- \(Y(\omega) \) – frequency domain signal
- \(H(\omega) \) – frequency response of atmosphere

Statistical Test to test for the likelihood that 2 distributions are the same

H_0: $F_{1,n}(x) = F_{2,m}(x)$

H_1: $F_{1,n}(x) \neq F_{2,m}(x)$

$$D_{n,m} = \max \left| F_{1,n}(x) - F_{2,m}(x) \right|$$

$$D_{n,m} > c(\alpha) \sqrt{\frac{n + m}{n \cdot m}}$$

Null Hypothesis is rejected with probability $1 - \alpha$ for Empirical Cumulative Distribution Functions F_1 and F_2

Noise reduction using Spectral Subtraction

Motivation: \[Y(\omega_i) = H(\omega_i) \cdot X(\omega_i) + N(\omega_i) \]

\[X(\omega_i) = \frac{Y(\omega_i)}{H(\omega_i)} - \frac{N(\omega_i)}{H(\omega_i)} \] Potentially quite large

Spectral Filter: \[\hat{X}(\omega_i) = \frac{Y(\omega_i)}{H(\omega_i)} \cdot \frac{|Y^2(\omega_i) - N^2(\omega_i)|}{|Y^2(\omega_i)|} \]

For all \(\omega_i \) such that \(Y^2(\omega_i) \ll N^2(\omega_i) \) then for those frequencies \(\omega_i \)

\[\hat{X}(\omega_i) = 0 \]

The Nation’s Premier Laboratory for Land Forces

Average Noise Power

- Estimate was computed from average spectral power of background environment.
- Measurements were taken when the UAS was off (Measurements vary with time and location).

Noise Spectrum

Computer fan noise
Frequencies of Interest: Signal Harmonics and Adjacent Frequencies within ±5 Hz
Lower Coefficients values indicate estimated PDFs are more likely to match
Near Range < 222 m
- **Frequencies of Interest:** Signal Harmonics and Adjacent Frequencies within 5 Hz
- Lower Coefficients values indicate estimated PDFs are more likely to match
- Far Range > 300 m
Preprocessing algorithm was developed to improve the results of acoustic classification algorithms.

- Bass’s model was used to correct for the frequency response of the atmosphere.
- To avoid amplifying noise, spectral subtraction was implemented using Boll’s algorithm (requires background measurement).

By correcting for atmospheric attenuation and spherical spreading

- Low frequency KS test results slightly improved.
- High frequency KS test results had larger improvements.
- Long ranges had larger improvements.

Classifier performance should slightly improve at shorter ranges with greater improvement at long ranges.

Future work

- Test algorithm using a UAS classifier
- Test other metrics such as Kullback-Leibler divergence

Questions?
Delay and Sum Beamforming

\[
a = \begin{bmatrix} \cos \theta \cos \phi & \cos \theta \sin \phi & \sin \theta \end{bmatrix}^T
\]

Time Delay \(\tau_i = \frac{a_i^T P_i}{c} \); \(P_i = \begin{bmatrix} x_i, y_i, z_i \end{bmatrix} \) With wave speed ‘c’

Improves SNR and suppress interference

Other Divergence Tests

Multidimensional KS Test
- Idea to use harmonics to add dimensions
- Wanted a fast metric concerns about processing time
Kullback-Leibler
- CDFs converge faster than PDFs
• Motivation
• Signal Processing
• Results
• Conclusion

Signal Model

\[y(\omega) = x(\omega) + n(\omega) \]

Spectral Subtraction

\[\hat{x}(\omega) = \frac{\overline{y(\omega)^2} - E(N^2)}{\overline{y(\omega)^2}} (y(\omega)) \]
Frequency Response of Atmosphere

\[H(\omega) = \frac{10^{-\alpha}}{\omega R} \]

\[h_{\text{out}} = \frac{p_{\text{out}}}{p_{\text{in}}} P_{\text{out}} \quad P_{\text{out}} = p_{\text{at}} \cdot 10^{-0.0344 \left(\frac{T}{T_0} \right)^{0.19} + 4.41 \left(\frac{T}{T_0} \right)} \text{ (atm)} \]

\[F_{\text{a.o}} = \frac{1}{p_0} \left(24 + 4.04 \cdot 10^4 \frac{0.02 + h_{\text{out}}}{0.031 + h_{\text{out}} / \text{atm}} \right) \frac{H\pi}{\text{atm}} \]

\[F_{\text{a.o}} = \frac{1}{p_0} \left(\frac{T_0}{T} \right)^{3/2} \left(\frac{T}{T_0} \right)^{5/2} \left(\frac{\mathrm{e}^{\frac{-220}{T_0}}}{\mathrm{e}^{\frac{-220}{T}} + 0.1068} \right) \frac{\mathrm{dB}}{\text{m} \cdot \text{atm}} \]

- \[p_0 \] — reference atmospheric pressure (atm)
- \[p_r \] — atmospheric pressure (atm)
- \(f \) — acoustic frequency (Hz)
- \(T_0 \) — reference temperature (273.16 K)
- \(T \) — temperature

The Nation’s Premier Laboratory for Land Forces

Motivation

UASs are low-cost asymmetric threats
- Can easily be fitted with sensors and even weapon systems

UAS defeat
- Poor identification would lead to potential fratricide

Classification of UASs remains a persistent challenge
- Classifiers are often based on feature matching
- Features can change with propagation through the atmosphere

Approved for public release; distribution is unlimited.
Joule Heating Thin Film NiTi Cantilevers

Merric Sroul, 2nd Summer
Senior in Mechanical Engineering at UMBC
Mentors: Cory Knick, Gabriel Smith
August 11, 2016

Application:
- MEMS Shutter
 - Device Protection
- Low power on-chip actuation
- Robotics Actuation

Problem:
- Requires small form factor, i.e. radius of curvature (~10μm)
- Needs quick (<100ms) and low power actuation
- Material properties
 - Maintaining shape memory effect in nano-scale films

My Focus: Demonstrating joule heating active actuation method and modeling device bending
1. NiTi background

