Develop Charge-Selective Interfacial Materials for Polymer & Pervskite SolarCell

Alex K Y Jen
UNIVERSITY OF WASHINGTON

01/25/2016
Final Report

DISTRIBUTION A: Distribution approved for public release.
This research project combines highly conductive and robust ETL, HTL and fullerene self-assemble monolayer (SAM) in order to establish a very solid material foundation for enabling the fabrication of multi-junction organic and perovskite solar cells to reach high efficiency, low-cost, and good stability. To gain insights into these material and device development, advanced X-ray and ultrafast spectroscopy are being utilized to probe local carrier dynamics under working conditions such as varied carrier densities and electric fields. By applying these tailored interfacial materials and advanced probing methods to both organic and perovskite active layers, the research team has gained a better understanding of the sought-after connections between molecular structure and performance necessary to reach theoretical efficiency limits. New electron-transporting material (ETM), hole-transporting material (HTM), and self-assemble monolayer (SAMs) are being developed and optimized to meet criteria for organic/perovskite hybrid PVs: i) having the ability to promote Ohmic contact between the electrodes and the active layer; ii) possessing sufficient conductivity and proper energy levels for efficient charge transport and selectivity to reduce resistive loss; iii) having large bandgap to confine excitons in the active layer and low absorption in Vis-NIR to minimize optical loss; iv) possessing proper surface energy to guide the morphology evolution of active layer; v) having robustness to support multilayer solution processing. A systematic molecular engineering of these organic/hybrid components is being conducted to tune their electronic/optical properties to enable the fabrication of highly efficient single- and multi-junction organic/hybrid solar cells.
Abstract: As the front-runner photovoltaic materials in solar energy, organometallic halide perovskite have attracted worldwide attention. We have previously identified the interfacial engineering as an important section to optimize the power conversion efficiency of polymer solar cells since it can effectively alleviate the energy barriers existed at the interfaces in the multi-layered architecture to facilitate the charge transport/extraction in the device. Based on this achievement, the focus of our AOARD project sponsored in this period is to develop efficient charge-transporting interlayers (CTLs) to improve the performance and stability of thin-film perovskite solar cells (PVSCs). We first develop a solution processable, doped transition metal oxide-based hole-transporting interlayer (HTL) to significantly improve the photovoltaic performance and environmental stability of thin-film PVSCs, wherein we elucidate the doping efficacy in the p-type inorganic semiconductors. In addition to the development of HTLs, we also systematically investigate the functions of the commonly used fullerene-based ETLs in conventional p-i-n PVSCs. We not only manifest the conductivity of the employed fullerene-based ETLs has a great impact on the resulting device performance but also reveal the unique electron-coupling between fullerene and perovskite. With the achievement reported in this report, we pave the foundation to continue the optimization in efficiencies with.

Introduction:
Since the seminal discovery by Miyasaka et al. in 2009 revealing the potential of perovskite photovoltaics, the tide of organo-metal halide perovskites has surged in the solar cell field. The appealing advantages of perovskites include not only their superior optoelectronic properties, such as intense broad-band absorption, high charge carrier mobility, and long charge diffusion length, but also low-cost precursor materials and simple solution-processable thin-film preparation. These merits have allowed the significant progress of perovskite photovoltaics with power conversion efficiencies (PCEs) rapidly increasing from 3.8 to over 21 % within 6 years.

Typical device configurations of perovskite solar cells (PVSCs) consist of a methylammonium lead halide (MAPbX₃, X = Br⁻, Cl⁻, or I⁻) as the photoactive layer and hole-/electron-transporting interlayers sandwiched by collecting electrodes. In general, the positions of the highest occupied molecular orbital (HOMO) (or valence band (VB)) and the lowest unoccupied molecular orbital (LUMO) (or conduction band (CB)) of hole- and electron-transporting layers (HTLs and ETLs), respectively, are of fundamental importance in PVSCs for maximizing charge extraction rates and minimizing energy loss. Among the
PVSC device architectures developed so far, the planar heterojunction configuration attracts particular attention due to its relatively simple device fabrication process. In this regard, the development of facile solution processable CTLs becomes important complements to thin-film PVSCs.

