AWARD NUMBER: W81XWH-13-1-0275

TITLE:  A Changing Landscape of Advanced Prostate Cancer: Understanding Mechanisms of Resistance to Potent Hormonal Therapies

PRINCIPAL INVESTIGATOR: Himisha Beltran, M.D.

CONTRACTING ORGANIZATION: Weill Medical College of Cornell University
New York, NY 10065-4805

REPORT DATE: October 2016

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
## REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

**PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>October 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td>Annual</td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>30Sep2015 - 29Sep2016</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>A Changing Landscape of Advanced Prostate Cancer: Understanding Mechanisms of Resistance to Potent Hormonal Therapies</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td>W81XWH-13-1-0275</td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td>PC121341</td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S):</td>
<td>Himisha Beltran</td>
</tr>
<tr>
<td>E-Mail:</td>
<td><a href="mailto:hip9004@med.cornell.edu">hip9004@med.cornell.edu</a></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Weill Medical College of Cornell University, 407 E 61st Street Rm 106 1st Fl, New York, NY 10065-4805</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td>U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702-5012</td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for Public Release; Distribution Unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
</tbody>
</table>
14. ABSTRACT:
Transition to a neuroendocrine prostate cancer (NEPC) phenotype has emerged as an important mechanism of treatment resistance to androgen receptor (AR) therapies for patients with metastatic prostate cancer. During the course of this Award, I have performed extensive, first–in-field molecular characterization of metastatic tumor biopsies from patients with castration resistant adenocarcinoma and neuroendocrine prostate cancer (Beltran et al, *Nature Medicine*, 2016). Whole exome, transcriptome, and CpG DNA methylation integrative analyses point to key drivers of NEPC including loss of RB1 and TP53, gain of MYCN, overexpression of BRN2, and epigenetic changes. Clonality analysis of serial tumor biopsies in individual patients provides new insights into mechanisms of progression, favoring a model most consistent with divergent clonal evolution of NEPC from an adenocarcinoma precursor. Through preclinical analyses, we have better characterized mechanisms of transdifferentiation (Dardenne*, Beltran* et al, *Cancer Cell* 2016; Bishop et al, *Cancer Discovery* 2016; Mu et al, *Science, in press*). Also as part of this Award, I have evaluated circulating tumor cells (CTCs) from patients treated with abiraterone and enzalutamide for emergence of NEPC CTC characteristics and found that up to 10% harbor NEPC-like CTCs (characterized by low AR, smaller morphology, loss of CK), and the presence of NEPC CTCs was associated with poor prognostic features (Beltran et al, *Clinical Cancer Research, 2016*). Circulating tumor DNA analysis is ongoing. I have also started to look even earlier in prostate cancer progression evaluating high risk prostate cancers and patients treated with neoadjuvant therapy on the CALGB90203 Phase 3 trial for emergence of NEPC features and harbingers of early resistance. These studies have potential clinical implications for early detection, prognostication, and identification of patients less likely to respond to subsequent AR-targeted therapies.

15. SUBJECT TERMS: Prostate Cancer, AR independence, Neuroendocrine prostate cancer, Treatment resistance, Circulating tumor cells, Biomarkers

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION

18. NUMBER

21

19a. NAME OF USAMRMC RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std. Z39.18
# Table of Contents

1. Introduction ..................................................................................................................5

2. Keywords .......................................................................................................................5

3. Project Summary ...........................................................................................................5

4. Accomplishments .........................................................................................................18

5. Conclusion .....................................................................................................................18

4. Publications ..................................................................................................................18

5. Inventions, Patents, Licenses .......................................................................................21

6. Reportable Outcomes .................................................................................................21

7. Other Achievements ....................................................................................................21

8. References ....................................................................................................................22

9. Appendices ..................................................................................................................22
1. INTRODUCTION: Although patients with castration resistant prostate cancer (CRPC) have, by definition, castrate levels of circulating testosterone, most advanced prostate tumors continue to remain dependent on signaling from the androgen receptor (AR). Hence, most CRPC tumors are not truly hormone refractory. Based on this understanding, several new highly potent AR-targeted therapies have entered widespread clinical use for the treatment of patients with metastatic CRPC. While exciting, these drugs are not curative, and all patients ultimately develop resistance. In most cases, AR continues to remain active. However a subgroup of patients treated with AR therapies develop rapid progression and clinical features suggestive AR independence including low PSA progression and visceral metastases. Metastatic biopsies in this subgroup have revealed an emergence of tumor morphologic characteristics consistent with small cell carcinoma/neuroendocrine prostate cancer (NEPC). The goal of this Award is to systematically evaluate mechanisms of NEPC progression using deep sequencing techniques of metastatic tumor biopsies and non-invasively using liquid biopsies including circulating tumor cells (CTCs).