2. Previous NiTi characterization

3. Passive actuation methods

4. Active joule heating actuation method (my summer research)

5. Modeling radius of curvature

6. Summary and future work

NiTi Background

- Nickel Titanium (NiTi) is a Shape Memory Alloy (SMA), meaning it is a type of metal alloy that can recover seemingly permanent strain when heated.
- SMAs and, specifically, NiTi have 2 phases - martensite and austenite.
 - Martensite: Low temperature phase (ductile)
 - Austenite: High temperature phase

Tools to characterize NiTi:
- Differential Scanning Calorimetry (DSC)
- X-ray Diffraction (XRD)
- Wafer Bow Tool
 - Stress vs. Temperature using Stoney's equation: \[\sigma = \frac{E}{6(1-\nu)} \frac{h}{R} \left(\frac{1}{R_0} - \frac{1}{R} \right) \]

Previous characterization of NiTi material

XRD Data Comparing Varying Thicknesses of NiTi
- Primary martensite peak: 41.5°
- Primary austenite peak: 42.5°

DSC Full Heat/Cool Cycle
- Reversible phase change above RT ~58°C

Previous characterization of NiTi material:

Stress vs. Temperature for NiTi on Si
- Completely reversible
- Large recovery stress
- Low residual stress

- Reversible
- Large recovery stress
Process for building NiTi Devices

- When released, cantilevers curl up due to stress in bimorph layer (Pt / NiTi).
 - CTE mismatch, and cooling from 600°C deposition or anneal temperature
- When NiTi is actuated, it goes from martensite to austenite phase, doubling in rigidity, and goes to its shape remembered state.

1. Pt evaporation and NiTi sputter
2. NiTi wet etch, and Pt ion mill using 5214 pattern
3. Xenon Difluoride dry release from Si wafer
4. Thermal actuation (laser, joule heating, etc.)

![Laser Actuation Demonstration]

Laser Intensity vs. Actuation Time

- 950 μm max length
- 425 μm max length

Approved for public release; distribution is unlimited.
Previously had actuated the cantilevers using heater and laser, now actuating the devices using joule heating.

Device Design in AutoCAD
- 3 arrays with different width cantilevers
 - 20μm, 15μm, 10μm

Advantages of joule heating:
- Increases potential on chip applications
 - MEMS Sensing / actuating
 - Switching
 - Low power
-Ability to resonate actuators
 - Find thin film NiTi limits

The Nation’s Premier Laboratory for Land Forces

NiTi Wafer Recipes

<table>
<thead>
<tr>
<th>NiTi Thickness (nm)</th>
<th>Deposition Temperature (°C)</th>
<th>Post Anneal (600°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>600</td>
<td>No</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
<td>Yes</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
<td>No</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>Yes</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>No</td>
</tr>
</tbody>
</table>

*All NiTi was sputtered on a 20 nm layer of Pt

Reason for trying 300 nm @ 400 °C
- Reversible 300 nm NiTi film on Si
Frequency Response

- Shows full range of motion up to 200 Hz
- Reduced range of motion up to 500 Hz

Similar to the laser actuation, a full reversible cycle occurs within 3-5 ms

XRD for 400°C, 600°C Sputter

NiTi sputter with immediate 30-min 600 °C post-anneal

- Made devices on both wafers
- Pt peak ~40.0°
- NiTi austenite peak ~42.5°

- Results confirmed crystallization of NiTi (required for shape memory effect)
- Working on correlating XRD data to device performance (Radius of Curvature, Recovery stress)

Approved for public release; distribution is unlimited.
Single Cantilevers of 600 nm NiTi:

- 5 mA current applied across cantilevers.
- As area increases, resistance increases; therefore, it requires more power to actuate.
- Requires 5 mW for 100 µm cantilever and 13 mW for 400 µm cantilever.

Equations to model the radius of curvature of a Bilayered Structure from Klein (2000):

\[
\frac{1}{\rho} = k
\]

\[
\rho = \frac{-E_{Pr}t_{Pr}E_{NITi}t_{NITi}(t_{Pr} + t_{NITi})}{G(E_{Pr}t_{Pr} + E_{NITi}t_{NITi})} \Delta \theta
\]

Where \(\Delta \theta \) is a strain differential

\[
G = E_{Pr}t_{Pr}^2 \left(1 - \frac{1}{2} \frac{K_{Pr}}{E_{Pr}} - \theta \right) - E_{NITi}t_{NITi}[t_{Pr}(t_{Pr} + t_{NITi}) + \frac{t_{NITi}}{2} + \theta (2t_{Pr} + t_{NITi})]
\]

Where \(\theta \) is a correction factor used in the placement of the neutral plane

- \(k \) = Radius of Curvature
- \(\rho \) = Curvature
- \(E_{\nu} \) = Biaxial Modulus = \(\frac{E}{(1-\nu)E_{Pr}} \)
- \(t \) = Thickness of Layer

Comparison between 300nm and 600nm NiTi radius of curvature:

\[k = \frac{1}{\rho} = \frac{l^2}{2d} \]

- \(\rho \) is the curvature
- \(k \) is the radius of curvature
- \(d \) is the deflection of cantilever at length \(L \)

k for 600nm NiTi = 105 \mu m

k for 300nm NiTi = 167 \mu m

- Therefore, cantilevers at 600nm NiTi have a smaller radius of curvature (curl tighter) unlike model.

Conclusions

- Joule Heater cantilevers respond with full range of motion up to 200 Hz (5 ms)
 - Determined upper bound of actuation at 500Hz
- Demonstrated first-time 5 mW low power actuation
 - Opens up possibility of new applications space
- Reduced radius of curvature as tight as **105 \mu m compared to first-gen. 1.2 mm**
- Demonstrated full shape memory effect from devices at 600 nm and 300 nm NiTi
- Verified process requirement of > 400 °C for NiTi crystallization

Future studies:

- Continue making joule heated devices with reduced NiTi thickness
 - Smaller devices for MEMS applications
- Lower temperature NiTi deposition for process integration
- Already begun exploring alternative NiTi/SU8 stack
 - Model and preliminary tests show RC \(~55\mu m\)
 - Modeling radius of curvature of devices for arbitrary film stacks

Approved for public release; distribution is unlimited.
• I would like to thank my mentors for their help throughout the summer.

• I would also like to thank Brian Isaacson for his help fabricating the NiTi devices.

Questions?

