IMPACT OF REDUCED GRAPHENE OXIDE ON MoS2 GROWN BY SULFURIZATION OF SPUTTERED MoO3 AND Mo PRECURSOR FILMS (POSTPRINT)

Jianjun Hu and Michael Jespersen
University of Dayton Research Institute

Shanee Pacley, Jacob Brausch and Emory Beck-Millerton
AFRL/RX

Al Hilton
Wyle Laboratories

Adam Waite
United Technology Corporation

Andrey A. Voevodin
University of North Texas

6 April 2016
Interim Report

Distribution Statement A.
Approved for public release: distribution unlimited.

© 2016 AMERICAN VACUUM SOCIETY

(STINFO COPY)
AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
1. **REPORT DATE (DD-MM-YY)**
 6 April 2016

2. **REPORT TYPE**
 Interim

3. **DATES COVERED (From - To)**
 4 January 2012 – 10 December 2015

4. **TITLE AND SUBTITLE**
 IMPACT OF REDUCED GRAPHENE OXIDE ON MoS2 GROWN BY SULFURIZATION OF SPUTTERED MoO3 AND Mo PRECURSOR FILMS (POSTPRINT)

5a. **CONTRACT NUMBER**
 FA8650-11-D-5401-0008

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**
 61102F

5d. **PROJECT NUMBER**
 3001

5e. **TASK NUMBER**
 0008

5f. **WORK UNIT NUMBER**
 X0DV

6. **AUTHOR(S) (continued on page 2)**
 1) Jianjun Hu and Michael Jespersen – UDRI
 2) Shanee Pacley, Jacob Brausch and Emory Beck-Millerton

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 1) University of Dayton Research Institute, 300 College Park Ave
 Dayton OH 45469
 2) AFRL/RX
 Institute, 300 Park Ave
 Wright-Patterson AFB, OH 45433

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Air Force Research Laboratory
 Materials and Manufacturing Directorate
 Wright-Patterson Air Force Base, OH 45433-7750
 Air Force Materiel Command
 United States Air Force

10. **SPONSORING/MONITORING AGENCY ACRONYM(S)**
 AFRL/RXAN

11. **SPONSORING/MONITORING AGENCY REPORT NUMBER(S)**
 AFRL-RX-WP-JA-2017-0137

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Distribution Statement A. Approved for public release: distribution unlimited.

13. **SUPPLEMENTARY NOTES**
 PA Case Number: 88ABW-2016-1781; Clearance Date: 6 Apr 2016. This document contains color. Journal article published in Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 34, No. 4, 26 May 2016. © 2016 American Vacuum Society. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. The final publication is available at https://www.cambridge.org/core/terms. http://dx.doi.org/10.1116/1.4952399

14. **ABSTRACT (Maximum 200 words)**
 Monolayer molybdenum disulfide (MoS2), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS2 processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO3, and MoCl5 have been used to form a vapor reaction with sulfur, resulting in thin films of MoS2. Currently, MoO3 ribbons and powder, and MoCl5 powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS2 film growth. In this paper, the authors compare the structural properties of MoS2 grown by sulfurization of pulse vapor deposited MoO3 and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS2 structure. Reports show that rGO increases MoS2 grain growth during powder vaporization.

15. **SUBJECT TERMS**
 ultra-thin transition metal dichalcogenides (TMD) films; stretchable polymeric materials; polydimethylsiloxane; nanoelectronic

16. **SECURITY CLASSIFICATION OF:**
 a. **REPORT** Unclassified
 b. **ABSTRACT** Unclassified
 c. **THIS PAGE** Unclassified

17. **LIMITATION OF ABSTRACT:** SAR

18. **NUMBER OF PAGES** 10

19a. **NAME OF RESPONSIBLE PERSON (Monitor)**
 Charles Stutz

19b. **TELEPHONE NUMBER (Include Area Code)**
 (937) 255-9907
6. AUTHOR(S)
 3 Al Hilton - Wyle Labs
 4) Adam Waite - UTC
 5) Andrey A. Voevodin - University of North Texas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 3) Wyle Laboratories, 4200 Colonel Glenn Hwy,
 Beavercreek, OH 45431
 4) United Technology Corporation, 1270 N Fairfield Rd.,
 Beavercreek, OH 45432
 5) University of North Texas, 1155 Union Circle,
 Denton, TX 76203
Impact of reduced graphene oxide on MoS$_2$ grown by sulfurization of sputtered MoO$_3$ and Mo precursor films