2. KEYWORDS: advanced prostate cancer, androgen receptor, resistance, abiraterone, neuroendocrine prostate cancer, circulating tumor cells, genomics, biomarkers

3. PROJECT SUMMARY:

Aim 1. To identify molecular determinants of acquired resistance to potent AR targeted therapies. The working hypothesis of this Aim is that advanced prostate tumors acquire genetic alterations in response to newer potent AR targeted therapies that enable them to continue to grow and proliferate. We will perform massively parallel whole exome sequencing of tumor tissue from abiraterone resistant prostate cancers to determine the spectrum of mutations associated with resistance to AR targeted therapies.

Aim 2. To prospectively evaluate circulating tumor cells (CTCs) from patients receiving potent hormonal therapies for acquisition of gene alterations in response to therapy. The working hypothesis of this Aim is that evaluation of CTCs may provide a non-invasive method to detect genomic alterations of key genes that occur before or may be acquired on therapy that predict response or resistance. We will analyze CTCs from patients prior to starting abiraterone, during treatment, and at progression for gene amplification of AR, Aurora kinase A, and N-myc, and correlate with clinical response to therapy.

Aim 3. To evaluate high-risk primary prostate tumors for mutations that may predispose to resistance to AR targeted therapy with comparison to matched metastatic tumors. The working hypothesis of this Aim is that specific genetic alterations occur early and predispose to the development of treatment resistance to AR targeted therapies, and these may be detected at the time of initial diagnosis in high-risk primary prostate tumors.

Aim 1 Progress: I have been systematically evaluating patients at different time points during treatment with potent AR targeted therapy and during progression from a hormone naive prostate adenocarcinoma to an AR-driven castration resistant adenocarcinoma (CRPC-Adeno) and/or AR –independent castration resistant neuroendocrine prostate cancer (CRPC-NE). Metastatic biopsies have not been considered standard of care for patients with advanced disease; therefore this effort has required prospective enrollment of patients on a research protocol with informed consent. I developed an IRB protocol at WCMC to perform metastatic biopsies and whole exome sequencing (WES) and other molecular analyses of tumor and germline DNA from patients with advanced disease and to follow patients prospectively to evaluate for response to subsequent therapies, optional re-biopsy at progression, long term follow up for PFS and OS endpoints, and optional participation in a rapid autopsy program. The design and initial results of this protocol were reported in Beltran et al, *JAMA Oncology* 2015. Somatic and germline results of enrolled CRPC patients pre and post abiraterone or enzalutamide were also included as part of the International SU2C-PCF Prostate Dream Team and recently published in Robinson et al, *Cell* 2015 and Pritchard et al, *NEJM* 2016. In addition, as study chair of a multi-center Phase 2 trial of the aurora kinase A inhibitor MLN8237 for patients with neuroendocrine prostate cancer,
I have obtained 60 pre-treatment metastatic tissue biopsies and blood samples from NEPC patients and reported initial clinical trial results and correlative studies during this grant period as an oral abstract presentation at ESMO Annual Meeting, Copenhagen, 2016 (Beltran at al, ESMO 2016; manuscript is in preparation).

During this year’s grants period, we reported an integrative analysis of 114 metastatic tumor specimens from 81 patients including 51 patients with clinical and histologic features of castration resistant adenocarcinoma (CRPC-Adeno), 30 with castration resistant neuroendocrine prostate cancer (CRPC-NE) as confirmed by pathologic consensus criteria (Epstein et al, AJCP 2014), and 17 patients with multiple tumor biopsies (Beltran et al, Nature Medicine 2016). Biopsies were obtained from a wide range of metastatic sites, with a predominance of bone biopsies in CRPC-Adeno compared to CRPC-NE (Figure 1a). As expected, CRPC-NE demonstrated on average lower protein expression of the AR by immunohistochemistry. We also quantified AR signaling status by mRNA and observed overall lower AR signaling in CRPC-NE compared to CRPC-Adeno (Figure 1b); however, there was significant overlap with a wide range of values observed within each subtype, suggesting that AR signaling alone is insufficient for subtyping metastatic tumors.

The mutational landscape of CRPC-NE was similar to CRPC-Adeno (Figure 1c), but also consistent with published studies of CRPC-NE including enrichment of RB1 loss (deleted in 70% of CRPC-NE and 32% of CRPC-Adeno, p=0.003) and mutation or deletion of TP53 (66.7% CRPC-NE versus 31.4% CRPC-Adeno, p=0.0043). Loss of RB1 is common in primary small cell prostate and lung carcinomas, and promotes small cell carcinoma pathogenesis when concurrent with TP53 mutation; in our series, concurrent RB1 and TP53 loss was present in 53.3% of CRPC-NE vs. 13.7% of CRPC-Adeno (p<0.0004).
In 2016 and in collaboration with Charles Sawyer lab (MSKCC), we have helped further elucidate the role of RB1 and TP53 in patient cohorts and their contribution towards driving AR independent resistance to AR therapies in CRPC (Mu et al, Science, in press).