100μm
INTENTIONALLY LEFT BLANK.
Microcombustion and Thermophotovoltaics

Noah Zecher-Freeman
Power Components Branch
Mentor: Mike Waits

- Soldier is overburdened with weight, restricts mission length.
- Current lithium batteries have a specific energy of 160 Wh/kg.
- For 72-h mission, 20 W Soldier power requires 9 kg of batteries.
- Thermophotovoltaic (TPV) cells take advantage of the specific energy of hydrocarbons to reduce the weight carried by Soldiers.

\[
\eta = \eta_{\text{thermal}} \cdot (\eta_{\text{spectral}} \cdot \eta_{\text{IR}} \cdot \eta_{\text{PVcell}}) \\
= 50\% \cdot (70\% \cdot 25\%) = 8.8\% \quad \text{FY16 BPP Objective}
\]
Desirable Characteristics of TPV Microreactor:
High Surface Area/Volume
High, Uniform Temperature
Complete Conversion
Low Pressure Drop

Sizing a TPV Microreactor:
Irradiance of a grey body: \(\varepsilon = 0.8 \) \(T = 1000 \text{ C} \): \(Q_{\text{rad}} = 11.9 \text{ W/cm}^2 \)
Targeted power output: \(120 \text{ W}_{\text{rad}} \)
Surface area: \(120 \text{ W}/Q_{\text{rad}} \sim 10 \text{ cm}^2 \)
Square shaped channel size: \((20 \times 20 \times 1) \text{ mm} \) \(v_{\text{in}} \sim 10x s_{\text{L}} \)

Bottom Line: The size of the system, nature of heat harvesting make it susceptible to extinction and blowout.

By combining both chemistries, we can:
- Breakdown fuel within a small residence time.
- Achieve a much larger operating window.
Frontiers MR 2.0 (FY16)
 Adds heat recirculation
 Validate reaction & CFD models
 Operate in vacuum chamber

Frontiers MR 1.0 and 1.1 (FY14-FY15)
 Studied performance with high heat loss & short residence times
 Visualize gas reactions
 Develop/validate reaction models: surface + gas-phase fuel decomposition
 Tomachoff et al., Combust. Flame. 2015

Previous modeling detailed how to maximize efficiency of reactor

Energy balance:
 - Combustion
 - Desired surfaces
 - Heat lost to exhaust
 - Undesired surfaces
 - Conduction along channels

Thermal Efficiency

\[\eta = \frac{\cdot}{Q_{\text{chem}}} \int_{0}^{A} (T_{w} - T_{s}) dA \]

\[\eta_{\text{thermal}} = 53\% \]

Peak Temperature = 1405K

\[\eta_{\text{thermal}} = 53\% \]

Peak temperature = 1148K
μGC Data

Channel 1, 10m M5A Heated Injector, Backflush

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Oxygen</td>
<td>0.529</td>
<td>17290</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>Nitrogen</td>
<td>0.714</td>
<td>24113046</td>
<td>732136.972</td>
</tr>
<tr>
<td>9</td>
<td>Methane</td>
<td>1.004</td>
<td>71340</td>
<td>3065.670</td>
</tr>
<tr>
<td>10</td>
<td>Carbon Monoxide</td>
<td>1.628</td>
<td>600648</td>
<td>20594.298</td>
</tr>
</tbody>
</table>

Totals 247532324 753635.999

Channel 2, 10m PPU Heated Injector, Backflush

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Carbon Dioxide</td>
<td>0.309</td>
<td>5780916</td>
<td>147104.778</td>
</tr>
<tr>
<td>3</td>
<td>Ethylene</td>
<td>0.552</td>
<td>11766</td>
<td>289.732</td>
</tr>
<tr>
<td>4</td>
<td>Ethane</td>
<td>1.131</td>
<td>178882</td>
<td>0.000 BDL</td>
</tr>
<tr>
<td>6</td>
<td>Propane/Propylene</td>
<td>0.805</td>
<td>8151</td>
<td>87.004</td>
</tr>
<tr>
<td>7</td>
<td>Unknown</td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
</tbody>
</table>

Totals 36104938 906637.610

Approved for public release; distribution is unlimited.
The Nation's Premier Laboratory for Land Forces

Effect of Time on Combustion and Thermal Efficiency

\[\text{C}_{12}\text{H}_{26} + 18.5\text{O}_2 \rightarrow 12\text{CO}_2 + 13\text{H}_2\text{O} \]

\[\varphi = \frac{V_{\text{fuel}}}{V_{\text{air}}} \]

\(\varphi = 1, \) stoichiometric
\(\varphi < 1, \) lean mixture
\(\varphi > 1, \) rich mixture

Approved for public release; distribution is unlimited.

50
Summary

- **Thermal efficiency** (radiated heat from desired surfaces)
 - Over 5 runs, thermal efficiency was 51-58%
 - Demonstrated 20% TPV efficiency [1] combined with 50% combustion efficiency for total efficiency of 10% allowing for energy density of ~700 Wh/kg, 2.1 kg for 72 h, 20 W mission
- **Combustion efficiency**
 - Carbon balance suggests that combustion is nearly complete
- **Heat lost to exhaust**
 - ~3.5% energy lost is due to high-temperature exhaust
- **Radiated heat from undesired surfaces**
 - >15% energy lost is due to radiated heat from undesired surfaces, which can potentially be reflected back
- **Heat lost to conduction along channels**

Future Efforts

- Emissivity of the reactor is unknown (with higher emissivity while oxidized, decreases when reduced inside vacuum); the diffuse reflection complicates measurements.
- Current reactor has a bulge in it due to being heated and high pressure inside the reactor and low pressure outside; earlier modeling done is now inaccurate.
- New reactors coming in are to be reinforced.
- Experiment with complex fuels rather than simple fuels.
- Determine improved methods of depositing catalyst; transition to other catalysts for better resistance to fouling from sulfur.

Acknowledgements

Bill Allmon
John Little
Back up

\[T = 3 \text{ SLPM (156 W), } T_{\text{wall}} = 1300 \text{ K} \]

surface (solid lines) gas phase (dashed lines)
Tolmachoff et al., Combustion and Flame, 162 (2015), pp. 3074-3080.