To date, promising power conversion efficiencies (PCEs) have been achieved in such planar geometries based on organic HTLs such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), poly- triarylamine derivatives, poly-diketopyrrolopyrrole derivatives, and 2,2',7,7'-tetrakis(N,N'-di-p-methoxy-phenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), etc. Compared to organic materials, however, less attention has been paid to the development of inorganic HTLs with favorable energy levels. From the device stability and commercialization points of view, developing alternative inorganic HTLs that can be fabricated through cost efficient means is imperative for the continued evolution of high-performance perovskite photovoltaics. Meanwhile, the most widely used ETLs in the conventional p-i-n structure are mainly based on fullerene derivatives. However, the detailed functions of these fullerene-based ETLs have not been fully exploited yet.

In our original proposal, we first aim to develop the novel charge-selective interfacial materials to enhance the device performance of polymer solar cells (PSCs). With the knowledge and experience regarding interfacial engineering accumulated in PSCs,[3] we continue to develop efficient HTL and ETL for achieving high-performance PVSCs in this extended research period. In first section, we describe a doped NiOx HTL to realize a high PCE (> 15 %) PVSC showing decent environmental stability. Through the doping strategy, we effectively improve the conductivity of NiOx without changing its energy levels too much. As a result, the resultant photovoltaic parameters are largely enhanced. Besides, owning to the deep-lying HOMO of NiOx, we also demonstrate it is very suitable for the high bandgap perovskite with a deeper-lying HOMO than the pristine CH3NH3PbI3 (MAPbI3). In the second section, we systematically investigate the functions of the commonly used fullerene-based ETLs in conventional p-i-n PVSCs. We manifest the conductivity of the employed fullerene-based ETLs has a great impact on the resulting device performance. Moreover, we further reveal the unique electron-coupling between fullerene and perovskite.

Results and Discussion:

(1) Development of a solution-processed copper-doped nickel oxide hole-transporting layer for efficient and environmentally stable planar heterojunction perovskite solar cells

Among the developed inorganic p-type HTL for PVSCs, nickel oxide (NiOx) has attracted the most interests nowadays due to its large band-gap (Eg) for well electron-blocking capability.[4-8] Moreover, NiOx possesses other advantages like energetically favorable energy level alignment with photoactive layers with a deep-lying HOMO (or VB) as well as good environmental stability. However, the photovoltaic performance of NiOx in PVSCs, in particular solution-processed NiOx, is still not satisfactory when compared to devices based on PEDOT:PSS and other organic HTLs because of lower fill factor (FF) or short circuit current densities (JSC) in spite of the significantly improved Voc.[8-11] Doping can mitigate such losses in FF and JSC through its capacity to modulate conductivity, as is evidenced by the engineering behind the HTLs used currently in PVSCs.[12-15] Providing the superior chemical stability and compositional variety of inorganic HTLs, we are interested in exploring the doping efficacy in NiOx HTL to further optimize the photovoltaic performance
of the derived PVSCs. In this work, we have demonstrated high-efficiency planar heterojunction PVSCs based on solution-processed copper (Cu)-doped NiOx (Cu:NiOx) showing an impressive PCE up to 15.40% with decent environmental stability (Figure 1). Note that Cu is employed as a dopant here due to its unique electronic and structural effects as well as the ease to be incorporated into the solution fabrication of NiOx.\cite{16-17} Besides, the studied PVSC is based on a conventional configuration of indium tin oxide (ITO)/HTL (PEDOT:PSS, pristine NiOx or Cu:NiOx)/perovskite/PC61BM/C60-bis surfactant/silver (Ag).

We first characterize the influence of Cu-doping on the electrical conductivity of NiOx, and compare the conductivity of pristine NiOx and Cu:NiOx films by performing conductive atomic force microscopy (c-AFM), as revealed at the right-hand side of Figure 1, which clearly show different current level and distribution between them. Significantly increased vertical current is observed in the Cu:NiOx film, suggesting increased electrical conductivity upon Cu-doping. Notably Chen et al. observed an increase in carrier concentration with increasing Cu content (~9-18 at.%) that is accompanied by a sharp mobility decrease. Additionally, increasing Cu content monotonically reduces the transmittance of the material.\cite{15} These optoelectronic impacts are accompanied by the generation of large NiOx grain, a tendency which may be linked to the unique defect chemistry involved. These considerations illustrate that while clearly valuable, there is likely a diminishing return with respect to Cu doping.