Another distinguishing feature of CRPC-NE compared to CRPC-Adeno was a paucity of somatic alterations involving the AR gene (p<0.0001). Genomic amplification, activating point mutations, and splice variants involving the AR are commonly observed in CRPC-Adeno and associated with treatment resistance to AR-directed therapies (Robinson et al, Cell 2014). This observation was confirmed in our cohort; 29 cases showed AR focal amplification or point mutation and 21 cases had alterations in known AR co-activators (FOXA1, NCOR1/2, ZBTB16). In contrast, AR point mutations were notably absent in CRPC-NE and gains when present were of low level and explained by tumor polyploidy (Figure 1d). Although potentially affected by differences in prior therapies, we speculate that the absence of AR genomic alterations in CRPC-NE may be due to clonal selection of non-amplified CRPC-Adeno tumor subpopulations through selective pressure (in the context of AR-directed therapies). As a follow-up to this observation, in 2016 I am working on circulating tumor DNA evaluation of this same cohort and extended to more patients (n=100) and in preliminary analysis observed enrichment of AR alterations in CRPC-Adeno vs. CRPC –NE (Aim 2).

While informative, the observed DNA changes did not appear to fully explain the clinical aggressiveness of CRPC-NE. We therefore posited that this phenotype may also be mediated by epigenetic changes. Towards this end, we generated data to evaluate CpG-rich methylation genome wide by single cytosine resolution DNA methylation (eRRBS). In contrast to the largely similar genomic data, the CRPC-NE and CRPC-Adeno subtypes showed strong epigenetic segregation by unsupervised analysis using unselected methylation sites (Figure 2a). This raised the possibility that the transition to, or advent of, the CRPC-NE subtype is associated with epigenetic dysregulation. In fact, the epigenetic signal comprised an even stronger classifier than standard pathologic classification, as evidenced by the fact that it encompassed three cases that were initially binned as adenocarcinoma based on standard pathology. All three of these patients demonstrated radiographic progression in the setting of a stable or low serum level of the androgen-regulated protein prostate specific antigen (PSA). These data suggest that clustering prediction based on DNA methylation may provide additional information associated with AR independence and CRPC-NE that improves on tumor morphology. In 2016, I have been extending upon these observations to assess the functional role of DNA methylation changes in driving AR cistrome changes and downstream CRPC-NE features and evaluating intra-patient tumoral DNA methylation heterogeneity across metastatic sites at time of rapid autopsy (ongoing work).
The DNA methyltransferase EZH2 was significantly overexpressed in CRPC-NE compared to CRPC-Adeno (p<10^-6, Wilcoxon test) (Figure 2d) and verified at the protein level. Furthermore, EZH2 target genes are also downregulated in CRPC-NE. Treatment of cell lines with the EZH2 inhibitor GSK126 resulted in a preferential decrease in cellular viability in NCI-H660 compared to other prostate cancer cell lines with significant down-regulation of CRPC-NE associated genes after treatment including CD56, MYCN, and PEG10.

In 2016, I have since been exploring the role of EZH2 as a potential target for patients with CRPC-NE by using preclinical models in my lab (Puca et al, AACR 2016) and in the clinic as Co-Investigator of the Phase 1 trial of GSK126 for solid tumors (we enrolled 3 CRPC/NEPC patients in 2016) with pre-treatment metastatic biopsies.

Based on the current gap in the clinical and molecular assessment of CRPC-NE, we developed a 70 gene molecular classifier to potentially improve upon the often challenging clinical diagnosis of CRPC-NE that relies on pathologic features. This integrated neuroendocrine prostate cancer (NEPC) classifier was developed by exploiting expression data of genes prioritized by genomic, transcriptomic or epigenomic status and demonstrated both a precision and recall of >0.99 in identifying CRPC-NE in our discovery cohort. Interrogation of transcriptome data of 683 prostate samples using datasets from The Cancer Genome Atlas (TCGA 2015), Grasso et al 2012 (Michigan 2012), Robinson et al 2014 (SU2C/PCF, 2015), and internal
published data (Beltran et al 2011) revealed an elevated CRPC-NE score in up to 8% of metastatic tumors (n=191) and none of treatment naïve prostate adenocarcinoma (n=460) or benign prostate (n=32). Of those with markedly elevated CRPC-NE score, we reviewed the pathology and found over 80% had pathologic features of CRPC-NE. These findings warrant larger prospective clinical evaluation to verify whether this classifier could be useful as a potential prognostic or predictive biomarker (associated with lack of response to AR therapies). Incorporation of different layers helps apply the classifier to different datasets when only parts are available (DNA, RNA, or methylation) and paves the way for future studies that might apply the classifier to other methods (such as circulating tumor DNA, see results of Aim 2). For instance, if CRPC-NE alterations could be detected earlier during CRPC-Adeno disease progression, such individuals could be selected for CRPC-NE-directed rather than AR-targeted systemic therapies or co-targeting therapeutic approaches.