$T_{wall} = 1300 \, K$, $2b=0.5 \, mm$

2, 3, 4 SLPM = 104, 156, 208 W, respectively

surface (solid lines), gas phase (dashed lines)
Survivability/Lethality Analysis Directorate (SLAD)
INTENTIONALLY LEFT BLANK.
Visualizing Ferret Brain Neural Pathways to Understand Mechanisms of Blast Brain Injury

Skylar Bodt, CQL Intern
Mentors: Autumn Kulaga & Karin Rafaels, ARL-SLAD
RDRL-SLB-W July 28th, 2016

Fallston High School (2015)
- US Congressional Art Competition
- GEMS at ARL 2012 & 2013

University of Maryland, College Park (2019)
- Major: Cell Biology and Molecular Genetics
- Activities: Beta Psi Omega Professional Biology Fraternity, UMCP Scholar, Quality Enhancement Systems and Teams (QUEST) Honors Program

Future Career Aspirations
- Graduate degree in Medical Illustration
- Continue research as a biomedical illustrator
GOAL: Further TBI research through visual reconstruction of neuroanatomy

Objectives:

2. Within these images, locate the position of whole cerebrum sections taken from a ferret brain and stained with B-amyloid precursor protein (B-APP) or a neurofilament stain (NF), both intended to show axonal damage.

3. Illustrate neural pathways based on the 2D stain images.
Background: Importance of TBI

Current threats, such as improvised Explosive Devices (IEDs), make Soldier exposure to blast a continuing concern.

Advances in soldier protective equipment have increased soldier survival rate, but created an increase in nonlethal Traumatic Brain Injury (TBI).

This survival rate increase brings into focus nonlethal TBI, and a need to understand the mechanism of blast injury to the head and neck region (1).

Studying soldier TBI risk due to blast effects is vital for both the treatment of injury and development of protective equipment (1).

The Nation’s Premier Laboratory for Land Forces

Background: The Ferret Brain

• Why is it Important?
 • The ferret brain is important in research because it helps bridge the gap between rat and human brain research.
 • It has more similar surface area to a human but maintains the size of a small rodent brain. (1)

• What are the challenges?
 • There is little research available on the ferret brain, so there are gaps in knowledge.
 • Hardly any visualizations have been created, so as a result, known information is difficult for researchers to interpret.

• Important Previous Research
 • An experimental program in 2010 used a ferret animal model to explore brain damage after exposure to blast overpressures in a controlled environment. (1)
 • I used this research as the foundation for my own project.
• These are examples of ferret brain slices used in the 2010 experiment studying ferret TBI.

• Both the neurofilament (NF) and the B-amyloid precursor protein (B-APP) stain show axon damage in the brain.

• The precise anatomical location for each of the 20 slices I was given was initially unknown.
Dorsal view

- Olfactory Bulb
- Longitudinal Fissure
- Orbital Gyrus
- Anterior Sigmoid Gyrus
- Suprasylvian Sulcus
- Posterior Sigmoid Gyrus
- Lateral Gyrus
- Anterior Ectosylvian Gyrus
- Cerebellum

10 mm
Ventral view

Lateral view
Methods: Objective Two

- Determined Bregma (0-value) on rendered images (2)
 - Bregma: a location on the front of the skull where plates come together
 - Difficult to determine in ferrets

- Deciphered section placement from description of # mm from Bregma on the ferret brain sample

- Adjusted scale to reflect ~ 3.2 cm ferret brain depicted on 10.4 cm rendered image, (~325% increase)

- Uploaded image into Adobe Illustrator to show slice placement

Data: Brain Sections

- 36 sections coronally cut over whole cerebrum, 20 B-App, 16 NF (1)

- Vague description where slices/cuts were made and slide numbering from anterior to posterior. 1 NF & 1-B-APP / mm (1)

- Slide placement estimate by Talairach Stereotactic Coordinates

 Anterior Bregma Posterior Stem

 5.64 mm 0 mm -9.00 mm -10.2 -- -10.6 mm

 40 um

 1 mm

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 25

 NF B-APP
Summary

- Understanding TBI is of critical importance to developing better protective equipment and smarter assessment of that equipment.

- Visualization of the ferret brain and regions will help researchers identify important structure related to TBI.

- Determining slide section locations for NF and B-APP stains allows a visual reference that links the neural pathway damage seen on the sections to a specific region within the brain.

- Completed work in depicting connections of neural pathways across sections will move toward a 3D understanding of TBI.

- Future work might improve the visualization to allow, for example, “removable” section images from the main image or 3D rendering.

Reflections

- I appreciated this opportunity to be a Medical Illustrator Intern with ARL/SLAD.

- The biology, mainly anatomy, required forced me to expand my knowledge.

- I know much more about the regions of the brain and the coordinate system used to locate structures.

- I had not previously done anything at this level with Adobe Photoshop and Illustrator; I had only experimented. This summer forced me to become much more proficient in both, but I have much to learn.

- I want to thank my mentors Autumn Kulaga and Karin Rafaels for guiding me this summer in Illustration and Biology.

B-amyloid:

- Beta amyloid is a protein fragment detached from an amyloid precursor protein (APP).
- Increased B-APP expression is associated with brain injury (6).

Neurofilament:

- Neurofilaments are important elements in the cytoplasm that supports the cytoplasm in the axon.
- Staining may give insight to axonal damage in the brain (6).
INTENTIONALLY LEFT BLANK.
Early-Stage Damage in CFRP using Active Thermography

Student: Micheal Wallace
Mentor: Dr. Mulugeta Haile

Outline

- Motivation
- Theory
- Experimental Setup
- Results and Discussion
- Summary
- Future work
The overarching objective is to discover in-situ sensing technique for detection of early-stage fatigue damage or “damage precursors” in polymer composites using the materials local thermal properties.

![Images of various testing equipment]

Capacity vs Life

The graph shows the relationship between capacity and service life, indicating critical points such as micro-crack formation, local heating, macro-crack formation, and eddy current. These factors lead to changes in structural response, leading to catastrophic failure.