Since the pristine NiOx and Cu:NiOx are employed as HTLs in PVSCs, photoluminescence (PL) measurement was conducted to investigate their quenching efficiency for the photo-generated carriers in the perovskite absorber. As shown in Figure 2a, the MAPbI3 film shows considerably greater PL quenching on Cu:NiOx than pristine NiOx, indicating its enhanced efficiency in hole collection and transport, which follows naturally from the increased electrical conductivity. Note that the Cu:NiOx film exhibits comparable PL quenching to PEDOT:PSS, demonstrating its viability in replacing PEDOT:PSS for high-performance PVSCs.
PVSCs.

Film formation and surface morphology of the perovskite absorber has proven to be crucial for the resultant device performance. Hence, the scanning electron microscopy (SEM) measurements were performed to understand the perovskite crystallization on the studied NiOx HTLs, as presented in Figure 2b. Interestingly, despite slightly reduced coverage, the perovskite film grown on Cu: NiOx shows larger grain size (~1 μm) compared to the film on pristine NiOx (~300 nm), which might originate from the different surface morphologies of pristine and Cu-doped NiOx films as grain size increases upon Cu-doping. NiOx surface chemistry may also be dependent on Cu content, which is a possible factor influencing nucleation behavior and promoting the sustained growth of more widely dispersed nuclei. Perovskite film quality was further analyzed by X-ray diffraction (XRD). As displayed in Figure 2c, intense XRD signal is observed for the crystalline MAPbI3 films grown on both of them.

The photovoltaic performance of the studied devices derived from pristine NiOx and Cu: NiOx HTLs under AM 1.5 G conditions (100 mW cm-2) are shown in Figure 3a and Table 1. As expected, the pristine NiOx-based solar cell exhibit higher V_OC (1.08 V) than the PEDOT:PSS-based device (0.91 V). As previously reported, this can be ascribed to the reduced potential loss at the HTL/perovskite interface due to the improved energy level alignment. However, the relatively low J_SC (14.03 mA/cm²) and FF (0.59) of the pristine NiOx-based solar cell led to a lower PCE (8.94%) than that of the PEDOT:PSS-based device (11.16%). Employing the Cu: NiOx as the HTL has significantly improved device performance, particularly J_SC and FF, due to its improved electrical conductivity relative to NiOx. It results in a PCE_MAX of 15.40% with V_OC, J_SC and FF of 1.11 V, 19.01 mA/cm² and 0.73, respectively, which substantially surpass the performance of PEDOT:PSS-based device. Moreover, the series resistance (R_s) of the NiOx-based solar cell reduced from 9.49 to 6.89 cm² upon doping. This improvement in device performance by using doped NiOx is similar to the trend in perovskite solar cells employing doped organic HTLs.

External quantum efficiency (EQE) spectra of the studied devices are shown in Figure 3b. The PVSC based on Cu: NiOx possesses much higher photon-to-electron conversion as compared to the pristine NiOx-based device, confirming that the simple Cu-doping of NiOx is an effective way to improve device performance by increasing its electrical conductivity, charge extraction efficiency, and favorable perovskite crystallization. In addition, the hysteresis of a Cu: NiOx-based solar cell was examined by varying scan rate and the device exhibited negligible hysteresis at a high scan rate (1.0 V s⁻¹) and slight hysteresis gradually appeared as the scan rate decreased (towards 0.05 V s⁻¹), which might arise from interfacial traps induced in solution-processed NiOx.

PEDOT:PSS has been widely used as a HTL for high-performance planar heterojunction
PVSCs; however, its acidic and hygroscopic properties and inability to block electrons efficiently are problematic for device stability. To verify this, the air-stability of MAPbI₃ PVSCs without encapsulation was characterized and is presented in Figure 3c. The Cu:NiOₓ-based solar cell shows markedly improved air-stability as compared to the PEDOT:PSS-based device. The PCE of the Cu:NiOₓ-based device remains above 90% of its initial PCE within 144 h of storage in air, which was mainly caused by the gradual decrease in FF and \(J_{SC}\). As aforementioned, this lower stability might originate from the acidic and hygroscopic characteristics of PEDOT:PSS that degrade the ITO electrode and the adjacent moisture-sensitive photoactive (perovskite) layer.