Since reporting these discoveries and our recent publication of this initial work in February 2016 (Beltran et al, Nature Medicine 2016), I have continued to delve deeper into the mechanisms underlying NEPC transdifferentiation and have worked in my laboratory and through collaborative efforts to identify the neuronal transcription factor BRN2 as an important driver (Bishop et al, Cancer Discovery 2016), elucidate the combined role of p53 and Rb1 (Mu et al, Science, in press), and the role of N-myc in promoting NEPC in cooperation with EZH2 (Dardenne, Beltran (co-first author) et al, Cancer Cell, 2016). I have also used metastatic biopsies from patients enrolled as part of this Aim to develop patient derived organoid models of NEPC using protocols we initially developed in collaboration with MSKCC (Gao et al, Cell 2014). These organoids recapitulate the metastatic tumor biopsy genomics (Puca et al, manuscript in preparation) and retain therapeutic drug response as the patients (Beltran et al, ESMO 2016). Overall, this Aim has fueled my lab’s basic and translational research in NEPC and has facilitated a number of academic collaborations and high impact publications in 2016.

**BRN2 in NEPC.** In collaboration with Amina Zoubeidi’s lab at Vancouver Prostate Cancer who developed multiple enzalutamide –resistant preclinical models, one of which was associated with NEPC features including suppressed AR signaling and upregulation of NEPC markers (called 42D), BRN2 was identified as the most highly upregulated genes in 42D (Fig 3). BRN2 is a neuronal transcription factor and master regulator. Through a series of experiments combined with clinical samples BRN2 was identified as a key regulator of NEPC transdifferentiation (Fig 4). This work was recently published (Bishop et al, Cancer Discovery 2016).

**Figure 3: AR non -driven ENZR cells display a NE differentiation signature and increased levels of the neural transcription factor BRN2.** (A) Heat map showing fold increase in reads per million of genes involved in NE differentiation in 42DENZR cells compared to 16DCRPC (=1). (B-C) Relative mRNA expression of (B) NSE, SYP, CGA and (C) NCAM1 in 42DENZR and 42FENZR cells compared to 16DCRPC

---

**A**

<table>
<thead>
<tr>
<th></th>
<th>NCIH660 siBRN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRN2</td>
<td>*****</td>
</tr>
<tr>
<td>NSE</td>
<td>*</td>
</tr>
<tr>
<td>SYP</td>
<td>*</td>
</tr>
<tr>
<td>CGA</td>
<td>*</td>
</tr>
<tr>
<td>NCAM1</td>
<td>**</td>
</tr>
</tbody>
</table>

**B**

<table>
<thead>
<tr>
<th></th>
<th>42FENZR sh-CTR</th>
<th>42FENZR sh-BRN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRN2</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>NSE</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>SYP</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>CGA</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>NCAM1</td>
<td>ND</td>
<td>*****</td>
</tr>
</tbody>
</table>

---

9
Fig 4. Relative mRNA expression of BRN2 and NE markers in (A) NCIH660 cells transfected with BRN2 siRNA (siBRN2) compared to control (siCTR=1) and (B) 42FENZR cells with stable BRN2 knockdown (sh-BRN2) compared to control transfected cells (sh-CTR) (=1). (C) Relative proliferation, 72 hours after seeding in NCIH660 cells transfected with BRN2 siRNA (siBRN2) compared to control (siCTR=1). (D-F) Relative proliferation (D), Relative wound density in one dimensional scratch assay (E) and number of cells migrated through matrigel boyden chamber (F) in 42FENZR cells with stable BRN2 knockdown (sh-BRN2) compared to control transfected cells (sh-CTR) (G) Tumor volume of 42FENZR sh-CTR and 42FENZR sh-BRN2 xenografts grown in vivo (n=10). (H) Relative mRNA expression of BRN2 and NE markers in 42FENZR sh-BRN2 vs. sh-CTR xenografts (=1) harvested at 12 weeks post-inoculation. Graph represents pooled data from 6 sh-BRN2 and 6 sh-CTR tumors.

**N-myc drives NEPC** In collaboration with D Rickman at Weill Cornell, we developed a GEMM model Pb-Cre+/-; Ptenf/f; LSL-MYCN+/- that developed NEPC at 3 months (Figure 5, below). Photomicrograph images of H&E stained or AR IHC prostate tissue below show invasive, AR-positive adenocarcinoma foci and AR-negative NEPC foci. This work was recently published (Dardenne*, Beltran* (co-first author) et al, Cancer Cell 2016).