Approved for public release; distribution is unlimited.
• Fatigue damage results in microscopic changes in materials (dislocation, crazing and slip bands).
• Microscopic changes in turn result in changes in the behavior of lattice vibration (or Phonon).
• In nonmetals, heat conductivity is mainly due to phonons.
• All other things constant, changes in materials thermal property, such as conductivity, diffusivity, heat capacity may indicate early stage fatigue damage.
Steps:
1. Heat the specimen surface with high intensity flash.
2. Measure surface temperature change ΔT as a function of time, i.e., ΔT = f(t).
3. Process the temperature time (T-t) data to detect abnormalities.

Transient Heat Conduction – 1D

- Governing equation (Non-dimensional form)
 \[
 \frac{\partial \theta}{\partial \tau} = \nabla^2 \theta \\
 \theta(x, 0) = 1, \quad \frac{\partial \theta}{\partial x} = 0 \text{ at } x = 0 \text{ and } \tau > 0 \\
 \frac{\partial \theta}{\partial x} = -B_1 \theta
 \]
- Solution
 \[
 \theta(x, \tau) = A_1 e^{-B_1 \tau} \cos \left(\frac{\lambda_1}{L} \sqrt{\frac{B_1}{\tau}} \right) \quad \tau > 0.2
 \]
- Where
 \[
 \theta(x, \tau)_{\text{wall}} = \frac{T(X, \tau) - T_0}{T_s - T_0} \quad \text{Dimensionless temperature} \\
 X = \frac{x}{L} \quad \text{Dimensionless distance} \\
 B_1 = \frac{\lambda_1}{L} \quad \text{Dimensionless heat transfer coefficient, Biot Number} \\
 \tau = \frac{\alpha L^2}{\lambda_1} \quad \text{Dimensionless time, Fourier Number}
 \]
Interpreting the Log Plot

y-intercept indicates the amount of energy absorbed.

In (temperature) vs. In (time)

normal diffusion (no defect)

slope = -0.5

Back wall or defect

Simple Interface: Adiabatic Boundary

steel

No heat transfer through back wall (adiabatic)

The time t^* characterizes the disruption of the diffusion process by an internal interface.

In the adiabatic case, t^* is the intersection of the straight lines.
Second Derivative: A Sensitive Indicator of t^*

$\ln(T-T_0)$

$\frac{d^2 \ln(T-T_0)}{d^2 \ln(t)}$

$t^* = \frac{l^2}{\alpha \pi}$

Derivatives are highly sensitive to t^* transition.
Weapons & Materials Research Directorate (WMRD)
INTENTIONALLY LEFT BLANK.
Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector Evaluated Genetic Algorithm

Justin Paul
Mentor: Dr. Sidra Silton

About Me

• I was born and raised in Austin Texas with a strong interest in mathematics and physics.
• I am currently undergraduate senior in Aerospace Engineering at The University of Texas at Austin.

• Interests include rocketry, machine learning, and juggling
I. Internship Objectives

II. Project Description:
 a) Research purpose
 b) Projectile studied
 c) Aerodynamics considered
 d) Conditions considered

III. Implementing Optimization

IV. Simulation Methods Explored

V. CFD Methodology

VI. Genetic Algorithms:
 a) Description
 b) Advantages and Disadvantages
 c) Methodology

VII. Current Results:
 a) Analysis
 b) Possible conclusions

VIII. Path Forward

IX. Improving Projectile Shape:
 a) Discuss more realistic projectile shape

Primary:
- Study ballistic flight dynamics and bending body literature
- Learn to use and experiment with:
 - Missile DATCOM
 - Solidworks Flow Simulation
 - CFD++
 - MIME
- Optimize control parameters for a bending body projectile

Secondary:
- Study evolutionary programming
- Write genetic algorithm to complete optimization (CML-VEGA)
II. Research Purpose

- Maneuvering flight bodies for small diameter munitions research area
 - munitions that are both accurate and precise
 - minimize collateral damage
- Current control authority is limited:
 - moving control surfaces
 - thrust vectoring
- Current research done on deflectable projectile structure:
 - focused on deflecting the nose cone at the base of the nose cone
- Novel aspects of this investigation:
 - multiple bends
 - bends located on the body
 - optimization

II. Aerodynamics Considered

- Pitching Moment Coefficient: Primary characteristic of control authority
 \[C_M = \frac{1}{2} \gamma \rho \omega \frac{M_\infty^2 SD}{M} \]
- Axial Force Coefficient: Characteristic of adverse aerodynamics
 \[C_X = \frac{F_X}{\frac{1}{2} \gamma \rho \omega M_\infty^2 S} \]
- Normal Force Coefficient: Secondary characteristic of control authority
 \[C_N = \frac{F_N}{\frac{1}{2} \gamma \rho \omega M_\infty^2 S} \]
II. Conditions Considered

AOA ≡ Angle between the trajectory vector of the projectile and the freestream vector

\[M_\infty \equiv \text{The freestream Mach number} \]

\[p_\infty = \text{Ambient pressure in the freestream} \]

\[T_\infty = \text{Ambient temperature in the freestream} \]

\[
\begin{array}{c|c|c|c}
\text{AOA (deg)} & \text{MACH 2} & \text{MACH 3} & \text{MACH 4} \\
\hline
-8 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-7 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-6 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-5 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-4 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-3 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-2 & \text{Case 1} & \text{Case 18} & \text{Case 35} \\
-1 & \text{Case 8} & \text{Case 25} & \text{Case 43} \\
\vdots & \vdots & \vdots & \vdots \\
51 & \text{Total Cases} & & \\
\end{array}
\]

III. Implementing Optimization

Initialization (pseudo-random population) → Geometry (defined by control parameters) → Generate aerodynamic coefficients (through CFD) → Convergence check → Individual Optimization (Cm*, Cn*, CX*) → Optimized Individual

Legend

- MIME & CFD++
- SOLIDWORKS
- CML-VEGA

Approved for public release; distribution is unlimited.
IV. Simulation Methods Explored

Aero-prediction code

Missile DATCOM:
- Fast analysis
- Semi-empirical (limited accuracy)
- Limited modeling capabilities

SOLIDWORKS Flow Simulation:
- Integrated into CAD software
- Fast meshing
- Limited licensing and resources
- Limited to Windows systems

CFD++:
- More sophisticated solver
- Near unlimited licensing and resources
- Compatible with UNIX workstations (and therefore HPC)
- Requires MIME software for meshing