We further extend the applicability of a Cu:NiOₓ layer to large \(E_g\) perovskite systems, MAPb(\(I_xBr_{1-x}\))₃ which have deeper-lying VB than MAPbI₃, for improving their performance because of better matched energy level between the VB of Cu:NiOₓ and perovskite. It is well documented that the increased \(E_g\) of such Br-based perovskites accompany the simultaneous upshift of LUMO and downshift of HOMO relative to the pristine MAPbI₃. In this regard, the deep VB of NiOₓ can provide better energy alignment with large \(E_g\) Br-based perovskites (VB below 5.4 eV) than PEDOT:PSS (5.2 eV). Devices based on large \(E_g\) perovskites (MAPb(\(I_{0.8}Br_{0.2}\))₃ and MAPb(\(I_{0.6}Br_{0.4}\))₃) were fabricated with the same device configuration as mentioned above. As shown in Figure 4, the Cu:NiOₓ-based large \(E_g\) solar cells indeed show much higher \(V_{OC}\) than the PEDOT:PSS-based large \(E_g\) devices (Figure 4b), which confirms superior energy level alignment with large \(E_g\) perovskites. In addition to the improved \(V_{OC}\), the FF of the Cu:NiOₓ-based large \(E_g\) solar cells also exceeds those of the PEDOT:PSS-based large \(E_g\) devices (Figure 4c), which originates from the high electrical conductivity of Cu:NiOₓ. As shown in Figure 4d, the Cu:NiOₓ-based solar cells preserve higher \(V_{OC}/E_g\) values of 0.65 (MAPb(\(I_{0.8}Br_{0.2}\))₃), 0.68 (MAPb(\(I_{0.6}Br_{0.4}\))₃) and 0.71 (MAPbI₃) than the PEDOT:PSS-based devices (0.56, 0.58 and 0.59), suggesting that the latter system suffers relatively large potential losses (\(E_g–V_{OC}\): 0.78, 0.70 and 0.64 for PEDOT:PSS-based devices; 0.62, 0.52 and 0.45 for Cu:NiOₓ-based devices). These results clearly reveal the efficacy of a Cu:NiOₓ HTL in conjunction with

<table>
<thead>
<tr>
<th>HTL</th>
<th>(V_{OC}) [V]</th>
<th>FF</th>
<th>(J_{SC}) [mA cm(^{-2})]</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDOT:PSS</td>
<td>0.90 ± 0.01</td>
<td>0.73 ± 0.01</td>
<td>16.64 ± 0.55</td>
<td>10.87 ± 0.29 (11.16)</td>
</tr>
<tr>
<td>NiOₓ</td>
<td>1.08 ± 0.01</td>
<td>0.58 ± 0.01</td>
<td>14.13 ± 0.29</td>
<td>8.73 ± 0.13 (8.94)</td>
</tr>
<tr>
<td>5 at.% Cu:NiOₓ</td>
<td>1.11 ± 0.01</td>
<td>0.72 ± 0.01</td>
<td>18.75 ± 0.42</td>
<td>14.98 ± 0.33 (15.40)</td>
</tr>
</tbody>
</table>

Average values with standard deviation (maximum values are in parentheses)

Table 1. Summarized solar cell parameters based on different hole transporting layers (HTLs).
large E_g Br-based perovskites, which effectively reduces the potential losses and enhances PCE due to its deeper VB.

This work not only reveals the importance of doping in designing more effective inorganic transporting interlayers, but also provides an excellent device platform for making high-performance multi-stacked perovskite tandem solar cells.