Using this GEMM model and multiple N-myc models we found that N-Myc interacts with EZH2 to drive transcriptional program (Fig 6)
Fig 6. A. Photomicrographs (40x) of representative mouse prostates from indicated genotype following H/E staining, EZH2, and H3K27 tri-methylation (H3K27me3) IHC staining. B. Co-immunoprecipitation of N-Myc, EZH2, SUZ12 and AR upon EZH2 or N-Myc pull down in LNCaP-N-Myc cells and in LNCaP-N-Myc cells following knock-down of EZH2 with siRNA targeting EZH2 mRNA (top center), transfection of the Myc-tagged SET domain-deletion EZH2 mutant (top right) or 6-day treatment of either the EZH2 inhibitors GSK126 or GSK343 (bottom). Values below indicate the percent of interaction compared to vehicle if below 70% C. Top: GSEA enrichment plot of the N-Myc down-regulated geneset in genes ranked in terms of comparison of LNCaP-N-Myc cells treated with siRNA targeting EZH2 versus control siRNA or GSK343 versus vehicle treatment; Bottom: heatmap of GSEA FDR q-values as shown in (Fig. 3) of AR induced genes and multiple PRC2 target gene sets that are significantly enriched in the N-Myc down-regulated genes that were significantly up-regulated after either siRNA-mediated EZH2 knock-down (48h) or treatment with GSK343 (7days, 5µM) in replicate. D. Top left: Venn diagram showing the overlap between H3K27me3 ChIP-seq reads enriched at promoters either in LNCaP-N-Myc or control (Cntl) cells; top right: H3K27me3 ChIP-seq reads in the indicated cells that were...
localized at the chromosome loci housing the AR-regulated gene *PMEPA1*; bottom: EZH2 ChIP-PCR at known EZH2 binding sites for the indicated EZH2 target gene or negative control gene (*KIA0066*). E. Left: Percent cell viability of either LNCaP control (Cntl) or LNCaP-N-Myc (N-Myc) cells following 6 days incubation of the indicated dose of the EZH2 inhibitor GSK126. F. The fold change in growth rate of individual 22Rv1 control (Cntl, left) or N-Myc (right) xenografts before, during (orange bar below) and after 31 or 35 days (respectively) treatment with 150 mg/kg of the EZH2 inhibitor GSK503 (dashed lines) or vehicle (solid lines). Each tumor size at each time point was normalized to values obtained at day 1 of treatment.

Aim 2 Progress: The diagnosis of NEPC remains challenging and currently relies on a combination of pathologic and clinical features suggestive of AR signaling independence. There are no reliable blood biomarkers to consistently diagnose patients transforming to the NEPC phenotype. Detection of NEPC has clinical implications, as NEPC patients would not be expected to respond well to currently approved AR-targeted therapies for CRPC and may be better served by therapies specifically directed to NEPC. As part of this Aim, I have been using liquid biopsies to identify NEPC patients. I published initial work using circulating tumor cells (CTCs) during this grant period (Beltran et al, *Clinical Cancer Research* 2016). I am currently investigating ctDNA approaches as well using the molecular classifier developed in Aim 1 (in progress).

CTCs in NEPC: I recently characterized CTCs from patients with CRPC and NEPC utilizing the Epic Sciences platform (Epic Sciences, Inc, La Jolla, CA) and correlated results with patient-matched tumor biopsies and clinical features. Under an IRB approved protocol, patients with metastatic CRPC including those with pure or mixed NEPC were prospectively enrolled. NEPC was defined by the presence of either a pure or mixed small cell high-grade neuroendocrine carcinoma histology in a metastatic tumor biopsy and confirmed by at least 20% positive immunohistochemical staining for a neuroendocrine marker (synaptophysin, chromogranin). CRPC was defined clinically, with or without a metastatic biopsy confirming prostate adenocarcinoma. CRPC patients were sub-classified as atypical CRPC if the biopsy showed adenocarcinoma and the patient had clinical features suggestive of an AR independent transition which included radiographic progression in the setting of a low PSA <1 ng/ml, visceral progression in the absence of PSA progression (defined by Prostate Cancer Working Group 2 criteria and/or elevated serum chromogranin A >3X upper limit of normal.

CTCs from 27 patients with metastatic prostate cancer were evaluated. Overall, bone metastases were present in 24/27 (88.9%) of patients, and liver metastases were present in 8/12 (66.7%) of NEPC and 5/15 (33.3%) of CRPC of whom 4 had atypical clinical features. Median serum PSA level was 1.9 ng/ml in NEPC, 2.8 ng/ml in atypical CRPC, and 53.4 ng/ml in other CRPC patients. Serum neuroendocrine marker levels varied considerably within the NEPC subgroup and were also elevated in cases of CRPC. Two slides from each patient were evaluated by immunofluorescence (IF) using antibodies targeting cytokeratins (CK), CD45, AR, and 4',6-diamidino-2-phenylindole (DAPI) counterstain. Slides were imaged using a platform that captures all 3 million cells per slide in less than 15 minutes, and analyzed by a proprietary software that characterizes each cell by parameters including cell size, shape, nuclear area, presence of macronucleoli, CK and AR expression, uniformity and cellular localization. CK+/CD45- cells with intact, DAPI+ nuclei exhibiting tumor-associated morphologies were classified as traditional CTCs. CTCs with non-traditional characteristics were recorded, such as CK- /CD45- cells with morphological distinction and/or AR positivity, CK+/CD45- small cells, CTC clusters, CTCs with multiple macronucleoli and apoptotic CTCs (with nuclear or cytoplasmic fragmentation).