Legend

| Advantages | Disadvantages |

V. CFD Methodology

CFD++

Version 15.1.1 of CFD++:
- Steady-state and quasi-steady sweep RANS simulations
- Realizable kε turbulence model
- Finite volume framework

MIME

Version 5.1 of MIME:
- Unstructured tetrahedrals with prism boundary layer
- Local refinement on nose cone tip, bends and edges
- Curvature refinement across nose cone
- Global mesh size typically 9.1 to 9.6 million cells (taking advantage of longitudinal symmetry)
VI. Genetic Algorithms

Defining Aspects of a Genetic Algorithm:
- **Metaheuristic** (practical solutions)
- **Stochastic** (search and propagation utilize pseudo random number generation techniques)
- **Conditionally Global** (initial population size, crossover probability and mutation rate dependency)

Advantages:
- Robust composition is insensitive to initial condition variation
- Relatively simple to implement on relatively complex systems
- Ex: $\text{size}(\Theta_1)^*\text{size}(\Phi_1)^*\text{size}(\Phi_2) = 16^*16^*16 = 4096$ configurations

Disadvantages:
- Does not scale well – increasing quantity of control parameters increases the diversity of design space exponentially
- High dimensional, multimodal problems require sophisticated and expensive fitness functions

The Model

Initial Population → Fitness Evaluation and Natural Selection → Fit Population → Recombination → Offspring Population → Optimize for maximum surface area

- Convergence? Yes → Optimized Individual
- Convergence? No → Selected Parents

Approved for public release; distribution is unlimited.
VI. The Objective Function

For a given set of aerodynamic coefficients: \(\min: \text{niches: } \max \)

\[
\text{size} = \frac{\max - \min}{\text{niche}}
\]

\[
\text{value score} = \frac{\text{value}}{\max} \times \text{size}
\]

\[
\text{component score} = \text{priority coefficient} \times \text{value score}
\]

\[
\text{final fitness score} = \sum_{j=1}^{N} (\text{component score})_j
\]

\[
< \frac{1}{2}C_M, \frac{1}{3}C_X, \frac{1}{6}C_N >
\]

\[
\text{fitness proportionate probability} = \frac{(\text{final fitness score})_i}{\text{maximum final fitness score}} = \frac{w_i}{w_{\max}}
\]

Minimization modification: \(\text{value score} = \frac{\min}{\text{value}} \times \text{size} \)

*The complete objective function includes CFD simulation calculations.

VII. \(C_M \) vs AOA

Pitching Moment Coefficient: Primary characteristic of control authority

![Graph showing \(C_M \) vs AOA](image-url)
VII. Phenotypic Evolution

Mach 2, AOA 8°

Generation 1
- Individual 4
- Individual 26
- Individual 29

Generation 2
- Individual 1
- Individual 4
- Individual 6

VII. Generation Statistics

Mach = 2

\[\text{length}(0.0:0.5:7.5) = \text{length}(1.25:4.5:68.75) = 16 \]

Generation 1

<table>
<thead>
<tr>
<th>Angle of Attack</th>
<th>Q₁</th>
<th>φ₁</th>
<th>φ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA -8°</td>
<td>8.97</td>
<td>8.19</td>
<td>8.10</td>
</tr>
<tr>
<td>AOA -7°</td>
<td>4.71</td>
<td>4.89</td>
<td>4.52</td>
</tr>
</tbody>
</table>

Generation 2

<table>
<thead>
<tr>
<th>Angle of Attack</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>22% reduced standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA -8°</td>
<td>3.77</td>
<td>3.95</td>
<td>4.21</td>
</tr>
<tr>
<td>AOA -7°</td>
<td>3.65</td>
<td>4.05</td>
<td>4.21</td>
</tr>
</tbody>
</table>

\[\text{Mean Standard Deviation} \]

Approved for public release; distribution is unlimited.
VIII. Path Forward

- Algorithm functionality is not completely confirmed – observed increase in performance will verify optimization.

- Central Objective: complete optimization of unique problems (characterized by C_N vs AOA)

 Ex: AOA = 8° for Mach = {2:1:4}

- Complete statistical analysis of algorithm convergence to understand why some problems may converge faster than others.

- Look for significant differences between problems with related conditions to derive conclusions.

- Analyze flow field characteristics of optimized individuals to understand increased performance compared to the baseline straight body configuration.

IX. Improving Projectile Shape

Use Bezier control points to create a continuous shape (Li et al. 2016)

![Bezier control points example](image)

- Second Order Bezier Curve
- Fourth Order Bezier Curve
Acknowledgements

The author would like to thank:

- **Mr. Ilmars Celmins** of the Flight Sciences Branch, WMRD, ARL, for his assistance with SOLIDWORKS
- **Mr. Bryant Nelson** of the Guidance Technology Branch, WMRD, ARL, for his assistance with concept development and GA conceptualization.

This study used significant computational resources provided by the Department of Defense High Performance Computing Modernization Program at the Navy DoD Supercomputing Resource Center located at Stennis Space Center, Mississippi.

References

2. http://www.nasa.gov/exploration/systems/sls/rocket.html , 07/22/2016 - SLS

References

10. Xia Xiaohua, “Particle Swarm Optimization Method Based on Chaotic Local Search and Roulette Wheel Mechanism,” ICAPIE 1875-3892, 2012 International Conference on Applied Physics and Industrial Engineering, Beijing, China

15. https://en.wikipedia.org/wiki/Student%27s_t-distribution, 07/22/2016 - Student’s-t distribution statistics

18. https://Cma.net63.net, 08/2/2016 - Ballistic Projectile
QUESTIONS?