(2) Exploring the roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells

In the previous section, we have developed an efficient Cu:NiOx HTL for fabricating a high-performance conventional PHJ PVSC (configuration: substrate/HTL (p)/perovskite (i)/fullerene derivative (n)). As mentioned previously, thin-film planar heterojunction (PHJ) PVSCs have been actively pursued due to their relatively simple device fabrication process. Therefore, besides developing new HTLs for highly efficient PVSCs, we simultaneously investigate the roles of the commonly used fullerene-based electron-transporting layer (ETLs) in such conventional device configuration.\(^{[8,12,19]}\) It is worth noting that room temperature, orthogonal solvent processability of fullerene derivatives can successfully prevent the degradation of the underlying perovskite layer. Moreover, their decent electron mobility makes them as promising ETLs for high-performance PVSCs. In addition to PC_{61}BM, various fullerene derivatives have also been utilized as efficient ETLs in PVSCs.\(^{[19-20]}\) All these independent results highlight the importance of fullerene-based ETLs in enhancing device performance. However, large discrepancies documented in the literature for each system suggest that a systematic study to investigate the influence of the charge-transporting properties of fullerene ETLs on device performance is warranted. Besides, the interaction between perovskite and fullerene remains unclear at present. For this reason, it is important to understand the roles of these fullerene-based ETLs in PVSCs, especially in terms of their intrinsic properties and interaction at the perovskite/fullerene interface.

In this work, we demonstrate a clear correlation between the charge-transporting properties of fullerene-based ETLs and photovoltaic performance by systematically studying three fullerenes, ICBA, PCBM, and C_{60} (Figure 5). We first verified the electron mobility of the studied fullerenes by field-effect transistors (FETs). As shown in Figure 6a, the electron mobility gradually increases from IC_{60}BA (6.9×10^{-3} cm2/Vs), to PC_{61}BM (6.1×10^{-2} cm2/Vs), to C_{60} (1.6 cm2/Vs) due to the increased conjugation of fullerene core. Note that C_{60}'s lack of bulky side-chains allows it to be packed more densely, which facilitates intermolecular charge transport and further enhances electron mobility.
To elucidate the influence of electron mobility of fullerene-based ETLs on the photovoltaic performance of PVSCs, a conventional device configuration of ITO/PEDOT:PSS (35-40 nm)/MAPbI$_3$ (300 nm)/fullerenes (~60 nm)/Bis-C$_{60}$ (10 nm)/Ag (150 nm) was fabricated. All the fullerene ETLs are spin-cast for fair comparison. The deposition of the MAPbI$_3$ thin film followed the solvent-washing method reported by Seok et al.\cite{21} which provides a smooth perovskite thin film with good surface coverage on PEDOT:PSS. We also revealed that crystallinity of perovskite are almost unaffected by the deposition of fullerene layers. The J-V curves of the studied devices are shown in Figure 6b and the relevant photovoltaic performance are summarized in Table 2. Impressively, the C$_{60}$-based device afforded the highest PCE$_{MAX}$ of 15.44% with a V_{OC} of 0.92 V, a J_{SC} of 21.07 mA/cm2, and a FF of 0.80. The PC$_{61}$BM- and IC$_{60}$BA-based devices showed PCEs of 13.37% (V_{OC}: 0.89 V, J_{SC}: 18.85 mA/cm2, and FF: 0.80) and 8.06% (V_{OC}: 0.95 V, J_{SC}: 11.27 mA/cm2, and FF: 0.75), respectively.

Interestingly, the IC$_{60}$BA-derived device showed the highest V_{OC} which can be rationalized from the fact that its LUMO is the highest among the three fullerenes. This high-lying LUMO is beneficial in maintaining the high-lying electron quasi-Fermi levels ($E_{F,e}$) in the perovskite-based p-i-n heterojunction under illumination. This results in a relatively large built-in voltage across the device while the quasi-Fermi levels of holes ($E_{F,h}$) in the p-i-n heterojunction are kept fixed by the PEDOT:PSS/perovskite interface.

Table 2. The photovoltaic performance of the studied PVSCs using different fullerene-based ETLs.

<table>
<thead>
<tr>
<th>Employed Fullerene</th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm2)</th>
<th>FF</th>
<th>PCE (%)</th>
<th>R_s (Ω cm2)</th>
<th>R_{sh} (kΩ cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC$_{60}$BA</td>
<td>0.95</td>
<td>11.27</td>
<td>0.75</td>
<td>8.06</td>
<td>5.10</td>
<td>0.71</td>
</tr>
<tr>
<td>PC$_{61}$BM</td>
<td>0.89</td>
<td>18.85</td>
<td>0.80</td>
<td>13.37</td>
<td>2.60</td>
<td>3.14</td>
</tr>
<tr>
<td>C$_{60}$</td>
<td>0.92</td>
<td>21.07</td>
<td>0.80</td>
<td>15.44</td>
<td>2.26</td>
<td>8.72</td>
</tr>
</tbody>
</table>