Shanee Pacley$^{(a)}$
U.S. Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base, Wright Patterson, Ohio 45433-7707

Jianjun Hu and Michael Jespersen
University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469

Al Hilton
Wyle Laboratories, 4200 Colonel Glenn Hwy, Beavercreek, Ohio 45431

Adam Waite
University Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432

Jacob Brausch and Emory Beck-Millerton
U.S. Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base, Wright Patterson, Ohio 45433-7707

Andrey A. Voevodin
Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203

(Received 4 March 2016; accepted 9 May 2016; published 26 May 2016)

Monolayer molybdenum disulfide (MoS$_2$), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS$_2$ processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO$_3$, and MoCl$_5$ have been used to form a vapor reaction with sulfur, resulting in thin films of MoS$_2$. Currently, MoO$_3$ ribbons and powder, and MoCl$_5$ powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS$_2$ film growth. In this paper, the authors compare the structural properties of MoS$_2$ grown by sulfurization of pulse vapor deposited MoO$_3$ and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS$_2$ structure. Reports show that rGO increases MoS$_2$ grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS$_2$ when rGO was used during sulfurization of both sputtered Mo and MoO$_3$ precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS$_2$ films produced from Mo when compared to the films produced from MoO$_3$. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS$_2$ films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used. © 2016 American Vacuum Society.

I. INTRODUCTION

Molybdenum disulfide (MoS$_2$) has attracted much attention due to its direct bandgap of 1.8–1.9 eV observed in monolayer thick MoS$_2$ films, making MoS$_2$ an attractive two dimensional (2D) semiconducting material for low power electronic and optoelectronic devices. Growth processes of 2D MoS$_2$ include mechanical exfoliation, chemical vapor deposition (CVD), intercalation assisted exfoliation, physical vapor deposition (PVD), and a wet chemistry approach involving thermal decomposition of a precursor containing Mo and S. Among these, mechanical exfoliation and CVD are the most common procedures currently used to produce mono- to few layers of MoS$_2$. In contrast to mechanical exfoliation, the growth of MoS$_2$ by CVD can enable large area films for device fabrication. Molybdenum disulphide films grown using CVD has demonstrated promising results for semiconductor grade material properties, with observed FET mobilities around 500 cm2/Vs. During CVD growth, sulfurization of molybdenum containing precursors such as Mo, MoO$_3$, and MoCl$_5$ is usually performed. In the case of MoO$_3$ (Ref. 2) and MoCl$_5$, powders or ribbons are the precursors, whereas Mo has been prepared by e-beam evaporation or sputtering. While the use of these powder and ribbon precursors have demonstrated large crystal growth, it is difficult to continuously grow these large domains over an entire wafer. In addition, the presence of grain boundaries prevents optimum device...
performance. Lee et al.18 reported that seed promoters such as reduced graphene oxide (rGO), perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS), and 3,4,9,10-perylene-tetracarboxylicacid-dianhydride improved layer growth of CVD grown MoS\textsubscript{2}.1 Ling \textit{et al.}19 furthers the investigation and demonstrates an increase in domain size when seed promoters are used during MoS\textsubscript{2} synthesis. In this work, we investigate the impact of rGO on MoS\textsubscript{2} grown by sulfurization of MoO\textsubscript{3} and Mo precursor films at room temperature. While CVD growth of MoS\textsubscript{2} films using RF sputtered MoO\textsubscript{3} precursors has been reported,20 our work consists of using DC magnetron sputtered Mo and MoO\textsubscript{3} films. Sputtering of precursor films, followed by sulfurizing, has demonstrated continuous film growth of MoS\textsubscript{2}.17 Sputtering and other PVD approaches for precursor film preparations have advantages in uniformly covering large substrate areas, which can lead to large area 2D film synthesis, an advantage over using powder and ribbon precursors. X-ray photoelectron spectroscopy (XPS) was performed to confirm the chemical composition, and transmission electron microscopy (TEM) was used to examine the MoS\textsubscript{2} structure. Finally, surface morphology of the MoS\textsubscript{2} film was investigated with atomic force microscopy (AFM).