APPENDIX
• Natural Selection:
 - median population fitness is calculated
 - individuals at or below the median fitness are removed from the population to create the “fit” population

• Parental Selection:

\[
\begin{array}{cccc}
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N} \\
\frac{w_1}{w_{\text{max}}} & \frac{w_2}{w_{\text{max}}} & \frac{w_3}{w_{\text{max}}} & \frac{w_i}{w_{\text{max}}} \\
\end{array}
\]

uniform probability

fitness proportionate probability

if \(\frac{w_i}{w_{\text{max}}} > x, 0 < x < 1 \)

individual \(i \) is the selected parent

selected parent
Recombination

Parent 1: 1011 0010 1011
Parent 2: 1000 1001 0000

crossover location = $x \times x : \{1:1:length(parent1)\}$

example: $x = 7$
Parent 1: 1011 0010 1011
Parent 2: 1000 1001 0000

if mutation rate $> x, 0 < x < 1$ *Tested for each nucleotide*
mutation permitted

example: nucleotide 4 and 11 mutate

Offspring: 1011 0011 0000
Offspring: 1010 0011 0010

Using Student’s t-distribution Statistics

Desired Confidence of Convergence ($1 = 50\%, 4 = 90\%, 11 = 99.9\%) \equiv \beta$
(see Student’s t distribution table)

\[
\text{mean} = \mu = \frac{\sum_{i=1}^{N} x_i}{N} \quad \text{variance} = < s^2 > = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2
\]

\text{standard deviation} = \sqrt{< s^2 >} = s

if $s(\Phi_1) \cdot \beta < 2\cdot\text{niches}$
if $s(\Phi_2) \cdot \beta < 2\cdot\text{niches}$
if $s(Q_1) \cdot \beta < 2\cdot\text{niches}$
\[
\Phi_1' = \text{mode}(\Phi_1) \quad \Phi_2' = \text{mode}(\Phi_2) \quad Q_1' = \text{mode}(Q_1)
\]

optimized individual: [Φ_1', Φ_2', Q_1']
Three dimensional cut-plane of fin region cells

Boundary Layer Size: 4.2e6
Data Comparison

Comparing Missile DATCOM to CFD++

- Mach 2
- Mach 3
- Mach 4

Comparing SOLIDWORKS Flow Simulation Solver to CFD++

- Mach 2
- Mach 3
- Mach 4

Approved for public release; distribution is unlimited.
Comparison and Optimization of Solid-State Joining Techniques for Dissimilar Metals

Miriam Silton
Coatings, Corrosion, and Engineered Polymers Branch (CCEPB)
Mentor: Dr. Robert Jensen

Contents

- About me
- Background
- Goals
 - Fabricate and characterize standardized joints
 - Produce baseline performance predictions
- Conclusions and Future Work
Education
- Rising junior at University of Maryland, College Park
- Materials Science and Engineering
- University Honors College
- QUEST Honors Program

Experience
- Summer 2015: Adhesives with ARL CCEPB
- 2015-2016 school year: UHMWPE and resin degradation in body armor panels

Motivation
- Increased maneuverability and fuel efficiency
- Substitute lightweight metals for steel → joints

Challenge
- Optimal joining techniques for all possible situations are unknown
- Tradeoff between weldability and strength
- Galvanic corrosion and fatigue concerns

Opportunity
- ARL is home to diverse joining portfolio

Materials Research Campaign: Lightweight Materials
Joint Fabrication

Adhesive
- Machine lap joints and thread butt joints
- Clean and pretreat bonding surface
- Apply adhesive
- Cure with heat and applied pressure
- Sand fillet

Cold Spray
- Thread, insert steel pin, and bevel
- Clean bonding surface
- Spray while rotating
- Wait until cool
- Machine off extra spray

Characterization

- Standard tensile testing of butt joints (ISO 6922/ASTM 2095)
 - Adhesive: dissimilar Al alloys
 - Cold Spray: dissimilar Al and Mg alloys with Al spray
- Post-corrosion tensile testing of adhesive lap joints
 - 30 days in salt fog chamber
 - 5% NaCl-water solution @ 35°C (ASTM B117)
- Cyclic fatigue testing of adhesive lap joints (ASTM D3166)
- Cold spray: high potential vs. large standard deviation
- Adhesive: consistent + comparable strength
- **Current Literature**
 - Hybrid joints combining adhesives with UAM and FSW
 - Cold spray is new technique with limited research

- **Hybrid Cold Spray-Adhesive Butt Joint**
 - High strength of cold spray
 - Reliability of adhesive
 - Optimal joint for this geometry?
 - Hypothesis: Combination will eliminate cracking and reduce stress concentrators at edge.

- **Considerations**
 - Ensure weld heat doesn't degrade adhesive
 - Degradation temp ~360°C
 - Surface during cold spray application ~60°C

>130 MPa!
Decayed strength and displacement retention with adhesively bonded dissimilar joints – what happens with hybrid?

30 day salt fog exposure

Will hybrid joint improve fatigue resistance?
Conclusions
- Geometrical limitations of solid-state techniques
- Corrosion has noticeable effect on dissimilar joints
- Opportunity for hybrid joints to increase mechanical performance

Short-term Future Work
- Fabricate and test hybrid butt joints
- Fabricate hybrid lap joints
- Develop FSW and UAM methods

Long-term Future Work
- Fatigue and corrosion analysis
- Full-scale testing
- Modeling

I would like to thank:
- Dr. Robert Jensen
- Daniel DeSchepper and David Flanagan (Adhesives)
- Dr. Jennifer Sietins (CT/UAM)
- Dr. Michael Kornecki (UAM)
- Dr. Kevin Doherty (FSW)
- Carl Paxton, Mark Graybeal, Blake Barnett, and Dr. Dan Kaplowitz (Cold Spray)
- David Gray, Paul Moy, and Andy Bujanda (Testing)

My progress and findings thus far would not have been possible without your contributions and assistance.
QUESTIONS???
Ultrasonic Additive Manufacturing (UAM)

- 80/20 bar with spring screw that can be tightened to apply pressure
.005” diameter glass beads to ensure even bond line thickness
Chopped fibers for increased viscosity and strength

References
Insidemetaladditivemanufacturing.com
Engineering.und.edu
http://images.frompo.com/182a65bc79026feb97e7c70b688eb89c
Weldingprocesses.wordpress.com
ISO 6922
ASTM 2095
ASTM B117
ASTM D3166
Shear-Induced Initiation of Nitromethane

1Brad A. Steele and 2James P. Larentzos
1Ivan I. Oleynik
1University of South Florida Physics Department
Tampa, FL
2Army Research Laboratory, WMRD Aberdeen
Proving Ground, MD

A better understanding of the initiation of energetic materials can make them safer and allows for more advanced energy release. The initiation is critically dependent on the reaction pathway and the energy barrier height and width.
- Shock compression: \(V = V_p \)
- Hydrostatic compression:
- Uniaxial compression:
- **Shear stress:** \(\tau = \frac{F}{A} \)

Nitromethane: \((\text{NO}_2)(\text{CH}_3)\)
- A prototypical EM
- Widely studied and experimentally well-characterized
- A model for understanding chemistry in larger explosives with similar functional groups
- No phase transitions reported in hydrostatic pressure experiments
Experimental collaborators at ARL (Tim Jenkins) compress and shear NM in a rotational diamond anvil cell (RDAC) and measure Raman spectrum.