Average values with standard deviation (maximum values are in parentheses)
Consequently, the C60-based PVSC should have the smallest V_{OC} of the three fullerenes because of C60’s low LUMO. However, the C60-based PVSC showed a comparable V_{OC} (0.92 V) to that of PC61BM-based device (0.89 V). It can be envisaged that high C60 electron mobility effectively reduces charge recombination at the perovskite/C60 interface and diminishes potential loss across this interface. Besides, the hysteresis test of the studied devices was also performed. All the devices presented very minor hysteresis at a low scan rate of 0.01 V/s, suggesting limited charge traps at the perovskite interfaces (PEDOT:PSS/MAPbI3 and MAPbI3/fullerene).

The improved JSC and FF of PC61BM- and C60-based PVSCs can be interpreted as a consequence of improved charge dissociation/transport at the perovskite/fullerene interface arising from these fullerene’s increased electron mobility, as is evident in the steady-state photoluminescence (PL) spectra (Figure 6c). Quenching efficiency of perovskite luminescence follows the trend C60 > PC61BM >> IC60BA, which is consistent with the trend of electron mobility. To obtain more in-depth information, the lifetime of perovskite without and with three fullerene derivatives are evaluated by the time-resolved photoluminescence (TR-PL) and the results are shown in Figure 6d. Considering the perovskite/fullerene case, fullerene quenchers mainly contributed to the fast quenching processes. Both analyses demonstrated that C60 is the most efficient quencher among all three fullerene derivatives, suggesting that free charges carriers can dissociate efficiently at the perovskite/C60 interface rather than recombined inside the perovskite layer. All these results affirm that the high electron mobility of fullerene ETLs can enhance the photovoltaic performance of PVSC. More importantly, C60 is also more cost-effective than PC61BM. Given its comparable room-temperature solution processability, it is economically superior as well.

In addition to elucidating the influence of fullerene derivative’s mobility, we have also examined the electrical characteristics of bilayer perovskite/fullerene field-effect transistors (FETs). Interestingly, metallic conduction in the bilayer perovskite/fullerene film was observed as depicted in Figure 7a, signifying that effective interfacial interaction exists under bias between perovskite and fullerene. Taking C60 for example, the perovskite/C60 FET shows a six order higher current than the pristine C60 FET at $V_G = 0$ V (Figure 6a&7a) while the IC60BA- and PC61BM-based devices also exhibit similar phenomena but with lower degrees of enhancement. The estimated intrinsic conductivities (at $V_G = 0$ V) for the bilayer MAPbI3/fullerene devices are 2.4×10^3 S/cm (for MAPbI3/C60), 3.2×10^4 S/cm (MAPbI3/PC61BM), and 6.5×10^5 S/cm (MAPbI3/IC60BA), respectively. These results suggest that charge transfer occurs spontaneously between perovskite and fullerenes, and that the degree of charge transfer is correlated with mobility and fullerene molecular structure. The very minor hysteresis and high performance of PVSCs studied herein show
that such charge redistribution at the perovskite/fullerene interface may also passivate interfacial trap states as well as reduce interfacial energy barrier.

The recent finding reported by Huang et al.[20,22] echoes this hypothesis to a certain extent as they find that fullerene-based ETLs (PC$_{61}$BM, C$_{60}$, or PC$_{61}$BM/C$_{60}$) do passivate the trap density of states at the perovskite surface. Second, charge redistribution can increase the carrier concentration in the fullerene layer, which effectively becomes n-doped by the electrons transferred from the perovskite. Upon doping, the Fermi level of the fullerene film would up-shift to conducting states, thereby reducing contact resistance, enhancing charge extraction, and increasing built-in potential across the device. It can be envisioned that both these phenomena occurring at the perovskite/fullerene interface can effectively reduce the interfacial energy barrier for charge extraction, and thus they are believed to be the dominant factors leading to the very minor hysteresis and high performance of fullerene-based PVSCs.

List of Publications and Significant Collaborations that resulted from your AOARD supported project:

a) Papers published in peer-reviewed journals

b) Conference presentations

10. Colloquium, “Molecular Engineering to Create Societal Impact”, Department of Chemistry, Texas A&M University, College Station, Texas, November 14, 2013.

Reference

22. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nature Commun. 2014, 5, 5784