II. EXPERIMENT

Thin films of metallic Mo and MoO\textsubscript{3} were sputtered on c-face sapphire substrates (diameter of 25.4 mm) using a DC magnetron sputtering system (500 V at 100 mA) at room temperature, with an argon pressure of 0.92 Pa. The thickness of the precursor (3 nm for both Mo and MoO\textsubscript{3}) was controlled by manipulating the sputtering so that there were equal amounts of Mo sputtered in the MoO\textsubscript{3} and Mo films. Table I lists the precursors and names of the sample. The substrates were ultrasonically cleaned in acetone for 5 min prior to deposition of Mo and MoO\textsubscript{3}. Following sputtering of Mo and MoO\textsubscript{3} onto the substrates, the precursors were separately placed at the center of the quartz tube (Fig. 1). Sulfur powder (2 g) was placed in a ceramic boat, upstream from the Mo and MoO\textsubscript{3} films. Reduced graphene oxide (Sigma Aldrich) was dispersed in isopropyl alcohol and drop cast on separate sapphire substrates. The rGO samples were air dried before they were placed in the furnace next to the sputtered precursor films of Mo and MoO\textsubscript{3} (a distance of 5 mm between the precursor and rGO samples). After pumping the furnace down to a vacuum pressure of 667 Pa, the samples were heated to 300°C at 20°C/min and held there for 15 min. This enabled the removal of any residual water molecules. Next, the furnace was heated to 850°C at a rate of 20°C/min. As the temperature of the furnace approached 850°C (around 830°C), the boat with sulfur was heated to 125°C using a heating tape. The samples and the sulfur were held at their temperatures for 1 h, followed by cooling to room temperature. All experiments were performed in an Ar/H\textsubscript{2} environment, with a flow rate of 75 sccm.

![Diagram of experimental setup](image-url)
Fig. 2. TEM image of (a) MoO$_3$ precursor film used for MoS$_2$ growth, (b) Mo precursor film for MoS$_2$ growth, (c) sample S1 (MoS$_2$ on sapphire using Mo precursor) showing a layer thickness of 7 nm, (d) sample S2 (MoS$_2$ on sapphire using a MoO$_3$ precursor) showing an outward growth of MoS$_2$, with a thickness of 15 nm, (e) sample S1r (Mo precursor) using rGO with a measured thickness of 7–8 nm, and (f) sample S2r (MoO$_3$) using rGO with a thickness of 7 nm.
A. Characterization

AFM images were taken in an Asylum MFP-3D system in the tapping mode. Images were 512 x 512 pixels, and the scan speed was 1 Hz (1 line per second). The nominal radius of curvature for the probe tips was 9 nm. The structure of the MoS$_2$ film was observed in a high-resolution TEM. Images were taken using a FEI Titan 80-300 S/TEM, which was operated at 300 kV. A FEI Nova focused ion beam (FIB) microscope equipped with

FIG. 3. AFM surface topography (1 x 1 μm) for (a) MoO$_3$ precursor that was heated to 850 $^\circ$C forming MoO$_2$ islands, (b) sample S1 (Mo precursor) showing a dense film of MoS$_2$ with a grain size of 4.4 nm, (c) MoS$_2$ sample S2 (MoO$_3$ precursor) with a grain size of 7.9 nm, (d) MoS$_2$ sample S1r (Mo precursor with rGO) with a grain size of 17.7 nm, and (e) MoS$_2$ sample S2r (MoO$_3$ precursor with rGO) with grain size of 12.2 nm.
an Omniprobe manipulator was employed to prepare the cross-sectional specimens. X-ray photoelectron spectroscopic analysis was carried out using a Phi Model 5700 spectrometer with a monochromatic Al Kα x-ray source (1486.6 eV) operated at 75 W (15 kV, 5 mA) and at approximately 1.5 \times 10^{-12}\text{Torr}.