Computationally investigate the chemical reaction mechanisms that occur during the shear stress and initiation of nitromethane.

- Develop a theoretical methodology that can accurately describe the response of nitromethane under shear stress.
- Investigate the role crystallographic orientation plays on the shear sensitivity of NM.
- The initiation of NM may be related to the presence of grain boundaries in the crystal — investigate the shear dynamics with grain boundaries in the crystal.
• Atoms follow Newton’s laws via classical molecular dynamics.

• A REACTIVE potential is used to model atomic interactions.

• Potential shows good agreement to experimental EOS and melting lines.

• Crystal orientations and grain boundaries built using code developed at ARL.

Fully periodic crystals built with various orientations sheared along all three directions

- Initially relaxed at 20 GPa and 298 K, then sheared (shear rate = -0.386°/ps)
Significant orientation dependence

- Shear stress along sheared direction shows a gradual decrease to -2 to -5 GPa, then a sharp increase, accompanied by a transition to disordered NM state.

- Size of shear stress and shear angle are highly dependent on the orientation.

\[
\begin{align*}
\text{Shear Stress (GPa)} & \quad \text{Angle (degrees)} \\
\text{MAX STRESS} & \quad 90^\circ \quad \text{MAX STRESS} \quad 61.22^\circ
\end{align*}
\]

Increasing shear

Disordered state

\[
\begin{align*}
\text{xy} & \leq 90^\circ \\
\text{xy} & \leq 65.77^\circ
\end{align*}
\]

\[
\begin{align*}
\text{xy} & \leq 90^\circ \\
\text{xy} & \leq 65.77^\circ
\end{align*}
\]

<01-1> Orientation sheared along xy

- When sheared along this direction, NM molecules can rotate slightly into empty space perpendicular to shear direction.
<01-1> Orientation sheared along yz

- NM molecules once again rotate to be aligned along y-axis.
- Plane of NM molecules shift slightly along shear direction (y-axis).

$yz \angle = 90^\circ$

$yz \angle = 72.77^\circ$

- Several hundred bi-crystal grain boundaries (GBs) are created.
- Atom positions and crystal lattice relaxed at 20 GPa and 300 K.
- GBs are ranked according to GB energy:

$$E = \frac{U_{GB} - U_{perfect} \cdot N_{atoms}}{2 \cdot Area}$$

- Structures with lowest GB energy are chosen on which to perform shear simulations.
Grain Boundary:
<011>/<011>
along z
<0 27 -14>/<0 -27 14> along y

Notice that:

1. The entire grain rotates with the shear.
2. The molecules do not rotate until a very large shear angle is reached.
3. Disordered NM originates at GB and grows.

89.52°
Tintra Avg. (K)
S_{yz}=-0.58 \text{ GPa}
T=289 \text{ K}
P=19.86 \text{ GPa}

78.25°
Tintra Avg. (K)
S_{yz}=-1.32 \text{ GPa}
T=340 \text{ K}
P=19.93 \text{ GPa}

67.80°
Tintra Avg. (K)
S_{yz}=-1.63 \text{ GPa}
T=378 \text{ K}
P=20.09 \text{ GPa}

58.70°
Tintra Avg. (K)
S_{yz}=-1.62 \text{ GPa}
T=424 \text{ K}
P=19.55 \text{ GPa}
Grain Boundary:
\(<011>/<011>\)
along z
\(<0\ 27\ -14>/<\ 0\ -27\ 14>\) along y
*Shear direction into plane

Notice that:

1. Transformation to disordered state occurs suddenly throughout the entire material.

2. Stress still grows because transformation is incomplete at \(\sim 80^\circ\).

3. Much different than yz direction.

Chemical reactions have not occurred during shear simulations!

- Perform shear simulations on polycrystalline NM.
- Investigate size dependence more thoroughly.
- Investigate time scale for reactions to occur by calculating activation energies for proposed reactions in NM.
- Investigate hydrostatic pressure dependence of results.
Conclusions

- Uncovered short-time scale shear dynamics and possibly initial stages of reaction pathway.

- NM transforms into a disordered material under shear stress at 20 Gpa and 298 K, but no reactions are observed.

- Significant orientation dependence on the shear response of NM: max shear stress 5.2-1.6 Gpa.

- Shear stress characterized by the ability or lack of ability for NM molecules to rotate or planes of NM molecules to shift with the shear stress.

- Response of NM with a GB under shear characterized by rotation of entire grain or rotation of molecules in the grain.
Questions?
| Orientation <hkl> | Max $|S_{xy}|$ (Gpa) | Max $|S_{yz}|$ (Gpa) | Max $|S_{yz}|$ (Gpa) |
|------------------|----------------|----------------|----------------|
| <1-1-1> | 4.21 | **5.24** | 4.03 |
| <10-1> | 2.15 | 2.70 | 4.67 |
| <11-1> | 3.73 | 3.34 | 4.54 |
| <110> | 3.03 | 4.53 | 2.98 |
| <010> | 3.92 | 3.46 | 1.95 |
| <1-11> | 4.06 | 3.03 | 2.96 |
| <111> | 4.08 | 3.27 | 3.01 |
| <1-10> | 3.43 | 3.46 | 2.85 |
| <01-1> | **4.38** | **4.48** | **2.35** |
| <101> | 2.19 | 2.79 | 3.51 |
| <011> | 3.07 | 2.94 | **1.68** |
| <001> | 2.60 | 2.77 | 4.27 |
| <100> | 4.26 | 3.59 | 2.54 |
INTENTIONALLY LEFT BLANK.
INTENTIONALLY LEFT BLANK.