Enumeration of CTCs using both the CellSearch and Epic platforms was performed. Of note, 6/13 evaluated NEPC and atypical CRPC patients had CellSearch® CTC count of <5 CTC/7.5 mL (range 0-384, with 5 of these 13 patients having a CellSearch® CTC count of 0). In contrast, all 17 NEPC and atypical CRPC patients had CTCs ≥5 CTC/7.5mL using the Epic platform. Further characterization of the detected CTCs revealed heterogeneity of cytokeratin (CK) and AR expression in both NEPC and CRPC, with a significantly greater proportion of CK-negative and AR-negative CTCs in NEPC compared to CRPC. CTCs in NEPC patients overall had lower AR expression, higher cytoplasmic circularity, and higher nuclear to cytoplasmic ratio. The prevalence of CK-negative CTC subpopulations in NEPC patients is potentially consistent with a proposed epithelial-mesenchymal-transition (EMT). Based on the observed differences in CTCs between groups, we sought to identify CTC characteristics specific to NEPC. KDE analysis of the patient groups’ CTCs in aggregate revealed significant differences in CK, AR and morphological characteristics when compared to CRPC. As a validation cohort, we evaluated baseline CTCs from 159 CRPC patients prospectively enrolled in an independent patient cohort at MSKCC for the presence of NEPC+ CTCs. NEPC+ CTC subpopulations
were identified in 17 of 159 (10.7%) cases. A significantly higher proportion of CRPC patients with visceral metastases harbored NEPC+ CTCs compared to those that were NEPC- (35% versus 15%, respectively; p=0.04). Patients with NEPC+ CTCs also had an overall higher CTC burden (median CTC count 64.6 versus 4.2; p<0.01). In this proof of principle CTC Aim, I demonstrated that CTCs from patients with NEPC have distinct characteristics and thus their detection may potentially help identify patients that are developing NEPC-associated resistance. The results presented here indicate the feasibility of analyzing CTCs using the Epic platform and support the development of further studies to validate the clinical utility of CTCs for the early detection of patients transforming towards NEPC and the prognostic and potential predictive impact of CTC characteristics in predicting response to AR-directed therapies in CRPC.

Circulating tumor DNA (ctDNA) analysis in NEPC. In the first years of this Award, I have focused on specimen acquisition, protocol development, feasibility and reproducibility studies using ctDNA for CRPC and NEPC. This work has been in collaboration with F Demichelis, PhD (University of Trento), a computational biologist with expertise in prostate cancer genomics. During this grant year (2016), we completed whole exome sequencing (WES) of matched tumor biopsies, germline DNA, and ctDNA for 64 patients with metastatic CRPC/NEPC. After applying the partial duplication filtering method, we performed analysis for somatic copy number alterations (SCNA) and SNVs across the cohort. SCNA analysis was performed at different duplication levels. We used FACETS, a segmentation tool to that combines read count with informative SNP information (Shen et al, NAR 2016) and CLONET on all samples (plasma and tissues). SNV analysis was performed using MuTECT and ASE on deduplicated samples. Overall the spectrum of genomic alterations captured in WES of ctDNA at <50 ng input DNA was consistent with those commonly observed in CRPC (Figure 7), validating the feasibility of this approach to detect genome wide lesions non-invasively in patients using ctDNA.

![Figure 7](image-url): Overview of copy number state of selected genes across study samples divided by levels of plasma tumor fraction.

Overall the genomic similarity of WES between matched ctDNA and NEPC tumor biopsies was higher than between ctDNA and CRPC –Adeno (Fig 8), suggesting potentially less heterogeneity in the late stage NEPC phenotyp. The relative contribution of ctDNA based on size and site of metastases (liver vs. bone, for instance) is currently being explored.
We evaluated serial tumor biopsies from an individual patient (PM161), a patient who developed progression of disease after multiple lines of therapy for CRPC—including the development of new visceral metastases at the time of progression on abiraterone with a liver biopsy at progression showing small-cell carcinoma (Figure 12). We compared three different time points—CRPC-Adeno (adenocarcinoma, lymph node metastasis), CRPC-Adeno (adenocarcinoma, bone metastasis) and NEPC (small-cell carcinoma, liver metastasis at progression on abiraterone therapy). Whole exome sequencing analysis of the tumors suggested divergent clonal evolution (Beltran et al, Nat Med 2016). In other words, NEPC appeared clonal in origin with a clonal ancestry traceable back to a CRPC-Adeno precursor.

