Overlap Areas of a Square Box on a Square Mesh

by James U Cazamias
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Overlap Areas of a Square Box on a Square Mesh

by James U Cazamias

Weapons and Materials Research Directorate, ARL
To aid in a data-reduction process, an algorithm was generated to calculate on a square mesh (elements with sides of length 2m) the area of overlap for individual elements with a square box (sides of length 2n) that is not rotated relative to the mesh subject to the constraint n < 2m.

15. SUBJECT TERMS
data reduction, square mesh, overlapping squares, construction geometry, algorithm
Contents

List of Figures iv
List of Tables iv

1. Objective 1
2. Algorithm 1

Distribution List 3
List of Figures

Fig. 1 Construction geometry.. 1

List of Tables

Table 1 Construction definitions.. 2
1. Objective

To aid in a data-reduction process, an algorithm was generated to calculate on a square mesh (elements with sides of length 2m) the area of overlap for individual elements with a square box (sides of length 2n) that is not rotated relative to the mesh subject to the constraint n < 2m.

2. Algorithm

Ignoring edge elements, we can assume the following construction (Fig. 1) without loss of generality: 1) a 3 × 3 mesh with the coordinate system’s origin at the center of the middle element and 2) a square box with center (x,y), which also lies in the middle element. The constraint ensures that the box lies entirely within the 3 × 3 mesh. We label the elements (i,j) with i,j = 1,2,3. We define the overlap area of an individual mesh element (i,j) with the box as A_{ij}. Since the box is not rotated relative to the mesh, notice that the overlap areas are rectangles with sides Δx_i and Δy_j with

$$A_{ij} = \Delta x_i \Delta y_j.$$ (1)
The terms Δx_2 and Δy_2 will always be nonzero, but we need to check if Δx_1, Δy_1, Δx_3, and Δy_3 are nonzero as well. The terms Δx_1 and Δy_3 are determined using Table 1 and Eqs. 2 and 3.

Table 1 Construction definitions

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x - n < -m$</td>
<td>$\Delta x_1 = n - x - m$; $x^- = -m$</td>
<td>$\Delta x_1 = 0$; $x^- = x - n$</td>
</tr>
<tr>
<td>$x + n > m$</td>
<td>$\Delta x_3 = n + x - m$; $x^+ = m$</td>
<td>$\Delta x_3 = 0$; $x^+ = x + n$</td>
</tr>
<tr>
<td>$y - n < -m$</td>
<td>$\Delta y_3 = n - y - m$; $y^- = -m$</td>
<td>$\Delta y_3 = 0$; $y^- = y - n$</td>
</tr>
<tr>
<td>$y + n > m$</td>
<td>$\Delta y_1 = n + y - m$; $y^+ = m$</td>
<td>$\Delta y_1 = 0$; $y^+ = y + n$</td>
</tr>
</tbody>
</table>

$\Delta x_2 = x^+ - x^-$. \hspace{1cm} (2)

$\Delta y_2 = y^+ - y^-$. \hspace{1cm} (3)