III. RESULTS AND DISCUSSION
A. MoS$_2$ film structure and grain size

TEM imaging of the MoS$_2$ film cross-sections for samples S1 (MoS$_2$ grown from Mo precursor) and S1$_r$ (MoS$_2$ film grown using Mo precursor with rGO seed) is shown in Fig. 2. The precursor films, MoO$_3$ and Mo, are both shown in Figs. 2(a) and 2(b). Samples S1 and S1$_r$ [Figs. 2(c) and 2(e)] show uniform and continuous layer growth of MoS$_2$. Both samples have a thickness of 7–8 nm, indicating that rGO used during the CVD growth of sample S1$_r$ had no effect on the film thickness. AFM showed samples S1 and S1$_r$ had an RMS of 3.60 and 2.43 nm (respectively), and the grain size increased from 4.5 to 17.7 nm, respectively [see Figs. 3(a) and 3(b)]. This increase in the grain size indicated that the

FIG. 4. (Color online) XPS spectra of annealed MoO$_3$, MoS$_2$ films S1 (MoS$_2$ using Mo precursor), S2 (MoS$_2$ using MoO$_3$ precursor), S1$_r$ (MoS$_2$ using Mo precursor and rGO), and S2$_r$ (MoS$_2$ using MoO$_3$ precursor and rGO). The annealed MoO$_3$ (a) shows Mo(IV) peaks which are indicative of MoO$_2$, and Mo(VI) peaks that occur when MoO$_3$ is present. Both (b) and (c) shows spectra for samples S1 and S2 (respectively) having a stoichiometric structure. In (d) and (e), the stoichiometry has been increased for samples S1$_r$ and S2$_r$ (respectively).
rGO played a role in grain growth of the MoS$_2$. In contrast to the uniform and continuous film growth of samples S1 and S1r, samples S2 (MoO$_3$ precursor) and S2r (MoO$_3$ precursor with rGO seed) demonstrated a nonuniform, outward growth of MoS$_2$ [Figs. 2(d) and 2(f)]. It is reported that at 600$^\circ$C, MoO$_3$ reduces to MoO$_2$ under an H$_2$ environment.\footnote{Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).}

In this research, it was indicated that MoO$_2$ had formed after annealing MoO$_3$ at 850$^\circ$C. X-ray photoelectron spectra [Fig. 4(a)] showed peaks at 229.57 and 232.7 eV for Mo(IV) (typical of MoS$_2$ and MoO$_2$) and 232.19 and 235.32 for Mo(VI) (typical of MoO$_3$). AFM was performed on the same annealed sample [Fig. 3(c)], and we noticed small islands across the substrate. We believe that these islands were formed when the sputtered MoO$_3$ film reduced to MoO$_2$ during annealing at 850$^\circ$C. Consequently, sulfurization of MoO$_2$ islands causes MoS$_2$ growth in a Volmer–Weber growth mechanism, which is a result of the film not wetting the substrate.\footnote{Z. Yin et al., ACS Nano 6, 74 (2012).}

Moser and Levy reported similar growth patterns using sputtering technique to deposit thick MoS$_2$ films.\footnote{B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).}

Figures 3(d) and 3(e) show the grain structures of MoS$_2$ grown using the sputtered MoO$_3$ films (S2 and S2r). The RMS values for these samples were 2.00 nm (S2) and 3.66 nm (S2r), and the grain size increased from 7.9 nm (S2) to 12.2 nm (S2r) when rGO was used during the growth. This correlates well with the data from samples S1 and S1r that suggest that rGO promotes grain growth when using sputtered precursor films. There was also a decrease in the film thickness from 15 nm (S2) to 7 nm (S2r) when rGO was used during the sulfurization process [Figs. 2(d) and 2(f)]. Ling et al.\footnote{Z. Yin et al., ACS Nano 6, 74 (2012).} reported that organic seed promoters (such as PTAS) enable heterogeneous nucleation sites and that the size of the MoS$_2$ domains is dependent upon the distance of the seed promoter from the precursor. We believe this is what occurred when rGO was used in our experiments involving sputtered Mo and MoO$_3$ films. However, further investigation needs to be conducted to better understand the kinetics, and mechanism of increasing grain size, when using rGO during the sulfurization sputtered films.