To extend upon these findings, we evaluated patient PM161’s ctDNA by WES at baseline and compared the data to all three tissue time-points (Figure 10). Unexpectedly the baseline ctDNA profile (at time of CRPC-Adenocarcinoma diagnosis) displayed genomic features most similar to the NEPC tissue sample (last time-point, liver biopsy). These data suggest that NEPC alterations are detectable and the circulation and they may potentially be detected prior to the clinical development of NEPC clinical and histologic features. These results have important potential clinical implications for early detection. We are currently extending ctDNA to a larger number of patients.
Aim 3 Progress: I have been systematically evaluating high-risk primary prostate tumors for mutations that may predispose to resistance to AR targeted therapy including the development of NEPC (ongoing work). For instance, we compared multiple primaries (high grade adenocarcinoma) and multiple metastases in an individual patient who died from NEPC and had a rapid autopsy case. We reconstructed a phylogenetic tree of all samples, shown in Figure 11 and elucidated the clonal evolution. Further, we also evaluated ctDNA from plasma sample obtained before death and performed WES and compared to each metastatic site. On average approximately 50% of mutations found in tumor tissue was present and detectable in ctDNA and higher for liver vs. lymph node. This was performed in order to gain insights into the contribution of each site in the circulation.

Figure 11: Left: phylogenetic tree depicting SCNA and tumor evolution in PM0 with comparison of primary tumor (n=3) and multiple metastases at time of rapid autopsy (n=7). Right= Degrees of similarity of WES SCNA data between multiple metastatic tissue samples at autopsy compared with plasma SCNA profile.

Also as part of this Aim and in collaboration with Dr. Gleave (Vancouver), Dr. Wyatt (Vancouver), and Dr. Halabi (Duke), I have been evaluating localized prostate cancer samples collected through the Phase 3 CALGB
90203 Trial, “Immediate prostatectomy vs. neoadjuvant docetaxel and androgen deprivation therapy for men with high risk, localized prostate cancer” to assess the impact of therapy on modulation of gene expression of a panel of neuroendocrine prostate cancer (NEPC) pathway signature genes. This includes a 169 gene panel developed and validated by my lab, including AR regulated genes, neural and neuroendocrine marker genes, epithelial mesenchymal genes, cell cycle genes, and others credentialed to distinguish NEPC from prostate adenocarcinoma. This data will be correlated with clinical and pathologic characteristics including AR and neuroendocrine marker immunohistochemistry (IHC), other correlative studies as part of this trial (including ETS fusions status and genomic mutation and copy number profiles), and clinical outcomes (data expected to read out late 2017). Strengths of this project include utilization of a novel NEPC signature Nanostring assay that can be performed using limited material from formalin fixed paraffin embedded (FFPE) tissues. RNA expression analyses of neoadjuvant-treated prostatectomy specimens have been challenged in the past due to microscopic residual foci and the necessity for fresh/frozen material. Our NEPC signature Nanostring assay demonstrates significant discrimination between NEPC and adenocarcinoma and has shown high correlation with RNA-seq data (Spearman coefficient 0.9), and therefore represents a significant strength to this study.

During this grant period in 2016, we evaluated 45 untreated and post-treatment FFPE specimens as well as patient-matched pre-treated needle biopsies and baseline clinical data and these initial results were presented at GU ASCO this year (Beltran et al, GU ASCO 2016, manuscript in preparation). Molecular subsets emerged on unsupervised analysis (Fig 12). There was significant upregulation of AR and the ARv7 expression following treatment, as well as a subset of NEPC and EMT genes; three high chromogranin A outlier cases were identified in the treatment arm. There was an overall higher AR score in treated cases (based on expression of 30 AR signaling genes) compared to untreated, along the spectrum of CRPC. These data support the feasibility of quantifying gene expression in neoadjuvant-treated high risk localized PCA cases with limited FFPE tissue requirement. Extensive characterization of AR status and NE/EMT genes identifies molecular outliers that can arise post-treatment and provides new insight into the heterogeneity of treatment response and potential early markers of resistance. We have extended this analysis to 200 samples, integrated RNA data with DNA, and expect to report these results in 2017. The detection and determination of frequency of early NEPC-associated alterations may have significant prognostic and treatment implications in helping identify high-risk, clinically localized prostate cancers as harbingers of resistant disease.
Fig 12: Unsupervised analysis of differentially expressed genes in prostatectomy specimens from treated and untreated groups in the Phase 3 CALGB 90203 Trial including AR signalling and NEPC genes. Red= high expression, Blue= low expression.

KEY ACCOMPLISHMENTS:

- Extensive molecular analysis including whole exome, methylome, and transcriptome sequencing of CRPC-Adeno and CRPC-NE metastatic tumors (and matched primaries) with clinical correlation (Beltran et al, *Nature Medicine*, 2016)
- Collection and molecular characterization of CTCs from CRPC-Adeno and CRPC-NE patients (Beltran et al, *CCR*, 2016)
- Establishment the largest tissue Biorepository of neuroendocrine prostate cancer
- First in field circulating tumor DNA analysis for NEPC including whole exome sequencing ctDNA
- Establishment of a Precision Medicine Clinic and Rapid Autopsy program at Weill-Cornell-NYP for enrolling advanced cancer patients under an IRB approved protocol to understand mechanism of resistance during disease progression and at the time of death (five prostate cancer rapid autopsies performed to date).
- Correlative analysis of neoadjuvant treated specimens in the Phase 3 trial CALGB90203 (Beltran et al, GU ASCO 2016) and metastatic samples from the Phase 2 alisertib trial for NEPC (Beltran et al ESMO 2016).

5. CONCLUSION: This Award has allowed me to evaluate mechanisms of prostate cancer resistance to AR targeted therapies by performing integrative genomic and epigenomic analyses of metastatic tumors from patients with castration resistant prostate cancer. I have focused on the development of an AR indifferent neuroendocrine phenotype, as this has recently emerged as an aggressive phenotype that is challenging to diagnose and treat. I am using this knowledge to develop biomarkers to improve diagnosis and early detection
of patients developing NEPC. I have evaluated CTCs and more recently cell-free DNA in plasma of treated patients at different time points for the emergence of subsets of cells with resistance-associated alterations, as this may serve as a noninvasive method to detect altered genes in an individual patient. I am also looking at high risk localized prostate tumors with and without neoadjuvant therapy for the presence or emergence of NEPC features. With continued work, this project has high potential for further validation and clinical development of biomarkers and could directly influence patient care by identifying patients less likely to respond to subsequent AR-directed therapy and who could be selected for alternative NEPC directed therapeutic approaches. This data has also identified novel drivers of treatment resistance and has nominated therapeutic targets for further preclinical development. This Physician Training Award has greatly facilitated my career development, directly resulting in several academic collaborations, grants, and manuscripts.

6. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS:

(1) Lay Press:

Himisha Beltran, Synthetic Lethality and Beyond, Science Translational Medicine, 16 Nov 2016: Vol. 8, Issue 365, pp. 365ec182 DOI: 10.1126/scitranslmed.aal0070

Himisha Beltran, How to Make a Cocktail, Science Translational Medicine, 05 Oct 2016: Vol. 8, Issue 359, pp. 359ec158 DOI: 10.1126/scitranslmed.aai8745.


Himisha Beltran. Confronting the Challenges of Precision Oncology, Science Translational Medicine, 11 June 2016: Vol. 8, Issue 341, pp. 341ec86.

Himisha Beltran. Cancer Metastases: Are one and all the same? Science Translational Medicine, 06 April 2016: Vol. 8, Issue 333, pp. 333ec57

(2) Peer-Reviewed Scientific Journals during Year 3:

1. Panagiotis Vlachostergios, Loredana Puca, Himisha Beltran*, Emerging Variants of Castration-resistant Prostate Cancer, Current Oncology Reports, in press. *Corresponding author


5. Bishoy Faltas, Davide Prandi, Scott T. Tagawa, Ana Molina, David M.Nanus, Cora Sternberg, Jonathan
Rosenberg, Juan Miguel Mosquera, Brian Robinson, Olivier Elemento, Andrea Sboner, Himisha Beltran* (co-senior author), Francesca Demichelis*, Mark A. Rubin*, Clonal Evolution of Chemotherapy-Resistant Urothelial Carcinoma, Nature Genetics, in press. Published online ahead of print 17 October 2016.


(3) Invited Articles:


(4) Abstracts: List presentations made during the last year (international, national, local societies, military meetings, etc.). Use an asterisk (*) if presentation produced a manuscript.


7. INVENTIONS, PATENTS AND LICENSES: Nothing to report

8. REPORTABLE OUTCOMES: Nothing to report

9. OTHER ACHIEVEMENTS in YEAR 3:
   • Prostate Cancer Foundation Challenge Award

10. REFERENCES:


Etienne Dardenne#, **Himisha Beltran**# (co-first author), Matteo Benelli, Kaitlyn Gayvert, Adeline Berger, Loredana Puca, Joanna Cyrt, Andrea Sboner, Zohal Noorzad, Theresa MacDonald, Cynthia Cheung, Dong Gao, Yu Chen, Martin Eilers, Juan-Miguel Mosquera, Brian D. Robinson, Olivier Elemento, Mark A. Rubin, Francesca Demichelis, David S. Rickman, N-Myc drives Aggressive Prostate Cancer and the Neuroendocrine Phenotype.
Phenotype, Cancer Cell, in press. Published online ahead of print 10 October 2016.


11. APPENDICES: N/A