B. MoS$_2$ chemical composition

XPS analysis was performed in order to assess the composition and chemistry of the films. The survey spectra (not shown) from sulfurized thin films of samples S1/S1r and S2/ S2r showed peaks from Mo and S, as expected. As mentioned previously, Fig. 4(a) shows the spectra for annealed MoO$_3$, which was discussed in Sec. III A. The influence of the rGO on MoS$_2$ stoichiometry was analyzed by comparing the S:Mo ratios obtained from the XPS spectra. The MoS$_2$ films grown from samples S1 and S1r had S:Mo ratios of 1.9 and 2.1, respectively [see Figs. 4(b) and 4(d)]. Samples S2 and S2r demonstrated the same respective S:Mo ratios of 1.9 and 2.1 [see Figs. 4(c) and 4(e)]. The apparent improvement in the film stoichiometry is most likely a result of the Mo:S averaging over large spot size analysis area in XPS, which is orders of magnitude larger when compared to the average grain sizes of synthesized MoS$_2$ films. The presence of the rGO helped to increase the MoS$_2$ grain size areas and correspondingly decrease contributions of photoluminescence escaped from the grain boundary areas.

Curve fits to the Mo 3d doublets for all of the samples revealed two populations of Mo atoms. The Mo 3d$_{5/2}$ peak at 229.8 eV and Mo 3d$_{3/2}$ peak at 232.9 eV reveal the presence of Mo(IV), with a binding energy typical of MoS$_2$ or MoO$_2$.\footnote{C. Muratore and A. A. Voevodin, Thin Solid Films 517, 5605 (2009).} The Mo 3d$_{5/2}$ peak at 232.7 eV and Mo 3d$_{3/2}$ peak at 235.8 eV indicates the presence of Mo(VI), with a binding energy typical of MoO$_3$.\footnote{H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010).} This suggests that while nearly all of the Mo(IV) is present in the form of MoS$_2$, there is likely some MoO$_2$ present at the surface or at grain boundaries within the films. However, the intensity of both the Mo(IV) and Mo(VI) peaks are very low that the presence of MoO$_2$ and MoO$_3$ is negligible.

IV. SUMMARY AND CONCLUSIONS

The influence of rGO on the sulfurization of metallic Mo and MoO$_3$ thin film precursors for MoS$_2$ growth has been investigated. TEM established that rGO did not have an impact on the MoS$_2$ films thickness for sputtered Mo, but that it was responsible for the increase in the grain size. We also observed an increase in the grain size when rGO was used during sulfurization of sputtered MoO$_3$. Reports demonstrate that seed promoters diffuse onto the growth substrates, acting as nucleation sites for MoS$_2$ growth.\footnote{Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 11093 (2011).} In addition, the size of the MoS$_2$ domains are dependent upon the distance between the seed promoter and the growth substrate. Further investigations are being conducted to explain the kinetics involved when rGO is used during sulfurization of sputtered Mo and MoO$_3$. Nevertheless, the nanocrystalline size of our MoS$_2$ films would not make them suitable candidates for electronic devices. However, these nanocrystalline films are potentially applicable for optoelectronics.

ACKNOWLEDGMENTS

The authors would like to thank M. Check and J. Bultman for their help in this research.

\begin{thebibliography}{99}
\bibitem{1} Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).
\bibitem{2} S. Najmaei et al., Nat. Mater. 12, 754 (2013).
\bibitem{3} B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
\bibitem{4} Z. Yin et al., ACS Nano 6, 74 (2012).
\bibitem{5} B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
\bibitem{7} J. Brivio, D. T. L. Alexander, and A. Kis, Nano Lett. 11, 5148 (2011).
\bibitem{12} C. Muratore and A. A. Voevodin, Thin Solid Films 517, 5605 (2009).
\bibitem{13} C. Muratore et al., Appl. Phys. Lett. 104, 261604 (2014).
\end{thebibliography}